A new machine learning technique for an accurate diagnosis of coronary artery disease
•Novel data mining method is proposed for CAD diagnosis.•Application of feature selection (based on GA and PSO) is proposed.•New genetic training (N2Genetic optimizer) based on fusion of 10-fold cross-validation with GA or PSO is employed.•SVM (SVC, nuSVM, LinSVM) is employed for classification.•Hig...
Saved in:
| Published in | Computer methods and programs in biomedicine Vol. 179; p. 104992 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Ireland
Elsevier B.V
01.10.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0169-2607 1872-7565 1872-7565 |
| DOI | 10.1016/j.cmpb.2019.104992 |
Cover
| Abstract | •Novel data mining method is proposed for CAD diagnosis.•Application of feature selection (based on GA and PSO) is proposed.•New genetic training (N2Genetic optimizer) based on fusion of 10-fold cross-validation with GA or PSO is employed.•SVM (SVC, nuSVM, LinSVM) is employed for classification.•High classification accuracy of 93.08% is obtained.
Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.
We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.
The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.
We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use. |
|---|---|
| AbstractList | Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.
We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.
The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.
We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use. •Novel data mining method is proposed for CAD diagnosis.•Application of feature selection (based on GA and PSO) is proposed.•New genetic training (N2Genetic optimizer) based on fusion of 10-fold cross-validation with GA or PSO is employed.•SVM (SVC, nuSVM, LinSVM) is employed for classification.•High classification accuracy of 93.08% is obtained. Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients. We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features. The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field. We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use. Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.BACKGROUND AND OBJECTIVECoronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of appropriate treatment and helps to reduce the mortality. Herein, we describe an innovative machine learning methodology that enables an accurate detection of CAD and apply it to data collected from Iranian patients.We first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.METHODSWe first tested ten traditional machine learning algorithms, and then the three-best performing algorithms (three types of SVM) were used in the rest of the study. To improve the performance of these algorithms, a data preprocessing with normalization was carried out. Moreover, a genetic algorithm and particle swarm optimization, coupled with stratified 10-fold cross-validation, were used twice: for optimization of classifier parameters and for parallel selection of features.The presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.RESULTSThe presented approach enhanced the performance of all traditional machine learning algorithms used in this study. We also introduced a new optimization technique called N2Genetic optimizer (a new genetic training). Our experiments demonstrated that N2Genetic-nuSVM provided the accuracy of 93.08% and F1-score of 91.51% when predicting CAD outcomes among the patients included in a well-known Z-Alizadeh Sani dataset. These results are competitive and comparable to the best results in the field.We showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use.CONCLUSIONSWe showed that machine-learning techniques optimized by the proposed approach, can lead to highly accurate models intended for both clinical and research use. |
| ArticleNumber | 104992 |
| Author | Acharya, U Rajendra Książek, Wojciech Abdar, Moloud Makarenkov, Vladimir Pławiak, Paweł Tan, Ru-San |
| Author_xml | – sequence: 1 givenname: Moloud orcidid: 0000-0002-3059-6357 surname: Abdar fullname: Abdar, Moloud organization: Département d'informatique, Université du Québec à Montréal, Montréal, Québec, Canada – sequence: 2 givenname: Wojciech surname: Książek fullname: Książek, Wojciech organization: Institute of Telecomputing, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, 31-155 Krakow, Poland – sequence: 3 givenname: U Rajendra surname: Acharya fullname: Acharya, U Rajendra organization: Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore – sequence: 4 givenname: Ru-San surname: Tan fullname: Tan, Ru-San organization: Department of Cardiology, National Heart Centre Singapore, Singapore – sequence: 5 givenname: Vladimir surname: Makarenkov fullname: Makarenkov, Vladimir organization: Département d'informatique, Université du Québec à Montréal, Montréal, Québec, Canada – sequence: 6 givenname: Paweł orcidid: 0000-0002-4317-2801 surname: Pławiak fullname: Pławiak, Paweł email: plawiak@pk.edu.pl organization: Institute of Telecomputing, Faculty of Physics, Mathematics and Computer Science, Cracow University of Technology, 31-155 Krakow, Poland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31443858$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkD1PHDEQhq0IFA6SP5AicplmL_7YL0dpEAISCSkN1JZ3PAZfdu2L7UvEv8eng4aCFDMjjd5nNHpOyVGIAQn5xNmaM95_3axh2U5rwbiqi1Yp8Y6s-DiIZuj67oisakg1omfDCTnNecMYE13XvycnkretHLtxRe7OacB_dDHw4APSGU0KPtzTgvAQ_J8dUhcTNYEagF0yBan15j7E7DONjkJMMZj0SE0qWIf1GU3GD-TYmTnjx-d5Ru6uLm8vfjQ3v65_XpzfNNCyoTRopBWmmySIoR2YMigtE8pwq1w_gRqBO1GrBWcVTn3tcuS8nZRzgjMrz8iXw91tivXXXPTiM-A8m4Bxl7WQsleKq3Gs0c_P0d20oNXb5Jf6uH5RUQPjIQAp5pzQafDFFB9DScbPmjO9t643em9d763rg_WKilfoy_U3oe8HCKugvx6TzuAxAFqfEIq20b-Nf3uFw-yDBzP_xsf_wU_8h68t |
| CitedBy_id | crossref_primary_10_1016_j_bbe_2020_09_005 crossref_primary_10_1080_07391102_2021_1987328 crossref_primary_10_1007_s11831_025_10271_2 crossref_primary_10_2174_1573403X18666220609123053 crossref_primary_10_3390_electronics11091495 crossref_primary_10_3233_JIFS_223048 crossref_primary_10_1109_JSEN_2021_3091471 crossref_primary_10_1109_ACCESS_2022_3158752 crossref_primary_10_1016_j_bspc_2023_105644 crossref_primary_10_1016_j_cmpb_2020_105400 crossref_primary_10_1155_2022_3414877 crossref_primary_10_1371_journal_pone_0274416 crossref_primary_10_7717_peerj_cs_993 crossref_primary_10_1080_10255842_2024_2319706 crossref_primary_10_26599_TST_2022_9010008 crossref_primary_10_53608_estudambilisim_1409734 crossref_primary_10_4018_IJITSA_290001 crossref_primary_10_1016_j_cmpb_2024_108403 crossref_primary_10_1016_j_inffus_2023_101813 crossref_primary_10_1016_j_bspc_2023_104700 crossref_primary_10_1002_prca_202400062 crossref_primary_10_1007_s00521_022_07193_6 crossref_primary_10_1155_2022_9580896 crossref_primary_10_1109_ACCESS_2020_2996667 crossref_primary_10_1186_s12859_020_03626_y crossref_primary_10_1016_j_jestch_2024_101855 crossref_primary_10_3390_cancers16244128 crossref_primary_10_1016_j_cmpb_2020_105635 crossref_primary_10_1007_s42979_021_00731_4 crossref_primary_10_1016_j_dsp_2021_103120 crossref_primary_10_1099_jmm_0_001935 crossref_primary_10_3233_IDT_200041 crossref_primary_10_1007_s42452_020_2858_1 crossref_primary_10_1016_j_asoc_2023_111141 crossref_primary_10_1007_s11517_022_02757_z crossref_primary_10_1080_00051144_2021_2014037 crossref_primary_10_1007_s11831_022_09733_8 crossref_primary_10_3390_diagnostics12092073 crossref_primary_10_3389_fcvm_2024_1360548 crossref_primary_10_1080_10255842_2023_2245518 crossref_primary_10_1016_j_mehy_2019_109483 crossref_primary_10_1016_j_cmpb_2022_106837 crossref_primary_10_32604_cmc_2023_035779 crossref_primary_10_3390_diagnostics13081491 crossref_primary_10_1002_cnm_3599 crossref_primary_10_1002_cpe_6675 crossref_primary_10_1109_ACCESS_2023_3324037 crossref_primary_10_3390_bioengineering11100957 crossref_primary_10_1016_j_compbiomed_2021_104559 crossref_primary_10_1016_j_cmpb_2020_105383 crossref_primary_10_1088_1757_899X_1099_1_012068 crossref_primary_10_4018_IJISP_356513 crossref_primary_10_35741_issn_0258_2724_59_2_8 crossref_primary_10_1016_j_eswa_2023_119859 crossref_primary_10_1136_openhrt_2023_002292 crossref_primary_10_3390_diagnostics12030722 crossref_primary_10_1186_s12872_021_02314_w crossref_primary_10_3390_life12111933 crossref_primary_10_14513_actatechjaur_00581 crossref_primary_10_1016_j_knosys_2021_107419 crossref_primary_10_3390_jpm15010010 crossref_primary_10_1016_j_imu_2019_100257 crossref_primary_10_1007_s13721_022_00354_6 crossref_primary_10_1155_2022_5359540 crossref_primary_10_21015_vtse_v11i2_1487 crossref_primary_10_1007_s13721_025_00508_2 crossref_primary_10_1016_j_neunet_2023_08_035 crossref_primary_10_1002_advs_202400595 crossref_primary_10_3390_math10193614 crossref_primary_10_3390_sym12101651 crossref_primary_10_1038_s41598_024_67973_z crossref_primary_10_3390_math10203845 crossref_primary_10_1016_j_cmpb_2020_105770 crossref_primary_10_1155_2022_9288452 crossref_primary_10_1109_ACCESS_2024_3514093 crossref_primary_10_1109_JIOT_2020_2966232 crossref_primary_10_3389_fbioe_2020_00720 crossref_primary_10_1007_s44196_024_00538_0 crossref_primary_10_1016_j_eswa_2024_125928 crossref_primary_10_32604_iasc_2022_021216 crossref_primary_10_1016_j_bspc_2023_105332 crossref_primary_10_1109_ACCESS_2025_3550015 crossref_primary_10_46604_aiti_2024_13972 crossref_primary_10_1016_j_bspc_2023_105328 crossref_primary_10_3390_fluids9070153 crossref_primary_10_1016_j_measen_2022_100588 crossref_primary_10_1142_S0218339023300014 crossref_primary_10_32604_cmc_2023_032020 crossref_primary_10_1371_journal_pone_0312257 crossref_primary_10_1038_s41398_024_02946_4 crossref_primary_10_1142_S0218001421590345 crossref_primary_10_37391_ijeer_120423 crossref_primary_10_2174_011573403X299265240405080030 crossref_primary_10_3390_app14031238 crossref_primary_10_15829_1560_4071_2020_3802 crossref_primary_10_1155_2021_5912051 crossref_primary_10_1016_j_ejmp_2021_04_011 crossref_primary_10_1016_j_fss_2020_07_011 crossref_primary_10_3390_info11040207 crossref_primary_10_4236_ojs_2020_104043 crossref_primary_10_4108_eetsis_v10i3_2891 crossref_primary_10_1016_j_bbe_2020_08_007 crossref_primary_10_3934_mbe_2022211 crossref_primary_10_1155_2023_6442756 crossref_primary_10_32604_cmc_2023_041031 crossref_primary_10_3390_ijerph17030731 crossref_primary_10_1002_adfm_202105482 crossref_primary_10_1007_s10586_023_04062_2 crossref_primary_10_1007_s11042_024_19169_w crossref_primary_10_1088_1361_6579_ad6529 crossref_primary_10_1155_2021_5288844 crossref_primary_10_37705_TechTrans_e2020031 crossref_primary_10_33411_IJIST_2022040121 crossref_primary_10_1007_s11042_024_19680_0 crossref_primary_10_52547_jha_25_1_57 crossref_primary_10_3390_app10217656 crossref_primary_10_1016_j_iswa_2022_200131 crossref_primary_10_3390_app13116542 crossref_primary_10_1142_S1793351X21400055 crossref_primary_10_1016_j_neunet_2024_106183 crossref_primary_10_1142_S021800142456010X crossref_primary_10_3390_math10030311 crossref_primary_10_1007_s10489_021_02467_3 crossref_primary_10_1016_j_cnsns_2020_105582 crossref_primary_10_1016_j_compbiomed_2023_107818 crossref_primary_10_1016_j_eswa_2020_113697 crossref_primary_10_1002_ima_22963 crossref_primary_10_1016_j_bspc_2025_107853 crossref_primary_10_1080_10255842_2020_1850702 crossref_primary_10_3390_s21124090 crossref_primary_10_1007_s00500_022_07788_0 crossref_primary_10_1109_ACCESS_2019_2953920 crossref_primary_10_1016_j_pes_2024_100037 crossref_primary_10_1007_s13721_022_00381_3 crossref_primary_10_1016_j_apacoust_2020_107607 crossref_primary_10_1016_j_displa_2021_102106 crossref_primary_10_1515_biol_2021_0068 crossref_primary_10_29130_dubited_659106 crossref_primary_10_4018_IJSSCI_312562 crossref_primary_10_1080_10255842_2024_2339475 crossref_primary_10_3934_mbe_2022229 crossref_primary_10_1038_s41598_023_33500_9 crossref_primary_10_1111_exsy_12547 crossref_primary_10_3390_app13064006 crossref_primary_10_3390_electronics11030315 crossref_primary_10_1016_j_iswa_2025_200507 crossref_primary_10_1016_j_engappai_2023_106662 crossref_primary_10_35940_ijeat_A3132_0411422 crossref_primary_10_1111_exsy_12785 crossref_primary_10_3390_bioengineering11121290 crossref_primary_10_1080_09720529_2021_1947452 crossref_primary_10_1109_ACCESS_2019_2937136 crossref_primary_10_3390_electronics10020105 crossref_primary_10_3390_medicina58121745 crossref_primary_10_1016_j_cmpb_2020_105343 crossref_primary_10_32628_CSEIT241047 crossref_primary_10_1007_s40883_022_00273_y crossref_primary_10_1088_2057_1976_abfd83 crossref_primary_10_3390_s23239498 crossref_primary_10_1093_jcde_qwac138 crossref_primary_10_3390_app13148120 crossref_primary_10_1007_s11831_024_10194_4 crossref_primary_10_48175_IJARSCT_6201 crossref_primary_10_1007_s11831_024_10075_w crossref_primary_10_1002_ima_23092 crossref_primary_10_1016_j_patrec_2020_02_010 crossref_primary_10_1016_j_knosys_2020_106083 crossref_primary_10_3233_JIFS_213130 crossref_primary_10_1007_s12530_021_09384_3 crossref_primary_10_32604_cmc_2022_027300 crossref_primary_10_3233_JIFS_220061 crossref_primary_10_1016_j_bspc_2025_107637 crossref_primary_10_1016_j_ijcce_2025_01_003 crossref_primary_10_1016_j_ins_2021_04_036 crossref_primary_10_3233_JIFS_213257 crossref_primary_10_1371_journal_pone_0307952 crossref_primary_10_3390_jcm13102868 crossref_primary_10_1155_2022_1410169 crossref_primary_10_1016_j_imu_2020_100483 crossref_primary_10_3390_math8101814 crossref_primary_10_3934_mbe_2022167 crossref_primary_10_3390_a14070201 crossref_primary_10_1155_2020_9816142 crossref_primary_10_1109_ACCESS_2022_3220899 crossref_primary_10_3389_fcvm_2021_760178 crossref_primary_10_1080_10803548_2021_2024403 crossref_primary_10_3390_s23031193 crossref_primary_10_1016_j_apacoust_2020_107701 |
| Cites_doi | 10.1109/TII.2017.2778223 10.1001/jama.2015.18421 10.1016/j.asoc.2011.03.025 10.1016/j.asoc.2017.01.056 10.1016/j.compbiomed.2018.06.002 10.1016/j.ins.2017.04.012 10.1016/j.cmpb.2019.05.004 10.1016/j.ins.2018.01.051 10.1016/j.swevo.2017.10.002 10.1016/j.patrec.2019.02.016 10.1056/NEJMra072149 10.1007/s10916-012-9821-7 10.1109/4235.985692 10.1016/j.cmpb.2013.03.004 10.1016/j.eswa.2009.06.040 10.1016/j.eswa.2015.03.019 10.1016/S0735-1097(87)80045-1 10.1016/j.jacc.2007.06.030 10.1016/j.knosys.2016.07.004 10.1016/j.compbiomed.2017.06.006 10.1016/j.cmpb.2017.01.004 10.11591/ijece.v5i6.pp1569-1576 10.1016/j.compbiomed.2017.12.023 10.1016/j.eswa.2008.09.013 10.1007/s10916-016-0536-z 10.1155/2017/7483639 10.1016/j.compbiomed.2018.09.009 10.1016/j.cmpb.2018.05.009 10.1007/s13042-015-0383-0 10.1109/TIM.2005.858566 10.1155/2018/4302425 10.1016/j.bspc.2017.12.004 10.1007/s40815-016-0255-0 10.1109/TSTE.2017.2765483 10.1001/jama.2013.393 10.5812/cardiovascmed.10888 10.1016/S0735-1097(88)80002-0 10.4018/jkdb.2012010104 10.1016/j.knosys.2017.06.003 10.1016/j.compbiomed.2019.01.013 10.1016/j.eswa.2017.09.022 10.1016/j.compbiomed.2018.03.016 10.1007/s11886-017-0860-z 10.1515/amcs-2015-0046 10.1016/j.cmpb.2017.12.011 10.1016/j.swevo.2017.07.006 10.1016/j.cmpb.2008.09.005 10.1186/1475-925X-13-90 10.1109/ACCESS.2016.2638848 10.1016/j.ins.2017.06.027 10.1016/j.tele.2017.01.007 10.1016/S0002-9149(96)00828-4 10.1016/j.cogsys.2018.07.004 10.1007/s12350-017-0834-y 10.1136/bmj.312.7025.222 10.1001/jama.2015.19417 10.1109/TEVC.2007.896686 |
| ContentType | Journal Article |
| Copyright | 2019 Copyright © 2019. Published by Elsevier B.V. |
| Copyright_xml | – notice: 2019 – notice: Copyright © 2019. Published by Elsevier B.V. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.cmpb.2019.104992 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1872-7565 |
| ExternalDocumentID | 31443858 10_1016_j_cmpb_2019_104992 S0169260718314585 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M -~X .1- .DC .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGQPQ AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HMK HMO HVGLF HZ~ IHE J1W KOM LG9 M29 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SBC SDF SDG SEL SES SEW SPC SPCBC SSH SSV SSZ T5K UHS WUQ XPP Z5R ZGI ZY4 ~G- ~HD AACTN AAIAV ABLVK ABTAH ABYKQ AFKWA AJBFU AJOXV AMFUW LCYCR RIG AAYXX CITATION AFCTW CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c407t-ea3d2a5b3c274709ae3d029a1d9f6bc98c1f2c1f4cfd9eb6fd938114b9ff210d3 |
| IEDL.DBID | .~1 |
| ISSN | 0169-2607 1872-7565 |
| IngestDate | Sun Sep 28 08:53:30 EDT 2025 Thu Apr 03 07:06:25 EDT 2025 Thu Apr 24 23:06:34 EDT 2025 Thu Oct 02 04:28:34 EDT 2025 Fri Feb 23 02:26:01 EST 2024 Tue Oct 14 19:32:54 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Coronary artery disease (CAD) Feature selection Genetic algorithm Machine learning Classification Normalization Particle swarm optimization |
| Language | English |
| License | Copyright © 2019. Published by Elsevier B.V. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-ea3d2a5b3c274709ae3d029a1d9f6bc98c1f2c1f4cfd9eb6fd938114b9ff210d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-3059-6357 0000-0002-4317-2801 |
| PMID | 31443858 |
| PQID | 2336991988 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2336991988 pubmed_primary_31443858 crossref_citationtrail_10_1016_j_cmpb_2019_104992 crossref_primary_10_1016_j_cmpb_2019_104992 elsevier_sciencedirect_doi_10_1016_j_cmpb_2019_104992 elsevier_clinicalkey_doi_10_1016_j_cmpb_2019_104992 |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 2019-10-00 2019-Oct 20191001 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | Ireland |
| PublicationPlace_xml | – name: Ireland |
| PublicationTitle | Computer methods and programs in biomedicine |
| PublicationTitleAlternate | Comput Methods Programs Biomed |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Rajesh, Dhuli (bib0013) 2017; 87 Cardiovascular Disease, [accessed on 11/8/2018] Pistolesi, Lazzerini, Dalle Mura, Dini (bib0061) 2018; 14 (bib0050) 2017 Parikh, Kakad, Bates (bib0005) 2016; 315 Yildirim, Baloglu, Tan, Ciaccio, Acharya (bib0076) 2019 Han, Lee, Rizvi, Gransar, Baskaran, Schulman-Marcus, Min (bib0046) 2018; 25 Acharya, Fujita, Lih, Hagiwara, Tan, Adam (bib0070) 2017; 405 Abdar, Zomorodi-Moghadam (bib0008) 2018; 6 Alizadehsani, Hosseini, Sani, Ghandeharioun, Boghrati (bib0030) 2012, December Abdar (bib0037) 2015; 8 Yildirim (bib0068) 2018; 96 Ogiela, Tadeusiewicz (bib0083) 2005; 54 Michielli, Acharya, Molinari (bib0078) 2019; 106 Darcy, Louie, Roberts (bib0006) 2016; 315 Leung, Davidson, Cranney, Walsh (bib0020) 1997; 79 Paul, Shill, Rabin, Murase (bib0044) 2017 Aggarwal, Sahay, Bansal, Chandra (bib0055) 2015, December Raghavendra, Fujita, Bhandary, Gudigar, Tan, Acharya (bib0081) 2018; 441 Panek, Skalski, Gajda, Tadeusiewicz (bib0086) 2015; 25 Abdar, Yen, Hung (bib0010) 2017 Tan, Hagiwara, Pang, Lim, Oh, Adam, Acharya (bib0047) 2018 Alizadehsani, Habibi, Hosseini, Boghrati, Ghandeharioun, Bahadorian, Sani (bib0031) 2012; 82 Alizadehsani, Habibi, Sani, Mashayekhi, Boghrati, Ghandeharioun, …, Alizadeh-Sani (bib0032) 2013; 2 Książek, Abdar, Acharya (bib0087) 2019; 54 Gao, Fan, Xu (bib0053) 2018; 9 Askarzadeh (bib0060) 2018; 9 Alizadehsani, Hosseini, Khosravi, Khozeimeh, Roshanzamir, Sarrafzadegan, Nahavandi (bib0051) 2018; 162 ASIM, MASHWANI, JAN (bib0062) 2017; 49 Wyman, Safian, Portway, Skillman, McKAY, Baim (bib0025) 1988; 12 Das (bib0007) 2010; 37 Alizadehsani, Zangooei, Hosseini, Habibi, Khosravi, Roshanzamir, Nahavandi (bib0034) 2016; 109 Qin, Guan, Wang (bib0074) 2017; 29 . Yıldırım, Pławiak, Tan, Acharya (bib0072) 2018 Rajpal, Alshawabkeh, Opotowsky (bib0024) 2017; 19 Pławiak (bib0073) 2018; 39 Pławiak (bib0027) 2018; 92 Baloglu, Talo, Yildirim, Tan, Acharya (bib0077) 2019; 122 Yang, Chen (bib0017) 2015; 42 Alizadehsani, Habibi, Sani, Mashayekhi, Boghrati, Ghandeharioun, Bahadorian (bib0028) 2012; 1 Ogiela, Tadeusiewicz, Ogiela (bib0018) 2006 Yildirim, Tan, Acharya (bib0067) 2018; 52 Verma, Srivastava, Negi (bib0039) 2016; 40 Sun, Cai, Li, Liu, Fang, Wang (bib0057) 2018 Alkeshuosh, Moghadam, Al Mansoori, Abdar (bib0036) 2017, September Oh, Ng, Tan, Acharya (bib0079) 2018; 102 Acharya, Fujita, Lih, Adam, Tan, Chua (bib0080) 2017; 132 Kuchar, Thorburn, Sammel (bib0022) 1987; 9 Yildirim, Baloglu (bib0069) 2018; 8 Wah, Gopal Raj, Iqbal (bib0001) 2018 Chauhan, Dahiya, Sharma (bib0052) 2018 Cardiovascular Diseases (CVDs), [accessed on 11/8/2018] Brenner, Hall (bib0021) 2007; 357 John (bib0059) 1975 Alizadehsani, Habibi, Hosseini, Mashayekhi, Boghrati, Ghandeharioun, Sani (bib0033) 2013; 111 Gao, Sun (bib0054) 2010, August; 4 Clerc, Kennedy (bib0065) 2002; 6 Tadeusiewicz, Ogiela, Ogiela (bib0084) 2006, June Abdar, Kalhori, Sutikno, Subroto, Arji (bib0038) 2015; 5 Das, Turkoglu, Sengur (bib0012) 2009; 36 Hoang, Cho, Alam, Vu (bib0064) 2018; 38 Pławiak, Acharya (bib0082) 2019 Rajesh, Dhuli (bib0014) 2018; 41 Chang, Lin (bib0056) 2011; 2 Lin, Zhu, Qi, Zhang, Huang, Rong (bib0058) 2017, October Babič, Olejár, Vantová, Paralič (bib0075) 2017, September Hassan, Sayed, Khalil, Ghany (bib0043) 2017; 19 Nandalur, Dwamena, Choudhri, Nandalur, Carlos (bib0023) 2007; 50 Mashwani, Salhi, Yeniay, Hussian, Jan (bib0063) 2017; 56 Shi, Xi, Ma, Weng, Hu (bib0048) 2011; 11 Lahsasna, Ainon, Zainuddin, Bulgiba (bib0042) 2012; 36 Alizadehsani, Hosseini, Boghrati, Ghandeharioun, Khozeimeh, Sani (bib0029) 2012; 3 Davie, Francis, Love, Caruana, Starkey, Shaw, McMurray (bib0019) 1996; 312 Acharya, Fujita, Oh, Hagiwara, Tan, Adam (bib0071) 2017; 415 Das, Turkoglu, Sengur (bib0011) 2009; 93 Pouriyeh, Vahid, Sannino, De Pietro, Arabnia, Gutierrez (bib0045) 2017, July Hassoon, Kouhi, Zomorodi-Moghadam, Abdar (bib0009) 2017, September Shu, Zhang, Tang (bib0026) 2017 Huang, Liu, Zhu, Wang, Hu (bib0049) 2014; 13 Pławiak (bib0088) 2014; 144 Murdoch, Detsky (bib0004) 2013; 309 Zou, Deng (bib0041) 2017; 5 Hinchcliff, Frech, Wood, Huang, Lee, Aren, Deo (bib0040) 2017 Nilashi, Ibrahim, Ahmadi, Shahmoradi (bib0016) 2017; 34 Arabasadi, Alizadehsani, Roshanzamir, Moosaei, Yarifard (bib0035) 2017; 141 Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Harley, R.G., & Hernandez, J.C. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. Shukla, Hagenbuchner, Win, Yang (bib0015) 2018; 155 Ogiela, Tadeusiewicz, Ogiela (bib0085) 2006, June Aggarwal (10.1016/j.cmpb.2019.104992_bib0055) 2015 Nilashi (10.1016/j.cmpb.2019.104992_bib0016) 2017; 34 Abdar (10.1016/j.cmpb.2019.104992_bib0038) 2015; 5 Pławiak (10.1016/j.cmpb.2019.104992_bib0073) 2018; 39 Alizadehsani (10.1016/j.cmpb.2019.104992_bib0032) 2013; 2 Oh (10.1016/j.cmpb.2019.104992_bib0079) 2018; 102 Yıldırım (10.1016/j.cmpb.2019.104992_bib0072) 2018 Ogiela (10.1016/j.cmpb.2019.104992_bib0085) 2006 Raghavendra (10.1016/j.cmpb.2019.104992_bib0081) 2018; 441 Das (10.1016/j.cmpb.2019.104992_bib0011) 2009; 93 Leung (10.1016/j.cmpb.2019.104992_bib0020) 1997; 79 Hoang (10.1016/j.cmpb.2019.104992_bib0064) 2018; 38 Rajpal (10.1016/j.cmpb.2019.104992_bib0024) 2017; 19 Verma (10.1016/j.cmpb.2019.104992_bib0039) 2016; 40 Shu (10.1016/j.cmpb.2019.104992_bib0026) 2017 10.1016/j.cmpb.2019.104992_bib0066 Alizadehsani (10.1016/j.cmpb.2019.104992_bib0033) 2013; 111 Hinchcliff (10.1016/j.cmpb.2019.104992_bib0040) 2017 Chang (10.1016/j.cmpb.2019.104992_bib0056) 2011; 2 ASIM (10.1016/j.cmpb.2019.104992_bib0062) 2017; 49 Mashwani (10.1016/j.cmpb.2019.104992_bib0063) 2017; 56 Tadeusiewicz (10.1016/j.cmpb.2019.104992_bib0084) 2006 Pławiak (10.1016/j.cmpb.2019.104992_bib0088) 2014; 144 Pouriyeh (10.1016/j.cmpb.2019.104992_bib0045) 2017 Das (10.1016/j.cmpb.2019.104992_bib0012) 2009; 36 Das (10.1016/j.cmpb.2019.104992_bib0007) 2010; 37 Clerc (10.1016/j.cmpb.2019.104992_bib0065) 2002; 6 Qin (10.1016/j.cmpb.2019.104992_bib0074) 2017; 29 Acharya (10.1016/j.cmpb.2019.104992_bib0071) 2017; 415 Pistolesi (10.1016/j.cmpb.2019.104992_bib0061) 2018; 14 Shukla (10.1016/j.cmpb.2019.104992_bib0015) 2018; 155 Abdar (10.1016/j.cmpb.2019.104992_bib0008) 2018; 6 Alizadehsani (10.1016/j.cmpb.2019.104992_bib0051) 2018; 162 Alkeshuosh (10.1016/j.cmpb.2019.104992_bib0036) 2017 Rajesh (10.1016/j.cmpb.2019.104992_bib0013) 2017; 87 Han (10.1016/j.cmpb.2019.104992_bib0046) 2018; 25 Lin (10.1016/j.cmpb.2019.104992_bib0058) 2017 10.1016/j.cmpb.2019.104992_bib0003 Askarzadeh (10.1016/j.cmpb.2019.104992_bib0060) 2018; 9 10.1016/j.cmpb.2019.104992_bib0002 Arabasadi (10.1016/j.cmpb.2019.104992_bib0035) 2017; 141 Hassan (10.1016/j.cmpb.2019.104992_bib0043) 2017; 19 Abdar (10.1016/j.cmpb.2019.104992_bib0010) 2017 Paul (10.1016/j.cmpb.2019.104992_bib0044) 2017 Chauhan (10.1016/j.cmpb.2019.104992_bib0052) 2018 Alizadehsani (10.1016/j.cmpb.2019.104992_bib0028) 2012; 1 Panek (10.1016/j.cmpb.2019.104992_bib0086) 2015; 25 Sun (10.1016/j.cmpb.2019.104992_bib0057) 2018 Ogiela (10.1016/j.cmpb.2019.104992_bib0018) 2006 Abdar (10.1016/j.cmpb.2019.104992_bib0037) 2015; 8 Brenner (10.1016/j.cmpb.2019.104992_bib0021) 2007; 357 Yildirim (10.1016/j.cmpb.2019.104992_bib0068) 2018; 96 Kuchar (10.1016/j.cmpb.2019.104992_bib0022) 1987; 9 Acharya (10.1016/j.cmpb.2019.104992_bib0080) 2017; 132 Yildirim (10.1016/j.cmpb.2019.104992_bib0069) 2018; 8 Gao (10.1016/j.cmpb.2019.104992_bib0054) 2010; 4 Alizadehsani (10.1016/j.cmpb.2019.104992_bib0031) 2012; 82 Pławiak (10.1016/j.cmpb.2019.104992_bib0082) 2019 John (10.1016/j.cmpb.2019.104992_bib0059) 1975 Lahsasna (10.1016/j.cmpb.2019.104992_bib0042) 2012; 36 Tan (10.1016/j.cmpb.2019.104992_bib0047) 2018 Baloglu (10.1016/j.cmpb.2019.104992_bib0077) 2019; 122 Książek (10.1016/j.cmpb.2019.104992_bib0087) 2019; 54 Nandalur (10.1016/j.cmpb.2019.104992_bib0023) 2007; 50 Alizadehsani (10.1016/j.cmpb.2019.104992_bib0034) 2016; 109 Murdoch (10.1016/j.cmpb.2019.104992_bib0004) 2013; 309 Yang (10.1016/j.cmpb.2019.104992_bib0017) 2015; 42 Alizadehsani (10.1016/j.cmpb.2019.104992_bib0030) 2012 Davie (10.1016/j.cmpb.2019.104992_bib0019) 1996; 312 Darcy (10.1016/j.cmpb.2019.104992_bib0006) 2016; 315 Gao (10.1016/j.cmpb.2019.104992_bib0053) 2018; 9 Shi (10.1016/j.cmpb.2019.104992_bib0048) 2011; 11 Zou (10.1016/j.cmpb.2019.104992_bib0041) 2017; 5 Wah (10.1016/j.cmpb.2019.104992_bib0001) 2018 Michielli (10.1016/j.cmpb.2019.104992_bib0078) 2019; 106 Rajesh (10.1016/j.cmpb.2019.104992_bib0014) 2018; 41 Acharya (10.1016/j.cmpb.2019.104992_bib0070) 2017; 405 Huang (10.1016/j.cmpb.2019.104992_bib0049) 2014; 13 (10.1016/j.cmpb.2019.104992_bib0050) 2017 Pławiak (10.1016/j.cmpb.2019.104992_bib0027) 2018; 92 Yildirim (10.1016/j.cmpb.2019.104992_bib0076) 2019 Ogiela (10.1016/j.cmpb.2019.104992_bib0083) 2005; 54 Babič (10.1016/j.cmpb.2019.104992_bib0075) 2017 Wyman (10.1016/j.cmpb.2019.104992_bib0025) 1988; 12 Parikh (10.1016/j.cmpb.2019.104992_bib0005) 2016; 315 Hassoon (10.1016/j.cmpb.2019.104992_bib0009) 2017 Alizadehsani (10.1016/j.cmpb.2019.104992_bib0029) 2012; 3 Yildirim (10.1016/j.cmpb.2019.104992_bib0067) 2018; 52 |
| References_xml | – year: 2017 ident: bib0026 article-title: Effective heart disease detection based on quantitative computerized traditional chinese medicine using representation based classifiers publication-title: Evidence-Based Complem. Altern. Med. – volume: 109 start-page: 187 year: 2016 end-page: 197 ident: bib0034 article-title: Coronary artery disease detection using computational intelligence methods publication-title: Knowl. Based. Syst. – volume: 52 start-page: 198 year: 2018 end-page: 211 ident: bib0067 article-title: An efficient compression of ECG signals using deep convolutional autoencoders publication-title: Cogn. Syst. Res. – start-page: 155 year: 2017, September end-page: 163 ident: bib0075 article-title: Predictive and descriptive analysis for heart disease diagnosis publication-title: Computer Science and Information Systems (FedCSIS), 2017 Federated Conference on – volume: 1 start-page: 26 year: 2012 end-page: 29 ident: bib0028 article-title: Diagnosis of coronary artery disease using data mining based on lab data and echo features publication-title: J. Med. Bioeng. – reference: Cardiovascular Diseases (CVDs), [accessed on 11/8/2018] – volume: 9 start-page: 1081 year: 2018 end-page: 1089 ident: bib0060 article-title: A memory-based genetic algorithm for optimization of power generation in a microgrid publication-title: IEEE Trans. Sustain. Energy – volume: 92 start-page: 334 year: 2018 end-page: 349 ident: bib0027 article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system publication-title: Expert Syst. Appl. – volume: 5 start-page: 236 year: 2017 end-page: 242 ident: bib0041 article-title: Using fuzzy concept lattice for intelligent disease diagnosis publication-title: IEEE Access – volume: 357 start-page: 2277 year: 2007 end-page: 2284 ident: bib0021 article-title: Computed tomography—an increasing source of radiation exposure publication-title: NEngl. J. Med. – volume: 315 start-page: 551 year: 2016 end-page: 552 ident: bib0006 article-title: Machine learning and the profession of medicine publication-title: JAMA – volume: 96 start-page: 189 year: 2018 end-page: 202 ident: bib0068 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. – start-page: 299 year: 2017, September end-page: 305 ident: bib0009 article-title: Rule optimization of boosted C5. 0 classification using genetic algorithm for liver disease prediction publication-title: Computer and Applications (ICCA), 2017 International Conference on – volume: 40 start-page: 178 year: 2016 ident: bib0039 article-title: A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data publication-title: J. Med. Syst. – year: 2018 ident: bib0057 article-title: Data processing and text mining technologies on electronic medical records: a review publication-title: J. Healthc. Eng. – volume: 14 start-page: 1089 year: 2018 end-page: 1098 ident: bib0061 article-title: EMOGA: a hybrid genetic algorithm with extremal optimization core for multiobjective disassembly line balancing publication-title: IEEE Trans. Ind. Inf. – start-page: 1027 year: 2006, June end-page: 1039 ident: bib0084 article-title: Cognitive analysis techniques in business planning and decision support systems publication-title: International Conference on Artificial Intelligence and Soft Computing – volume: 82 start-page: 542 year: 2012 end-page: 553 ident: bib0031 article-title: Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features publication-title: Eur. J. Sci. Res. – volume: 56 start-page: 1 year: 2017 end-page: 18 ident: bib0063 article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection publication-title: Appl. Soft. Comput. – volume: 8 start-page: 31 year: 2015 end-page: 36 ident: bib0037 article-title: Using decision trees in data mining for predicting factors influencing of heart disease publication-title: Carpathian J. Electron. Computer Eng. – volume: 39 start-page: 192 year: 2018 end-page: 208 ident: bib0073 article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals publication-title: Swarm Evol. Comput. – volume: 309 start-page: 1351 year: 2013 end-page: 1352 ident: bib0004 article-title: The inevitable application of big data to health care publication-title: JAMA – start-page: 962 year: 2006, June end-page: 971 ident: bib0085 article-title: Cognitive analysis in diagnostic DSS-type IT systems publication-title: International Conference on Artificial Intelligence and Soft Computing – volume: 41 start-page: 242 year: 2018 end-page: 254 ident: bib0014 article-title: Classification of imbalanced ECG beats using re-sampling techniques and Adaboost ensemble classifier publication-title: Biomed. Signal Process. Control – volume: 19 start-page: 1546 year: 2017 end-page: 1559 ident: bib0043 article-title: Fuzzy soft expert system in prediction of coronary artery disease publication-title: Int. J. Fuzzy Syst. – volume: 25 start-page: 631 year: 2015 end-page: 643 ident: bib0086 article-title: Acoustic analysis assessment in speech pathology detection publication-title: Int. J. Appl. Math. Comput. Sci. – volume: 3 start-page: 59 year: 2012 end-page: 79 ident: bib0029 article-title: Exerting cost-sensitive and feature creation algorithms for coronary artery disease diagnosis publication-title: Int. J. Knowl. Discov. Bioinform. (IJKDB) – start-page: 1 year: 2018 end-page: 53 ident: bib0052 article-title: Problem formulations and solvers in linear SVM: a review publication-title: Artif. Intell. Rev. – volume: 312 start-page: 222 year: 1996 ident: bib0019 article-title: Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction publication-title: BMJ – volume: 5 start-page: 1569 year: 2015 end-page: 1576 ident: bib0038 article-title: Comparing performance of data mining algorithms in prediction heart diseases publication-title: Int. J. Electr. Comput. Eng. (IJECE) – volume: 315 start-page: 651 year: 2016 end-page: 652 ident: bib0005 article-title: Integrating predictive analytics into high-value care: the dawn of precision delivery publication-title: JAMA – volume: 13 start-page: 1 year: 2014 end-page: 26 ident: bib0049 article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals publication-title: Biomed. Eng. Online – volume: 38 start-page: 120 year: 2018 end-page: 126 ident: bib0064 article-title: A novel differential particle swarm optimization for parameter selection of support vector machines for monitoring metal-oxide surge arrester conditions publication-title: Swarm Evol. Comput. – volume: 93 start-page: 185 year: 2009 end-page: 191 ident: bib0011 article-title: Diagnosis of valvular heart disease through neural networks ensembles publication-title: Comput. Methods Programs Biomed. – volume: 6 start-page: 58 year: 2002 end-page: 73 ident: bib0065 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. – reference: Cardiovascular Disease, [accessed on 11/8/2018] – volume: 2 start-page: 27 year: 2011 ident: bib0056 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – year: 2019 ident: bib0082 article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals publication-title: Neural Comput. Appl. – start-page: 1 year: 2017 end-page: 18 ident: bib0044 article-title: Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease publication-title: Appl. Intell. – volume: 144 start-page: 471 year: 2014 end-page: 483 ident: bib0088 publication-title: An Estimation of the State of Consumption of a Positive Displacement Pump Based On Dynamic Pressure Or Vibrations Using Neural Networks – year: 2017 ident: bib0050 article-title: UCI Machine Learning repository, Center for Machine Learning and Intelligent Systems – volume: 12 start-page: 1400 year: 1988 end-page: 1406 ident: bib0025 article-title: Current complications of diagnostic and therapeutic cardiac catheterization publication-title: J. Am. Coll. Cardiol. – volume: 2 start-page: 133 year: 2013 ident: bib0032 article-title: Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features publication-title: Res. Cardiovasc. Med. – volume: 8 start-page: 170 year: 2018 end-page: 175 ident: bib0069 article-title: Heartbeat type classification with optimized feature vectors publication-title: Int. J. Optim. Control – volume: 87 start-page: 271 year: 2017 end-page: 284 ident: bib0013 article-title: Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine publication-title: Comput. Biol. Med. – volume: 79 start-page: 626 year: 1997 end-page: 629 ident: bib0020 article-title: Thromboembolic risks of left atrial thrombus detected by transesophageal echocardiogram publication-title: Am. J. Cardiol. – volume: 102 start-page: 278 year: 2018 end-page: 287 ident: bib0079 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. – volume: 54 start-page: 2149 year: 2005 end-page: 2155 ident: bib0083 article-title: Nonlinear processing and semantic content analysis in medical imaging-a cognitive approach publication-title: IEEE Trans. Instrum. Meas. – year: 2018 ident: bib0072 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput. Biol. Med. – start-page: 724 year: 2017, October end-page: 727 ident: bib0058 article-title: The recognition of dissolved gas abnormality based on high dimensional support vector machine publication-title: Electrical Insulation and Dielectric Phenomenon (CEIDP), 2017 IEEE Conference on – volume: 9 start-page: 531 year: 1987 end-page: 538 ident: bib0022 article-title: Prediction of serious arrhythmic events after myocardial infarction: signal-averaged electrocardiogram, holter monitoring and radionuclide ventriculography publication-title: J. Am. Coll. Cardiol. – volume: 405 start-page: 81 year: 2017 end-page: 90 ident: bib0070 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. – volume: 34 start-page: 133 year: 2017 end-page: 144 ident: bib0016 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat. Inf. – volume: 6 start-page: 277 year: 2018 end-page: 285 ident: bib0008 article-title: Impact of Patients’ gender on Parkinson's disease using classification algorithms publication-title: J. AI Data Mining – volume: 9 start-page: 251 year: 2018 end-page: 261 ident: bib0053 article-title: Multiple rank multi-linear kernel support vector machine for matrix data classification publication-title: Int. J. Mach. Learn. Cybernet. – start-page: 306 year: 2017, September end-page: 311 ident: bib0036 article-title: Using PSO algorithm for producing best rules in diagnosis of heart disease. publication-title: Computer and Applications (ICCA), 2017 International Conference on – start-page: 851 year: 2006 end-page: 856 ident: bib0018 article-title: Cognitive computing in intelligent medical pattern recognition systems publication-title: Intelligent Control and Automation – volume: 162 start-page: 119 year: 2018 end-page: 127 ident: bib0051 article-title: Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries publication-title: Comput. Methods Programs Biomed. – year: 2018 ident: bib0001 article-title: Automated diagnosis of coronary artery disease: a review and workflow publication-title: Cardiol. Res. Pract. – volume: 122 start-page: 23 year: 2019 end-page: 30 ident: bib0077 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. – year: 2018 ident: bib0047 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. – year: 2019 ident: bib0076 article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks publication-title: Comput. Methods Programs Biomed. – start-page: 204 year: 2017, July end-page: 207 ident: bib0045 article-title: A comprehensive investigation and comparison of machine learning techniques in the domain of heart disease publication-title: Computers and Communications (ISCC), 2017 IEEE Symposium on – volume: 132 start-page: 62 year: 2017 end-page: 71 ident: bib0080 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Based. Syst. – volume: 37 start-page: 1568 year: 2010 end-page: 1572 ident: bib0007 article-title: A comparison of multiple classification methods for diagnosis of Parkinson disease publication-title: Expert. Syst. Appl. – volume: 49 start-page: 899 year: 2017 end-page: 906 ident: bib0062 publication-title: Hybrid Genetic Firefly Algorithm for Global Optimization Problems – volume: 441 start-page: 41 year: 2018 end-page: 49 ident: bib0081 article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images publication-title: Inf. Sci. – volume: 155 start-page: 199 year: 2018 end-page: 208 ident: bib0015 article-title: Breast cancer data analysis for survivability studies and prediction publication-title: Comput. Methods Programs Biomed. – volume: 141 start-page: 19 year: 2017 end-page: 26 ident: bib0035 article-title: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm publication-title: Comput. Methods Programs Biomed. – start-page: 1 year: 2017 end-page: 13 ident: bib0010 article-title: Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision trees publication-title: J. Med. Biol. Eng. – reference: Del Valle, Y., Venayagamoorthy, G.K., Mohagheghi, S., Harley, R.G., & Hernandez, J.C. (2008). Particle swarm optimization: basic concepts, variants and applications in power systems. – volume: 50 start-page: 1343 year: 2007 end-page: 1353 ident: bib0023 article-title: Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis publication-title: J. Am. Coll. Cardiol. – volume: 106 start-page: 71 year: 2019 end-page: 81 ident: bib0078 article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals publication-title: Comput. Biol. Med. – reference: . – volume: 36 start-page: 7675 year: 2009 end-page: 7680 ident: bib0012 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: Expert. Syst. Appl. – volume: 111 start-page: 52 year: 2013 end-page: 61 ident: bib0033 article-title: A data mining approach for diagnosis of coronary artery disease publication-title: Comput. Methods Programs Biomed. – volume: 36 start-page: 3293 year: 2012 end-page: 3306 ident: bib0042 article-title: Design of a fuzzy-based decision support system for coronary heart disease diagnosis publication-title: J. Med. Syst. – start-page: 1 year: 2015, December end-page: 5 ident: bib0055 article-title: Grid search analysis of nu-SVC for text-dependent speaker-identification publication-title: India Conference (INDICON), 2015 Annual IEEE – volume: 4 start-page: 1502 year: 2010, August end-page: 1505 ident: bib0054 article-title: An empirical evaluation of linear and nonlinear kernels for text classification using support vector machines publication-title: Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh International Conference on – volume: 11 start-page: 5674 year: 2011 end-page: 5683 ident: bib0048 article-title: A novel ensemble algorithm for biomedical classification based on ant colony optimization publication-title: Appl. Soft. Comput. – volume: 29 year: 2017 ident: bib0074 article-title: Application of ensemble algorithm integrating multiple criteria feature selection in coronary heart disease detection publication-title: Biomed. Eng. – volume: 54 start-page: 116 year: 2019 end-page: 127 ident: bib0087 article-title: Pławiak publication-title: A Novel Machine Learning Approach For Early Detection of Hepatocellular Carcinoma Patients – volume: 19 start-page: 50 year: 2017 ident: bib0024 article-title: Current role of blood and urine biomarkers in the clinical care of adults with congenital heart disease publication-title: Curr. Cardiol. Rep. – start-page: 9 year: 2012, December end-page: 16 ident: bib0030 article-title: Diagnosis of coronary artery disease using cost-sensitive algorithms publication-title: Data Mining Workshops (ICDMW), 2012 IEEE 12th International Conference on – volume: 415 start-page: 190 year: 2017 end-page: 198 ident: bib0071 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. – volume: 25 start-page: 223 year: 2018 end-page: 233 ident: bib0046 article-title: Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach publication-title: J. Nuclear Cardiol. – volume: 42 start-page: 6168 year: 2015 end-page: 6176 ident: bib0017 article-title: Data mining in lung cancer pathologic staging diagnosis: correlation between clinical and pathology information publication-title: Expert Syst. Appl. – year: 1975 ident: bib0059 article-title: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control and Artificial Intelligence – year: 2017 ident: bib0040 article-title: Machine learning of the cardiac phenome and skin transcriptome to categorize heart disease in systemic sclerosis publication-title: bioRxiv – start-page: 1 year: 2015 ident: 10.1016/j.cmpb.2019.104992_bib0055 article-title: Grid search analysis of nu-SVC for text-dependent speaker-identification – volume: 14 start-page: 1089 issue: 3 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0061 article-title: EMOGA: a hybrid genetic algorithm with extremal optimization core for multiobjective disassembly line balancing publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2017.2778223 – volume: 315 start-page: 551 issue: 6 year: 2016 ident: 10.1016/j.cmpb.2019.104992_bib0006 article-title: Machine learning and the profession of medicine publication-title: JAMA doi: 10.1001/jama.2015.18421 – volume: 11 start-page: 5674 issue: 8 year: 2011 ident: 10.1016/j.cmpb.2019.104992_bib0048 article-title: A novel ensemble algorithm for biomedical classification based on ant colony optimization publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2011.03.025 – volume: 56 start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0063 article-title: Hybrid non-dominated sorting genetic algorithm with adaptive operators selection publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2017.01.056 – start-page: 962 year: 2006 ident: 10.1016/j.cmpb.2019.104992_bib0085 article-title: Cognitive analysis in diagnostic DSS-type IT systems – volume: 102 start-page: 278 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0079 article-title: Automated diagnosis of arrhythmia using combination of CNN and LSTM techniques with variable length heart beats publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.06.002 – volume: 405 start-page: 81 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0070 article-title: Automated detection of arrhythmias using different intervals of tachycardia ECG segments with convolutional neural network publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.04.012 – volume: 1 start-page: 26 issue: 1 year: 2012 ident: 10.1016/j.cmpb.2019.104992_bib0028 article-title: Diagnosis of coronary artery disease using data mining based on lab data and echo features publication-title: J. Med. Bioeng. – volume: 144 start-page: 471 year: 2014 ident: 10.1016/j.cmpb.2019.104992_bib0088 – year: 1975 ident: 10.1016/j.cmpb.2019.104992_bib0059 – year: 2019 ident: 10.1016/j.cmpb.2019.104992_bib0076 article-title: A new approach for arrhythmia classification using deep coded features and LSTM networks publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2019.05.004 – volume: 441 start-page: 41 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0081 article-title: Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.01.051 – volume: 39 start-page: 192 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0073 article-title: Novel genetic ensembles of classifiers applied to myocardium dysfunction recognition based on ECG signals publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.10.002 – volume: 122 start-page: 23 year: 2019 ident: 10.1016/j.cmpb.2019.104992_bib0077 article-title: Classification of myocardial infarction with multi-lead ECG signals and deep CNN publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2019.02.016 – volume: 54 start-page: 116 year: 2019 ident: 10.1016/j.cmpb.2019.104992_bib0087 article-title: Pławiak – year: 2019 ident: 10.1016/j.cmpb.2019.104992_bib0082 article-title: Novel deep genetic ensemble of classifiers for arrhythmia detection using ECG signals publication-title: Neural Comput. Appl. – volume: 357 start-page: 2277 issue: 22 year: 2007 ident: 10.1016/j.cmpb.2019.104992_bib0021 article-title: Computed tomography—an increasing source of radiation exposure publication-title: NEngl. J. Med. doi: 10.1056/NEJMra072149 – volume: 36 start-page: 3293 issue: 5 year: 2012 ident: 10.1016/j.cmpb.2019.104992_bib0042 article-title: Design of a fuzzy-based decision support system for coronary heart disease diagnosis publication-title: J. Med. Syst. doi: 10.1007/s10916-012-9821-7 – year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0050 – volume: 8 start-page: 31 issue: 2 year: 2015 ident: 10.1016/j.cmpb.2019.104992_bib0037 article-title: Using decision trees in data mining for predicting factors influencing of heart disease publication-title: Carpathian J. Electron. Computer Eng. – ident: 10.1016/j.cmpb.2019.104992_bib0002 – start-page: 1 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0052 article-title: Problem formulations and solvers in linear SVM: a review publication-title: Artif. Intell. Rev. – volume: 6 start-page: 58 issue: 1 year: 2002 ident: 10.1016/j.cmpb.2019.104992_bib0065 article-title: The particle swarm-explosion, stability, and convergence in a multidimensional complex space publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – volume: 111 start-page: 52 issue: 1 year: 2013 ident: 10.1016/j.cmpb.2019.104992_bib0033 article-title: A data mining approach for diagnosis of coronary artery disease publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2013.03.004 – volume: 37 start-page: 1568 issue: 2 year: 2010 ident: 10.1016/j.cmpb.2019.104992_bib0007 article-title: A comparison of multiple classification methods for diagnosis of Parkinson disease publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2009.06.040 – volume: 42 start-page: 6168 issue: 15–16 year: 2015 ident: 10.1016/j.cmpb.2019.104992_bib0017 article-title: Data mining in lung cancer pathologic staging diagnosis: correlation between clinical and pathology information publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.03.019 – volume: 9 start-page: 531 issue: 3 year: 1987 ident: 10.1016/j.cmpb.2019.104992_bib0022 article-title: Prediction of serious arrhythmic events after myocardial infarction: signal-averaged electrocardiogram, holter monitoring and radionuclide ventriculography publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(87)80045-1 – volume: 50 start-page: 1343 issue: 14 year: 2007 ident: 10.1016/j.cmpb.2019.104992_bib0023 article-title: Diagnostic performance of stress cardiac magnetic resonance imaging in the detection of coronary artery disease: a meta-analysis publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2007.06.030 – volume: 109 start-page: 187 year: 2016 ident: 10.1016/j.cmpb.2019.104992_bib0034 article-title: Coronary artery disease detection using computational intelligence methods publication-title: Knowl. Based. Syst. doi: 10.1016/j.knosys.2016.07.004 – volume: 87 start-page: 271 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0013 article-title: Classification of ECG heartbeats using nonlinear decomposition methods and support vector machine publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.06.006 – volume: 141 start-page: 19 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0035 article-title: Computer aided decision making for heart disease detection using hybrid neural network-Genetic algorithm publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.01.004 – volume: 5 start-page: 1569 issue: 6 year: 2015 ident: 10.1016/j.cmpb.2019.104992_bib0038 article-title: Comparing performance of data mining algorithms in prediction heart diseases publication-title: Int. J. Electr. Comput. Eng. (IJECE) doi: 10.11591/ijece.v5i6.pp1569-1576 – year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0040 article-title: Machine learning of the cardiac phenome and skin transcriptome to categorize heart disease in systemic sclerosis publication-title: bioRxiv – year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0047 article-title: Application of stacked convolutional and long short-term memory network for accurate identification of CAD ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.12.023 – volume: 36 start-page: 7675 issue: 4 year: 2009 ident: 10.1016/j.cmpb.2019.104992_bib0012 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2008.09.013 – start-page: 299 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0009 article-title: Rule optimization of boosted C5. 0 classification using genetic algorithm for liver disease prediction – volume: 40 start-page: 178 issue: 7 year: 2016 ident: 10.1016/j.cmpb.2019.104992_bib0039 article-title: A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data publication-title: J. Med. Syst. doi: 10.1007/s10916-016-0536-z – year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0026 article-title: Effective heart disease detection based on quantitative computerized traditional chinese medicine using representation based classifiers publication-title: Evidence-Based Complem. Altern. Med. doi: 10.1155/2017/7483639 – ident: 10.1016/j.cmpb.2019.104992_bib0003 – year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0072 article-title: Arrhythmia detection using deep convolutional neural network with long duration ECG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.09.009 – volume: 49 start-page: 899 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0062 – start-page: 724 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0058 article-title: The recognition of dissolved gas abnormality based on high dimensional support vector machine – volume: 162 start-page: 119 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0051 article-title: Non-invasive detection of coronary artery disease in high-risk patients based on the stenosis prediction of separate coronary arteries publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.05.009 – volume: 9 start-page: 251 issue: 2 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0053 article-title: Multiple rank multi-linear kernel support vector machine for matrix data classification publication-title: Int. J. Mach. Learn. Cybernet. doi: 10.1007/s13042-015-0383-0 – volume: 54 start-page: 2149 issue: 6 year: 2005 ident: 10.1016/j.cmpb.2019.104992_bib0083 article-title: Nonlinear processing and semantic content analysis in medical imaging-a cognitive approach publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2005.858566 – year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0057 article-title: Data processing and text mining technologies on electronic medical records: a review publication-title: J. Healthc. Eng. doi: 10.1155/2018/4302425 – volume: 41 start-page: 242 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0014 article-title: Classification of imbalanced ECG beats using re-sampling techniques and Adaboost ensemble classifier publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.12.004 – year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0001 article-title: Automated diagnosis of coronary artery disease: a review and workflow publication-title: Cardiol. Res. Pract. – volume: 19 start-page: 1546 issue: 5 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0043 article-title: Fuzzy soft expert system in prediction of coronary artery disease publication-title: Int. J. Fuzzy Syst. doi: 10.1007/s40815-016-0255-0 – volume: 6 start-page: 277 issue: 2 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0008 article-title: Impact of Patients’ gender on Parkinson's disease using classification algorithms publication-title: J. AI Data Mining – volume: 9 start-page: 1081 issue: 3 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0060 article-title: A memory-based genetic algorithm for optimization of power generation in a microgrid publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2017.2765483 – start-page: 306 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0036 article-title: Using PSO algorithm for producing best rules in diagnosis of heart disease. – volume: 309 start-page: 1351 issue: 13 year: 2013 ident: 10.1016/j.cmpb.2019.104992_bib0004 article-title: The inevitable application of big data to health care publication-title: JAMA doi: 10.1001/jama.2013.393 – start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0010 article-title: Improving the diagnosis of liver disease using multilayer perceptron neural network and boosted decision trees publication-title: J. Med. Biol. Eng. – volume: 2 start-page: 133 issue: 3 year: 2013 ident: 10.1016/j.cmpb.2019.104992_bib0032 article-title: Diagnosing coronary artery disease via data mining algorithms by considering laboratory and echocardiography features publication-title: Res. Cardiovasc. Med. doi: 10.5812/cardiovascmed.10888 – volume: 8 start-page: 170 issue: 2 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0069 article-title: Heartbeat type classification with optimized feature vectors publication-title: Int. J. Optim. Control – start-page: 155 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0075 article-title: Predictive and descriptive analysis for heart disease diagnosis – volume: 12 start-page: 1400 issue: 6 year: 1988 ident: 10.1016/j.cmpb.2019.104992_bib0025 article-title: Current complications of diagnostic and therapeutic cardiac catheterization publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(88)80002-0 – start-page: 9 year: 2012 ident: 10.1016/j.cmpb.2019.104992_bib0030 article-title: Diagnosis of coronary artery disease using cost-sensitive algorithms – volume: 3 start-page: 59 issue: 1 year: 2012 ident: 10.1016/j.cmpb.2019.104992_bib0029 article-title: Exerting cost-sensitive and feature creation algorithms for coronary artery disease diagnosis publication-title: Int. J. Knowl. Discov. Bioinform. (IJKDB) doi: 10.4018/jkdb.2012010104 – volume: 132 start-page: 62 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0080 article-title: Automated detection of coronary artery disease using different durations of ECG segments with convolutional neural network publication-title: Knowl. Based. Syst. doi: 10.1016/j.knosys.2017.06.003 – start-page: 204 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0045 article-title: A comprehensive investigation and comparison of machine learning techniques in the domain of heart disease – start-page: 1027 year: 2006 ident: 10.1016/j.cmpb.2019.104992_bib0084 article-title: Cognitive analysis techniques in business planning and decision support systems – volume: 29 issue: 06 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0074 article-title: Application of ensemble algorithm integrating multiple criteria feature selection in coronary heart disease detection publication-title: Biomed. Eng. – volume: 106 start-page: 71 year: 2019 ident: 10.1016/j.cmpb.2019.104992_bib0078 article-title: Cascaded LSTM recurrent neural network for automated sleep stage classification using single-channel EEG signals publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2019.01.013 – volume: 92 start-page: 334 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0027 article-title: Novel methodology of cardiac health recognition based on ECG signals and evolutionary-neural system publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.09.022 – volume: 96 start-page: 189 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0068 article-title: A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.03.016 – start-page: 851 year: 2006 ident: 10.1016/j.cmpb.2019.104992_bib0018 article-title: Cognitive computing in intelligent medical pattern recognition systems – volume: 19 start-page: 50 issue: 6 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0024 article-title: Current role of blood and urine biomarkers in the clinical care of adults with congenital heart disease publication-title: Curr. Cardiol. Rep. doi: 10.1007/s11886-017-0860-z – volume: 25 start-page: 631 issue: 3 year: 2015 ident: 10.1016/j.cmpb.2019.104992_bib0086 article-title: Acoustic analysis assessment in speech pathology detection publication-title: Int. J. Appl. Math. Comput. Sci. doi: 10.1515/amcs-2015-0046 – volume: 155 start-page: 199 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0015 article-title: Breast cancer data analysis for survivability studies and prediction publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2017.12.011 – volume: 38 start-page: 120 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0064 article-title: A novel differential particle swarm optimization for parameter selection of support vector machines for monitoring metal-oxide surge arrester conditions publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2017.07.006 – volume: 93 start-page: 185 issue: 2 year: 2009 ident: 10.1016/j.cmpb.2019.104992_bib0011 article-title: Diagnosis of valvular heart disease through neural networks ensembles publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2008.09.005 – volume: 13 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.cmpb.2019.104992_bib0049 article-title: A new hierarchical method for inter-patient heartbeat classification using random projections and RR intervals publication-title: Biomed. Eng. Online doi: 10.1186/1475-925X-13-90 – volume: 5 start-page: 236 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0041 article-title: Using fuzzy concept lattice for intelligent disease diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2016.2638848 – volume: 415 start-page: 190 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0071 article-title: Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.06.027 – volume: 34 start-page: 133 issue: 4 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0016 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat. Inf. doi: 10.1016/j.tele.2017.01.007 – volume: 79 start-page: 626 issue: 5 year: 1997 ident: 10.1016/j.cmpb.2019.104992_bib0020 article-title: Thromboembolic risks of left atrial thrombus detected by transesophageal echocardiogram publication-title: Am. J. Cardiol. doi: 10.1016/S0002-9149(96)00828-4 – volume: 52 start-page: 198 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0067 article-title: An efficient compression of ECG signals using deep convolutional autoencoders publication-title: Cogn. Syst. Res. doi: 10.1016/j.cogsys.2018.07.004 – volume: 82 start-page: 542 issue: 4 year: 2012 ident: 10.1016/j.cmpb.2019.104992_bib0031 article-title: Diagnosis of coronary artery disease using data mining techniques based on symptoms and ecg features publication-title: Eur. J. Sci. Res. – volume: 25 start-page: 223 issue: 1 year: 2018 ident: 10.1016/j.cmpb.2019.104992_bib0046 article-title: Incremental role of resting myocardial computed tomography perfusion for predicting physiologically significant coronary artery disease: a machine learning approach publication-title: J. Nuclear Cardiol. doi: 10.1007/s12350-017-0834-y – volume: 312 start-page: 222 issue: 7025 year: 1996 ident: 10.1016/j.cmpb.2019.104992_bib0019 article-title: Value of the electrocardiogram in identifying heart failure due to left ventricular systolic dysfunction publication-title: BMJ doi: 10.1136/bmj.312.7025.222 – start-page: 1 year: 2017 ident: 10.1016/j.cmpb.2019.104992_bib0044 article-title: Adaptive weighted fuzzy rule-based system for the risk level assessment of heart disease publication-title: Appl. Intell. – volume: 2 start-page: 27 issue: 3 year: 2011 ident: 10.1016/j.cmpb.2019.104992_bib0056 article-title: LIBSVM: a library for support vector machines publication-title: ACM Trans. Intell. Syst. Technol. (TIST) – volume: 4 start-page: 1502 year: 2010 ident: 10.1016/j.cmpb.2019.104992_bib0054 article-title: An empirical evaluation of linear and nonlinear kernels for text classification using support vector machines – volume: 315 start-page: 651 issue: 7 year: 2016 ident: 10.1016/j.cmpb.2019.104992_bib0005 article-title: Integrating predictive analytics into high-value care: the dawn of precision delivery publication-title: JAMA doi: 10.1001/jama.2015.19417 – ident: 10.1016/j.cmpb.2019.104992_bib0066 doi: 10.1109/TEVC.2007.896686 |
| SSID | ssj0002556 |
| Score | 2.634946 |
| Snippet | •Novel data mining method is proposed for CAD diagnosis.•Application of feature selection (based on GA and PSO) is proposed.•New genetic training (N2Genetic... Coronary artery disease (CAD) is one of the commonest diseases around the world. An early and accurate diagnosis of CAD allows a timely administration of... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 104992 |
| SubjectTerms | Algorithms Classification Coronary artery disease (CAD) Coronary Artery Disease - diagnosis Data Mining - statistics & numerical data Databases, Factual - statistics & numerical data Diagnosis, Computer-Assisted - statistics & numerical data Feature selection Female Genetic algorithm Humans Machine learning Machine Learning - statistics & numerical data Male Models, Cardiovascular Normalization Particle swarm optimization Support Vector Machine - statistics & numerical data |
| Title | A new machine learning technique for an accurate diagnosis of coronary artery disease |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0169260718314585 https://dx.doi.org/10.1016/j.cmpb.2019.104992 https://www.ncbi.nlm.nih.gov/pubmed/31443858 https://www.proquest.com/docview/2336991988 |
| Volume | 179 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect customDbUrl: eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7565 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002556 issn: 0169-2607 databaseCode: AKRWK dateStart: 19850501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KBfEivq2PsoI3iU2y25g9lmKpSr1owduy2YdUNC3aHrz4253JbioeVPCQQMIuWWYnM7PMN98Qcgoq65xwLHJOm4iL2EV5ZuMoMeBtLUSocYwFzqPbbDjm1w_dhwbp17UwCKsMtt_b9MpahzedIM3ObDLp3CGPSIr0aDlLOES9WMHOL7CLwfnHF8wDKbY8v7eIcHQonPEYL_0yKxDeJTDVKUT6k3P6KfisnNBgg6yH6JH2_AI3ScOWW2R1FPLj22TcoxAm05cKIWlpaAnxSJdMrRRiVKpKqrReIEkENR5qN3mjU0c10hmo13daAT3facje7JDx4PK-P4xC44RIw_lsHlnFTKq6BdN45oyFsszEqVCJES4rtMh14lK4uHZG2CKDOzjuhBfCOTgCGrZLmuW0tPuEmgIzhV2uLQy3lheMGZfbWMNJRjBlWySpJSZ1YBXH5hbPsoaPPUmUskQpSy_lFjlbzpl5To1fR7N6I2RdLQr2TYLJ_3VWdznrmz79Oe-k3msJPxpmT1Rpp4s3mTKWQTAt8rxF9rwSLFcPCsgxw3rwz68ekjV88iDBI9Kcvy7sMQQ786JdaXObrPSuboa3nyyp_YA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB5RKlEuCGiBpTxcqTeUbhI7aXxECLQUlgusxM1y_EBblewKdg9c-O2diZ2tegAkDskh8SjWeDKe0XzzGeA7mqz30vPEe2MTIVOfVKVLk8zibuswQk1TanAeXpWDkfh1W9wuwUnXC0Owyuj7g09vvXV80o_a7E_H4_418YjkRI9W8Uxg1PsBPooi_0kZ2I_nfzgP4tgKBN8yoeGxcyaAvMz9tCZ8l6Rap5T5S7vTS9FnuwudrcNaDB_ZcZjhBiy5ZhNWhrFA_hlGxwzjZHbfQiQdi2dC3LEFVSvDIJXphmlj5sQSwWzA2o0f2cQzQ3wG-uGJtUjPJxbLN19gdHZ6czJI4skJicEEbZY4zW2ui5obSjpTqR23aS51ZqUvayMrk_kcL2G8la4u8Y47dyZq6T3mgJZvwXIzadwOMFtTqbAQxuFw50TNufWVSw2mMpJr14Os05gykVacTrf4ozr82G9FWlakZRW03IOjhcw0kGq8Opp3C6G6dlF0cAp9_qtSxULqP4N6U-5bt9YK_zQqn-jGTeaPKue8xGhaVlUPtoMRLGaPFiioxLr7zq8ewqfBzfBSXZ5fXXyFVXoTEIN7sDx7mLt9jHxm9UFr2X8BAJf_FQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+machine+learning+technique+for+an+accurate+diagnosis+of+coronary+artery+disease&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Abdar%2C+Moloud&rft.au=Ksi%C4%85%C5%BCek%2C+Wojciech&rft.au=Acharya%2C+U+Rajendra&rft.au=Tan%2C+Ru-San&rft.date=2019-10-01&rft.eissn=1872-7565&rft.volume=179&rft.spage=104992&rft_id=info:doi/10.1016%2Fj.cmpb.2019.104992&rft_id=info%3Apmid%2F31443858&rft.externalDocID=31443858 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon |