CD137 expression and signal function drive pleiotropic γδ T-cell effector functions that inhibit intracellular M. tuberculosis growth
Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a...
Saved in:
| Published in | Clinical immunology (Orlando, Fla.) Vol. 266; p. 110331 |
|---|---|
| Main Authors | , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.09.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1521-6616 1521-7035 1521-7035 |
| DOI | 10.1016/j.clim.2024.110331 |
Cover
| Abstract | Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a by fast-acting Vγ2Vδ2 T cells in TB-resistant subjects (Resisters), but not patients with active TB. And, anti-CD137 agonistic antibody treatment experiments showed that CD137 signaling enabled Vγ2Vδ2 T cells to produce more effector cytokines and inhibit intracellular Mtb growth in macrophages (Mɸ). Consistently, Mtb antigen (Ag) HMBPP stimulation induced sustainable high-level CD137 expression in fresh and activated Vγ2Vδ2 T cells from uninfected subjects, but not TB patients. CD137+Vγ2Vδ2 T-cell subtype predominantly displayed central memory phenotype and mounted better proliferative responses than CD137−Vγ2Vδ2 T-cells. In response to HMBPP, CD137+Vγ2Vδ2 T-cell subtype rapidly differentiated into greater numbers of pleiotropic effector cells producing anti-Mtb cytokines compared to CD137−Vγ2Vδ2 T subtype, with the non-canonical NF-κB pathway involved. CD137 expression in Vγ2Vδ2 T cells appeared to signal anti-Mtb effector functions leading to intracellular Mtb growth inhibition in Mɸ, and active TB disrupted such CD137-driven anti-Mtb effector functions. CD137+Vγ2Vδ2 T-cells subtype exhibited an epigenetic-driven high-level expression of GM-CSF and de novo production of GM-CSF critical for Vγ2Vδ2 T-cell controlling of Mtb growth in Mϕ. Concurrently, exosomes produced by CD137+Vγ2Vδ2 T cells potently inhibited intracellular mycobacterial growth. Furthermore, adoptive transfer of human CD137+Vγ2Vδ2 T cells to Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, our data suggest that CD137 expression/signaling drives pleiotropic γδ T-cell effector functions that inhibit intracellular Mtb growth. |
|---|---|
| AbstractList | Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a by fast-acting Vγ2Vδ2 T cells in TB-resistant subjects (Resisters), but not patients with active TB. And, anti-CD137 agonistic antibody treatment experiments showed that CD137 signaling enabled Vγ2Vδ2 T cells to produce more effector cytokines and inhibit intracellular Mtb growth in macrophages (Mɸ). Consistently, Mtb antigen (Ag) HMBPP stimulation induced sustainable high-level CD137 expression in fresh and activated Vγ2Vδ2 T cells from uninfected subjects, but not TB patients. CD137+Vγ2Vδ2 T-cell subtype predominantly displayed central memory phenotype and mounted better proliferative responses than CD137−Vγ2Vδ2 T-cells. In response to HMBPP, CD137+Vγ2Vδ2 T-cell subtype rapidly differentiated into greater numbers of pleiotropic effector cells producing anti-Mtb cytokines compared to CD137−Vγ2Vδ2 T subtype, with the non-canonical NF-κB pathway involved. CD137 expression in Vγ2Vδ2 T cells appeared to signal anti-Mtb effector functions leading to intracellular Mtb growth inhibition in Mɸ, and active TB disrupted such CD137-driven anti-Mtb effector functions. CD137+Vγ2Vδ2 T-cells subtype exhibited an epigenetic-driven high-level expression of GM-CSF and de novo production of GM-CSF critical for Vγ2Vδ2 T-cell controlling of Mtb growth in Mϕ. Concurrently, exosomes produced by CD137+Vγ2Vδ2 T cells potently inhibited intracellular mycobacterial growth. Furthermore, adoptive transfer of human CD137+Vγ2Vδ2 T cells to Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, our data suggest that CD137 expression/signaling drives pleiotropic γδ T-cell effector functions that inhibit intracellular Mtb growth. Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a by fast-acting Vγ2Vδ2 T cells in TB-resistant subjects (Resisters), but not patients with active TB. And, anti-CD137 agonistic antibody treatment experiments showed that CD137 signaling enabled Vγ2Vδ2 T cells to produce more effector cytokines and inhibit intracellular Mtb growth in macrophages (Mɸ). Consistently, Mtb antigen (Ag) HMBPP stimulation induced sustainable high-level CD137 expression in fresh and activated Vγ2Vδ2 T cells from uninfected subjects, but not TB patients. CD137+Vγ2Vδ2 T-cell subtype predominantly displayed central memory phenotype and mounted better proliferative responses than CD137-Vγ2Vδ2 T-cells. In response to HMBPP, CD137+Vγ2Vδ2 T-cell subtype rapidly differentiated into greater numbers of pleiotropic effector cells producing anti-Mtb cytokines compared to CD137-Vγ2Vδ2 T subtype, with the non-canonical NF-κB pathway involved. CD137 expression in Vγ2Vδ2 T cells appeared to signal anti-Mtb effector functions leading to intracellular Mtb growth inhibition in Mɸ, and active TB disrupted such CD137-driven anti-Mtb effector functions. CD137+Vγ2Vδ2 T-cells subtype exhibited an epigenetic-driven high-level expression of GM-CSF and de novo production of GM-CSF critical for Vγ2Vδ2 T-cell controlling of Mtb growth in Mϕ. Concurrently, exosomes produced by CD137+Vγ2Vδ2 T cells potently inhibited intracellular mycobacterial growth. Furthermore, adoptive transfer of human CD137+Vγ2Vδ2 T cells to Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, our data suggest that CD137 expression/signaling drives pleiotropic γδ T-cell effector functions that inhibit intracellular Mtb growth.Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a by fast-acting Vγ2Vδ2 T cells in TB-resistant subjects (Resisters), but not patients with active TB. And, anti-CD137 agonistic antibody treatment experiments showed that CD137 signaling enabled Vγ2Vδ2 T cells to produce more effector cytokines and inhibit intracellular Mtb growth in macrophages (Mɸ). Consistently, Mtb antigen (Ag) HMBPP stimulation induced sustainable high-level CD137 expression in fresh and activated Vγ2Vδ2 T cells from uninfected subjects, but not TB patients. CD137+Vγ2Vδ2 T-cell subtype predominantly displayed central memory phenotype and mounted better proliferative responses than CD137-Vγ2Vδ2 T-cells. In response to HMBPP, CD137+Vγ2Vδ2 T-cell subtype rapidly differentiated into greater numbers of pleiotropic effector cells producing anti-Mtb cytokines compared to CD137-Vγ2Vδ2 T subtype, with the non-canonical NF-κB pathway involved. CD137 expression in Vγ2Vδ2 T cells appeared to signal anti-Mtb effector functions leading to intracellular Mtb growth inhibition in Mɸ, and active TB disrupted such CD137-driven anti-Mtb effector functions. CD137+Vγ2Vδ2 T-cells subtype exhibited an epigenetic-driven high-level expression of GM-CSF and de novo production of GM-CSF critical for Vγ2Vδ2 T-cell controlling of Mtb growth in Mϕ. Concurrently, exosomes produced by CD137+Vγ2Vδ2 T cells potently inhibited intracellular mycobacterial growth. Furthermore, adoptive transfer of human CD137+Vγ2Vδ2 T cells to Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, our data suggest that CD137 expression/signaling drives pleiotropic γδ T-cell effector functions that inhibit intracellular Mtb growth. Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a by fast-acting Vγ2Vδ2 T cells in TB-resistant subjects (Resisters), but not patients with active TB. And, anti-CD137 agonistic antibody treatment experiments showed that CD137 signaling enabled Vγ2Vδ2 T cells to produce more effector cytokines and inhibit intracellular Mtb growth in macrophages (Mɸ). Consistently, Mtb antigen (Ag) HMBPP stimulation induced sustainable high-level CD137 expression in fresh and activated Vγ2Vδ2 T cells from uninfected subjects, but not TB patients. CD137 Vγ2Vδ2 T-cell subtype predominantly displayed central memory phenotype and mounted better proliferative responses than CD137 Vγ2Vδ2 T-cells. In response to HMBPP, CD137 Vγ2Vδ2 T-cell subtype rapidly differentiated into greater numbers of pleiotropic effector cells producing anti-Mtb cytokines compared to CD137 Vγ2Vδ2 T subtype, with the non-canonical NF-κB pathway involved. CD137 expression in Vγ2Vδ2 T cells appeared to signal anti-Mtb effector functions leading to intracellular Mtb growth inhibition in Mɸ, and active TB disrupted such CD137-driven anti-Mtb effector functions. CD137 Vγ2Vδ2 T-cells subtype exhibited an epigenetic-driven high-level expression of GM-CSF and de novo production of GM-CSF critical for Vγ2Vδ2 T-cell controlling of Mtb growth in Mϕ. Concurrently, exosomes produced by CD137 Vγ2Vδ2 T cells potently inhibited intracellular mycobacterial growth. Furthermore, adoptive transfer of human CD137 Vγ2Vδ2 T cells to Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, our data suggest that CD137 expression/signaling drives pleiotropic γδ T-cell effector functions that inhibit intracellular Mtb growth. |
| ArticleNumber | 110331 |
| Author | Sha, Wei Ji, Xuejiao Cai, Xia Peng, Ying Yang, Enzhuo Huang, Guixian Shen, Ling Shen, Hongbo Wu, Yuan Wang, Feifei Wang, Juechu Zhu, Liying |
| Author_xml | – sequence: 1 givenname: Xuejiao surname: Ji fullname: Ji, Xuejiao organization: Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China – sequence: 2 givenname: Guixian surname: Huang fullname: Huang, Guixian organization: Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China – sequence: 3 givenname: Ying surname: Peng fullname: Peng, Ying organization: Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China – sequence: 4 givenname: Juechu surname: Wang fullname: Wang, Juechu organization: Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China – sequence: 5 givenname: Xia surname: Cai fullname: Cai, Xia organization: Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China – sequence: 6 givenname: Enzhuo surname: Yang fullname: Yang, Enzhuo organization: Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China – sequence: 7 givenname: Liying surname: Zhu fullname: Zhu, Liying organization: Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China – sequence: 8 givenname: Yuan surname: Wu fullname: Wu, Yuan organization: Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China – sequence: 9 givenname: Wei surname: Sha fullname: Sha, Wei email: shfksw@163.com organization: Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China – sequence: 10 givenname: Feifei surname: Wang fullname: Wang, Feifei email: wangfeifei@fudan.edu.cn organization: Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Biosafety Level 3 Laboratory, Shanghai Institute of Infectious Disease and Biosecurity, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China – sequence: 11 givenname: Ling surname: Shen fullname: Shen, Ling email: lshen@uic.edu organization: Department of Microbiology & Immunology and Center for Primate Biomedical Research, University of Illinois College of Medicine, Chicago, IL, USA – sequence: 12 givenname: Hongbo surname: Shen fullname: Shen, Hongbo email: hbshen@tongji.edu.cn organization: Shanghai Clinical Research Center for Infectious Disease (tuberculosis), Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Institute for Advanced Study, Tongji University School of Medicine, Shanghai, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39067675$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAQxy1URD_gBTggH7kk2HHsZBEXtHxKRVzK2XKccdeL1w6209In4IHgOfpMONothx7KaUbW7zfyzP8UHfngAaHnlNSUUPFqW2tnd3VDmramlDBGH6ETyhtadYTxo0MvBBXH6DSlLSGEN414go7ZiohOdPwE_Vq_o6zD8HOKkJINHis_4mQvvXLYzF7n5W2M9grw5MCGHMNkNb79ffsHX1QanMNgDOgc4j8-4bxRGVu_sYNdao5qIWenIv5S4zwPEPXsQrIJX8ZwnTdP0WOjXIJnh3qGvn14f7H-VJ1__fh5_fa80i3pcgWgVkwJYRquOspbxTq2GhWQvhvMqCgry7C-NUTQVVncDMCNGTlvh14Nom_ZGXq5nzvF8GOGlOXOpuVvykOYk2Sk54UTnBf0xQGdhx2Mcop2p-KNvDteAfo9oGNIKYKR2ma1HKDsa52kRC45ya1ccpJLTnKfU1Gbe-rd9AelN3sJyoGuLESZtAWvYbSxBCDHYB_WX9_TC-KtVu473PxP_gv6g8In |
| CitedBy_id | crossref_primary_10_3389_fimmu_2024_1469118 |
| Cites_doi | 10.3389/fimmu.2021.739219 10.1038/s41467-019-11486-1 10.1016/S1286-4579(99)80033-1 10.1111/imr.12927 10.1182/blood-2009-07-234211 10.1111/cas.14354 10.1182/blood-2017-06-741041 10.4049/jimmunol.1602019 10.1038/cmi.2017.128 10.1111/j.1365-2249.2012.04572.x 10.1073/pnas.1611776114 10.1002/eji.201242842 10.3389/fimmu.2023.1208788 10.1093/cid/ciab269 10.1038/mt.2012.56 10.1126/scitranslmed.aaz3426 10.1038/s41467-021-27613-w 10.4049/jimmunol.1701073 10.1164/rccm.202108-1892OC 10.1128/mBio.01514-17 10.3389/fimmu.2019.00913 10.1093/cid/ciz785 10.4049/jimmunol.1701039 10.1158/1078-0432.CCR-19-2973 10.1007/s00262-022-03183-8 10.1038/s41392-022-01057-0 10.1371/journal.ppat.1003501 10.1073/pnas.1811380116 10.1038/s41426-018-0213-z 10.1002/eji.201444635 10.1038/ni798 10.1038/s41591-019-0441-3 10.1080/22221751.2022.2095930 10.1038/s41577-018-0025-3 10.1126/science.1068819 10.1038/s41467-023-39196-9 |
| ContentType | Journal Article |
| Copyright | 2024 Copyright © 2024. Published by Elsevier Inc. |
| Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Inc. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.clim.2024.110331 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1521-7035 |
| ExternalDocumentID | 39067675 10_1016_j_clim_2024_110331 S1521661624004406 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 4.4 457 4G. 53G 5GY 5RE 5VS 6J9 7-5 71M 8P~ AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARKO AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABPPZ ABXDB ACDAQ ACGFO ACGFS ACIEU ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADFGL ADMUD ADNMO ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGEKW AGHFR AGQPQ AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG CJTIS COF CS3 DM4 DU5 EBS EFBJH EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HX~ HZ~ IH2 IHE J1W K-O KOM L7B LG5 LUGTX M41 MO0 N9A O-L O9- O9~ OAUVE OK0 OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SDP SES SEW SPCBC SSH SSI SSZ T5K X7M XPP Y6R Z5R ZGI ZMT ~G- ~HD AACTN AFCTW AFKWA AJOXV AMFUW RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c407t-eea93a66f25a7154a3739dae087bfda13137384f0619661fbe5ffd554b8ab6843 |
| IEDL.DBID | .~1 |
| ISSN | 1521-6616 1521-7035 |
| IngestDate | Sat Sep 27 18:55:09 EDT 2025 Mon Jul 21 05:40:47 EDT 2025 Thu Apr 24 22:53:15 EDT 2025 Wed Oct 01 03:24:00 EDT 2025 Sat Aug 17 15:43:23 EDT 2024 Tue Oct 14 19:35:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | γδ T cells Anti-tuberculosis activity CD137 Mycobacterium tuberculosis GM-CSF |
| Language | English |
| License | Copyright © 2024. Published by Elsevier Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-eea93a66f25a7154a3739dae087bfda13137384f0619661fbe5ffd554b8ab6843 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 39067675 |
| PQID | 3085684655 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3085684655 pubmed_primary_39067675 crossref_citationtrail_10_1016_j_clim_2024_110331 crossref_primary_10_1016_j_clim_2024_110331 elsevier_sciencedirect_doi_10_1016_j_clim_2024_110331 elsevier_clinicalkey_doi_10_1016_j_clim_2024_110331 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 2024-Sep 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Clinical immunology (Orlando, Fla.) |
| PublicationTitleAlternate | Clin Immunol |
| PublicationYear | 2024 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Yang, Peng, Pi, Liu, Yang, Shen (bb0125) 2021; 12 Li, Wang, Wang, Fu, Liu, Lu (bb0025) 2017; 114 Heumann, Judkins, Li, Lim, Hoare, Parkinson (bb0085) 2023; 14 Yang, Yao, Shen, Sha, Modlin, Shen (bb0135) 2019; 10 Yang, Yang, Shen, Modlin, Shen, Chen (bb0140) 2018; 200 Quetglas, Dubrot, Bezunartea, Sanmamed, Hervas-Stubbs, Smerdou (bb0215) 2012; 20 Yang, Yang, Guo, Huang, Wang, Zhang (bb0065) 2018; 7 Boom (bb0200) 1999; 1 Modlin, Bloom (bb0010) 2013; 5(213):213sr6 Mittal, Abblett, Ryan, Hagymasi, Agyekum-Yamoah, Svedova (bb0170) 2018; 200 Qaqish, Huang, Chen, Zhang, Wang, Li (bb0040) 2017; 198 Prasad, Ponnalagu, Zeng, Luu, Lang, Wong (bb0195) 2022; 71 Liang, Huang, Wu, Peng, Liu, Ji (bb0120) 2021; 12 Claus, Ferrara-Koller, Klein (bb0090) 2023; 15(1):2167189 Pittet, Fritschi, Tebruegge, Dutta, Donath, Messina (bb0175) 2022; 205 Baliashvili, Gandhi, Kim, Hughes, Mave, Mendoza-Ticona (bb0020) 2021; 73 Simmons, Stein, Seshadri, Campo, Alter, Fortune (bb0015) 2018; 18 Shen, Huang, Qaqish, Frencher, Yang, Shen (bb0030) 2020; 298 Chester, Sanmamed, Wang, Melero (bb0185) 2018; 131 Gopal, Levy, Houot, Patel, Popplewell, Jacobson (bb0150) 2020; 26 Behrendt, Meyer-Bahlburg, Hansen (bb0190) 2012; 168 Halstead, Mueller, Altman, Katsikis (bb0160) 2002; 3 Lewinsohn, Rothchild, Jayaraman, Nunes-Alves, Behar (bb0205) 2014; 10 Maniar, Zhang, Lin, Gastman, Pauza, Strome (bb0165) 2010; 116 Wang, Xiang, Liu, Huang, Pei, Wang (bb0180) 2020; 12 Shen, Chen (bb0060) 2018; 15 Lu, Smith, Yu, Luedemann, Suscovich, Grace (bb0100) 2019; 25 Wu, Yan, Shen, Sun, Thulin, Cai (bb0145) 2019; 10 Shen, Gu, Xiao, Liang, Yang, Yang (bb0055) 2017; 215 Shen, Wang, Chen, Frencher, Huang, Yang (bb0110) 2015; 45 Shen, Yang, Guo, Yang, Huang, Peng (bb0070) 2022; 11 Otano, Azpilikueta, Glez-Vaz, Alvarez, Medina-Echeverz, Cortés-Domínguez (bb0075) 2021; 12 Chen, Yao, Huang, Wei, Sicard, Zeng (bb0050) 2013; 9 Li, Liang, You, Xiao, Xia, Chen (bb0155) 2022; 7 Wang, Huang, Shen, Peng, Sha, Chen (bb0115) 2021; 11 World.Health.Organization (bb0005) 2023 Shen, Zhou, Qiu, Lai, Simon, Shen (bb0035) 2002; 295 Shen, Frencher, Huang, Wang, Yang, Chen (bb0045) 2019; 116 Liu, Luo (bb0095) 2023; 14 Lee, Kim, Hwang, Kim, Han, Vinay (bb0080) 2013; 43 Rothchild, Stowell, Goyal, Nunes-Alves, Yang, Papavinasasundaram (bb0210) 2017; 8 Weiner, Domaszewska, Donkor, Kaufmann, Hill, Sutherland (bb0105) 2020; 71 Shen, Gu, Xiao, Liang, Yang, Yang (bb0130) 2016; 215 Ye, Jia, Wang, Li, Chen, Liu (bb0220) 2020; 111 Yang (10.1016/j.clim.2024.110331_bb0065) 2018; 7 Mittal (10.1016/j.clim.2024.110331_bb0170) 2018; 200 Chester (10.1016/j.clim.2024.110331_bb0185) 2018; 131 Shen (10.1016/j.clim.2024.110331_bb0055) 2017; 215 Heumann (10.1016/j.clim.2024.110331_bb0085) 2023; 14 Gopal (10.1016/j.clim.2024.110331_bb0150) 2020; 26 Modlin (10.1016/j.clim.2024.110331_bb0010) 2013; 5(213):213sr6 Claus (10.1016/j.clim.2024.110331_bb0090) 2023; 15(1):2167189 Wu (10.1016/j.clim.2024.110331_bb0145) 2019; 10 Yang (10.1016/j.clim.2024.110331_bb0135) 2019; 10 Boom (10.1016/j.clim.2024.110331_bb0200) 1999; 1 Maniar (10.1016/j.clim.2024.110331_bb0165) 2010; 116 Shen (10.1016/j.clim.2024.110331_bb0060) 2018; 15 Liu (10.1016/j.clim.2024.110331_bb0095) 2023; 14 Weiner (10.1016/j.clim.2024.110331_bb0105) 2020; 71 Lewinsohn (10.1016/j.clim.2024.110331_bb0205) 2014; 10 Shen (10.1016/j.clim.2024.110331_bb0030) 2020; 298 Shen (10.1016/j.clim.2024.110331_bb0070) 2022; 11 Ye (10.1016/j.clim.2024.110331_bb0220) 2020; 111 Yang (10.1016/j.clim.2024.110331_bb0125) 2021; 12 Liang (10.1016/j.clim.2024.110331_bb0120) 2021; 12 Rothchild (10.1016/j.clim.2024.110331_bb0210) 2017; 8 Shen (10.1016/j.clim.2024.110331_bb0130) 2016; 215 Qaqish (10.1016/j.clim.2024.110331_bb0040) 2017; 198 Wang (10.1016/j.clim.2024.110331_bb0180) 2020; 12 Lu (10.1016/j.clim.2024.110331_bb0100) 2019; 25 Pittet (10.1016/j.clim.2024.110331_bb0175) 2022; 205 Otano (10.1016/j.clim.2024.110331_bb0075) 2021; 12 Li (10.1016/j.clim.2024.110331_bb0025) 2017; 114 Lee (10.1016/j.clim.2024.110331_bb0080) 2013; 43 Wang (10.1016/j.clim.2024.110331_bb0115) 2021; 11 World.Health.Organization (10.1016/j.clim.2024.110331_bb0005) 2023 Quetglas (10.1016/j.clim.2024.110331_bb0215) 2012; 20 Baliashvili (10.1016/j.clim.2024.110331_bb0020) 2021; 73 Yang (10.1016/j.clim.2024.110331_bb0140) 2018; 200 Chen (10.1016/j.clim.2024.110331_bb0050) 2013; 9 Shen (10.1016/j.clim.2024.110331_bb0110) 2015; 45 Simmons (10.1016/j.clim.2024.110331_bb0015) 2018; 18 Prasad (10.1016/j.clim.2024.110331_bb0195) 2022; 71 Shen (10.1016/j.clim.2024.110331_bb0045) 2019; 116 Shen (10.1016/j.clim.2024.110331_bb0035) 2002; 295 Li (10.1016/j.clim.2024.110331_bb0155) 2022; 7 Behrendt (10.1016/j.clim.2024.110331_bb0190) 2012; 168 Halstead (10.1016/j.clim.2024.110331_bb0160) 2002; 3 |
| References_xml | – volume: 14 start-page: 1208788 year: 2023 ident: bb0095 article-title: Targeting CD137 (4-1BB) towards improved safety and efficacy for cancer immunotherapy publication-title: Front. Immunol. – volume: 1 start-page: 187 year: 1999 end-page: 195 ident: bb0200 article-title: Gammadelta T cells and mycobacterium tuberculosis publication-title: Microbes Infect. – volume: 14 start-page: 3650 year: 2023 ident: bb0085 article-title: A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma publication-title: Nat. Commun. – volume: 12 year: 2020 ident: bb0180 article-title: Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity publication-title: Sci. Transl. Med. – volume: 71 start-page: 2583 year: 2022 end-page: 2596 ident: bb0195 article-title: Epstein-Barr virus-induced ectopic CD137 expression helps nasopharyngeal carcinoma to escape immune surveillance and enables targeting by chimeric antigen receptors publication-title: Cancer Iimmunol. immunother. – volume: 3 start-page: 536 year: 2002 end-page: 541 ident: bb0160 article-title: In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses publication-title: Nat. Immunol. – volume: 25 start-page: 977 year: 2019 end-page: 987 ident: bb0100 article-title: IFN-γ-independent immune markers of mycobacterium tuberculosis exposure publication-title: Nat. Med. – volume: 295 start-page: 2255 year: 2002 end-page: 2258 ident: bb0035 article-title: Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections publication-title: Science (New York, N.Y.) – volume: 9 year: 2013 ident: bb0050 article-title: Phosphoantigen/IL2 expansion and differentiation of Vgamma2Vdelta2 T cells increase resistance to tuberculosis in nonhuman primates publication-title: PLoS Pathog. – volume: 114 start-page: 5023 year: 2017 end-page: 5028 ident: bb0025 article-title: Latently and uninfected healthcare workers exposed to TB make protective antibodies against mycobacterium tuberculosis publication-title: Proc. Natl. Acad. Sci. USA – volume: 18 start-page: 575 year: 2018 end-page: 589 ident: bb0015 article-title: Immunological mechanisms of human resistance to persistent mycobacterium tuberculosis infection publication-title: Nat. Rev. Immunol. – volume: 10 year: 2014 ident: bb0205 article-title: iNKT cell production of GM-CSF controls mycobacterium tuberculosis publication-title: PLoS Pathog. – year: 2023 ident: bb0005 article-title: Global tuberculosis report 2023 – volume: 131 start-page: 49 year: 2018 end-page: 57 ident: bb0185 article-title: Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies publication-title: Blood – volume: 116 start-page: 6371 year: 2019 end-page: 6378 ident: bb0045 article-title: Immunization of Vgamma2Vdelta2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 start-page: 913 year: 2019 ident: bb0135 article-title: IL-12 expands and differentiates human Vγ2Vδ2 T effector cells producing antimicrobial cytokines and inhibiting intracellular mycobacterial growth publication-title: Front. Immunol. – volume: 215 start-page: 420 year: 2017 end-page: 430 ident: bb0055 article-title: Selective destruction of interleukin 23-induced expansion of a major antigen-specific γδ T-cell subset in patients with tuberculosis publication-title: J. Infect. Dis. – volume: 15(1):2167189 year: 2023 ident: bb0090 article-title: The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy publication-title: mAbs – volume: 45 start-page: 442 year: 2015 end-page: 451 ident: bb0110 article-title: Th17-related cytokines contribute to recall-like expansion/effector function of HMBPP-specific Vgamma2Vdelta2 T cells after mycobacterium tuberculosis infection or vaccination publication-title: Eur. J. Immunol. – volume: 200 start-page: 1513 year: 2018 end-page: 1526 ident: bb0170 article-title: An immunotherapeutic CD137 agonist releases Eomesodermin from ThPOK repression in CD4 T cells publication-title: J. Immunol. – volume: 198 start-page: 4753 year: 2017 end-page: 4763 ident: bb0040 article-title: Adoptive transfer of Phosphoantigen-specific gammadelta T cell subset attenuates mycobacterium tuberculosis infection in nonhuman Primates publication-title: J. Immunol. – volume: 71 start-page: 30 year: 2020 end-page: 40 ident: bb0105 article-title: Changes in transcript, metabolite, and antibody reactivity during the early protective immune response in humans to mycobacterium tuberculosis infection publication-title: Clin. Infect. Dis. – volume: 43 start-page: 1839 year: 2013 end-page: 1848 ident: bb0080 article-title: 4-1BB signal stimulates the activation, expansion, and effector functions of γδ T cells in mice and humans publication-title: Eur. J. Immunol. – volume: 12 year: 2021 ident: bb0125 article-title: A CD4+CD161+ T-cell subset present in unexposed humans, not Tb patients, are fast acting cells that inhibit the growth of intracellular mycobacteria involving CD161 pathway, perforin, and IFN-gamma/autophagy publication-title: Front. Immunol. – volume: 11 start-page: 1790 year: 2022 end-page: 1805 ident: bb0070 article-title: Adjunctive Zoledronate + IL-2 administrations enhance anti-tuberculosis Vgamma2Vdelta2 T-effector populations, and improve treatment outcome of multidrug-resistant tuberculosis(1) publication-title: Emerg Microbes Infect. – volume: 73 start-page: 1037 year: 2021 end-page: 1045 ident: bb0020 article-title: Resistance to mycobacterium tuberculosis infection among household contacts: a multinational study publication-title: Clin. Infect. Dis. – volume: 15 start-page: 216 year: 2018 end-page: 225 ident: bb0060 article-title: The crucial roles of Th17-related cytokines/signal pathways in M. Tuberculosis infection publication-title: Cell. Mol. Immunol. – volume: 298 start-page: 254 year: 2020 end-page: 263 ident: bb0030 article-title: Fast-acting γδ T-cell subpopulation and protective immunity against infections publication-title: Immunol. Rev. – volume: 12 year: 2021 ident: bb0120 article-title: MIR337-3p enhances mycobacterial pathogenicity involving TLR4/MYD88 and STAT3 signals, impairing VDR antimicrobial response and fast-acting immunity publication-title: Front. Immunol. – volume: 168 start-page: 308 year: 2012 end-page: 317 ident: bb0190 article-title: CD137 deficiency does not affect development of airway inflammation or respiratory tolerance induction in murine models publication-title: Clin. Exp. Immunol. – volume: 7 start-page: 207 year: 2018 ident: bb0065 article-title: Multidrug-resistant tuberculosis (MDR-TB) strain infection in macaques results in high bacilli burdens in airways, driving broad innate/adaptive immune responses publication-title: Emerg. Microb.Infect. – volume: 12 start-page: 7296 year: 2021 ident: bb0075 article-title: CD137 (4-1BB) costimulation of CD8(+) T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation publication-title: Nat. Commun. – volume: 7 start-page: 264 year: 2022 ident: bb0155 article-title: Targeting HECTD3-IKKα axis inhibits inflammation-related metastasis publication-title: Signal Transduct. Target. Ther. – volume: 11 year: 2021 ident: bb0115 article-title: Genetics and functional mechanisms of STAT3 polymorphisms in human tuberculosis publication-title: Front. Cell. Infect. Microbiol. – volume: 8 year: 2017 ident: bb0210 article-title: Role of granulocyte-macrophage Colony-stimulating factor production by T cells during mycobacterium tuberculosis infection publication-title: mBio – volume: 20 start-page: 1664 year: 2012 end-page: 1675 ident: bb0215 article-title: Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12 publication-title: Mol. Ther. – volume: 215 start-page: 420 year: 2016 end-page: 430 ident: bb0130 article-title: Selective destruction of interleukin 23-induced expansion of a major antigen-specific gammadelta T-cell subset in patients with tuberculosis publication-title: J. Infect. Dis. – volume: 205 start-page: 830 year: 2022 end-page: 841 ident: bb0175 article-title: Bacillus Calmette-Guérin skin reaction predicts enhanced mycobacteria-specific T-cell responses in infants: a post hoc analysis of a randomized controlled trial publication-title: Am. J. Respir. Crit. Care Med. – volume: 200 start-page: 2405 year: 2018 end-page: 2417 ident: bb0140 article-title: IL-12+IL-18 Cosignaling in human macrophages and lung epithelial cells activates cathelicidin and autophagy, inhibiting intracellular mycobacterial growth publication-title: J. Immunol. – volume: 111 start-page: 1461 year: 2020 end-page: 1467 ident: bb0220 article-title: CD137, an attractive candidate for the immunotherapy of lung cancer publication-title: Cancer Sci. – volume: 116 start-page: 1726 year: 2010 end-page: 1733 ident: bb0165 article-title: Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement publication-title: Blood – volume: 5(213):213sr6 year: 2013 ident: bb0010 article-title: TB or not TB: that is no longer the question publication-title: Sci. Transl. Med. – volume: 26 start-page: 2524 year: 2020 end-page: 2534 ident: bb0150 article-title: First-in-human study of Utomilumab, a 4-1BB/CD137 agonist, in combination with rituximab in patients with follicular and other CD20+ non-Hodgkin lymphomas publication-title: Clin. Cancer Res. – volume: 10 start-page: 3854 year: 2019 ident: bb0145 article-title: Profiling surface proteins on individual exosomes using a proximity barcoding assay publication-title: Nat. Commun. – volume: 12 year: 2021 ident: 10.1016/j.clim.2024.110331_bb0120 article-title: MIR337-3p enhances mycobacterial pathogenicity involving TLR4/MYD88 and STAT3 signals, impairing VDR antimicrobial response and fast-acting immunity publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.739219 – volume: 10 start-page: 3854 issue: 1 year: 2019 ident: 10.1016/j.clim.2024.110331_bb0145 article-title: Profiling surface proteins on individual exosomes using a proximity barcoding assay publication-title: Nat. Commun. doi: 10.1038/s41467-019-11486-1 – volume: 1 start-page: 187 issue: 3 year: 1999 ident: 10.1016/j.clim.2024.110331_bb0200 article-title: Gammadelta T cells and mycobacterium tuberculosis publication-title: Microbes Infect. doi: 10.1016/S1286-4579(99)80033-1 – volume: 298 start-page: 254 issue: 1 year: 2020 ident: 10.1016/j.clim.2024.110331_bb0030 article-title: Fast-acting γδ T-cell subpopulation and protective immunity against infections publication-title: Immunol. Rev. doi: 10.1111/imr.12927 – volume: 116 start-page: 1726 issue: 10 year: 2010 ident: 10.1016/j.clim.2024.110331_bb0165 article-title: Human gammadelta T lymphocytes induce robust NK cell-mediated antitumor cytotoxicity through CD137 engagement publication-title: Blood doi: 10.1182/blood-2009-07-234211 – volume: 111 start-page: 1461 issue: 5 year: 2020 ident: 10.1016/j.clim.2024.110331_bb0220 article-title: CD137, an attractive candidate for the immunotherapy of lung cancer publication-title: Cancer Sci. doi: 10.1111/cas.14354 – volume: 5(213):213sr6 year: 2013 ident: 10.1016/j.clim.2024.110331_bb0010 article-title: TB or not TB: that is no longer the question publication-title: Sci. Transl. Med. – volume: 12 year: 2021 ident: 10.1016/j.clim.2024.110331_bb0125 article-title: A CD4+CD161+ T-cell subset present in unexposed humans, not Tb patients, are fast acting cells that inhibit the growth of intracellular mycobacteria involving CD161 pathway, perforin, and IFN-gamma/autophagy publication-title: Front. Immunol. – volume: 131 start-page: 49 issue: 1 year: 2018 ident: 10.1016/j.clim.2024.110331_bb0185 article-title: Immunotherapy targeting 4-1BB: mechanistic rationale, clinical results, and future strategies publication-title: Blood doi: 10.1182/blood-2017-06-741041 – volume: 198 start-page: 4753 issue: 12 year: 2017 ident: 10.1016/j.clim.2024.110331_bb0040 article-title: Adoptive transfer of Phosphoantigen-specific gammadelta T cell subset attenuates mycobacterium tuberculosis infection in nonhuman Primates publication-title: J. Immunol. doi: 10.4049/jimmunol.1602019 – volume: 15 start-page: 216 issue: 3 year: 2018 ident: 10.1016/j.clim.2024.110331_bb0060 article-title: The crucial roles of Th17-related cytokines/signal pathways in M. Tuberculosis infection publication-title: Cell. Mol. Immunol. doi: 10.1038/cmi.2017.128 – volume: 168 start-page: 308 issue: 3 year: 2012 ident: 10.1016/j.clim.2024.110331_bb0190 article-title: CD137 deficiency does not affect development of airway inflammation or respiratory tolerance induction in murine models publication-title: Clin. Exp. Immunol. doi: 10.1111/j.1365-2249.2012.04572.x – volume: 114 start-page: 5023 issue: 19 year: 2017 ident: 10.1016/j.clim.2024.110331_bb0025 article-title: Latently and uninfected healthcare workers exposed to TB make protective antibodies against mycobacterium tuberculosis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1611776114 – volume: 43 start-page: 1839 issue: 7 year: 2013 ident: 10.1016/j.clim.2024.110331_bb0080 article-title: 4-1BB signal stimulates the activation, expansion, and effector functions of γδ T cells in mice and humans publication-title: Eur. J. Immunol. doi: 10.1002/eji.201242842 – volume: 14 start-page: 1208788 year: 2023 ident: 10.1016/j.clim.2024.110331_bb0095 article-title: Targeting CD137 (4-1BB) towards improved safety and efficacy for cancer immunotherapy publication-title: Front. Immunol. doi: 10.3389/fimmu.2023.1208788 – volume: 73 start-page: 1037 issue: 6 year: 2021 ident: 10.1016/j.clim.2024.110331_bb0020 article-title: Resistance to mycobacterium tuberculosis infection among household contacts: a multinational study publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciab269 – volume: 10 issue: 1 year: 2014 ident: 10.1016/j.clim.2024.110331_bb0205 article-title: iNKT cell production of GM-CSF controls mycobacterium tuberculosis publication-title: PLoS Pathog. – volume: 20 start-page: 1664 issue: 9 year: 2012 ident: 10.1016/j.clim.2024.110331_bb0215 article-title: Immunotherapeutic synergy between anti-CD137 mAb and intratumoral administration of a cytopathic Semliki Forest virus encoding IL-12 publication-title: Mol. Ther. doi: 10.1038/mt.2012.56 – volume: 12 issue: 563 year: 2020 ident: 10.1016/j.clim.2024.110331_bb0180 article-title: Exosomes derived from Vδ2-T cells control Epstein-Barr virus-associated tumors and induce T cell antitumor immunity publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaz3426 – year: 2023 ident: 10.1016/j.clim.2024.110331_bb0005 – volume: 12 start-page: 7296 issue: 1 year: 2021 ident: 10.1016/j.clim.2024.110331_bb0075 article-title: CD137 (4-1BB) costimulation of CD8(+) T cells is more potent when provided in cis than in trans with respect to CD3-TCR stimulation publication-title: Nat. Commun. doi: 10.1038/s41467-021-27613-w – volume: 200 start-page: 2405 issue: 7 year: 2018 ident: 10.1016/j.clim.2024.110331_bb0140 article-title: IL-12+IL-18 Cosignaling in human macrophages and lung epithelial cells activates cathelicidin and autophagy, inhibiting intracellular mycobacterial growth publication-title: J. Immunol. doi: 10.4049/jimmunol.1701073 – volume: 205 start-page: 830 issue: 7 year: 2022 ident: 10.1016/j.clim.2024.110331_bb0175 article-title: Bacillus Calmette-Guérin skin reaction predicts enhanced mycobacteria-specific T-cell responses in infants: a post hoc analysis of a randomized controlled trial publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.202108-1892OC – volume: 8 issue: 5 year: 2017 ident: 10.1016/j.clim.2024.110331_bb0210 article-title: Role of granulocyte-macrophage Colony-stimulating factor production by T cells during mycobacterium tuberculosis infection publication-title: mBio doi: 10.1128/mBio.01514-17 – volume: 11 year: 2021 ident: 10.1016/j.clim.2024.110331_bb0115 article-title: Genetics and functional mechanisms of STAT3 polymorphisms in human tuberculosis publication-title: Front. Cell. Infect. Microbiol. – volume: 10 start-page: 913 year: 2019 ident: 10.1016/j.clim.2024.110331_bb0135 article-title: IL-12 expands and differentiates human Vγ2Vδ2 T effector cells producing antimicrobial cytokines and inhibiting intracellular mycobacterial growth publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00913 – volume: 71 start-page: 30 issue: 1 year: 2020 ident: 10.1016/j.clim.2024.110331_bb0105 article-title: Changes in transcript, metabolite, and antibody reactivity during the early protective immune response in humans to mycobacterium tuberculosis infection publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciz785 – volume: 200 start-page: 1513 issue: 4 year: 2018 ident: 10.1016/j.clim.2024.110331_bb0170 article-title: An immunotherapeutic CD137 agonist releases Eomesodermin from ThPOK repression in CD4 T cells publication-title: J. Immunol. doi: 10.4049/jimmunol.1701039 – volume: 26 start-page: 2524 issue: 11 year: 2020 ident: 10.1016/j.clim.2024.110331_bb0150 article-title: First-in-human study of Utomilumab, a 4-1BB/CD137 agonist, in combination with rituximab in patients with follicular and other CD20+ non-Hodgkin lymphomas publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-19-2973 – volume: 71 start-page: 2583 issue: 11 year: 2022 ident: 10.1016/j.clim.2024.110331_bb0195 article-title: Epstein-Barr virus-induced ectopic CD137 expression helps nasopharyngeal carcinoma to escape immune surveillance and enables targeting by chimeric antigen receptors publication-title: Cancer Iimmunol. immunother. doi: 10.1007/s00262-022-03183-8 – volume: 7 start-page: 264 issue: 1 year: 2022 ident: 10.1016/j.clim.2024.110331_bb0155 article-title: Targeting HECTD3-IKKα axis inhibits inflammation-related metastasis publication-title: Signal Transduct. Target. Ther. doi: 10.1038/s41392-022-01057-0 – volume: 9 issue: 8 year: 2013 ident: 10.1016/j.clim.2024.110331_bb0050 article-title: Phosphoantigen/IL2 expansion and differentiation of Vgamma2Vdelta2 T cells increase resistance to tuberculosis in nonhuman primates publication-title: PLoS Pathog. doi: 10.1371/journal.ppat.1003501 – volume: 116 start-page: 6371 issue: 13 year: 2019 ident: 10.1016/j.clim.2024.110331_bb0045 article-title: Immunization of Vgamma2Vdelta2 T cells programs sustained effector memory responses that control tuberculosis in nonhuman primates publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1811380116 – volume: 215 start-page: 420 issue: 3 year: 2017 ident: 10.1016/j.clim.2024.110331_bb0055 article-title: Selective destruction of interleukin 23-induced expansion of a major antigen-specific γδ T-cell subset in patients with tuberculosis publication-title: J. Infect. Dis. – volume: 7 start-page: 207 issue: 1 year: 2018 ident: 10.1016/j.clim.2024.110331_bb0065 article-title: Multidrug-resistant tuberculosis (MDR-TB) strain infection in macaques results in high bacilli burdens in airways, driving broad innate/adaptive immune responses publication-title: Emerg. Microb.Infect. doi: 10.1038/s41426-018-0213-z – volume: 45 start-page: 442 issue: 2 year: 2015 ident: 10.1016/j.clim.2024.110331_bb0110 article-title: Th17-related cytokines contribute to recall-like expansion/effector function of HMBPP-specific Vgamma2Vdelta2 T cells after mycobacterium tuberculosis infection or vaccination publication-title: Eur. J. Immunol. doi: 10.1002/eji.201444635 – volume: 3 start-page: 536 issue: 6 year: 2002 ident: 10.1016/j.clim.2024.110331_bb0160 article-title: In vivo stimulation of CD137 broadens primary antiviral CD8+ T cell responses publication-title: Nat. Immunol. doi: 10.1038/ni798 – volume: 25 start-page: 977 issue: 6 year: 2019 ident: 10.1016/j.clim.2024.110331_bb0100 article-title: IFN-γ-independent immune markers of mycobacterium tuberculosis exposure publication-title: Nat. Med. doi: 10.1038/s41591-019-0441-3 – volume: 15(1):2167189 year: 2023 ident: 10.1016/j.clim.2024.110331_bb0090 article-title: The emerging landscape of novel 4-1BB (CD137) agonistic drugs for cancer immunotherapy publication-title: mAbs – volume: 11 start-page: 1790 issue: 1 year: 2022 ident: 10.1016/j.clim.2024.110331_bb0070 article-title: Adjunctive Zoledronate + IL-2 administrations enhance anti-tuberculosis Vgamma2Vdelta2 T-effector populations, and improve treatment outcome of multidrug-resistant tuberculosis(1) publication-title: Emerg Microbes Infect. doi: 10.1080/22221751.2022.2095930 – volume: 215 start-page: 420 issue: 3 year: 2016 ident: 10.1016/j.clim.2024.110331_bb0130 article-title: Selective destruction of interleukin 23-induced expansion of a major antigen-specific gammadelta T-cell subset in patients with tuberculosis publication-title: J. Infect. Dis. – volume: 18 start-page: 575 issue: 9 year: 2018 ident: 10.1016/j.clim.2024.110331_bb0015 article-title: Immunological mechanisms of human resistance to persistent mycobacterium tuberculosis infection publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-018-0025-3 – volume: 295 start-page: 2255 issue: 5563 year: 2002 ident: 10.1016/j.clim.2024.110331_bb0035 article-title: Adaptive immune response of Vgamma2Vdelta2+ T cells during mycobacterial infections publication-title: Science (New York, N.Y.) doi: 10.1126/science.1068819 – volume: 14 start-page: 3650 issue: 1 year: 2023 ident: 10.1016/j.clim.2024.110331_bb0085 article-title: A platform trial of neoadjuvant and adjuvant antitumor vaccination alone or in combination with PD-1 antagonist and CD137 agonist antibodies in patients with resectable pancreatic adenocarcinoma publication-title: Nat. Commun. doi: 10.1038/s41467-023-39196-9 |
| SSID | ssj0005226 |
| Score | 2.4485037 |
| Snippet | Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb)... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 110331 |
| SubjectTerms | Adult Animals Anti-tuberculosis activity Antigens, Bacterial - immunology CD137 Cytokines - immunology Cytokines - metabolism Female GM-CSF Humans Lymphocyte Activation - immunology Macrophages - immunology Male Mice Mice, SCID Mycobacterium tuberculosis Mycobacterium tuberculosis - immunology Receptors, Antigen, T-Cell, gamma-delta - immunology Receptors, Antigen, T-Cell, gamma-delta - metabolism Signal Transduction - immunology Tuberculosis - immunology Tuberculosis - microbiology Tumor Necrosis Factor Receptor Superfamily, Member 9 - immunology Tumor Necrosis Factor Receptor Superfamily, Member 9 - metabolism γδ T cells |
| Title | CD137 expression and signal function drive pleiotropic γδ T-cell effector functions that inhibit intracellular M. tuberculosis growth |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1521661624004406 https://dx.doi.org/10.1016/j.clim.2024.110331 https://www.ncbi.nlm.nih.gov/pubmed/39067675 https://www.proquest.com/docview/3085684655 |
| Volume | 266 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1521-7035 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005226 issn: 1521-6616 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1521-7035 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005226 issn: 1521-6616 databaseCode: .~1 dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1521-7035 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005226 issn: 1521-6616 databaseCode: ACRLP dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1521-7035 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005226 issn: 1521-6616 databaseCode: AIKHN dateStart: 19990101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1521-7035 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005226 issn: 1521-6616 databaseCode: AKRWK dateStart: 19990101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fi9QwEA_HCeKL-N_1zxHBN-nttknT9PFYPVZl78U7uLeQJqmbY2mXbhZ88tUPpJ_jPpMzbboo6Am-tLTM0DAznZm0v5kh5LUpbF5bLRNeZQYOM5PIqrRJWmithTZlmWGB8_JMLC74h8v88oDMx1oYhFVG3z_49N5bxzvTKM3pxvvpJ4w8EF0EoiA579tuc17gFIPjr7_CPPqRa0icIHUsnBkwXmbtsRo944iGHwbN_TE4_S357IPQ6T1yN2aP9GRY4H1y4JoH5PYy_h9_SL7N36asoO5LhLc2VDeWIkYDuDCEoRqo7cDF0c3a-TZ07cYbev39-gc9T_ArPh0QHm23p9_SsNKB-mblK4_n0GmkRAArXR7TsKtcZ3brduu39DNs68PqEbk4fXc-XyRx1EJiYEcXEud0ybQQdZbrArIqzQpWWu1msqhAlSlLsQMSryH6w_4orSuX17WFVKSSuhKSs8fksGkb95TQGXNSCuckzy3PrIN8p85ZzUwma2GtmJB0lLEysQ85jsNYqxFwdqVQLwr1oga9TMibPc9m6MJxIzUbVafG-lLwiAqCxI1c-Z7rNwv8J9-r0ToUvJoof924drdVDNJZkI3I8wl5MpjNfvWsnPWt8p7951Ofkzt4NaDdXpDD0O3cS0iPQnXU2_8RuXXy_uPi7CdHHxEP |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRQIuqLxDeSwSN-Qm9j5sH1GgCtD0Qir1ttqXG6PIjpyNxIlrf1D5Hf1NzPgRgQRF4mJL9oy8mlnPw_5mhpA3NnWicDqLuEksHCY2ykzuojjVWktt8zzBAuf5qZyd8U_n4nyPTIdaGIRV9ra_s-mtte6vjHtpjtdlOf6Cnge8i0QUJOfYdvsWF0mKGdjR919xHu3MNaSOkLyvnOlAXnZVYjl6whEO302a-6N3-lv02Xqh4wNyrw8f6btuhffJnq8ekNvz_gf5Q3I5fR-zlPpvPb61orpyFEEawIU-DPVAXQM2jq5XvqxDU69LS6-vrn_QRYSf8WkH8aibHf2GhqUOtKyWpSnxHBqNlIhgpfMjGrbGN3a7qjflhl5AXh-Wj8jZ8YfFdBb1sxYiCyldiLzXOdNSFonQKYRVmqUsd9pPstSALmMWYwskXoD7hwQpLowXReEgFjGZNjLj7DHZr-rKPyV0wnyWSe8zLhxPnIeApxCsYDbJCumcHJF4kLGyfSNynIexUgPi7KtCvSjUi-r0MiJvdzzrrg3HjdRsUJ0aCkzBJCrwEjdyiR3Xb1vwn3yvh92h4N1E-evK19uNYhDPgmykECPypNs2u9WzfNL2ynv2n099Re7MFvMTdfLx9PMhuYt3Oujbc7Ifmq1_AbFSMC_bd-EndMkSpA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CD137+expression+and+signal+function+drive+pleiotropic+%CE%B3%CE%B4+T-cell+effector+functions+that+inhibit+intracellular+M.+tuberculosis+growth&rft.jtitle=Clinical+immunology+%28Orlando%2C+Fla.%29&rft.au=Ji%2C+Xuejiao&rft.au=Huang%2C+Guixian&rft.au=Peng%2C+Ying&rft.au=Wang%2C+Juechu&rft.date=2024-09-01&rft.pub=Elsevier+Inc&rft.issn=1521-6616&rft.volume=266&rft_id=info:doi/10.1016%2Fj.clim.2024.110331&rft.externalDocID=S1521661624004406 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1521-6616&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1521-6616&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1521-6616&client=summon |