A new machine learning technique for an accurate diagnosis of coronary artery disease

•Novel data mining method is proposed for CAD diagnosis.•Application of feature selection (based on GA and PSO) is proposed.•New genetic training (N2Genetic optimizer) based on fusion of 10-fold cross-validation with GA or PSO is employed.•SVM (SVC, nuSVM, LinSVM) is employed for classification.•Hig...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 179; p. 104992
Main Authors Abdar, Moloud, Książek, Wojciech, Acharya, U Rajendra, Tan, Ru-San, Makarenkov, Vladimir, Pławiak, Paweł
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.10.2019
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2019.104992

Cover

Abstract •Novel data mining method is proposed for CAD diagnosis.•Application of feature selection (based on GA and PSO) is proposed.•New genetic training (N2Genetic optimizer) based on fusion of 10-fold cross-validation with GA or PSO is employed.•SVM (SVC, nuSVM, LinSVM) is employed for classification.•High classification accuracy of 93.08% is obtained. Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients. We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features. The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field. We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.
AbstractList Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients. We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features. The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field. We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.
•Novel data mining method is proposed for CAD diagnosis.•Application of feature selection (based on GA and PSO) is proposed.•New genetic training (N2Genetic optimizer) based on fusion of 10-fold cross-validation with GA or PSO is employed.•SVM (SVC, nuSVM, LinSVM) is employed for classification.•High classification accuracy of 93.08% is obtained. Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients. We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features. The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field. We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.
Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.BACKGROUND AND OBJECTIVECoronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.METHODSWe first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.RESULTSThe presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.CONCLUSIONSWe showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.
ArticleNumber 104992
Author Acharya, U Rajendra
Książek, Wojciech
Abdar, Moloud
Makarenkov, Vladimir
Pławiak, Paweł
Tan, Ru-San
Author_xml – sequence: 1
  givenname: Moloud
  orcidid: 0000-0002-3059-6357
  surname: Abdar
  fullname: Abdar, Moloud
  organization: Département d'informatique, Université du Québec à Montréal, Montréal, Québec, Canada
– sequence: 2
  givenname: Wojciech
  surname: Książek
  fullname: Książek, Wojciech
  organization: Institute of Telecomputing, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, 31-155 Krakow, Poland
– sequence: 3
  givenname: U Rajendra
  surname: Acharya
  fullname: Acharya, U Rajendra
  organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore
– sequence: 4
  givenname: Ru-San
  surname: Tan
  fullname: Tan, Ru-San
  organization: Department of Cardiology, National Heart Centre Singapore, Singapore
– sequence: 5
  givenname: Vladimir
  surname: Makarenkov
  fullname: Makarenkov, Vladimir
  organization: Département d'informatique, Université du Québec à Montréal, Montréal, Québec, Canada
– sequence: 6
  givenname: Paweł
  orcidid: 0000-0002-4317-2801
  surname: Pławiak
  fullname: Pławiak, Paweł
  email: plawiak@pk.edu.pl
  organization: Institute of Telecomputing, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, 31-155 Krakow, Poland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31443858$$D View this record in MEDLINE/PubMed
BookMark eNqFkD1PHDEQhq0IFA6SP5AicplmL_7YL0dpEAISCSkN1JZ3PAZfdu2L7UvEv8eng4aCFDMjjd5nNHpOyVGIAQn5xNmaM95_3axh2U5rwbiqi1Yp8Y6s-DiIZuj67oisakg1omfDCTnNecMYE13XvycnkretHLtxRe7OacB_dDHw4APSGU0KPtzTgvAQ_J8dUhcTNYEagF0yBan15j7E7DONjkJMMZj0SE0qWIf1GU3GD-TYmTnjx-d5Ru6uLm8vfjQ3v65_XpzfNNCyoTRopBWmmySIoR2YMigtE8pwq1w_gRqBO1GrBWcVTn3tcuS8nZRzgjMrz8iXw91tivXXXPTiM-A8m4Bxl7WQsleKq3Gs0c_P0d20oNXb5Jf6uH5RUQPjIQAp5pzQafDFFB9DScbPmjO9t643em9d763rg_WKilfoy_U3oe8HCKugvx6TzuAxAFqfEIq20b-Nf3uFw-yDBzP_xsf_wU_8h68t
CitedBy_id crossref_primary_10_1016_j_bbe_2020_09_005
crossref_primary_10_1080_07391102_2021_1987328
crossref_primary_10_1007_s11831_025_10271_2
crossref_primary_10_2174_1573403X18666220609123053
crossref_primary_10_3390_electronics11091495
crossref_primary_10_3233_JIFS_223048
crossref_primary_10_1109_JSEN_2021_3091471
crossref_primary_10_1109_ACCESS_2022_3158752
crossref_primary_10_1016_j_bspc_2023_105644
crossref_primary_10_1016_j_cmpb_2020_105400
crossref_primary_10_1155_2022_3414877
crossref_primary_10_1371_journal_pone_0274416
crossref_primary_10_7717_peerj_cs_993
crossref_primary_10_1080_10255842_2024_2319706
crossref_primary_10_26599_TST_2022_9010008
crossref_primary_10_53608_estudambilisim_1409734
crossref_primary_10_4018_IJITSA_290001
crossref_primary_10_1016_j_cmpb_2024_108403
crossref_primary_10_1016_j_inffus_2023_101813
crossref_primary_10_1016_j_bspc_2023_104700
crossref_primary_10_1002_prca_202400062
crossref_primary_10_1007_s00521_022_07193_6
crossref_primary_10_1155_2022_9580896
crossref_primary_10_1109_ACCESS_2020_2996667
crossref_primary_10_1186_s12859_020_03626_y
crossref_primary_10_1016_j_jestch_2024_101855
crossref_primary_10_3390_cancers16244128
crossref_primary_10_1016_j_cmpb_2020_105635
crossref_primary_10_1007_s42979_021_00731_4
crossref_primary_10_1016_j_dsp_2021_103120
crossref_primary_10_1099_jmm_0_001935
crossref_primary_10_3233_IDT_200041
crossref_primary_10_1007_s42452_020_2858_1
crossref_primary_10_1016_j_asoc_2023_111141
crossref_primary_10_1007_s11517_022_02757_z
crossref_primary_10_1080_00051144_2021_2014037
crossref_primary_10_1007_s11831_022_09733_8
crossref_primary_10_3390_diagnostics12092073
crossref_primary_10_3389_fcvm_2024_1360548
crossref_primary_10_1080_10255842_2023_2245518
crossref_primary_10_1016_j_mehy_2019_109483
crossref_primary_10_1016_j_cmpb_2022_106837
crossref_primary_10_32604_cmc_2023_035779
crossref_primary_10_3390_diagnostics13081491
crossref_primary_10_1002_cnm_3599
crossref_primary_10_1002_cpe_6675
crossref_primary_10_1109_ACCESS_2023_3324037
crossref_primary_10_3390_bioengineering11100957
crossref_primary_10_1016_j_compbiomed_2021_104559
crossref_primary_10_1016_j_cmpb_2020_105383
crossref_primary_10_1088_1757_899X_1099_1_012068
crossref_primary_10_4018_IJISP_356513
crossref_primary_10_35741_issn_0258_2724_59_2_8
crossref_primary_10_1016_j_eswa_2023_119859
crossref_primary_10_1136_openhrt_2023_002292
crossref_primary_10_3390_diagnostics12030722
crossref_primary_10_1186_s12872_021_02314_w
crossref_primary_10_3390_life12111933
crossref_primary_10_14513_actatechjaur_00581
crossref_primary_10_1016_j_knosys_2021_107419
crossref_primary_10_3390_jpm15010010
crossref_primary_10_1016_j_imu_2019_100257
crossref_primary_10_1007_s13721_022_00354_6
crossref_primary_10_1155_2022_5359540
crossref_primary_10_21015_vtse_v11i2_1487
crossref_primary_10_1007_s13721_025_00508_2
crossref_primary_10_1016_j_neunet_2023_08_035
crossref_primary_10_1002_advs_202400595
crossref_primary_10_3390_math10193614
crossref_primary_10_3390_sym12101651
crossref_primary_10_1038_s41598_024_67973_z
crossref_primary_10_3390_math10203845
crossref_primary_10_1016_j_cmpb_2020_105770
crossref_primary_10_1155_2022_9288452
crossref_primary_10_1109_ACCESS_2024_3514093
crossref_primary_10_1109_JIOT_2020_2966232
crossref_primary_10_3389_fbioe_2020_00720
crossref_primary_10_1007_s44196_024_00538_0
crossref_primary_10_1016_j_eswa_2024_125928
crossref_primary_10_32604_iasc_2022_021216
crossref_primary_10_1016_j_bspc_2023_105332
crossref_primary_10_1109_ACCESS_2025_3550015
crossref_primary_10_46604_aiti_2024_13972
crossref_primary_10_1016_j_bspc_2023_105328
crossref_primary_10_3390_fluids9070153
crossref_primary_10_1016_j_measen_2022_100588
crossref_primary_10_1142_S0218339023300014
crossref_primary_10_32604_cmc_2023_032020
crossref_primary_10_1371_journal_pone_0312257
crossref_primary_10_1038_s41398_024_02946_4
crossref_primary_10_1142_S0218001421590345
crossref_primary_10_37391_ijeer_120423
crossref_primary_10_2174_011573403X299265240405080030
crossref_primary_10_3390_app14031238
crossref_primary_10_15829_1560_4071_2020_3802
crossref_primary_10_1155_2021_5912051
crossref_primary_10_1016_j_ejmp_2021_04_011
crossref_primary_10_1016_j_fss_2020_07_011
crossref_primary_10_3390_info11040207
crossref_primary_10_4236_ojs_2020_104043
crossref_primary_10_4108_eetsis_v10i3_2891
crossref_primary_10_1016_j_bbe_2020_08_007
crossref_primary_10_3934_mbe_2022211
crossref_primary_10_1155_2023_6442756
crossref_primary_10_32604_cmc_2023_041031
crossref_primary_10_3390_ijerph17030731
crossref_primary_10_1002_adfm_202105482
crossref_primary_10_1007_s10586_023_04062_2
crossref_primary_10_1007_s11042_024_19169_w
crossref_primary_10_1088_1361_6579_ad6529
crossref_primary_10_1155_2021_5288844
crossref_primary_10_37705_TechTrans_e2020031
crossref_primary_10_33411_IJIST_2022040121
crossref_primary_10_1007_s11042_024_19680_0
crossref_primary_10_52547_jha_25_1_57
crossref_primary_10_3390_app10217656
crossref_primary_10_1016_j_iswa_2022_200131
crossref_primary_10_3390_app13116542
crossref_primary_10_1142_S1793351X21400055
crossref_primary_10_1016_j_neunet_2024_106183
crossref_primary_10_1142_S021800142456010X
crossref_primary_10_3390_math10030311
crossref_primary_10_1007_s10489_021_02467_3
crossref_primary_10_1016_j_cnsns_2020_105582
crossref_primary_10_1016_j_compbiomed_2023_107818
crossref_primary_10_1016_j_eswa_2020_113697
crossref_primary_10_1002_ima_22963
crossref_primary_10_1016_j_bspc_2025_107853
crossref_primary_10_1080_10255842_2020_1850702
crossref_primary_10_3390_s21124090
crossref_primary_10_1007_s00500_022_07788_0
crossref_primary_10_1109_ACCESS_2019_2953920
crossref_primary_10_1016_j_pes_2024_100037
crossref_primary_10_1007_s13721_022_00381_3
crossref_primary_10_1016_j_apacoust_2020_107607
crossref_primary_10_1016_j_displa_2021_102106
crossref_primary_10_1515_biol_2021_0068
crossref_primary_10_29130_dubited_659106
crossref_primary_10_4018_IJSSCI_312562
crossref_primary_10_1080_10255842_2024_2339475
crossref_primary_10_3934_mbe_2022229
crossref_primary_10_1038_s41598_023_33500_9
crossref_primary_10_1111_exsy_12547
crossref_primary_10_3390_app13064006
crossref_primary_10_3390_electronics11030315
crossref_primary_10_1016_j_iswa_2025_200507
crossref_primary_10_1016_j_engappai_2023_106662
crossref_primary_10_35940_ijeat_A3132_0411422
crossref_primary_10_1111_exsy_12785
crossref_primary_10_3390_bioengineering11121290
crossref_primary_10_1080_09720529_2021_1947452
crossref_primary_10_1109_ACCESS_2019_2937136
crossref_primary_10_3390_electronics10020105
crossref_primary_10_3390_medicina58121745
crossref_primary_10_1016_j_cmpb_2020_105343
crossref_primary_10_32628_CSEIT241047
crossref_primary_10_1007_s40883_022_00273_y
crossref_primary_10_1088_2057_1976_abfd83
crossref_primary_10_3390_s23239498
crossref_primary_10_1093_jcde_qwac138
crossref_primary_10_3390_app13148120
crossref_primary_10_1007_s11831_024_10194_4
crossref_primary_10_48175_IJARSCT_6201
crossref_primary_10_1007_s11831_024_10075_w
crossref_primary_10_1002_ima_23092
crossref_primary_10_1016_j_patrec_2020_02_010
crossref_primary_10_1016_j_knosys_2020_106083
crossref_primary_10_3233_JIFS_213130
crossref_primary_10_1007_s12530_021_09384_3
crossref_primary_10_32604_cmc_2022_027300
crossref_primary_10_3233_JIFS_220061
crossref_primary_10_1016_j_bspc_2025_107637
crossref_primary_10_1016_j_ijcce_2025_01_003
crossref_primary_10_1016_j_ins_2021_04_036
crossref_primary_10_3233_JIFS_213257
crossref_primary_10_1371_journal_pone_0307952
crossref_primary_10_3390_jcm13102868
crossref_primary_10_1155_2022_1410169
crossref_primary_10_1016_j_imu_2020_100483
crossref_primary_10_3390_math8101814
crossref_primary_10_3934_mbe_2022167
crossref_primary_10_3390_a14070201
crossref_primary_10_1155_2020_9816142
crossref_primary_10_1109_ACCESS_2022_3220899
crossref_primary_10_3389_fcvm_2021_760178
crossref_primary_10_1080_10803548_2021_2024403
crossref_primary_10_3390_s23031193
crossref_primary_10_1016_j_apacoust_2020_107701
Cites_doi 10.1109/TII.2017.2778223
10.1001/jama.2015.18421
10.1016/j.asoc.2011.03.025
10.1016/j.asoc.2017.01.056
10.1016/j.compbiomed.2018.06.002
10.1016/j.ins.2017.04.012
10.1016/j.cmpb.2019.05.004
10.1016/j.ins.2018.01.051
10.1016/j.swevo.2017.10.002
10.1016/j.patrec.2019.02.016
10.1056/NEJMra072149
10.1007/s10916-012-9821-7
10.1109/4235.985692
10.1016/j.cmpb.2013.03.004
10.1016/j.eswa.2009.06.040
10.1016/j.eswa.2015.03.019
10.1016/S0735-1097(87)80045-1
10.1016/j.jacc.2007.06.030
10.1016/j.knosys.2016.07.004
10.1016/j.compbiomed.2017.06.006
10.1016/j.cmpb.2017.01.004
10.11591/ijece.v5i6.pp1569-1576
10.1016/j.compbiomed.2017.12.023
10.1016/j.eswa.2008.09.013
10.1007/s10916-016-0536-z
10.1155/2017/7483639
10.1016/j.compbiomed.2018.09.009
10.1016/j.cmpb.2018.05.009
10.1007/s13042-015-0383-0
10.1109/TIM.2005.858566
10.1155/2018/4302425
10.1016/j.bspc.2017.12.004
10.1007/s40815-016-0255-0
10.1109/TSTE.2017.2765483
10.1001/jama.2013.393
10.5812/cardiovascmed.10888
10.1016/S0735-1097(88)80002-0
10.4018/jkdb.2012010104
10.1016/j.knosys.2017.06.003
10.1016/j.compbiomed.2019.01.013
10.1016/j.eswa.2017.09.022
10.1016/j.compbiomed.2018.03.016
10.1007/s11886-017-0860-z
10.1515/amcs-2015-0046
10.1016/j.cmpb.2017.12.011
10.1016/j.swevo.2017.07.006
10.1016/j.cmpb.2008.09.005
10.1186/1475-925X-13-90
10.1109/ACCESS.2016.2638848
10.1016/j.ins.2017.06.027
10.1016/j.tele.2017.01.007
10.1016/S0002-9149(96)00828-4
10.1016/j.cogsys.2018.07.004
10.1007/s12350-017-0834-y
10.1136/bmj.312.7025.222
10.1001/jama.2015.19417
10.1109/TEVC.2007.896686
ContentType Journal Article
Copyright 2019
Copyright © 2019. Published by Elsevier B.V.
Copyright_xml – notice: 2019
– notice: Copyright © 2019. Published by Elsevier B.V.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2019.104992
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 31443858
10_1016_j_cmpb_2019_104992
S0169260718314585
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-ea3d2a5b3c274709ae3d029a1d9f6bc98c1f2c1f4cfd9eb6fd938114b9ff210d3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 08:53:30 EDT 2025
Thu Apr 03 07:06:25 EDT 2025
Thu Apr 24 23:06:34 EDT 2025
Thu Oct 02 04:28:34 EDT 2025
Fri Feb 23 02:26:01 EST 2024
Tue Oct 14 19:32:54 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Coronary artery disease (CAD)
Feature selection
Genetic algorithm
Machine learning
Classification
Normalization
Particle swarm optimization
Language English
License Copyright © 2019. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-ea3d2a5b3c274709ae3d029a1d9f6bc98c1f2c1f4cfd9eb6fd938114b9ff210d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3059-6357
0000-0002-4317-2801
PMID 31443858
PQID 2336991988
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2336991988
pubmed_primary_31443858
crossref_citationtrail_10_1016_j_cmpb_2019_104992
crossref_primary_10_1016_j_cmpb_2019_104992
elsevier_sciencedirect_doi_10_1016_j_cmpb_2019_104992
elsevier_clinicalkey_doi_10_1016_j_cmpb_2019_104992
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
2019-Oct
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rajesh, Dhuli (bib0013) 2017; 87
Cardiovascular Disease, [accessed on 11/8/2018]
Pistolesi, Lazzerini, Dalle Mura, Dini (bib0061) 2018; 14
(bib0050) 2017
Parikh, Kakad, Bates (bib0005) 2016; 315
Yildirim, Baloglu, Tan, Ciaccio, Acharya (bib0076) 2019
Han, Lee, Rizvi, Gransar, Baskaran, Schulman-Marcus, Min (bib0046) 2018; 25
Acharya, Fujita, Lih, Hagiwara, Tan, Adam (bib0070) 2017; 405
Abdar, Zomorodi-Moghadam (bib0008) 2018; 6
Alizadehsani, Hosseini, Sani, Ghandeharioun, Boghrati (bib0030) 2012, December
Abdar (bib0037) 2015; 8
Yildirim (bib0068) 2018; 96
Ogiela, Tadeusiewicz (bib0083) 2005; 54
Michielli, Acharya, Molinari (bib0078) 2019; 106
Darcy, Louie, Roberts (bib0006) 2016; 315
Leung, Davidson, Cranney, Walsh (bib0020) 1997; 79
Paul, Shill, Rabin, Murase (bib0044) 2017
Aggarwal, Sahay, Bansal, Chandra (bib0055) 2015, December
Raghavendra, Fujita, Bhandary, Gudigar, Tan, Acharya (bib0081) 2018; 441
Panek, Skalski, Gajda, Tadeusiewicz (bib0086) 2015; 25
Abdar, Yen, Hung (bib0010) 2017
Tan, Hagiwara, Pang, Lim, Oh, Adam, Acharya (bib0047) 2018
Alizadehsani, Habibi, Hosseini, Boghrati, Ghandeharioun, Bahadorian, Sani (bib0031) 2012; 82
Alizadehsani, Habibi, Sani, Mashayekhi, Boghrati, Ghandeharioun, …, Alizadeh-Sani (bib0032) 2013; 2
Książek, Abdar, Acharya (bib0087) 2019; 54
Gao, Fan, Xu (bib0053) 2018; 9
Askarzadeh (bib0060) 2018; 9
Alizadehsani, Hosseini, Khosravi, Khozeimeh, Roshanzamir, Sarrafzadegan, Nahavandi (bib0051) 2018; 162
ASIM, MASHWANI, JAN (bib0062) 2017; 49
Wyman, Safian, Portway, Skillman, McKAY, Baim (bib0025) 1988; 12
Das (bib0007) 2010; 37
Alizadehsani, Zangooei, Hosseini, Habibi, Khosravi, Roshanzamir, Nahavandi (bib0034) 2016; 109
Qin, Guan, Wang (bib0074) 2017; 29
.
Yıldırım, Pławiak, Tan, Acharya (bib0072) 2018
Rajpal, Alshawabkeh, Opotowsky (bib0024) 2017; 19
Pławiak (bib0073) 2018; 39
Pławiak (bib0027) 2018; 92
Baloglu, Talo, Yildirim, Tan, Acharya (bib0077) 2019; 122
Yang, Chen (bib0017) 2015; 42
Alizadehsani, Habibi, Sani, Mashayekhi, Boghrati, Ghandeharioun, Bahadorian (bib0028) 2012; 1
Ogiela, Tadeusiewicz, Ogiela (bib0018) 2006
Yildirim, Tan, Acharya (bib0067) 2018; 52
Verma, Srivastava, Negi (bib0039) 2016; 40
Sun, Cai, Li, Liu, Fang, Wang (bib0057) 2018
Alkeshuosh, Moghadam, Al Mansoori, Abdar (bib0036) 2017, September
Oh, Ng, Tan, Acharya (bib0079) 2018; 102
Acharya, Fujita, Lih, Adam, Tan, Chua (bib0080) 2017; 132
Kuchar, Thorburn, Sammel (bib0022) 1987; 9
Yildirim, Baloglu (bib0069) 2018; 8
Wah, Gopal Raj, Iqbal (bib0001) 2018
Chauhan, Dahiya, Sharma (bib0052) 2018
Cardiovascular Diseases (CVDs), [accessed on 11/8/2018]
Brenner, Hall (bib0021) 2007; 357
John (bib0059) 1975
Alizadehsani, Habibi, Hosseini, Mashayekhi, Boghrati, Ghandeharioun, Sani (bib0033) 2013; 111
Gao, Sun (bib0054) 2010, August; 4
Clerc, Kennedy (bib0065) 2002; 6
Tadeusiewicz, Ogiela, Ogiela (bib0084) 2006, June
Abdar, Kalhori, Sutikno, Subroto, Arji (bib0038) 2015; 5
Das, Turkoglu, Sengur (bib0012) 2009; 36
Hoang, Cho, Alam, Vu (bib0064) 2018; 38
Pławiak, Acharya (bib0082) 2019
Rajesh, Dhuli (bib0014) 2018; 41
Chang, Lin (bib0056) 2011; 2
Lin, Zhu, Qi, Zhang, Huang, Rong (bib0058) 2017, October
Babič, Olejár, Vantová, Paralič (bib0075) 2017, September
Hassan, Sayed, Khalil, Ghany (bib0043) 2017; 19
Nandalur, Dwamena, Choudhri, Nandalur, Carlos (bib0023) 2007; 50
Mashwani, Salhi, Yeniay, Hussian, Jan (bib0063) 2017; 56
Shi, Xi, Ma, Weng, Hu (bib0048) 2011; 11
Lahsasna, Ainon, Zainuddin, Bulgiba (bib0042) 2012; 36
Alizadehsani, Hosseini, Boghrati, Ghandeharioun, Khozeimeh, Sani (bib0029) 2012; 3
Davie, Francis, Love, Caruana, Starkey, Shaw, McMurray (bib0019) 1996; 312
Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0071) 2017; 415
Das, Turkoglu, Sengur (bib0011) 2009; 93
Pouriyeh, Vahid, Sannino, De Pietro, Arabnia, Gutierrez (bib0045) 2017, July
Hassoon, Kouhi, Zomorodi-Moghadam, Abdar (bib0009) 2017, September
Shu, Zhang, Tang (bib0026) 2017
Huang, Liu, Zhu, Wang, Hu (bib0049) 2014; 13
Pławiak (bib0088) 2014; 144
Murdoch, Detsky (bib0004) 2013; 309
Zou, Deng (bib0041) 2017; 5
Hinchcliff, Frech, Wood, Huang, Lee, Aren, Deo (bib0040) 2017
Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib0016) 2017; 34
Arabasadi, Alizadehsani, Roshanzamir, Moosaei, Yarifard (bib0035) 2017; 141
Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Harley, R.G., & Hernandez, J.C. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems.
Shukla, Hagenbuchner, Win, Yang (bib0015) 2018; 155
Ogiela, Tadeusiewicz, Ogiela (bib0085) 2006, June
Aggarwal (10.1016/j.cmpb.2019.104992_bib0055) 2015
Nilashi (10.1016/j.cmpb.2019.104992_bib0016) 2017; 34
Abdar (10.1016/j.cmpb.2019.104992_bib0038) 2015; 5
Pławiak (10.1016/j.cmpb.2019.104992_bib0073) 2018; 39
Alizadehsani (10.1016/j.cmpb.2019.104992_bib0032) 2013; 2
Oh (10.1016/j.cmpb.2019.104992_bib0079) 2018; 102
Yıldırım (10.1016/j.cmpb.2019.104992_bib0072) 2018
Ogiela (10.1016/j.cmpb.2019.104992_bib0085) 2006
Raghavendra (10.1016/j.cmpb.2019.104992_bib0081) 2018; 441
Das (10.1016/j.cmpb.2019.104992_bib0011) 2009; 93
Leung (10.1016/j.cmpb.2019.104992_bib0020) 1997; 79
Hoang (10.1016/j.cmpb.2019.104992_bib0064) 2018; 38
Rajpal (10.1016/j.cmpb.2019.104992_bib0024) 2017; 19
Verma (10.1016/j.cmpb.2019.104992_bib0039) 2016; 40
Shu (10.1016/j.cmpb.2019.104992_bib0026) 2017
10.1016/j.cmpb.2019.104992_bib0066
Alizadehsani (10.1016/j.cmpb.2019.104992_bib0033) 2013; 111
Hinchcliff (10.1016/j.cmpb.2019.104992_bib0040) 2017
Chang (10.1016/j.cmpb.2019.104992_bib0056) 2011; 2
ASIM (10.1016/j.cmpb.2019.104992_bib0062) 2017; 49
Mashwani (10.1016/j.cmpb.2019.104992_bib0063) 2017; 56
Tadeusiewicz (10.1016/j.cmpb.2019.104992_bib0084) 2006
Pławiak (10.1016/j.cmpb.2019.104992_bib0088) 2014; 144
Pouriyeh (10.1016/j.cmpb.2019.104992_bib0045) 2017
Das (10.1016/j.cmpb.2019.104992_bib0012) 2009; 36
Das (10.1016/j.cmpb.2019.104992_bib0007) 2010; 37
Clerc (10.1016/j.cmpb.2019.104992_bib0065) 2002; 6
Qin (10.1016/j.cmpb.2019.104992_bib0074) 2017; 29
Acharya (10.1016/j.cmpb.2019.104992_bib0071) 2017; 415
Pistolesi (10.1016/j.cmpb.2019.104992_bib0061) 2018; 14
Shukla (10.1016/j.cmpb.2019.104992_bib0015) 2018; 155
Abdar (10.1016/j.cmpb.2019.104992_bib0008) 2018; 6
Alizadehsani (10.1016/j.cmpb.2019.104992_bib0051) 2018; 162
Alkeshuosh (10.1016/j.cmpb.2019.104992_bib0036) 2017
Rajesh (10.1016/j.cmpb.2019.104992_bib0013) 2017; 87
Han (10.1016/j.cmpb.2019.104992_bib0046) 2018; 25
Lin (10.1016/j.cmpb.2019.104992_bib0058) 2017
10.1016/j.cmpb.2019.104992_bib0003
Askarzadeh (10.1016/j.cmpb.2019.104992_bib0060) 2018; 9
10.1016/j.cmpb.2019.104992_bib0002
Arabasadi (10.1016/j.cmpb.2019.104992_bib0035) 2017; 141
Hassan (10.1016/j.cmpb.2019.104992_bib0043) 2017; 19
Abdar (10.1016/j.cmpb.2019.104992_bib0010) 2017
Paul (10.1016/j.cmpb.2019.104992_bib0044) 2017
Chauhan (10.1016/j.cmpb.2019.104992_bib0052) 2018
Alizadehsani (10.1016/j.cmpb.2019.104992_bib0028) 2012; 1
Panek (10.1016/j.cmpb.2019.104992_bib0086) 2015; 25
Sun (10.1016/j.cmpb.2019.104992_bib0057) 2018
Ogiela (10.1016/j.cmpb.2019.104992_bib0018) 2006
Abdar (10.1016/j.cmpb.2019.104992_bib0037) 2015; 8
Brenner (10.1016/j.cmpb.2019.104992_bib0021) 2007; 357
Yildirim (10.1016/j.cmpb.2019.104992_bib0068) 2018; 96
Kuchar (10.1016/j.cmpb.2019.104992_bib0022) 1987; 9
Acharya (10.1016/j.cmpb.2019.104992_bib0080) 2017; 132
Yildirim (10.1016/j.cmpb.2019.104992_bib0069) 2018; 8
Gao (10.1016/j.cmpb.2019.104992_bib0054) 2010; 4
Alizadehsani (10.1016/j.cmpb.2019.104992_bib0031) 2012; 82
Pławiak (10.1016/j.cmpb.2019.104992_bib0082) 2019
John (10.1016/j.cmpb.2019.104992_bib0059) 1975
Lahsasna (10.1016/j.cmpb.2019.104992_bib0042) 2012; 36
Tan (10.1016/j.cmpb.2019.104992_bib0047) 2018
Baloglu (10.1016/j.cmpb.2019.104992_bib0077) 2019; 122
Książek (10.1016/j.cmpb.2019.104992_bib0087) 2019; 54
Nandalur (10.1016/j.cmpb.2019.104992_bib0023) 2007; 50
Alizadehsani (10.1016/j.cmpb.2019.104992_bib0034) 2016; 109
Murdoch (10.1016/j.cmpb.2019.104992_bib0004) 2013; 309
Yang (10.1016/j.cmpb.2019.104992_bib0017) 2015; 42
Alizadehsani (10.1016/j.cmpb.2019.104992_bib0030) 2012
Davie (10.1016/j.cmpb.2019.104992_bib0019) 1996; 312
Darcy (10.1016/j.cmpb.2019.104992_bib0006) 2016; 315
Gao (10.1016/j.cmpb.2019.104992_bib0053) 2018; 9
Shi (10.1016/j.cmpb.2019.104992_bib0048) 2011; 11
Zou (10.1016/j.cmpb.2019.104992_bib0041) 2017; 5
Wah (10.1016/j.cmpb.2019.104992_bib0001) 2018
Michielli (10.1016/j.cmpb.2019.104992_bib0078) 2019; 106
Rajesh (10.1016/j.cmpb.2019.104992_bib0014) 2018; 41
Acharya (10.1016/j.cmpb.2019.104992_bib0070) 2017; 405
Huang (10.1016/j.cmpb.2019.104992_bib0049) 2014; 13
(10.1016/j.cmpb.2019.104992_bib0050) 2017
Pławiak (10.1016/j.cmpb.2019.104992_bib0027) 2018; 92
Yildirim (10.1016/j.cmpb.2019.104992_bib0076) 2019
Ogiela (10.1016/j.cmpb.2019.104992_bib0083) 2005; 54
Babič (10.1016/j.cmpb.2019.104992_bib0075) 2017
Wyman (10.1016/j.cmpb.2019.104992_bib0025) 1988; 12
Parikh (10.1016/j.cmpb.2019.104992_bib0005) 2016; 315
Hassoon (10.1016/j.cmpb.2019.104992_bib0009) 2017
Alizadehsani (10.1016/j.cmpb.2019.104992_bib0029) 2012; 3
Yildirim (10.1016/j.cmpb.2019.104992_bib0067) 2018; 52
References_xml – year: 2017
  ident: bib0026
  article-title: Effective heart disease detection based on quantitative computerized traditional chinese medicine using representation based classifiers
  publication-title: Evidence-Based Complem. Altern. Med.
– volume: 109
  start-page: 187
  year: 2016
  end-page: 197
  ident: bib0034
  article-title: Coronary artery disease detection using computational intelligence methods
  publication-title: Knowl. Based. Syst.
– volume: 52
  start-page: 198
  year: 2018
  end-page: 211
  ident: bib0067
  article-title: An efficient compression of ECG signals using deep convolutional autoencoders
  publication-title: Cogn. Syst. Res.
– start-page: 155
  year: 2017, September
  end-page: 163
  ident: bib0075
  article-title: Predictive and descriptive analysis for heart disease diagnosis
  publication-title: Computer Science and Information Systems (FedCSIS), 2017 Federated Conference on
– volume: 1
  start-page: 26
  year: 2012
  end-page: 29
  ident: bib0028
  article-title: Diagnosis of coronary artery disease using data mining based on lab data and echo features
  publication-title: J. Med. Bioeng.
– reference: Cardiovascular Diseases (CVDs), [accessed on 11/8/2018]
– volume: 9
  start-page: 1081
  year: 2018
  end-page: 1089
  ident: bib0060
  article-title: A memory-based genetic algorithm for optimization of power generation in a microgrid
  publication-title: IEEE Trans. Sustain. Energy
– volume: 92
  start-page: 334
  year: 2018
  end-page: 349
  ident: bib0027
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Syst. Appl.
– volume: 5
  start-page: 236
  year: 2017
  end-page: 242
  ident: bib0041
  article-title: Using fuzzy concept lattice for intelligent disease diagnosis
  publication-title: IEEE Access
– volume: 357
  start-page: 2277
  year: 2007
  end-page: 2284
  ident: bib0021
  article-title: Computed tomography—an increasing source of radiation exposure
  publication-title: NEngl. J. Med.
– volume: 315
  start-page: 551
  year: 2016
  end-page: 552
  ident: bib0006
  article-title: Machine learning and the profession of medicine
  publication-title: JAMA
– volume: 96
  start-page: 189
  year: 2018
  end-page: 202
  ident: bib0068
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
– start-page: 299
  year: 2017, September
  end-page: 305
  ident: bib0009
  article-title: Rule optimization of boosted C5. 0 classification using genetic algorithm for liver disease prediction
  publication-title: Computer and Applications (ICCA), 2017 International Conference on
– volume: 40
  start-page: 178
  year: 2016
  ident: bib0039
  article-title: A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data
  publication-title: J. Med. Syst.
– year: 2018
  ident: bib0057
  article-title: Data processing and text mining technologies on electronic medical records: a review
  publication-title: J. Healthc. Eng.
– volume: 14
  start-page: 1089
  year: 2018
  end-page: 1098
  ident: bib0061
  article-title: EMOGA: a hybrid genetic algorithm with extremal optimization core for multiobjective disassembly line balancing
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 1027
  year: 2006, June
  end-page: 1039
  ident: bib0084
  article-title: Cognitive analysis techniques in business planning and decision support systems
  publication-title: International Conference on Artificial Intelligence and Soft Computing
– volume: 82
  start-page: 542
  year: 2012
  end-page: 553
  ident: bib0031
  article-title: Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features
  publication-title: Eur. J. Sci. Res.
– volume: 56
  start-page: 1
  year: 2017
  end-page: 18
  ident: bib0063
  article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection
  publication-title: Appl. Soft. Comput.
– volume: 8
  start-page: 31
  year: 2015
  end-page: 36
  ident: bib0037
  article-title: Using decision trees in data mining for predicting factors influencing of heart disease
  publication-title: Carpathian J. Electron. Computer Eng.
– volume: 39
  start-page: 192
  year: 2018
  end-page: 208
  ident: bib0073
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm Evol. Comput.
– volume: 309
  start-page: 1351
  year: 2013
  end-page: 1352
  ident: bib0004
  article-title: The inevitable application of big data to health care
  publication-title: JAMA
– start-page: 962
  year: 2006, June
  end-page: 971
  ident: bib0085
  article-title: Cognitive analysis in diagnostic DSS-type IT systems
  publication-title: International Conference on Artificial Intelligence and Soft Computing
– volume: 41
  start-page: 242
  year: 2018
  end-page: 254
  ident: bib0014
  article-title: Classification of imbalanced ECG beats using re-sampling techniques and Adaboost ensemble classifier
  publication-title: Biomed. Signal Process. Control
– volume: 19
  start-page: 1546
  year: 2017
  end-page: 1559
  ident: bib0043
  article-title: Fuzzy soft expert system in prediction of coronary artery disease
  publication-title: Int. J. Fuzzy Syst.
– volume: 25
  start-page: 631
  year: 2015
  end-page: 643
  ident: bib0086
  article-title: Acoustic analysis assessment in speech pathology detection
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 3
  start-page: 59
  year: 2012
  end-page: 79
  ident: bib0029
  article-title: Exerting cost-sensitive and feature creation algorithms for coronary artery disease diagnosis
  publication-title: Int. J. Knowl. Discov. Bioinform. (IJKDB)
– start-page: 1
  year: 2018
  end-page: 53
  ident: bib0052
  article-title: Problem formulations and solvers in linear SVM: a review
  publication-title: Artif. Intell. Rev.
– volume: 312
  start-page: 222
  year: 1996
  ident: bib0019
  article-title: Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction
  publication-title: BMJ
– volume: 5
  start-page: 1569
  year: 2015
  end-page: 1576
  ident: bib0038
  article-title: Comparing performance of data mining algorithms in prediction heart diseases
  publication-title: Int. J. Electr. Comput. Eng. (IJECE)
– volume: 315
  start-page: 651
  year: 2016
  end-page: 652
  ident: bib0005
  article-title: Integrating predictive analytics into high-value care: the dawn of precision delivery
  publication-title: JAMA
– volume: 13
  start-page: 1
  year: 2014
  end-page: 26
  ident: bib0049
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals
  publication-title: Biomed. Eng. Online
– volume: 38
  start-page: 120
  year: 2018
  end-page: 126
  ident: bib0064
  article-title: A novel differential particle swarm optimization for parameter selection of support vector machines for monitoring metal-oxide surge arrester conditions
  publication-title: Swarm Evol. Comput.
– volume: 93
  start-page: 185
  year: 2009
  end-page: 191
  ident: bib0011
  article-title: Diagnosis of valvular heart disease through neural networks ensembles
  publication-title: Comput. Methods Programs Biomed.
– volume: 6
  start-page: 58
  year: 2002
  end-page: 73
  ident: bib0065
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
– reference: Cardiovascular Disease, [accessed on 11/8/2018]
– volume: 2
  start-page: 27
  year: 2011
  ident: bib0056
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– year: 2019
  ident: bib0082
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neural Comput. Appl.
– start-page: 1
  year: 2017
  end-page: 18
  ident: bib0044
  article-title: Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease
  publication-title: Appl. Intell.
– volume: 144
  start-page: 471
  year: 2014
  end-page: 483
  ident: bib0088
  publication-title: An Estimation of the State of Consumption of a Positive Displacement Pump Based On Dynamic Pressure Or Vibrations Using Neural Networks
– year: 2017
  ident: bib0050
  article-title: UCI Machine Learning repository, Center for Machine Learning and Intelligent Systems
– volume: 12
  start-page: 1400
  year: 1988
  end-page: 1406
  ident: bib0025
  article-title: Current complications of diagnostic and therapeutic cardiac catheterization
  publication-title: J. Am. Coll. Cardiol.
– volume: 2
  start-page: 133
  year: 2013
  ident: bib0032
  article-title: Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features
  publication-title: Res. Cardiovasc. Med.
– volume: 8
  start-page: 170
  year: 2018
  end-page: 175
  ident: bib0069
  article-title: Heartbeat type classification with optimized feature vectors
  publication-title: Int. J. Optim. Control
– volume: 87
  start-page: 271
  year: 2017
  end-page: 284
  ident: bib0013
  article-title: Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine
  publication-title: Comput. Biol. Med.
– volume: 79
  start-page: 626
  year: 1997
  end-page: 629
  ident: bib0020
  article-title: Thromboembolic risks of left atrial thrombus detected by transesophageal echocardiogram
  publication-title: Am. J. Cardiol.
– volume: 102
  start-page: 278
  year: 2018
  end-page: 287
  ident: bib0079
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
– volume: 54
  start-page: 2149
  year: 2005
  end-page: 2155
  ident: bib0083
  article-title: Nonlinear processing and semantic content analysis in medical imaging-a cognitive approach
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2018
  ident: bib0072
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput. Biol. Med.
– start-page: 724
  year: 2017, October
  end-page: 727
  ident: bib0058
  article-title: The recognition of dissolved gas abnormality based on high dimensional support vector machine
  publication-title: Electrical Insulation and Dielectric Phenomenon (CEIDP), 2017 IEEE Conference on
– volume: 9
  start-page: 531
  year: 1987
  end-page: 538
  ident: bib0022
  article-title: Prediction of serious arrhythmic events after myocardial infarction: signal-averaged electrocardiogram, holter monitoring and radionuclide ventriculography
  publication-title: J. Am. Coll. Cardiol.
– volume: 405
  start-page: 81
  year: 2017
  end-page: 90
  ident: bib0070
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
– volume: 34
  start-page: 133
  year: 2017
  end-page: 144
  ident: bib0016
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telemat. Inf.
– volume: 6
  start-page: 277
  year: 2018
  end-page: 285
  ident: bib0008
  article-title: Impact of Patients’ gender on Parkinson's disease using classification algorithms
  publication-title: J. AI Data Mining
– volume: 9
  start-page: 251
  year: 2018
  end-page: 261
  ident: bib0053
  article-title: Multiple rank multi-linear kernel support vector machine for matrix data classification
  publication-title: Int. J. Mach. Learn. Cybernet.
– start-page: 306
  year: 2017, September
  end-page: 311
  ident: bib0036
  article-title: Using PSO algorithm for producing best rules in diagnosis of heart disease.
  publication-title: Computer and Applications (ICCA), 2017 International Conference on
– start-page: 851
  year: 2006
  end-page: 856
  ident: bib0018
  article-title: Cognitive computing in intelligent medical pattern recognition systems
  publication-title: Intelligent Control and Automation
– volume: 162
  start-page: 119
  year: 2018
  end-page: 127
  ident: bib0051
  article-title: Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries
  publication-title: Comput. Methods Programs Biomed.
– year: 2018
  ident: bib0001
  article-title: Automated diagnosis of coronary artery disease: a review and workflow
  publication-title: Cardiol. Res. Pract.
– volume: 122
  start-page: 23
  year: 2019
  end-page: 30
  ident: bib0077
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
– year: 2018
  ident: bib0047
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
– year: 2019
  ident: bib0076
  article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks
  publication-title: Comput. Methods Programs Biomed.
– start-page: 204
  year: 2017, July
  end-page: 207
  ident: bib0045
  article-title: A comprehensive investigation and comparison of machine learning techniques in the domain of heart disease
  publication-title: Computers and Communications (ISCC), 2017 IEEE Symposium on
– volume: 132
  start-page: 62
  year: 2017
  end-page: 71
  ident: bib0080
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Based. Syst.
– volume: 37
  start-page: 1568
  year: 2010
  end-page: 1572
  ident: bib0007
  article-title: A comparison of multiple classification methods for diagnosis of Parkinson disease
  publication-title: Expert. Syst. Appl.
– volume: 49
  start-page: 899
  year: 2017
  end-page: 906
  ident: bib0062
  publication-title: Hybrid Genetic Firefly Algorithm for Global Optimization Problems
– volume: 441
  start-page: 41
  year: 2018
  end-page: 49
  ident: bib0081
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inf. Sci.
– volume: 155
  start-page: 199
  year: 2018
  end-page: 208
  ident: bib0015
  article-title: Breast cancer data analysis for survivability studies and prediction
  publication-title: Comput. Methods Programs Biomed.
– volume: 141
  start-page: 19
  year: 2017
  end-page: 26
  ident: bib0035
  article-title: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm
  publication-title: Comput. Methods Programs Biomed.
– start-page: 1
  year: 2017
  end-page: 13
  ident: bib0010
  article-title: Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision trees
  publication-title: J. Med. Biol. Eng.
– reference: Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Harley, R.G., & Hernandez, J.C. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems.
– volume: 50
  start-page: 1343
  year: 2007
  end-page: 1353
  ident: bib0023
  article-title: Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis
  publication-title: J. Am. Coll. Cardiol.
– volume: 106
  start-page: 71
  year: 2019
  end-page: 81
  ident: bib0078
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
– reference: .
– volume: 36
  start-page: 7675
  year: 2009
  end-page: 7680
  ident: bib0012
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: Expert. Syst. Appl.
– volume: 111
  start-page: 52
  year: 2013
  end-page: 61
  ident: bib0033
  article-title: A data mining approach for diagnosis of coronary artery disease
  publication-title: Comput. Methods Programs Biomed.
– volume: 36
  start-page: 3293
  year: 2012
  end-page: 3306
  ident: bib0042
  article-title: Design of a fuzzy-based decision support system for coronary heart disease diagnosis
  publication-title: J. Med. Syst.
– start-page: 1
  year: 2015, December
  end-page: 5
  ident: bib0055
  article-title: Grid search analysis of nu-SVC for text-dependent speaker-identification
  publication-title: India Conference (INDICON), 2015 Annual IEEE
– volume: 4
  start-page: 1502
  year: 2010, August
  end-page: 1505
  ident: bib0054
  article-title: An empirical evaluation of linear and nonlinear kernels for text classification using support vector machines
  publication-title: Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh International Conference on
– volume: 11
  start-page: 5674
  year: 2011
  end-page: 5683
  ident: bib0048
  article-title: A novel ensemble algorithm for biomedical classification based on ant colony optimization
  publication-title: Appl. Soft. Comput.
– volume: 29
  year: 2017
  ident: bib0074
  article-title: Application of ensemble algorithm integrating multiple criteria feature selection in coronary heart disease detection
  publication-title: Biomed. Eng.
– volume: 54
  start-page: 116
  year: 2019
  end-page: 127
  ident: bib0087
  article-title: Pławiak
  publication-title: A Novel Machine Learning Approach For Early Detection of Hepatocellular Carcinoma Patients
– volume: 19
  start-page: 50
  year: 2017
  ident: bib0024
  article-title: Current role of blood and urine biomarkers in the clinical care of adults with congenital heart disease
  publication-title: Curr. Cardiol. Rep.
– start-page: 9
  year: 2012, December
  end-page: 16
  ident: bib0030
  article-title: Diagnosis of coronary artery disease using cost-sensitive algorithms
  publication-title: Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on
– volume: 415
  start-page: 190
  year: 2017
  end-page: 198
  ident: bib0071
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
– volume: 25
  start-page: 223
  year: 2018
  end-page: 233
  ident: bib0046
  article-title: Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach
  publication-title: J. Nuclear Cardiol.
– volume: 42
  start-page: 6168
  year: 2015
  end-page: 6176
  ident: bib0017
  article-title: Data mining in lung cancer pathologic staging diagnosis: correlation between clinical and pathology information
  publication-title: Expert Syst. Appl.
– year: 1975
  ident: bib0059
  article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence
– year: 2017
  ident: bib0040
  article-title: Machine learning of the cardiac phenome and skin transcriptome to categorize heart disease in systemic sclerosis
  publication-title: bioRxiv
– start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2019.104992_bib0055
  article-title: Grid search analysis of nu-SVC for text-dependent speaker-identification
– volume: 14
  start-page: 1089
  issue: 3
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0061
  article-title: EMOGA: a hybrid genetic algorithm with extremal optimization core for multiobjective disassembly line balancing
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2017.2778223
– volume: 315
  start-page: 551
  issue: 6
  year: 2016
  ident: 10.1016/j.cmpb.2019.104992_bib0006
  article-title: Machine learning and the profession of medicine
  publication-title: JAMA
  doi: 10.1001/jama.2015.18421
– volume: 11
  start-page: 5674
  issue: 8
  year: 2011
  ident: 10.1016/j.cmpb.2019.104992_bib0048
  article-title: A novel ensemble algorithm for biomedical classification based on ant colony optimization
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2011.03.025
– volume: 56
  start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0063
  article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2017.01.056
– start-page: 962
  year: 2006
  ident: 10.1016/j.cmpb.2019.104992_bib0085
  article-title: Cognitive analysis in diagnostic DSS-type IT systems
– volume: 102
  start-page: 278
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0079
  article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.06.002
– volume: 405
  start-page: 81
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0070
  article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.04.012
– volume: 1
  start-page: 26
  issue: 1
  year: 2012
  ident: 10.1016/j.cmpb.2019.104992_bib0028
  article-title: Diagnosis of coronary artery disease using data mining based on lab data and echo features
  publication-title: J. Med. Bioeng.
– volume: 144
  start-page: 471
  year: 2014
  ident: 10.1016/j.cmpb.2019.104992_bib0088
– year: 1975
  ident: 10.1016/j.cmpb.2019.104992_bib0059
– year: 2019
  ident: 10.1016/j.cmpb.2019.104992_bib0076
  article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2019.05.004
– volume: 441
  start-page: 41
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0081
  article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.01.051
– volume: 39
  start-page: 192
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0073
  article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.10.002
– volume: 122
  start-page: 23
  year: 2019
  ident: 10.1016/j.cmpb.2019.104992_bib0077
  article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2019.02.016
– volume: 54
  start-page: 116
  year: 2019
  ident: 10.1016/j.cmpb.2019.104992_bib0087
  article-title: Pławiak
– year: 2019
  ident: 10.1016/j.cmpb.2019.104992_bib0082
  article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals
  publication-title: Neural Comput. Appl.
– volume: 357
  start-page: 2277
  issue: 22
  year: 2007
  ident: 10.1016/j.cmpb.2019.104992_bib0021
  article-title: Computed tomography—an increasing source of radiation exposure
  publication-title: NEngl. J. Med.
  doi: 10.1056/NEJMra072149
– volume: 36
  start-page: 3293
  issue: 5
  year: 2012
  ident: 10.1016/j.cmpb.2019.104992_bib0042
  article-title: Design of a fuzzy-based decision support system for coronary heart disease diagnosis
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-012-9821-7
– year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0050
– volume: 8
  start-page: 31
  issue: 2
  year: 2015
  ident: 10.1016/j.cmpb.2019.104992_bib0037
  article-title: Using decision trees in data mining for predicting factors influencing of heart disease
  publication-title: Carpathian J. Electron. Computer Eng.
– ident: 10.1016/j.cmpb.2019.104992_bib0002
– start-page: 1
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0052
  article-title: Problem formulations and solvers in linear SVM: a review
  publication-title: Artif. Intell. Rev.
– volume: 6
  start-page: 58
  issue: 1
  year: 2002
  ident: 10.1016/j.cmpb.2019.104992_bib0065
  article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– volume: 111
  start-page: 52
  issue: 1
  year: 2013
  ident: 10.1016/j.cmpb.2019.104992_bib0033
  article-title: A data mining approach for diagnosis of coronary artery disease
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2013.03.004
– volume: 37
  start-page: 1568
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2019.104992_bib0007
  article-title: A comparison of multiple classification methods for diagnosis of Parkinson disease
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.040
– volume: 42
  start-page: 6168
  issue: 15–16
  year: 2015
  ident: 10.1016/j.cmpb.2019.104992_bib0017
  article-title: Data mining in lung cancer pathologic staging diagnosis: correlation between clinical and pathology information
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.03.019
– volume: 9
  start-page: 531
  issue: 3
  year: 1987
  ident: 10.1016/j.cmpb.2019.104992_bib0022
  article-title: Prediction of serious arrhythmic events after myocardial infarction: signal-averaged electrocardiogram, holter monitoring and radionuclide ventriculography
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(87)80045-1
– volume: 50
  start-page: 1343
  issue: 14
  year: 2007
  ident: 10.1016/j.cmpb.2019.104992_bib0023
  article-title: Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2007.06.030
– volume: 109
  start-page: 187
  year: 2016
  ident: 10.1016/j.cmpb.2019.104992_bib0034
  article-title: Coronary artery disease detection using computational intelligence methods
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2016.07.004
– volume: 87
  start-page: 271
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0013
  article-title: Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.06.006
– volume: 141
  start-page: 19
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0035
  article-title: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.01.004
– volume: 5
  start-page: 1569
  issue: 6
  year: 2015
  ident: 10.1016/j.cmpb.2019.104992_bib0038
  article-title: Comparing performance of data mining algorithms in prediction heart diseases
  publication-title: Int. J. Electr. Comput. Eng. (IJECE)
  doi: 10.11591/ijece.v5i6.pp1569-1576
– year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0040
  article-title: Machine learning of the cardiac phenome and skin transcriptome to categorize heart disease in systemic sclerosis
  publication-title: bioRxiv
– year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0047
  article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.12.023
– volume: 36
  start-page: 7675
  issue: 4
  year: 2009
  ident: 10.1016/j.cmpb.2019.104992_bib0012
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.013
– start-page: 299
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0009
  article-title: Rule optimization of boosted C5. 0 classification using genetic algorithm for liver disease prediction
– volume: 40
  start-page: 178
  issue: 7
  year: 2016
  ident: 10.1016/j.cmpb.2019.104992_bib0039
  article-title: A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-016-0536-z
– year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0026
  article-title: Effective heart disease detection based on quantitative computerized traditional chinese medicine using representation based classifiers
  publication-title: Evidence-Based Complem. Altern. Med.
  doi: 10.1155/2017/7483639
– ident: 10.1016/j.cmpb.2019.104992_bib0003
– year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0072
  article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.09.009
– volume: 49
  start-page: 899
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0062
– start-page: 724
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0058
  article-title: The recognition of dissolved gas abnormality based on high dimensional support vector machine
– volume: 162
  start-page: 119
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0051
  article-title: Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.05.009
– volume: 9
  start-page: 251
  issue: 2
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0053
  article-title: Multiple rank multi-linear kernel support vector machine for matrix data classification
  publication-title: Int. J. Mach. Learn. Cybernet.
  doi: 10.1007/s13042-015-0383-0
– volume: 54
  start-page: 2149
  issue: 6
  year: 2005
  ident: 10.1016/j.cmpb.2019.104992_bib0083
  article-title: Nonlinear processing and semantic content analysis in medical imaging-a cognitive approach
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2005.858566
– year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0057
  article-title: Data processing and text mining technologies on electronic medical records: a review
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/4302425
– volume: 41
  start-page: 242
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0014
  article-title: Classification of imbalanced ECG beats using re-sampling techniques and Adaboost ensemble classifier
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.12.004
– year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0001
  article-title: Automated diagnosis of coronary artery disease: a review and workflow
  publication-title: Cardiol. Res. Pract.
– volume: 19
  start-page: 1546
  issue: 5
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0043
  article-title: Fuzzy soft expert system in prediction of coronary artery disease
  publication-title: Int. J. Fuzzy Syst.
  doi: 10.1007/s40815-016-0255-0
– volume: 6
  start-page: 277
  issue: 2
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0008
  article-title: Impact of Patients’ gender on Parkinson's disease using classification algorithms
  publication-title: J. AI Data Mining
– volume: 9
  start-page: 1081
  issue: 3
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0060
  article-title: A memory-based genetic algorithm for optimization of power generation in a microgrid
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2017.2765483
– start-page: 306
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0036
  article-title: Using PSO algorithm for producing best rules in diagnosis of heart disease.
– volume: 309
  start-page: 1351
  issue: 13
  year: 2013
  ident: 10.1016/j.cmpb.2019.104992_bib0004
  article-title: The inevitable application of big data to health care
  publication-title: JAMA
  doi: 10.1001/jama.2013.393
– start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0010
  article-title: Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision trees
  publication-title: J. Med. Biol. Eng.
– volume: 2
  start-page: 133
  issue: 3
  year: 2013
  ident: 10.1016/j.cmpb.2019.104992_bib0032
  article-title: Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features
  publication-title: Res. Cardiovasc. Med.
  doi: 10.5812/cardiovascmed.10888
– volume: 8
  start-page: 170
  issue: 2
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0069
  article-title: Heartbeat type classification with optimized feature vectors
  publication-title: Int. J. Optim. Control
– start-page: 155
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0075
  article-title: Predictive and descriptive analysis for heart disease diagnosis
– volume: 12
  start-page: 1400
  issue: 6
  year: 1988
  ident: 10.1016/j.cmpb.2019.104992_bib0025
  article-title: Current complications of diagnostic and therapeutic cardiac catheterization
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(88)80002-0
– start-page: 9
  year: 2012
  ident: 10.1016/j.cmpb.2019.104992_bib0030
  article-title: Diagnosis of coronary artery disease using cost-sensitive algorithms
– volume: 3
  start-page: 59
  issue: 1
  year: 2012
  ident: 10.1016/j.cmpb.2019.104992_bib0029
  article-title: Exerting cost-sensitive and feature creation algorithms for coronary artery disease diagnosis
  publication-title: Int. J. Knowl. Discov. Bioinform. (IJKDB)
  doi: 10.4018/jkdb.2012010104
– volume: 132
  start-page: 62
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0080
  article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network
  publication-title: Knowl. Based. Syst.
  doi: 10.1016/j.knosys.2017.06.003
– start-page: 204
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0045
  article-title: A comprehensive investigation and comparison of machine learning techniques in the domain of heart disease
– start-page: 1027
  year: 2006
  ident: 10.1016/j.cmpb.2019.104992_bib0084
  article-title: Cognitive analysis techniques in business planning and decision support systems
– volume: 29
  issue: 06
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0074
  article-title: Application of ensemble algorithm integrating multiple criteria feature selection in coronary heart disease detection
  publication-title: Biomed. Eng.
– volume: 106
  start-page: 71
  year: 2019
  ident: 10.1016/j.cmpb.2019.104992_bib0078
  article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2019.01.013
– volume: 92
  start-page: 334
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0027
  article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.09.022
– volume: 96
  start-page: 189
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0068
  article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.03.016
– start-page: 851
  year: 2006
  ident: 10.1016/j.cmpb.2019.104992_bib0018
  article-title: Cognitive computing in intelligent medical pattern recognition systems
– volume: 19
  start-page: 50
  issue: 6
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0024
  article-title: Current role of blood and urine biomarkers in the clinical care of adults with congenital heart disease
  publication-title: Curr. Cardiol. Rep.
  doi: 10.1007/s11886-017-0860-z
– volume: 25
  start-page: 631
  issue: 3
  year: 2015
  ident: 10.1016/j.cmpb.2019.104992_bib0086
  article-title: Acoustic analysis assessment in speech pathology detection
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.1515/amcs-2015-0046
– volume: 155
  start-page: 199
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0015
  article-title: Breast cancer data analysis for survivability studies and prediction
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.12.011
– volume: 38
  start-page: 120
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0064
  article-title: A novel differential particle swarm optimization for parameter selection of support vector machines for monitoring metal-oxide surge arrester conditions
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2017.07.006
– volume: 93
  start-page: 185
  issue: 2
  year: 2009
  ident: 10.1016/j.cmpb.2019.104992_bib0011
  article-title: Diagnosis of valvular heart disease through neural networks ensembles
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2008.09.005
– volume: 13
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.cmpb.2019.104992_bib0049
  article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-13-90
– volume: 5
  start-page: 236
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0041
  article-title: Using fuzzy concept lattice for intelligent disease diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2638848
– volume: 415
  start-page: 190
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0071
  article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.06.027
– volume: 34
  start-page: 133
  issue: 4
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0016
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telemat. Inf.
  doi: 10.1016/j.tele.2017.01.007
– volume: 79
  start-page: 626
  issue: 5
  year: 1997
  ident: 10.1016/j.cmpb.2019.104992_bib0020
  article-title: Thromboembolic risks of left atrial thrombus detected by transesophageal echocardiogram
  publication-title: Am. J. Cardiol.
  doi: 10.1016/S0002-9149(96)00828-4
– volume: 52
  start-page: 198
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0067
  article-title: An efficient compression of ECG signals using deep convolutional autoencoders
  publication-title: Cogn. Syst. Res.
  doi: 10.1016/j.cogsys.2018.07.004
– volume: 82
  start-page: 542
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2019.104992_bib0031
  article-title: Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features
  publication-title: Eur. J. Sci. Res.
– volume: 25
  start-page: 223
  issue: 1
  year: 2018
  ident: 10.1016/j.cmpb.2019.104992_bib0046
  article-title: Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach
  publication-title: J. Nuclear Cardiol.
  doi: 10.1007/s12350-017-0834-y
– volume: 312
  start-page: 222
  issue: 7025
  year: 1996
  ident: 10.1016/j.cmpb.2019.104992_bib0019
  article-title: Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction
  publication-title: BMJ
  doi: 10.1136/bmj.312.7025.222
– start-page: 1
  year: 2017
  ident: 10.1016/j.cmpb.2019.104992_bib0044
  article-title: Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease
  publication-title: Appl. Intell.
– volume: 2
  start-page: 27
  issue: 3
  year: 2011
  ident: 10.1016/j.cmpb.2019.104992_bib0056
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol. (TIST)
– volume: 4
  start-page: 1502
  year: 2010
  ident: 10.1016/j.cmpb.2019.104992_bib0054
  article-title: An empirical evaluation of linear and nonlinear kernels for text classification using support vector machines
– volume: 315
  start-page: 651
  issue: 7
  year: 2016
  ident: 10.1016/j.cmpb.2019.104992_bib0005
  article-title: Integrating predictive analytics into high-value care: the dawn of precision delivery
  publication-title: JAMA
  doi: 10.1001/jama.2015.19417
– ident: 10.1016/j.cmpb.2019.104992_bib0066
  doi: 10.1109/TEVC.2007.896686
SSID ssj0002556
Score 2.634946
Snippet •Novel data mining method is proposed for CAD diagnosis.•Application of feature selection (based on GA and PSO) is proposed.•New genetic training (N2Genetic...
Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 104992
SubjectTerms Algorithms
Classification
Coronary artery disease (CAD)
Coronary Artery Disease - diagnosis
Data Mining - statistics & numerical data
Databases, Factual - statistics & numerical data
Diagnosis, Computer-Assisted - statistics & numerical data
Feature selection
Female
Genetic algorithm
Humans
Machine learning
Machine Learning - statistics & numerical data
Male
Models, Cardiovascular
Normalization
Particle swarm optimization
Support Vector Machine - statistics & numerical data
Title A new machine learning technique for an accurate diagnosis of coronary artery disease
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260718314585
https://dx.doi.org/10.1016/j.cmpb.2019.104992
https://www.ncbi.nlm.nih.gov/pubmed/31443858
https://www.proquest.com/docview/2336991988
Volume 179
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KBfEivq2PsoI3iU2y25g9lmKpSr1owduy2YdUNC3aHrz4253JbioeVPCQQMIuWWYnM7PMN98Qcgoq65xwLHJOm4iL2EV5ZuMoMeBtLUSocYwFzqPbbDjm1w_dhwbp17UwCKsMtt_b9MpahzedIM3ObDLp3CGPSIr0aDlLOES9WMHOL7CLwfnHF8wDKbY8v7eIcHQonPEYL_0yKxDeJTDVKUT6k3P6KfisnNBgg6yH6JH2_AI3ScOWW2R1FPLj22TcoxAm05cKIWlpaAnxSJdMrRRiVKpKqrReIEkENR5qN3mjU0c10hmo13daAT3facje7JDx4PK-P4xC44RIw_lsHlnFTKq6BdN45oyFsszEqVCJES4rtMh14lK4uHZG2CKDOzjuhBfCOTgCGrZLmuW0tPuEmgIzhV2uLQy3lheMGZfbWMNJRjBlWySpJSZ1YBXH5hbPsoaPPUmUskQpSy_lFjlbzpl5To1fR7N6I2RdLQr2TYLJ_3VWdznrmz79Oe-k3msJPxpmT1Rpp4s3mTKWQTAt8rxF9rwSLFcPCsgxw3rwz68ekjV88iDBI9Kcvy7sMQQ786JdaXObrPSuboa3nyyp_YA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlEuCGiBpTxcqTeUbhI7aXxECLQUlgusxM1y_EBblewKdg9c-O2diZ2tegAkDskh8SjWeDKe0XzzGeA7mqz30vPEe2MTIVOfVKVLk8zibuswQk1TanAeXpWDkfh1W9wuwUnXC0Owyuj7g09vvXV80o_a7E_H4_418YjkRI9W8Uxg1PsBPooi_0kZ2I_nfzgP4tgKBN8yoeGxcyaAvMz9tCZ8l6Rap5T5S7vTS9FnuwudrcNaDB_ZcZjhBiy5ZhNWhrFA_hlGxwzjZHbfQiQdi2dC3LEFVSvDIJXphmlj5sQSwWzA2o0f2cQzQ3wG-uGJtUjPJxbLN19gdHZ6czJI4skJicEEbZY4zW2ui5obSjpTqR23aS51ZqUvayMrk_kcL2G8la4u8Y47dyZq6T3mgJZvwXIzadwOMFtTqbAQxuFw50TNufWVSw2mMpJr14Os05gykVacTrf4ozr82G9FWlakZRW03IOjhcw0kGq8Opp3C6G6dlF0cAp9_qtSxULqP4N6U-5bt9YK_zQqn-jGTeaPKue8xGhaVlUPtoMRLGaPFiioxLr7zq8ewqfBzfBSXZ5fXXyFVXoTEIN7sDx7mLt9jHxm9UFr2X8BAJf_FQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+machine+learning+technique+for+an+accurate+diagnosis+of+coronary+artery+disease&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Abdar%2C+Moloud&rft.au=Ksi%C4%85%C5%BCek%2C+Wojciech&rft.au=Acharya%2C+U+Rajendra&rft.au=Tan%2C+Ru-San&rft.date=2019-10-01&rft.eissn=1872-7565&rft.volume=179&rft.spage=104992&rft_id=info:doi/10.1016%2Fj.cmpb.2019.104992&rft_id=info%3Apmid%2F31443858&rft.externalDocID=31443858
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon