Assessing the factors influencing the performance of machine learning for classifying haplogroups from Y-STR haplotypes

Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion of the Y chromosome. Because of their different rates of mutation, Y-STRs and Y-SNPs play distinct roles in forensic and evolutionary genetics...

Full description

Saved in:
Bibliographic Details
Published inForensic science international Vol. 340; p. 111466
Main Author Fan, Guang-Yao
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.11.2022
Elsevier Limited
Subjects
Online AccessGet full text
ISSN0379-0738
1872-6283
1872-6283
DOI10.1016/j.forsciint.2022.111466

Cover

Abstract Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion of the Y chromosome. Because of their different rates of mutation, Y-STRs and Y-SNPs play distinct roles in forensic and evolutionary genetics. Current approaches to infer haplogroup status rely on genotyping lots of Y-SNP loci. Given the relationship between haplotype and haplogroup of a Y chromosome, a cost-effective strategy of Y-STRs typing had an advantage in haplogroup prediction. Many machine learning algorithms have sprung up for assigning a Y-STR haplotype to a haplogroup. However, a series of issues must be solved before the using of machine learning method in practice. Thus, the k-nearest neighbor (kNN) classifier was built respectively based on different situations in this study. We assessed different factors which may influence the performance of the kNN prediction model for classifying haplogroups. The training set was based on a diverse ground-truth data set comprising Y-STR haplotypes and corresponding Y-SNP haplogroups. Our results showed that combining different levels of haplogroups into the observations or transracial prediction was impractical. Moreover, using more slow mutation Y-STR loci in the category is good for promoting classification accuracy. The preconditions for an effective and accurate haplogroup assignment by the kNN classifier were revealed. •The factors influencing the performance of kNN algorithms for classifying haplogroups were assessed.•Combine all the levels of haplogroups into the observations is inappropriate.•Transracial prediction was proved to be impractical.•Classification accuracy under the SM group of Y-STR loci was higher than that of the RM group.•The kNN classifier can be effectively used for accurate haplogroup assignment.
AbstractList Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion of the Y chromosome. Because of their different rates of mutation, Y-STRs and Y-SNPs play distinct roles in forensic and evolutionary genetics. Current approaches to infer haplogroup status rely on genotyping lots of Y-SNP loci. Given the relationship between haplotype and haplogroup of a Y chromosome, a cost-effective strategy of Y-STRs typing had an advantage in haplogroup prediction. Many machine learning algorithms have sprung up for assigning a Y-STR haplotype to a haplogroup. However, a series of issues must be solved before the using of machine learning method in practice. Thus, the k-nearest neighbor (kNN) classifier was built respectively based on different situations in this study. We assessed different factors which may influence the performance of the kNN prediction model for classifying haplogroups. The training set was based on a diverse ground-truth data set comprising Y-STR haplotypes and corresponding Y-SNP haplogroups. Our results showed that combining different levels of haplogroups into the observations or transracial prediction was impractical. Moreover, using more slow mutation Y-STR loci in the category is good for promoting classification accuracy. The preconditions for an effective and accurate haplogroup assignment by the kNN classifier were revealed.
Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion of the Y chromosome. Because of their different rates of mutation, Y-STRs and Y-SNPs play distinct roles in forensic and evolutionary genetics. Current approaches to infer haplogroup status rely on genotyping lots of Y-SNP loci. Given the relationship between haplotype and haplogroup of a Y chromosome, a cost-effective strategy of Y-STRs typing had an advantage in haplogroup prediction. Many machine learning algorithms have sprung up for assigning a Y-STR haplotype to a haplogroup. However, a series of issues must be solved before the using of machine learning method in practice. Thus, the k-nearest neighbor (kNN) classifier was built respectively based on different situations in this study. We assessed different factors which may influence the performance of the kNN prediction model for classifying haplogroups. The training set was based on a diverse ground-truth data set comprising Y-STR haplotypes and corresponding Y-SNP haplogroups. Our results showed that combining different levels of haplogroups into the observations or transracial prediction was impractical. Moreover, using more slow mutation Y-STR loci in the category is good for promoting classification accuracy. The preconditions for an effective and accurate haplogroup assignment by the kNN classifier were revealed.Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion of the Y chromosome. Because of their different rates of mutation, Y-STRs and Y-SNPs play distinct roles in forensic and evolutionary genetics. Current approaches to infer haplogroup status rely on genotyping lots of Y-SNP loci. Given the relationship between haplotype and haplogroup of a Y chromosome, a cost-effective strategy of Y-STRs typing had an advantage in haplogroup prediction. Many machine learning algorithms have sprung up for assigning a Y-STR haplotype to a haplogroup. However, a series of issues must be solved before the using of machine learning method in practice. Thus, the k-nearest neighbor (kNN) classifier was built respectively based on different situations in this study. We assessed different factors which may influence the performance of the kNN prediction model for classifying haplogroups. The training set was based on a diverse ground-truth data set comprising Y-STR haplotypes and corresponding Y-SNP haplogroups. Our results showed that combining different levels of haplogroups into the observations or transracial prediction was impractical. Moreover, using more slow mutation Y-STR loci in the category is good for promoting classification accuracy. The preconditions for an effective and accurate haplogroup assignment by the kNN classifier were revealed.
Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion of the Y chromosome. Because of their different rates of mutation, Y-STRs and Y-SNPs play distinct roles in forensic and evolutionary genetics. Current approaches to infer haplogroup status rely on genotyping lots of Y-SNP loci. Given the relationship between haplotype and haplogroup of a Y chromosome, a cost-effective strategy of Y-STRs typing had an advantage in haplogroup prediction. Many machine learning algorithms have sprung up for assigning a Y-STR haplotype to a haplogroup. However, a series of issues must be solved before the using of machine learning method in practice. Thus, the k-nearest neighbor (kNN) classifier was built respectively based on different situations in this study. We assessed different factors which may influence the performance of the kNN prediction model for classifying haplogroups. The training set was based on a diverse ground-truth data set comprising Y-STR haplotypes and corresponding Y-SNP haplogroups. Our results showed that combining different levels of haplogroups into the observations or transracial prediction was impractical. Moreover, using more slow mutation Y-STR loci in the category is good for promoting classification accuracy. The preconditions for an effective and accurate haplogroup assignment by the kNN classifier were revealed. •The factors influencing the performance of kNN algorithms for classifying haplogroups were assessed.•Combine all the levels of haplogroups into the observations is inappropriate.•Transracial prediction was proved to be impractical.•Classification accuracy under the SM group of Y-STR loci was higher than that of the RM group.•The kNN classifier can be effectively used for accurate haplogroup assignment.
ArticleNumber 111466
Author Fan, Guang-Yao
Author_xml – sequence: 1
  givenname: Guang-Yao
  surname: Fan
  fullname: Fan, Guang-Yao
  email: fanyoyo1983@163.com
  organization: Forensic Center, College of Medicine, Shaoxing University, Shaoxing 312000, China
BookMark eNqNkUtv1DAUhS1UJKYtvwFLbNhksJ34kQVCVcVLqoRU2kVXluu56Xhw7GA7oPn3OAqw6IauLF9_51wdn1N0EmIAhF5RsqWEireH7RBTts6FsmWEsS2ltBPiGdpQJVkjmGpP0Ia0sm-IbNULdJrzgRDCORMb9OsiZ8jZhQdc9oAHY0t1wy4MfoZg_84nSHXLaIIFHAc8Grt3AbAHk8LC1EdsvalGw3G5783k40OK85TxkOKI75pvN9fruBwnyOfo-WB8hpd_zjN0-_HDzeXn5urrpy-XF1eN7YgsDRBGODXAQUhC5L3smdz1vLWcgOxabpRQCvg9ba3a9Z0CKW3Pa3DbC9jV6Gfozeo7pfhjhlz06LIF702AOGfNJGspVYw8BaVS9BXmFX39CD3EOYUaZDFkoudcdJWSK2VTzDnBoKfkRpOOmhK9dKcP-l93eulOr91V5btHSuuKKS6GkozzT9C_X_VQv_ang6Std8FZ47_DUe-i-6_Db4MlvPk
CitedBy_id crossref_primary_10_1080_03014460_2023_2168057
Cites_doi 10.1101/gr.217602
10.1093/hmg/ddab215
10.1016/j.fsigen.2019.102204
10.1007/s00414-020-02326-9
10.1002/elps.202000145
10.1080/00031305.1992.10475879
10.1016/j.fsigen.2018.11.016
10.1111/j.1365-2753.2005.00598.x
10.1086/302905
10.1016/j.fsigen.2018.03.008
10.21037/atm.2016.03.37
10.1371/journal.pgen.1009758
10.1016/j.fsigen.2019.07.011
10.1109/TIT.1981.1056403
10.1371/journal.pcbi.1000093
10.1002/elps.202100142
10.1086/302676
10.1186/s40169-015-0060-7
10.1016/j.fsigss.2017.09.031
10.3390/genes11070743
10.1002/sim.603
10.1002/elps.202100003
10.1016/j.fsigen.2018.01.005
ContentType Journal Article
Copyright 2022 Elsevier B.V.
2022. Elsevier B.V.
Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: 2022. Elsevier B.V.
– notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
3V.
7QP
7RV
7U7
7X7
7XB
88E
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
KB0
LK8
M0S
M1P
M2O
M7P
MBDVC
NAPCQ
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
7S9
L.6
DOI 10.1016/j.forsciint.2022.111466
DatabaseName CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Nursing & Allied Health Database
Toxicology Abstracts
ProQuest Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Database (Alumni Edition)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
Nursing & Allied Health Premium
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
Toxicology Abstracts
ProQuest One Academic Eastern Edition
ProQuest Nursing & Allied Health Source
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
Nursing & Allied Health Premium
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest Nursing & Allied Health Source (Alumni)
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Research Library Prep
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
EISSN 1872-6283
ExternalDocumentID 10_1016_j_forsciint_2022_111466
S0379073822002961
GroupedDBID ---
--K
--M
.1-
.4L
.FO
.GJ
.~1
04C
0R~
186
1B1
1P~
1RT
1~.
1~5
29H
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
7RV
7X7
88E
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARLI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABGSF
ABJNI
ABLJU
ABMAC
ABMMH
ABMZM
ABOCM
ABUDA
ABUWG
ABWVN
ABXDB
ABZDS
ACDAQ
ACGFO
ACGFS
ACIEU
ACIUM
ACIWK
ACLOT
ACNNM
ACPRK
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADECG
ADEZE
ADFRT
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFKRA
AFPUW
AFRAH
AFRHN
AFTJW
AFXIZ
AFZHZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJSZI
AJUYK
AKBMS
AKRWK
AKYEP
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
AZQEC
BBNVY
BENPR
BHPHI
BKEYQ
BKOJK
BLXMC
BMSDO
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBD
EBS
EFJIC
EFKBS
EFLBG
EIHBH
EJD
EO8
EO9
EP2
EP3
EX3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
FYUFA
G-2
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HDY
HMCUK
HMK
HMO
HVGLF
HZ~
I-F
IAO
IEA
IHE
ILT
IOF
ITC
J1W
KOM
LK8
M1P
M29
M2O
M41
M7P
MO0
N9A
NAPCQ
O-L
O9-
OAUVE
OG0
OGGZJ
OS0
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PRBVW
PROAC
PSQYO
Q38
R2-
RNS
ROL
RPZ
SAE
SCB
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSB
SSH
SSK
SSO
SSP
SSU
SSZ
T5K
TAE
TN5
UKHRP
ULE
WH7
WOW
WUQ
Z5R
ZGI
~02
~G-
~HD
AAYXX
CITATION
3V.
7QP
7U7
7XB
8FK
C1K
K9.
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
PUEGO
7S9
L.6
ID FETCH-LOGICAL-c407t-e02051ae5e67007b7927d953c50e7435a8688e5b13c8d948e77c95187c96ed283
IEDL.DBID BENPR
ISSN 0379-0738
1872-6283
IngestDate Sun Sep 28 09:29:10 EDT 2025
Sat Sep 27 20:38:04 EDT 2025
Tue Oct 07 06:32:18 EDT 2025
Thu Oct 16 04:33:58 EDT 2025
Thu Apr 24 23:13:10 EDT 2025
Tue Oct 14 19:27:49 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Y-STR haplotype
KNN
Prediction performance
Y-SNP haplogroup
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-e02051ae5e67007b7927d953c50e7435a8688e5b13c8d948e77c95187c96ed283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2722695564
PQPubID 1226354
ParticipantIDs proquest_miscellaneous_2723118208
proquest_miscellaneous_2717691185
proquest_journals_2722695564
crossref_primary_10_1016_j_forsciint_2022_111466
crossref_citationtrail_10_1016_j_forsciint_2022_111466
elsevier_clinicalkey_doi_10_1016_j_forsciint_2022_111466
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Forensic science international
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Limited
Publisher_xml – name: Elsevier B.V
– name: Elsevier Limited
References Baeta, Núñez, Villaescusa, Ortueta, Ibarbia, Herrera, Blazquez-Caeiro, Builes, Jiménez-Moreno, Martínez-Jarreta, de Pancorbo (bib6) 2018; 34
Song, Song, Zhao, Hou (bib16) 2021
Linden (bib26) 2006; 12
Kayser, Roewer, Hedman, Henke, Henke, Brauer, Krüger, Krawczak, Nagy, Dobosz, Szibor, de Knijff, Stoneking, Sajantila (bib8) 2000; 66
Lang, Liu, Song, Qiao, Ye, Ren, Li, Huang, Xie, Chen, Song, Zhang, Qian, Yuan, Wang, Liu, Wang, Liu, Liu, Hou (bib19) 2019; 42
Bosch, Calafell, Santos, Pérez-Lezaun, Comas, Benchemsi, Tyler-Smith, Bertranpetit (bib15) 1999; 65
Yin, He, Wang, He, Zhang, Xia, Zhai, Chang, Chen, Chen, Chen, Jin, Li (bib7) 2022; 57
Schlecht, Kaplan, Barnard, Karafet, Hammer, Merchant, Ouzounis (bib9) 2008; 4
Song, Wang, Zhang, Zhao, Lang, Xie, Qian, Wang, Hou (bib18) 2019; 39
Claerhout, Verstraete, Warnez, Vanpaemel, Larmuseau, Decorte, Gojobori (bib10) 2021; 17
Song, Song, Luo, Xie, Wang, Dai, Hou (bib22) 2021; 42
Claerhout, Vandenbosch, Nivelle, Gruyters, Peeters, Larmuseau, Decorte (bib3) 2018; 34
Short, Fukunaga (bib25) 1981; 27
Wang, He, Zou, Liu, Ye, Ming, Du, Wang, Hou (bib23) 2021; 54
Votrubova, Saskova, Frolik, Vanek (bib5) 2017; 6
Tiirikka, Moilanen (bib11) 2015; 4
Wilson (bib1) 2021; 30
Altman (bib17) 1992; 46
Zhang (bib24) 2016; 4
Yin, Su, He, Zhai, Guo, Chen, Jin, Li (bib20) 2020; 11
Consortium, Y (bib12) 2002; 12
Claerhout, Roelens, Van der Haegen, Verstraete, Larmuseau, Decorte, Ysurnames? (bib2) 2020; 44
Fan, Xie, Wang, Ru, Tan, Ding, Wang, Huang, Wang, Li, Wang, He, Gu, Liu, Ma, Wen, Qiu (bib13) 2022; 59
Wang, Song, Song, Li, Xie, Hou (bib21) 2021; 42
Li, Zhang, Luo, Bian, Li (bib14) 2020; 41
Fan, Pan, Tang, Zhou, Liu, Luo (bib4) 2020; 135
Thompson (bib27) 2001; 20
Consortium (10.1016/j.forsciint.2022.111466_bib12) 2002; 12
Schlecht (10.1016/j.forsciint.2022.111466_bib9) 2008; 4
Song (10.1016/j.forsciint.2022.111466_bib18) 2019; 39
Kayser (10.1016/j.forsciint.2022.111466_bib8) 2000; 66
Claerhout (10.1016/j.forsciint.2022.111466_bib3) 2018; 34
Li (10.1016/j.forsciint.2022.111466_bib14) 2020; 41
Yin (10.1016/j.forsciint.2022.111466_bib20) 2020; 11
Claerhout (10.1016/j.forsciint.2022.111466_bib10) 2021; 17
Altman (10.1016/j.forsciint.2022.111466_bib17) 1992; 46
Tiirikka (10.1016/j.forsciint.2022.111466_bib11) 2015; 4
Short (10.1016/j.forsciint.2022.111466_bib25) 1981; 27
Claerhout (10.1016/j.forsciint.2022.111466_bib2) 2020; 44
Baeta (10.1016/j.forsciint.2022.111466_bib6) 2018; 34
Votrubova (10.1016/j.forsciint.2022.111466_bib5) 2017; 6
Yin (10.1016/j.forsciint.2022.111466_bib7) 2022; 57
Fan (10.1016/j.forsciint.2022.111466_bib13) 2022; 59
Zhang (10.1016/j.forsciint.2022.111466_bib24) 2016; 4
Wilson (10.1016/j.forsciint.2022.111466_bib1) 2021; 30
Bosch (10.1016/j.forsciint.2022.111466_bib15) 1999; 65
Linden (10.1016/j.forsciint.2022.111466_bib26) 2006; 12
Song (10.1016/j.forsciint.2022.111466_bib16) 2021
Wang (10.1016/j.forsciint.2022.111466_bib23) 2021; 54
Song (10.1016/j.forsciint.2022.111466_bib22) 2021; 42
Lang (10.1016/j.forsciint.2022.111466_bib19) 2019; 42
Fan (10.1016/j.forsciint.2022.111466_bib4) 2020; 135
Thompson (10.1016/j.forsciint.2022.111466_bib27) 2001; 20
Wang (10.1016/j.forsciint.2022.111466_bib21) 2021; 42
References_xml – volume: 44
  year: 2020
  ident: bib2
  article-title: The patrilineal Y-chromosome and surname correlation for DNA kinship research
  publication-title: Forensic Sci. Int. Genet.
– volume: 17
  year: 2021
  ident: bib10
  article-title: CSYseq: the first Y-chromosome sequencing tool typing a large number of Y-SNPs and Y-STRs to unravel worldwide human population genetics
  publication-title: Plos Genet
– volume: 39
  start-page: e14
  year: 2019
  end-page: e20
  ident: bib18
  article-title: Forensic characteristics and phylogenetic analysis of both Y-STR and Y-SNP in the Li and Han ethnic groups from Hainan Island of China
  publication-title: Forensic Sci. Int.: Genet.
– volume: 27
  start-page: 622
  year: 1981
  end-page: 627
  ident: bib25
  article-title: The optimal distance measure for nearest neighbor classification
  publication-title: IEEE T Inf. Theory
– volume: 20
  start-page: 2895
  year: 2001
  end-page: 2906
  ident: bib27
  article-title: Estimating equations for kappa statistics
  publication-title: Stat. Med.
– volume: 42
  start-page: 1892
  year: 2021
  end-page: 1899
  ident: bib22
  article-title: Paternal genetic structure of Kyrgyz ethnic group in China revealed by high‐resolution Y‐chromosome STRs and SNPs
  publication-title: Electrophoresis
– volume: 4
  year: 2016
  ident: bib24
  article-title: Introduction to machine learning: k-nearest neighbors
  publication-title: Ann. Transl. Med.
– volume: 57
  year: 2022
  ident: bib7
  article-title: Improving the regional Y-STR haplotype resolution utilizing haplogroup-determining Y-SNPs and the application of machine learning in Y-SNP haplogroup prediction in a forensic Y-STR database: a pilot study on male Chinese Yunnan Zhaoyang Han population
  publication-title: Forensic Sci. Int.: Genet.
– volume: 59
  year: 2022
  ident: bib13
  article-title: Microhaplotype and Y-SNP/STR (MY): a novel MPS-based system for genotype pattern recognition in two-person DNA mixtures
  publication-title: Forensic Sci. Int.: Genet.
– volume: 12
  start-page: 132
  year: 2006
  end-page: 139
  ident: bib26
  article-title: Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis
  publication-title: J. Eval. Clin. Pr.
– volume: 4
  year: 2008
  ident: bib9
  article-title: Machine-learning approaches for classifying haplogroup from Y chromosome STR data
  publication-title: Plos Comput. Biol.
– volume: 34
  start-page: e7
  year: 2018
  end-page: e12
  ident: bib6
  article-title: Assessment of a subset of slowly mutating Y-STRs for forensic and evolutionary studies
  publication-title: Forensic Sci. Int.: Genet.
– volume: 4
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib11
  article-title: Human chromosome Y and Haplogroups; introducing YDHS database
  publication-title: Clin. Transl. Med.
– volume: 34
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib3
  article-title: Determining Y-STR mutation rates in deep-routing genealogies: identification of haplogroup differences
  publication-title: Forensic Sci. Int. Genet.
– year: 2021
  ident: bib16
  article-title: YHP: Y-chromosome Haplogroup Predictor for Predicting Male Lineages Based on Y-STRs
– volume: 65
  start-page: 1623
  year: 1999
  end-page: 1638
  ident: bib15
  article-title: Variation in short tandem repeats is deeply structured by genetic background on the human Y chromosome
  publication-title: Am. J. Hum. Genet
– volume: 54
  year: 2021
  ident: bib23
  article-title: Genetic insights into the paternal admixture history of Chinese Mongolians via high-resolution customized Y-SNP SNaPshot panels
  publication-title: Forensic Sci. Int.: Genet.
– volume: 66
  start-page: 1580
  year: 2000
  end-page: 1588
  ident: bib8
  article-title: Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs
  publication-title: Am. J. Hum. Genet
– volume: 12
  start-page: 339
  year: 2002
  end-page: 348
  ident: bib12
  article-title: A nomenclature system for the tree of human Y-chromosomal binary haplogroups
  publication-title: Genome Res
– volume: 6
  start-page: e129
  year: 2017
  end-page: e131
  ident: bib5
  article-title: Linking the Y-chromosomal haplotype from a high medieval (1160–1421) skeleton from a Podlazice excavation site with living descendants
  publication-title: Forensic Sci. Int. Genet. Suppl. Ser.
– volume: 46
  start-page: 175
  year: 1992
  end-page: 185
  ident: bib17
  article-title: An introduction to Kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
– volume: 30
  start-page: R296
  year: 2021
  end-page: R300
  ident: bib1
  article-title: The Y chromosome and its impact on health and disease
  publication-title: Hum. Mol. Genet.
– volume: 42
  start-page: 1480
  year: 2021
  end-page: 1487
  ident: bib21
  article-title: Genetic reconstruction and phylogenetic analysis by 193 Y‐SNPs and 27 Y‐STRs in a Chinese Yi ethnic group
  publication-title: Electrophoresis
– volume: 11
  start-page: 743
  year: 2020
  ident: bib20
  article-title: Genetic reconstruction and forensic analysis of Chinese shandong and yunnan han populations by Co-analyzing Y chromosomal STRs and SNPs
  publication-title: Genes
– volume: 42
  start-page: e13
  year: 2019
  end-page: e20
  ident: bib19
  article-title: Forensic characteristics and genetic analysis of both 27 Y-STRs and 143 Y-SNPs in Eastern Han Chinese population
  publication-title: Forensic Sci. Int.: Genet.
– volume: 135
  start-page: 409
  year: 2020
  end-page: 419
  ident: bib4
  article-title: Technical note: developmental validation of a novel 41-plex Y-STR system for the direct amplification of reference samples
  publication-title: Int J. Leg. Med
– volume: 41
  start-page: 2047
  year: 2020
  end-page: 2054
  ident: bib14
  article-title: Development and validation of a custom panel including 183 Y‐SNPs for Chinese Y‐chromosomal haplogroups dissection using a MALDI‐TOF MS system
  publication-title: Electrophoresis
– volume: 12
  start-page: 339
  issue: 2
  year: 2002
  ident: 10.1016/j.forsciint.2022.111466_bib12
  article-title: A nomenclature system for the tree of human Y-chromosomal binary haplogroups
  publication-title: Genome Res
  doi: 10.1101/gr.217602
– volume: 30
  start-page: R296
  issue: R2
  year: 2021
  ident: 10.1016/j.forsciint.2022.111466_bib1
  article-title: The Y chromosome and its impact on health and disease
  publication-title: Hum. Mol. Genet.
  doi: 10.1093/hmg/ddab215
– volume: 44
  year: 2020
  ident: 10.1016/j.forsciint.2022.111466_bib2
  article-title: The patrilineal Y-chromosome and surname correlation for DNA kinship research
  publication-title: Forensic Sci. Int. Genet.
  doi: 10.1016/j.fsigen.2019.102204
– volume: 135
  start-page: 409
  issue: 2
  year: 2020
  ident: 10.1016/j.forsciint.2022.111466_bib4
  article-title: Technical note: developmental validation of a novel 41-plex Y-STR system for the direct amplification of reference samples
  publication-title: Int J. Leg. Med
  doi: 10.1007/s00414-020-02326-9
– volume: 41
  start-page: 2047
  issue: 23
  year: 2020
  ident: 10.1016/j.forsciint.2022.111466_bib14
  article-title: Development and validation of a custom panel including 183 Y‐SNPs for Chinese Y‐chromosomal haplogroups dissection using a MALDI‐TOF MS system
  publication-title: Electrophoresis
  doi: 10.1002/elps.202000145
– volume: 46
  start-page: 175
  issue: 3
  year: 1992
  ident: 10.1016/j.forsciint.2022.111466_bib17
  article-title: An introduction to Kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 39
  start-page: e14
  year: 2019
  ident: 10.1016/j.forsciint.2022.111466_bib18
  article-title: Forensic characteristics and phylogenetic analysis of both Y-STR and Y-SNP in the Li and Han ethnic groups from Hainan Island of China
  publication-title: Forensic Sci. Int.: Genet.
  doi: 10.1016/j.fsigen.2018.11.016
– volume: 12
  start-page: 132
  issue: 2
  year: 2006
  ident: 10.1016/j.forsciint.2022.111466_bib26
  article-title: Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis
  publication-title: J. Eval. Clin. Pr.
  doi: 10.1111/j.1365-2753.2005.00598.x
– volume: 66
  start-page: 1580
  issue: 5
  year: 2000
  ident: 10.1016/j.forsciint.2022.111466_bib8
  article-title: Characteristics and frequency of germline mutations at microsatellite loci from the human Y chromosome, as revealed by direct observation in father/son pairs
  publication-title: Am. J. Hum. Genet
  doi: 10.1086/302905
– volume: 54
  year: 2021
  ident: 10.1016/j.forsciint.2022.111466_bib23
  article-title: Genetic insights into the paternal admixture history of Chinese Mongolians via high-resolution customized Y-SNP SNaPshot panels
  publication-title: Forensic Sci. Int.: Genet.
– volume: 34
  start-page: e7
  year: 2018
  ident: 10.1016/j.forsciint.2022.111466_bib6
  article-title: Assessment of a subset of slowly mutating Y-STRs for forensic and evolutionary studies
  publication-title: Forensic Sci. Int.: Genet.
  doi: 10.1016/j.fsigen.2018.03.008
– volume: 4
  issue: 11
  year: 2016
  ident: 10.1016/j.forsciint.2022.111466_bib24
  article-title: Introduction to machine learning: k-nearest neighbors
  publication-title: Ann. Transl. Med.
  doi: 10.21037/atm.2016.03.37
– volume: 17
  issue: 9
  year: 2021
  ident: 10.1016/j.forsciint.2022.111466_bib10
  article-title: CSYseq: the first Y-chromosome sequencing tool typing a large number of Y-SNPs and Y-STRs to unravel worldwide human population genetics
  publication-title: Plos Genet
  doi: 10.1371/journal.pgen.1009758
– volume: 42
  start-page: e13
  year: 2019
  ident: 10.1016/j.forsciint.2022.111466_bib19
  article-title: Forensic characteristics and genetic analysis of both 27 Y-STRs and 143 Y-SNPs in Eastern Han Chinese population
  publication-title: Forensic Sci. Int.: Genet.
  doi: 10.1016/j.fsigen.2019.07.011
– volume: 27
  start-page: 622
  issue: 5
  year: 1981
  ident: 10.1016/j.forsciint.2022.111466_bib25
  article-title: The optimal distance measure for nearest neighbor classification
  publication-title: IEEE T Inf. Theory
  doi: 10.1109/TIT.1981.1056403
– volume: 4
  issue: 6
  year: 2008
  ident: 10.1016/j.forsciint.2022.111466_bib9
  article-title: Machine-learning approaches for classifying haplogroup from Y chromosome STR data
  publication-title: Plos Comput. Biol.
  doi: 10.1371/journal.pcbi.1000093
– volume: 42
  start-page: 1892
  issue: 19
  year: 2021
  ident: 10.1016/j.forsciint.2022.111466_bib22
  article-title: Paternal genetic structure of Kyrgyz ethnic group in China revealed by high‐resolution Y‐chromosome STRs and SNPs
  publication-title: Electrophoresis
  doi: 10.1002/elps.202100142
– volume: 65
  start-page: 1623
  issue: 6
  year: 1999
  ident: 10.1016/j.forsciint.2022.111466_bib15
  article-title: Variation in short tandem repeats is deeply structured by genetic background on the human Y chromosome
  publication-title: Am. J. Hum. Genet
  doi: 10.1086/302676
– volume: 4
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.forsciint.2022.111466_bib11
  article-title: Human chromosome Y and Haplogroups; introducing YDHS database
  publication-title: Clin. Transl. Med.
  doi: 10.1186/s40169-015-0060-7
– year: 2021
  ident: 10.1016/j.forsciint.2022.111466_bib16
– volume: 6
  start-page: e129
  year: 2017
  ident: 10.1016/j.forsciint.2022.111466_bib5
  article-title: Linking the Y-chromosomal haplotype from a high medieval (1160–1421) skeleton from a Podlazice excavation site with living descendants
  publication-title: Forensic Sci. Int. Genet. Suppl. Ser.
  doi: 10.1016/j.fsigss.2017.09.031
– volume: 11
  start-page: 743
  issue: 7
  year: 2020
  ident: 10.1016/j.forsciint.2022.111466_bib20
  article-title: Genetic reconstruction and forensic analysis of Chinese shandong and yunnan han populations by Co-analyzing Y chromosomal STRs and SNPs
  publication-title: Genes
  doi: 10.3390/genes11070743
– volume: 20
  start-page: 2895
  issue: 19
  year: 2001
  ident: 10.1016/j.forsciint.2022.111466_bib27
  article-title: Estimating equations for kappa statistics
  publication-title: Stat. Med.
  doi: 10.1002/sim.603
– volume: 42
  start-page: 1480
  issue: 14–15
  year: 2021
  ident: 10.1016/j.forsciint.2022.111466_bib21
  article-title: Genetic reconstruction and phylogenetic analysis by 193 Y‐SNPs and 27 Y‐STRs in a Chinese Yi ethnic group
  publication-title: Electrophoresis
  doi: 10.1002/elps.202100003
– volume: 59
  year: 2022
  ident: 10.1016/j.forsciint.2022.111466_bib13
  article-title: Microhaplotype and Y-SNP/STR (MY): a novel MPS-based system for genotype pattern recognition in two-person DNA mixtures
  publication-title: Forensic Sci. Int.: Genet.
– volume: 34
  start-page: 1
  year: 2018
  ident: 10.1016/j.forsciint.2022.111466_bib3
  article-title: Determining Y-STR mutation rates in deep-routing genealogies: identification of haplogroup differences
  publication-title: Forensic Sci. Int. Genet.
  doi: 10.1016/j.fsigen.2018.01.005
– volume: 57
  year: 2022
  ident: 10.1016/j.forsciint.2022.111466_bib7
  article-title: Improving the regional Y-STR haplotype resolution utilizing haplogroup-determining Y-SNPs and the application of machine learning in Y-SNP haplogroup prediction in a forensic Y-STR database: a pilot study on male Chinese Yunnan Zhaoyang Han population
  publication-title: Forensic Sci. Int.: Genet.
SSID ssj0005526
Score 2.3867054
Snippet Two distinct genetic markers, single nucleotide polymorphisms (Y-SNPs) and short tandem repeats (Y-STRs), exist simultaneously in the non-recombining portion...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 111466
SubjectTerms Accuracy
Algorithms
Chromosomes
Classification
Classifiers
cost effectiveness
data collection
Datasets
Decision trees
Efficiency
Evolutionary genetics
Forensic science
Forensic sciences
Genetic markers
Genetics
Genotyping
Haplotypes
K-nearest neighbors algorithm
KNN
Learning algorithms
Machine learning
Mutation
Nucleotides
prediction
Prediction models
Prediction performance
Short tandem repeats
Single-nucleotide polymorphism
Y chromosome
Y chromosomes
Y-SNP haplogroup
Y-STR haplotype
Title Assessing the factors influencing the performance of machine learning for classifying haplogroups from Y-STR haplotypes
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0379073822002961
https://www.proquest.com/docview/2722695564
https://www.proquest.com/docview/2717691185
https://www.proquest.com/docview/2723118208
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: ACRLP
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: AIKHN
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6283
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: AKRWK
  dateStart: 19780701
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1872-6283
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: 7X7
  dateStart: 19970207
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1872-6283
  dateEnd: 20250902
  omitProxy: true
  ssIdentifier: ssj0005526
  issn: 0379-0738
  databaseCode: BENPR
  dateStart: 19970207
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fS-NAEB5q-yLI4Z0n9s6TPfA1mKTZH3kQUVHKwZWjKvSelmSz1Yom0bbcv-9Msttyx2Ef0ockS0InmfmyO9_3ARxHQqRWiRCzn8iDxMgoSK2Nggyre5gPwiKJiO_8cySGd8mPCZ90YOS5MNRW6XNik6iLytAc-UksESiknIvkrH4JyDWKVle9hUbmrBWK00ZibAt6MSljdaF3cTX6NV43ffBY_NXlhcgQS82spLbKOKYEkjSCif-tUf9k66YEXe_CB4cd2Xkb7I_QseUn2Gkn3ljLJ9qDP-0yLlYkhtiOOT8dNnNmJH5_vSYMsGrKnpueSsucicQ9w4PMELKeNUQo9pDVpG5dLes5I0oK-x3c3I7b3TSNO_8Md9dXt5fDwLkrBAY_4haBRaDIo8xyS0wdmcs0lkXKB4aHFmEFz5RQyvI8GhhVpImyUhqEYwp_hS0QlexDt6xKewAsI7vfwVTmCDeTJFckKJOSrj5uBr_W-yD8_6mNkx4nB4wn7XvMHvUqEJoCodtA9CFcDaxb9Y3NQ5QPmPbkUkyHGivE5qGHPsDavclzvX7u-vB9dRjfQVpYyUpbLemcSAqsGoq_dw4iaVLLV1_ev8xX2KZ7avmOh9BdvC7tNwQ-i_wItuREHrln-g16VgWy
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gASQjzF0gJGgmNEHn7lUFU8Wm1pu0JlK5WTSRwXtipJyu6q6p_jtzGT2LsCofbUQ3JI4iTKOPN9tuebAXidSJk7LWP0frKMuFVJlDuXRAWie1xmccUT0jsfjOTwiH86Fscr8DtoYSisMvjEzlFXjaU58repQqKQCyH5VnseUdUoWl0NJTQKX1qh2uxSjHlhx567vMAh3HRz9yPa-02a7myPPwwjX2UgsjiYmUUOCZNICiccKVZUqfJUVbnIrIgdwqsotNTaiTLJrK5yrp1SFmmJxr10FaIz3vcWrPGM5zj4W3u_Pfp8uAwyEan8K6oMmShC26SmMM40JYfFuwSN_8XEf9Chg7yd-3DPc1X2ru9cD2DF1Q_hbj_Rx3r90iO46JeNEQEZcknm6_ewiS9-Eo63S4ECa07Yzy6G0zFftOI7w5PMEpOfdMIr9qNoKZt2M2-njCQw7Gv0ZXzYH6Zp4-ljOLqR7_wEVuumdk-BFVReODtRJdJbzktNCWxyyuOPm3VlNgAZvqexPtU5Vdw4MyGm7dQsDGHIEKY3xADiRcO2z_ZxfRMdDGaCmBXdr0FEur7pRjCw8Z5japb9fACvFqfxn6eFnKJ2zZyuSZRElNLiqmuQuVN2fv3s6se8hNvD8cG-2d8d7a3DHXq_Xmu5AauzX3P3HEnXrHzhezaDbzf9M_0BwPQ_lw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBRFE_KSnVVfQx9B87UceRMR6tFaLaAvn05ps5vSkTaJ3R_Ff869zJpu9Q5H2qQ_JQ5JNQmZ3fr_szm8G4FmiVIFGxeT9VBXlTidRgZhEJaF7XGVxnSesd35_qPaO87cTOdmA30ELw2GVwSf2jrpuHc-R76SaiEIhpcp3pkNYxIfd8cvuR8QVpHilNZTT8F3kAH-d0e_b_MX-Ltn6eZqO3xy93ouGCgORox-ZRYRElmRSokRWq-hKF6muC5k5GSNBqyyNMgZllWTO1EVuUGtHlMTQXmFNyEz3vQJXdZYVHE6oJ3odXiJT9Vc8GXFQArVZwwGcacquKu9TM_4XDf_BhR7sxrfg5sBSxSvfrW7DBjZ34Iaf4hNeuXQXzvyCMWGfIBYphso9YjaUPQnHu7U0QbRTcdpHb6IYylV8FXRSOObws15yJb6VHefRbpfdXLD4RXyOPh199Id5wnh-D44v5Svfh82mbXALRMmFhbOprojY5nllOHVNwRn8aXNYZSNQ4XtaNyQ551obJzZEs323K0NYNoT1hhhBvGrY-TwfFzcxwWA2yFjJ8VrCooubbgcD28FnzO26h4_g6eo0jXZewikbbJd8TaIV4ZOR511DnJ3z8psH5z_mCVyjIWTf7R8ePITr_HpeZLkNm4ufS3xEbGtRPe67tYAvlz2O_gAF7z0x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+the+factors+influencing+the+performance+of+machine+learning+for+classifying+haplogroups+from+Y-STR+haplotypes&rft.jtitle=Forensic+science+international&rft.au=Fan%2C+Guang-Yao&rft.date=2022-11-01&rft.issn=1872-6283&rft.eissn=1872-6283&rft.volume=340&rft.spage=111466&rft_id=info:doi/10.1016%2Fj.forsciint.2022.111466&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0379-0738&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0379-0738&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0379-0738&client=summon