Mather Discrepancy as an Embedding Dimension in the Space of Arcs

Let $X$ be a variety over a field $k$ and let $X_\infty$ be its space of arcs. We study the complete local ring $\widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}}$, where $P_{eE}$ is the stable point defined by an integer $e \geq 1$ and a divisorial valuation $\nu_E$ on $X$. Assuming char $k =0$, w...

Full description

Saved in:
Bibliographic Details
Published inPublications of the Research Institute for Mathematical Sciences Vol. 54; no. 1; pp. 105 - 139
Main Authors Mourtada, Hussein, Reguera, Ana
Format Journal Article
LanguageEnglish
Published Zuerich, Switzerland European Mathematical Society Publishing House 01.01.2018
European Mathematical Society
Subjects
Online AccessGet full text
ISSN0034-5318
1663-4926
DOI10.4171/PRIMS/54-1-4

Cover

Abstract Let $X$ be a variety over a field $k$ and let $X_\infty$ be its space of arcs. We study the complete local ring $\widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}}$, where $P_{eE}$ is the stable point defined by an integer $e \geq 1$ and a divisorial valuation $\nu_E$ on $X$. Assuming char $k =0$, we prove that embdim $\widehat{A} = e ( \widehat{k}_E + 1)$, where $\widehat{k}_E $ is the Mather discrepancy of $X$ with respect to $\nu_E$. We also obtain that dim $\widehat{A}$ has as lower bound $e ( a_{\rm {MJ}}(E;X))$, where $ a_{\rm {MJ}}(E;X)$ is the Mather–Jacobian log-discrepancy of $X$ with respect to $\nu_E$. For $X$ normal and a complete intersection, we prove as a consequence that if $P_E$ has codimension 1 in $X_\infty$ then the discrepancy $k_E \leq 0$.
AbstractList Let X be a variety over a field k and let [X.sub.[infinity]] be its space of arcs. We study the complete local ring [mathematical expression not reproducible], where [P.sub.eE] is the stable point defined by an integer e [greater than or equal to] 1 and a divisorial valuation [v.sub.E] on X. Assuming chark = 0, we prove that embdimA = e([k.sub.E] + 1), where [k.sub.E] is the Mather discrepancy of X with respect to [v.sub.E]. We also obtain that dim A has as lower bound e([a.sub.MJ](E; X)), where aMJ (E; X) is the Mather-Jacobian log-discrepancy of X with respect to [v.sub.E]. For X normal and a complete intersection, we prove as a consequence that if [P.sub.E] has codimension 1 in [X.sub.[infinity]] then the discrepancy [k.sub.E] [less than or equal to] 0. 2010 Mathematics Subject Classification: Primary14B05; Secondary13A18,14J17,14E15. Keywords: Space of arcs, divisorial valuations, embedding dimension, Mather discrepancy.
Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P is the stable point defined by a divisorial valuation ν on X. Assuming char k = 0, we prove that the embedding dimension of A^ is equal to k + 1 where k is the Mather discrepancy of X with respect to ν. We also obtain that the dimension of A^ has as lower bound the Mather-Jacobian log-discrepancy of X with respect to ν. For X normal and complete intersection, we prove as a consequence that points P of codimension one in X ∞ have discrepancy k ≤ 0.
Let X be a variety over a field k and let X_\infty be its space of arcs. We study the complete local ring \widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}} , where P_{eE} is the stable point defined by an integer e \geq 1 and a divisorial valuation \nu_E on X . Assuming char k =0 , we prove that embdim \widehat{A} = e ( \widehat{k}_E + 1) , where \widehat{k}_E is the Mather discrepancy of X with respect to \nu_E . We also obtain that dim \widehat{A} has as lower bound e ( a_{\rm {MJ}}(E;X)) , where a_{\rm {MJ}}(E;X) is the Mather–Jacobian log-discrepancy of X with respect to \nu_E . For X normal and a complete intersection, we prove as a consequence that if P_E has codimension 1 in X_\infty then the discrepancy k_E \leq 0 .
Let $X$ be a variety over a field $k$ and let $X_\infty$ be its space of arcs. We study the complete local ring $\widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}}$, where $P_{eE}$ is the stable point defined by an integer $e \geq 1$ and a divisorial valuation $\nu_E$ on $X$. Assuming char $k =0$, we prove that embdim $\widehat{A} = e ( \widehat{k}_E + 1)$, where $\widehat{k}_E $ is the Mather discrepancy of $X$ with respect to $\nu_E$. We also obtain that dim $\widehat{A}$ has as lower bound $e ( a_{\rm {MJ}}(E;X))$, where $ a_{\rm {MJ}}(E;X)$ is the Mather–Jacobian log-discrepancy of $X$ with respect to $\nu_E$. For $X$ normal and a complete intersection, we prove as a consequence that if $P_E$ has codimension 1 in $X_\infty$ then the discrepancy $k_E \leq 0$.
Audience Academic
Author Mourtada, Hussein
Reguera, Ana
Author_xml – sequence: 1
  givenname: Hussein
  surname: Mourtada
  fullname: Mourtada, Hussein
  organization: Institut Mathématique de Jussieu-Paris Rive Gauche, France
– sequence: 2
  givenname: Ana
  surname: Reguera
  fullname: Reguera, Ana
  organization: Universidad de Valladolid, Spain
BackLink https://hal.science/hal-01474030$$DView record in HAL
BookMark eNp1kU9rGzEQxUVIIY6bWz-Aji10bWk12j_HJU1rg0NL3Z7FrHaUKNhaI20C-fZV4jSHQJiD0NPv6cGbc3YaxkCMfZJiAbKWy1-_19fbpYZCFnDCZrKqVAFtWZ2ymRAKCq1kc8bOU7oTAnRbwox11zjdUuTffLKRDhjsI8fEMfCrfU_D4MNNfttTSH4M3Aeeab49oCU-Ot5Fmz6yDw53iS5ezjn7-_3qz-Wq2Pz8sb7sNoUFUU8FUa-cAk0DWWzK2glwtSXX1LZ3mlQlse1FhYNqe-iF7isFDQ4kHJR1j07N2Zfjv7e4M4fo9xgfzYjerLqNedKEhBqEEg8ys4sje4M7Mj64cYpo8wy09zaX5nzWO13qSlRN3WbD16PBxjGlSO41QQrz1O3zPRkNRhrIePkGt37CKVeUc_zuPdPno4mydjfex5DrekWfd_cf_QfZeYx7
CitedBy_id crossref_primary_10_1515_crelle_2024_0070
ContentType Journal Article
Copyright Research Institute for Mathematical Sciences, Kyoto University
COPYRIGHT 2018 European Mathematical Society Publishing House
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Research Institute for Mathematical Sciences, Kyoto University
– notice: COPYRIGHT 2018 European Mathematical Society Publishing House
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.4171/PRIMS/54-1-4
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1663-4926
EndPage 139
ExternalDocumentID oai:HAL:hal-01474030v1
A525606879
10_4171_prims_54_1_4
10_4171_PRIMS_54_1_4
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID 08R
123
7.U
ABEFU
ACYGS
ADACO
AEILP
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
E3Z
EBS
EJD
FEDTE
H13
HVGLF
H~9
IAO
ITC
J9A
JSF
JSH
KQ8
LI0
OK1
P2P
REW
RJT
RZJ
TKC
VH7
AAYXX
ABDNZ
ACGFO
AKZPS
AMVHM
AUREJ
CITATION
1XC
VOOES
ID FETCH-LOGICAL-c407t-eeb3f345edeca827f04f7cef87cbf5e361a9b06ad39b4b05b6348ade0f427baf3
ISSN 0034-5318
IngestDate Tue Oct 14 20:19:07 EDT 2025
Tue Jun 10 20:44:04 EDT 2025
Tue Jul 01 00:19:48 EDT 2025
Thu Apr 24 23:05:05 EDT 2025
Mon Jan 18 11:06:44 EST 2021
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Space of arcs
embedding dimension
divisorial valuations
Mather discrepancy
space of arcs
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-eeb3f345edeca827f04f7cef87cbf5e361a9b06ad39b4b05b6348ade0f427baf3
ORCID 0000-0002-4565-5524
OpenAccessLink https://hal.science/hal-01474030
PageCount 35
ParticipantIDs hal_primary_oai_HAL_hal_01474030v1
gale_infotracacademiconefile_A525606879
crossref_primary_10_4171_prims_54_1_4
crossref_citationtrail_10_4171_prims_54_1_4
ems_journals_10_4171_PRIMS_54_1_4
ProviderPackageCode VH7
REW
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Zuerich, Switzerland
PublicationPlace_xml – name: Zuerich, Switzerland
PublicationTitle Publications of the Research Institute for Mathematical Sciences
PublicationTitleAlternate Publ. Res. Inst. Math. Sci
PublicationYear 2018
Publisher European Mathematical Society Publishing House
European Mathematical Society
Publisher_xml – name: European Mathematical Society Publishing House
– name: European Mathematical Society
SSID ssj0045924
Score 2.1674972
Snippet Let $X$ be a variety over a field $k$ and let $X_\infty$ be its space of arcs. We study the complete local ring $\widehat{A}:=\widehat{{\cal O}_{X_\infty,...
Let X be a variety over a field k and let X_\infty be its space of arcs. We study the complete local ring \widehat{A}:=\widehat{{\cal O}_{X_\infty, P_{eE}}} ,...
Let X be a variety over a field k and let [X.sub.[infinity]] be its space of arcs. We study the complete local ring [mathematical expression not reproducible],...
Let X be a variety over a field k and let X∞ be its space of arcs. We study the embedding dimension of the completion A^ of the local ring of X∞ at P where P...
SourceID hal
gale
crossref
ems
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105
SubjectTerms Algebraic geometry
Analysis
Arcs (Geometry)
Commutative rings and algebras
Mathematics
Rings (Mathematics)
Title Mather Discrepancy as an Embedding Dimension in the Space of Arcs
URI http://www.ems-ph.org/doi/10.4171/PRIMS/54-1-4
https://hal.science/hal-01474030
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1663-4926
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0045924
  issn: 0034-5318
  databaseCode: AMVHM
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbY7QUOiKdYXjIIxKFKayd2nBwjaLVUBCHaot4iO3FgJZquNrsc-PXMxIk3rYpUuEQry469nvG8MvOZkDexYUllY0xuVSwQlsORUswGshQht0pUsgOezz_H81NxdCbPtgH9rrpkbfbK39fWlfwPVaEN6IpVsv9AWf9SaIDfQF94AoXheSMa5535hgiaYPstUU7itTFwYg_Oja26cpUPiN7fjhIaj8FJ7uIE2arPc-9N03EAb8gcGPLyRjkFmJaYe6zXHksEc7E96WDla111Rul807Z2sS02s983duUiuY3ePdobxxx4Moo59HI0EgGcXic5rROdYLsECD84lq0OIPoSDzlByZkc6VzuAI2uinPBFYrz5WqBYadDKdDf3Squ4WP9FX3mswzBv8E3FN34QoqCF2JCdkKQ_2xKdrL82zwftLaQaegQu_t_5ookcPx-N37fzX7JfJnY89ar8smPIRTfmSYn98jd3qegmWOQ--SWbR6QO1sitQ9J5liFjliF6pbqhnpWoZ5V6KKh0Jt2rEIvaoqs8oicHh6cvJ8H_e0ZQQlO-jqw1kR1JKStbKmTUNVM1Kq0daJKU0sbxVynhsW6ilIjDJMmjkSiK8tqESqj6-gxmTYXjX1CqKhUGuoYLME6FCrV2jDNywo8DabrMNYzsjtsSlH20PJ4w8nP4joSzMhb33vpIFX-0u8V7G_Rn7fW9_ny9WN-7Pu8w90vkGtgxlL3RSWwbsQ1KzKJJn2cqHRGXgOB_ISIqj7PPhXYxrhQApTdL_70hkt7Rm5vj8VzMl2vNvYFGKdr87Lnqz99hpAp
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mather+Discrepancy+as+an+Embedding+Dimension+in+the+Space+of+Arcs&rft.jtitle=Publications+of+the+Research+Institute+for+Mathematical+Sciences&rft.au=Mourtada%2C+Hussein&rft.au=Reguera%2C+Ana+J.&rft.date=2018-01-01&rft.issn=0034-5318&rft.eissn=1663-4926&rft.volume=54&rft.issue=1&rft.spage=105&rft.epage=139&rft_id=info:doi/10.4171%2Fprims%2F54-1-4&rft.externalDBID=n%2Fa&rft.externalDocID=10_4171_prims_54_1_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-5318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-5318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-5318&client=summon