Mather Discrepancy as an Embedding Dimension in the Space of Arcs
Let $X$ be a variety over a field $k$ and let $X_\infty$ be its space of arcs. We study the complete local ring $\widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}}$, where $P_{eE}$ is the stable point defined by an integer $e \geq 1$ and a divisorial valuation $\nu_E$ on $X$. Assuming char $k =0$, w...
Saved in:
| Published in | Publications of the Research Institute for Mathematical Sciences Vol. 54; no. 1; pp. 105 - 139 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Zuerich, Switzerland
European Mathematical Society Publishing House
01.01.2018
European Mathematical Society |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0034-5318 1663-4926 |
| DOI | 10.4171/PRIMS/54-1-4 |
Cover
| Abstract | Let $X$ be a variety over a field $k$ and let $X_\infty$ be its space of arcs. We study the complete local ring $\widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}}$, where $P_{eE}$ is the stable point defined by an integer $e \geq 1$ and a divisorial valuation $\nu_E$ on $X$. Assuming char $k =0$, we prove that embdim $\widehat{A} = e ( \widehat{k}_E + 1)$, where $\widehat{k}_E $ is the Mather discrepancy of $X$ with respect to $\nu_E$. We also obtain that dim $\widehat{A}$ has as lower bound $e ( a_{\rm {MJ}}(E;X))$, where $ a_{\rm {MJ}}(E;X)$ is the Mather–Jacobian log-discrepancy of $X$ with respect to $\nu_E$. For $X$ normal and a complete intersection, we prove as a consequence that if $P_E$ has codimension 1 in $X_\infty$ then the discrepancy $k_E \leq 0$. |
|---|---|
| AbstractList | Let X be a variety over a field k and let [X.sub.[infinity]] be its space of arcs. We study the complete local ring [mathematical expression not reproducible], where [P.sub.eE] is the stable point defined by an integer e [greater than or equal to] 1 and a divisorial valuation [v.sub.E] on X. Assuming chark = 0, we prove that embdimA = e([k.sub.E] + 1), where [k.sub.E] is the Mather discrepancy of X with respect to [v.sub.E]. We also obtain that dim A has as lower bound e([a.sub.MJ](E; X)), where aMJ (E; X) is the Mather-Jacobian log-discrepancy of X with respect to [v.sub.E]. For X normal and a complete intersection, we prove as a consequence that if [P.sub.E] has codimension 1 in [X.sub.[infinity]] then the discrepancy [k.sub.E] [less than or equal to] 0. 2010 Mathematics Subject Classification: Primary14B05; Secondary13A18,14J17,14E15. Keywords: Space of arcs, divisorial valuations, embedding dimension, Mather discrepancy. Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P is the stable point defined by a divisorial valuation ν on X. Assuming char k = 0, we prove that the embedding dimension of A^ is equal to k + 1 where k is the Mather discrepancy of X with respect to ν. We also obtain that the dimension of A^ has as lower bound the Mather-Jacobian log-discrepancy of X with respect to ν. For X normal and complete intersection, we prove as a consequence that points P of codimension one in X ∞ have discrepancy k ≤ 0. Let X be a variety over a field k and let X_\infty be its space of arcs. We study the complete local ring \widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}} , where P_{eE} is the stable point defined by an integer e \geq 1 and a divisorial valuation \nu_E on X . Assuming char k =0 , we prove that embdim \widehat{A} = e ( \widehat{k}_E + 1) , where \widehat{k}_E is the Mather discrepancy of X with respect to \nu_E . We also obtain that dim \widehat{A} has as lower bound e ( a_{\rm {MJ}}(E;X)) , where a_{\rm {MJ}}(E;X) is the Mather–Jacobian log-discrepancy of X with respect to \nu_E . For X normal and a complete intersection, we prove as a consequence that if P_E has codimension 1 in X_\infty then the discrepancy k_E \leq 0 . Let $X$ be a variety over a field $k$ and let $X_\infty$ be its space of arcs. We study the complete local ring $\widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}}$, where $P_{eE}$ is the stable point defined by an integer $e \geq 1$ and a divisorial valuation $\nu_E$ on $X$. Assuming char $k =0$, we prove that embdim $\widehat{A} = e ( \widehat{k}_E + 1)$, where $\widehat{k}_E $ is the Mather discrepancy of $X$ with respect to $\nu_E$. We also obtain that dim $\widehat{A}$ has as lower bound $e ( a_{\rm {MJ}}(E;X))$, where $ a_{\rm {MJ}}(E;X)$ is the Mather–Jacobian log-discrepancy of $X$ with respect to $\nu_E$. For $X$ normal and a complete intersection, we prove as a consequence that if $P_E$ has codimension 1 in $X_\infty$ then the discrepancy $k_E \leq 0$. |
| Audience | Academic |
| Author | Mourtada, Hussein Reguera, Ana |
| Author_xml | – sequence: 1 givenname: Hussein surname: Mourtada fullname: Mourtada, Hussein organization: Institut Mathématique de Jussieu-Paris Rive Gauche, France – sequence: 2 givenname: Ana surname: Reguera fullname: Reguera, Ana organization: Universidad de Valladolid, Spain |
| BackLink | https://hal.science/hal-01474030$$DView record in HAL |
| BookMark | eNp1kU9rGzEQxUVIIY6bWz-Aji10bWk12j_HJU1rg0NL3Z7FrHaUKNhaI20C-fZV4jSHQJiD0NPv6cGbc3YaxkCMfZJiAbKWy1-_19fbpYZCFnDCZrKqVAFtWZ2ymRAKCq1kc8bOU7oTAnRbwox11zjdUuTffLKRDhjsI8fEMfCrfU_D4MNNfttTSH4M3Aeeab49oCU-Ot5Fmz6yDw53iS5ezjn7-_3qz-Wq2Pz8sb7sNoUFUU8FUa-cAk0DWWzK2glwtSXX1LZ3mlQlse1FhYNqe-iF7isFDQ4kHJR1j07N2Zfjv7e4M4fo9xgfzYjerLqNedKEhBqEEg8ys4sje4M7Mj64cYpo8wy09zaX5nzWO13qSlRN3WbD16PBxjGlSO41QQrz1O3zPRkNRhrIePkGt37CKVeUc_zuPdPno4mydjfex5DrekWfd_cf_QfZeYx7 |
| CitedBy_id | crossref_primary_10_1515_crelle_2024_0070 |
| ContentType | Journal Article |
| Copyright | Research Institute for Mathematical Sciences, Kyoto University COPYRIGHT 2018 European Mathematical Society Publishing House Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Research Institute for Mathematical Sciences, Kyoto University – notice: COPYRIGHT 2018 European Mathematical Society Publishing House – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.4171/PRIMS/54-1-4 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1663-4926 |
| EndPage | 139 |
| ExternalDocumentID | oai:HAL:hal-01474030v1 A525606879 10_4171_prims_54_1_4 10_4171_PRIMS_54_1_4 |
| GeographicLocations | United States |
| GeographicLocations_xml | – name: United States |
| GroupedDBID | 08R 123 7.U ABEFU ACYGS ADACO AEILP AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 E3Z EBS EJD FEDTE H13 HVGLF H~9 IAO ITC J9A JSF JSH KQ8 LI0 OK1 P2P REW RJT RZJ TKC VH7 AAYXX ABDNZ ACGFO AKZPS AMVHM AUREJ CITATION 1XC VOOES |
| ID | FETCH-LOGICAL-c407t-eeb3f345edeca827f04f7cef87cbf5e361a9b06ad39b4b05b6348ade0f427baf3 |
| ISSN | 0034-5318 |
| IngestDate | Tue Oct 14 20:19:07 EDT 2025 Tue Jun 10 20:44:04 EDT 2025 Tue Jul 01 00:19:48 EDT 2025 Thu Apr 24 23:05:05 EDT 2025 Mon Jan 18 11:06:44 EST 2021 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Space of arcs embedding dimension divisorial valuations Mather discrepancy space of arcs |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c407t-eeb3f345edeca827f04f7cef87cbf5e361a9b06ad39b4b05b6348ade0f427baf3 |
| ORCID | 0000-0002-4565-5524 |
| OpenAccessLink | https://hal.science/hal-01474030 |
| PageCount | 35 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01474030v1 gale_infotracacademiconefile_A525606879 crossref_primary_10_4171_prims_54_1_4 crossref_citationtrail_10_4171_prims_54_1_4 ems_journals_10_4171_PRIMS_54_1_4 |
| ProviderPackageCode | VH7 REW CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Zuerich, Switzerland |
| PublicationPlace_xml | – name: Zuerich, Switzerland |
| PublicationTitle | Publications of the Research Institute for Mathematical Sciences |
| PublicationTitleAlternate | Publ. Res. Inst. Math. Sci |
| PublicationYear | 2018 |
| Publisher | European Mathematical Society Publishing House European Mathematical Society |
| Publisher_xml | – name: European Mathematical Society Publishing House – name: European Mathematical Society |
| SSID | ssj0045924 |
| Score | 2.1674972 |
| Snippet | Let $X$ be a variety over a field $k$ and let $X_\infty$ be its space of arcs. We study the complete local ring $\widehat{A}:=\widehat{{\cal O}_{X_\infty,... Let X be a variety over a field k and let X_\infty be its space of arcs. We study the complete local ring \widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}} ,... Let X be a variety over a field k and let [X.sub.[infinity]] be its space of arcs. We study the complete local ring [mathematical expression not reproducible],... Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P... |
| SourceID | hal gale crossref ems |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 105 |
| SubjectTerms | Algebraic geometry Analysis Arcs (Geometry) Commutative rings and algebras Mathematics Rings (Mathematics) |
| Title | Mather Discrepancy as an Embedding Dimension in the Space of Arcs |
| URI | http://www.ems-ph.org/doi/10.4171/PRIMS/54-1-4 https://hal.science/hal-01474030 |
| Volume | 54 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1663-4926 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0045924 issn: 0034-5318 databaseCode: AMVHM dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbY7QUOiKdYXjIIxKFKayd2nBwjaLVUBCHaot4iO3FgJZquNrsc-PXMxIk3rYpUuEQry469nvG8MvOZkDexYUllY0xuVSwQlsORUswGshQht0pUsgOezz_H81NxdCbPtgH9rrpkbfbK39fWlfwPVaEN6IpVsv9AWf9SaIDfQF94AoXheSMa5535hgiaYPstUU7itTFwYg_Oja26cpUPiN7fjhIaj8FJ7uIE2arPc-9N03EAb8gcGPLyRjkFmJaYe6zXHksEc7E96WDla111Rul807Z2sS02s983duUiuY3ePdobxxx4Moo59HI0EgGcXic5rROdYLsECD84lq0OIPoSDzlByZkc6VzuAI2uinPBFYrz5WqBYadDKdDf3Squ4WP9FX3mswzBv8E3FN34QoqCF2JCdkKQ_2xKdrL82zwftLaQaegQu_t_5ookcPx-N37fzX7JfJnY89ar8smPIRTfmSYn98jd3qegmWOQ--SWbR6QO1sitQ9J5liFjliF6pbqhnpWoZ5V6KKh0Jt2rEIvaoqs8oicHh6cvJ8H_e0ZQQlO-jqw1kR1JKStbKmTUNVM1Kq0daJKU0sbxVynhsW6ilIjDJMmjkSiK8tqESqj6-gxmTYXjX1CqKhUGuoYLME6FCrV2jDNywo8DabrMNYzsjtsSlH20PJ4w8nP4joSzMhb33vpIFX-0u8V7G_Rn7fW9_ny9WN-7Pu8w90vkGtgxlL3RSWwbsQ1KzKJJn2cqHRGXgOB_ISIqj7PPhXYxrhQApTdL_70hkt7Rm5vj8VzMl2vNvYFGKdr87Lnqz99hpAp |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mather+Discrepancy+as+an+Embedding+Dimension+in+the+Space+of+Arcs&rft.jtitle=Publications+of+the+Research+Institute+for+Mathematical+Sciences&rft.au=Mourtada%2C+Hussein&rft.au=Reguera%2C+Ana+J.&rft.date=2018-01-01&rft.issn=0034-5318&rft.eissn=1663-4926&rft.volume=54&rft.issue=1&rft.spage=105&rft.epage=139&rft_id=info:doi/10.4171%2Fprims%2F54-1-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_prims_54_1_4 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-5318&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-5318&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-5318&client=summon |