Combined analyses of the antiproton production from cosmic-ray interactions and its possible dark matter origin

Recent cosmic-ray (CR) studies have claimed the possibility of an excess on the antiproton flux over the predicted models at around 10 GeV, which can be the signature of dark matter annihilating into hadronic final states that subsequently form antiprotons. However, this excess is subject to many un...

Full description

Saved in:
Bibliographic Details
Published inJournal of cosmology and astroparticle physics Vol. 2021; no. 11; pp. 18 - 41
Main Author De La Torre Luque, Pedro
Format Journal Article
LanguageEnglish
Published Bristol IOP Publishing 01.11.2021
Subjects
Online AccessGet full text
ISSN1475-7516
1475-7508
1475-7516
DOI10.1088/1475-7516/2021/11/018

Cover

Abstract Recent cosmic-ray (CR) studies have claimed the possibility of an excess on the antiproton flux over the predicted models at around 10 GeV, which can be the signature of dark matter annihilating into hadronic final states that subsequently form antiprotons. However, this excess is subject to many uncertainties related to the evaluation of the antiproton spectrum produced from spallation interactions of CRs. In this work, we implement a combined Markov-Chain Monte Carlo analysis of the secondary ratios of B, Be and Li and the antiproton-to-proton ratio ( p ̅/ p ), while also including nuisance parameters to consider the uncertainties related to the spallation cross sections. This study allows us to constrain the Galactic halo height and the rest of propagation parameters, evaluate the impact of cross sections uncertainties in the determination of the antiproton spectrum and test the origin of the excess of antiprotons. In this way, we provide a set of propagation parameters and scale factors for renormalizing the cross sections parametrizations that allow us to reproduce all the ratios of B, Be, Li and p ̅ simultaneously. We show that the energy dependence of the p ̅/ p ratio is compatible with a pure secondary origin. In particular, we find that the energy dependence of the evaluated p ̅/ p spectrum matches that observed from AMS-02 data at energies above ∼3 GeV, although there is still a constant ∼10% excess of p ̅ over our prediction. We discuss that this discrepancy is more likely explained from a ∼10% scaling in the cross sections of antiproton production, rather than a component of dark matter leading to antiprotons. In particular, we find that the best-fit WIMP mass (∼300 GeV) needed to explain the discrepancy lies above the constraints from most indirect searches of dark matter and the resultant fit is poorer than with a cross sections scaling.
AbstractList Recent cosmic-ray (CR) studies have claimed the possibility of an excess on the antiproton flux over the predicted models at around 10 GeV, which can be the signature of dark matter annihilating into hadronic final states that subsequently form antiprotons. However, this excess is subject to many uncertainties related to the evaluation of the antiproton spectrum produced from spallation interactions of CRs. In this work, we implement a combined Markov-Chain Monte Carlo analysis of the secondary ratios of B, Be and Li and the antiproton-to-proton ratio ( p ̅/ p ), while also including nuisance parameters to consider the uncertainties related to the spallation cross sections. This study allows us to constrain the Galactic halo height and the rest of propagation parameters, evaluate the impact of cross sections uncertainties in the determination of the antiproton spectrum and test the origin of the excess of antiprotons. In this way, we provide a set of propagation parameters and scale factors for renormalizing the cross sections parametrizations that allow us to reproduce all the ratios of B, Be, Li and p ̅ simultaneously. We show that the energy dependence of the p ̅/ p ratio is compatible with a pure secondary origin. In particular, we find that the energy dependence of the evaluated p ̅/ p spectrum matches that observed from AMS-02 data at energies above ∼3 GeV, although there is still a constant ∼10% excess of p ̅ over our prediction. We discuss that this discrepancy is more likely explained from a ∼10% scaling in the cross sections of antiproton production, rather than a component of dark matter leading to antiprotons. In particular, we find that the best-fit WIMP mass (∼300 GeV) needed to explain the discrepancy lies above the constraints from most indirect searches of dark matter and the resultant fit is poorer than with a cross sections scaling.
Recent cosmic-ray (CR) studies have claimed the possibility of an excess on the antiproton flux over the predicted models at around 10 GeV, which can be the signature of dark matter annihilating into hadronic final states that subsequently form antiprotons. However, this excess is subject to many uncertainties related to the evaluation of the antiproton spectrum produced from spallation interactions of CRs. In this work, we implement a combined Markov-Chain Monte Carlo analysis of the secondary ratios of B, Be and Li and the antiproton-to-proton ratio (p̅/p), while also including nuisance parameters to consider the uncertainties related to the spallation cross sections. This study allows us to constrain the Galactic halo height and the rest of propagation parameters, evaluate the impact of cross sections uncertainties in the determination of the antiproton spectrum and test the origin of the excess of antiprotons. In this way, we provide a set of propagation parameters and scale factors for renormalizing the cross sections parametrizations that allow us to reproduce all the ratios of B, Be, Li and p̅ simultaneously. We show that the energy dependence of the p̅/p ratio is compatible with a pure secondary origin. In particular, we find that the energy dependence of the evaluated p̅/p spectrum matches that observed from AMS-02 data at energies above ∼3 GeV, although there is still a constant ∼10% excess of p̅ over our prediction. We discuss that this discrepancy is more likely explained from a ∼10% scaling in the cross sections of antiproton production, rather than a component of dark matter leading to antiprotons. In particular, we find that the best-fit WIMP mass (∼300 GeV) needed to explain the discrepancy lies above the constraints from most indirect searches of dark matter and the resultant fit is poorer than with a cross sections scaling.
Author De La Torre Luque, Pedro
Author_xml – sequence: 1
  givenname: Pedro
  surname: De La Torre Luque
  fullname: De La Torre Luque, Pedro
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-203201$$DView record from Swedish Publication Index
BookMark eNqNkEtLJTEQRoMo-PwJQmC2tjfV78aVXB8zILhRt6HyaI3T3elJ0sj995O2BxUXjquqSn0nFGefbA920IQcAzsFVtcryKsiqQooVylLYQWwYlBvkb239-0P_S7Z9_6ZsbTMsnqP2LXthRm0ojhgt_HaU9vS8KTjHMzobLADjUVNMpjYts72VFrfG5k43FAzBO3wdecjoqgJno7WeyM6TRW637THEDPUOvNohkOy02Ln9dG_ekDury7v1j-Tm9vrX-vzm0TmrAqJaoQCJUHWjUxbwLIqVZlKkYu2xRxBa1k1ldBKCBQgpCxzlrKsqVShULM6OyDl8u80jLh5wa7jozM9ug0HxmdtfFbCZyV81sYBeNQWwZMF9C96nMQbZdHwC_Nwzq175H6KTJYyiPEfSzw6-jNpH_iznVxU6XlaNAUUUDdZTBVLSrqoxun228ecfeKkCTjLDg5N918aFtrY8f2sr5m_5EOy6Q
CitedBy_id crossref_primary_10_1103_PhysRevD_106_123033
crossref_primary_10_3847_2041_8213_ad72f4
crossref_primary_10_1088_1475_7516_2023_10_011
crossref_primary_10_21468_SciPostPhysProc_12_067
crossref_primary_10_1088_1475_7516_2023_08_052
crossref_primary_10_1103_PhysRevD_109_043006
crossref_primary_10_3389_fspas_2022_1041838
crossref_primary_10_1088_1475_7516_2022_07_008
crossref_primary_10_21468_SciPostPhys_12_5_163
crossref_primary_10_1088_1475_7516_2024_05_104
crossref_primary_10_1088_1475_7516_2021_12_037
crossref_primary_10_1088_1475_7516_2023_03_051
crossref_primary_10_3847_1538_4357_ad41e0
crossref_primary_10_1088_1475_7516_2024_11_016
crossref_primary_10_1103_PhysRevD_109_103028
crossref_primary_10_1007_JHEP09_2023_010
crossref_primary_10_1051_epjn_2024015
crossref_primary_10_1103_PhysRevD_105_103033
crossref_primary_10_1103_PhysRevD_109_L101305
crossref_primary_10_1103_PhysRevD_107_063020
crossref_primary_10_1051_0004_6361_202243714
Cites_doi 10.1016/j.physrep.2020.09.003
10.1103/PhysRevD.90.085017
10.1088/1475-7516/2021/07/010
10.1051/0004-6361/201629526
10.1111/j.1365-2966.2004.08094.x
10.1086/323842
10.1103/PhysRevD.103.063029
10.1088/1475-7516/2012/10/E01
10.1103/PhysRevLett.110.141102
10.1103/PhysRevLett.114.171103
10.1051/0004-6361/202037875
10.3847/1538-4357/834/2/110
10.1016/j.physrep.2004.08.031
10.1103/PhysRevLett.122.101101
10.1103/PhysRevLett.119.241101
10.1103/PhysRevResearch.2.023022
10.1103/PhysRevLett.126.081102
10.1093/mnras/182.3.443
10.1103/PhysRevD.103.103016
10.1051/0004-6361/201321344
10.1126/science.1236408
10.1103/PhysRevLett.119.251101
10.1088/1475-7516/2018/06/024
10.1111/j.1365-2966.2004.08005.x
10.1103/PhysRevD.97.103019
10.1103/PhysRevD.93.043016
10.1088/1475-7516/2017/02/015
10.1103/PhysRevLett.121.051103
10.1111/j.1365-2966.2009.15878.x
10.1103/PhysRevD.90.061301
10.1103/PhysRevLett.120.021101
10.1086/177173
10.1093/mnras/stab355
10.1088/1475-7516/2014/09/051
10.1088/1475-7516/2021/03/099
10.3390/universe6080102
10.1016/j.astropartphys.2011.08.007
10.1086/309560
10.1103/PhysRevD.101.023013
10.1051/0004-6361:20011447
10.1103/PhysRevD.104.123001
10.1088/1475-7516/2014/04/003
10.1086/306470
10.1111/j.1365-2966.2006.10887.x
10.1103/PhysRevD.86.023506
10.1103/PhysRevLett.118.191102
10.1111/j.1365-2966.2011.19114.x
10.1103/PhysRevC.98.034611
10.1093/mnras/staa2533
10.1086/311437
10.1086/423193
10.1088/0305-4616/9/2/015
10.1086/155632
10.1051/0004-6361/202038064
10.1051/0004-6361/201014385
10.1088/1475-7516/2018/01/055
10.1103/PhysRevD.99.103026
10.3847/1538-4357/ab64f1
10.1103/PhysRevD.68.094017
10.1093/ptep
10.1088/1475-7516/2009/01/025
10.1111/j.1365-2966.2006.10270.x
10.1103/PhysRevD.103.123005
10.1103/PhysRevD.94.123007
10.1088/1475-7516/2018/07/006
10.1103/PhysRevD.102.023015
10.3847/0004-637X/831/1/18
10.1086/508988
10.1088/1475-7516/2018/07/033
10.1063/1.3625594
10.1086/183310
10.1051/0004-6361/201527852
10.1142/S0217732321300032
10.1103/PhysRevD.98.023016
10.22323/1.301.0227
10.1103/PhysRevLett.124.211102
10.1103/PhysRevD.99.103014
10.1111/j.1365-2966.2004.07836.x
10.1103/PhysRevD.100.043016
10.1007/BF00649180
10.1086/422384
10.1093/mnras/249.3.523
10.1088/1475-7516/2017/02/048
10.1086/501117
10.1051/0004-6361/201220394
10.1088/1742-6596/1690/1/012010
10.1016/0370-1573(87)90134-7
10.1103/PhysRevD.96.103005
10.1103/PhysRevResearch.2.043017
10.1007/JHEP07(2020)163
10.1103/PhysRevD.100.103014
10.1016/j.asr.2016.06.027
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright IOP Publishing Nov 2021
Copyright_xml – notice: 2021 The Author(s)
– notice: Copyright IOP Publishing Nov 2021
DBID O3W
TSCCA
AAYXX
CITATION
ABAVF
ADTPV
AOWAS
D8T
DG7
ZZAVC
ADTOC
UNPAY
DOI 10.1088/1475-7516/2021/11/018
DatabaseName Institute of Physics Open Access Journals
IOPscience (Open Access)
CrossRef
SWEPUB Stockholms universitet full text
SwePub
SwePub Articles
SWEPUB Freely available online
SWEPUB Stockholms universitet
SwePub Articles full text
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journals
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
EISSN 1475-7516
ExternalDocumentID 10.1088/1475-7516/2021/11/018
oai_DiVA_org_su_203201
10_1088_1475_7516_2021_11_018
JCAP_095P_0721
GroupedDBID 1JI
5B3
5PX
5VS
5ZH
7.M
7.Q
AAGCD
AAGID
AAJIO
AAJKP
AATNI
ABCXL
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
ADWVK
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CBCFC
CEBXE
CJUJL
CRLBU
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
ER.
HAK
IHE
IJHAN
IOP
IZVLO
J9A
KOT
LAP
M45
MV1
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
UCJ
VSI
W28
XPP
ZMT
AAYXX
ADEQX
AEINN
CITATION
02O
1WK
4.4
AALHV
ABAVF
ACARI
ADTPV
AERVB
AGQPQ
AHSEE
AOWAS
ARNYC
BBWZM
D8T
DG7
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
Q02
RNS
S3P
ZZAVC
ADTOC
UNPAY
ID FETCH-LOGICAL-c407t-d9bd1dc1c89c2f1a676d62cb4bffa4a1eec797bedbbab1bcc64020397d5dae083
IEDL.DBID IOP
ISSN 1475-7516
1475-7508
IngestDate Sun Oct 26 04:02:44 EDT 2025
Thu Aug 21 06:52:14 EDT 2025
Mon Jun 30 03:51:27 EDT 2025
Wed Oct 01 04:29:39 EDT 2025
Thu Apr 24 23:09:58 EDT 2025
Wed Aug 21 03:34:56 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License Published by IOP Publishing Ltd on behalf of Sissa Medialab. Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-d9bd1dc1c89c2f1a676d62cb4bffa4a1eec797bedbbab1bcc64020397d5dae083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1475-7516/2021/11/018
PQID 2595151893
PQPubID 2048024
PageCount 24
ParticipantIDs crossref_citationtrail_10_1088_1475_7516_2021_11_018
crossref_primary_10_1088_1475_7516_2021_11_018
unpaywall_primary_10_1088_1475_7516_2021_11_018
proquest_journals_2595151893
iop_journals_10_1088_1475_7516_2021_11_018
swepub_primary_oai_DiVA_org_su_203201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Bristol
PublicationPlace_xml – name: Bristol
PublicationTitle Journal of cosmology and astroparticle physics
PublicationTitleAlternate J. Cosmol. Astropart. Phys
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Evoli (b069aca6346fbd1dd6bb1e09b8e53fc79) 2020; 101
Tomassetti (b2d86e830d6f3b160ff1b08126c5b5559) 2017; 96
bd70cdf1fc163ee24a0a7e5e06a52c623
Navarro (b03e2a1c70ae9252eff5ad15026c8c36d) 1996; 462
Di Mauro (ba58a57b4cb7cb96c73abc56a09e2a8b2) 2021; 103
Korsmeier (b742b81acc136f9122dba9d7ead12f66c) 2021; 103
Ghelfi (b15d0f4b3d249f333563a60bbda84fe58) 2017; 60
Génolini (b234e7b7a38e0c9b518d83b5c85d4b8bd) 2017; 119
ba6cf794744d7ca8a4e46ea9a09ff5ed0
Lin (b18decc9d56cfa9374a1a8fa80875a945) 2019; 100
Tan (bd3651d098b4efe4f42ece5901ec289fb) 1983; 9
Manconi (bbf0f6e1c5c8173f05396b379bd60f134) 2020; 102
Kappl (bf1ebc919858324fa03165f870352d9b3) 2014; 09
bdeed23e1e64efe4fdec7e771a5851162
Weinrich (b4d7af20c93b1bd3c92e247a68e84eb38) 2020; 639
bed6eb11b0ce381a8acc66415c4acdbff
Cuoco (be19968dd1745ae5186aa0b971f97f10b) 2017; 118
Feng (b2ae6cd613828a86796a6533eaf91a119) 2016; 94
b3f84183918bbcce913eecb6fd74a27d0
Salucci (b8846a4c734aa9b1c6f5285d7326312a4) 2010; 523
Cholis (b811c07540ad7615d7d25f8042a51d46e) 2016; 93
Cui (bc2d4aa2c32244cca443fbd0b8c82e6bf) 2018; 06
Aguilar (bcb9925e010750ca7deba0d4b51ebc820) 2013; 110
bda337d3c6a6f086097e9eec8274cef69
Donato (b41298e9f3dcacee2c0cd64f512060e70) 2002; 381
Bringmann (b1603d4cd9f0ee69293d6ce180fd4d47a) 2018; 07
Maurin (b75d525e3f538afead08ac3132522c7e3) 2020; 6
b8b692dd2ba6455d7669c69dfd963e46b
De La Torre Luque (b79b29cd54a3cedb526297297e26fe86c) 2021; 03
Aguilar (b89e84bb4dc5d3a25b588e2f081b52c51) 2020; 124
Aguilar (b95a40f3be4c1416a847683f1179233f2) 2021; 126
Blandford (bc495abd5b4a3c30727f2bae78b258d8a) 1987; 154
di Mauro (ba21d58275de36ce7b3c4d8c6cd5f69a8) 2014; 90
bc595c1a1edbea1790282b205dcc27773
Burkert (bc5d4367c2ab113348873c0cadc786a66) 1995; 447
b1cb3b1cf17792b5283c1c4b985d83433
b7afc85e2c3f8fb4997f3d0e61bf10d04
bbd59125649d939b1be97e4b3622e7abf
bda0abfb46965ef402763c944d3b12696
Fornieri (bd9aee15a58799469d4b9f9d6615ae22a) 2021; 502
Lu (b2f1e4e21fbf63a3299ed2589fd69d32d) 2006; 368
Aguilar (b9cc287f2671c3fbab8f1949bf2779409) 2015; 114
bd66bb118db0d4c0d6187d56489430bb2
b85327e989d01bcd0ae268ff37dd4a4e6
Fornengo (b269feba2a3d1bd59a6132ebd9554d802) 2014; 04
Hooper (b6c0a81fd6a53c178eb166baefa711b9a) 2009; 01
Reichherzer (b3d811db368f815bd78a40d5f9935ecc9) 2020; 498
Maurin (b0e94ff76280cacf01ef9e53585bc0a7e) 2020; 6
Aguilar (bddf8185a6e19870c0a185fa440e39a64) 2019; 122
ba7adee3f6aa6319519706a2d76660575
Di Mauro (ba4d95aa9f2985053a08875a55d974a99) 2021; 103
Aguilar (b0bf94cb1cf3a595770a0d655970231f4) 2017; 119
Genolini (b739a4c9f6a17782348ac06c687a5c600) 2018; 98
Adam (b946eff28632238733d288a0ff142823b) 2021
Cuoco (b4c3d152e1bc4528972156c6fbc9b0dee) 2019; 99
Maurin (be4d6fe1daba48a934ff783f12ffb24dc) 2014; 569
Dermer (b2dd44bd196cf46218d51162da20c6a75) 2013; 553
Graham (b0a83862f9b64c9978c94e62f22e273d0) 2006; 132
Spangler (b63ead64279cc64d14cb67a079801b784) 2011; 1366
Leane (bf0cb493a146bd52f1d2569076561f33f) 2018; 98
bf5f5c67bfdb13eee7790eb4b5eb6dd65
bfd655b2e94f122bfe062a27414ca2cb5
b7875cae1c8d6c1ef8d351ff08f2c78fd
b7c40cc2dd6ae501be66d571f3ce6fa36
Ghelfi (b83a9cdc90f875e4d8f0196a3fe919ffb) 2016; 591
b9873881f1127bb4dad3feec62fa8671f
Reinert (b9735026d329315d1d806b29cf44ca4c9) 2018; 01
Steigman (bff261a5ff6cf890af6ec58aac76eef2f) 2012; 86
Cirelli (bef97e97dda3cc0df11f653ea552aa1cc) 2011; 03
Ascasibar (b6134fa74173a53114651a15e5774b517) 2004; 352
bb478a7d98a7f2a8708a23db5e863fda9
Aguilar (b12aec55a3d4d87a9548f9bd6aa5893c7) 2018; 121
Albert (b9a81968641aa7f63e0cfcd36935ad3a4) 2017; 834
Zhao (b6b93cba23e16c6e8d395b7c1164d2437) 2021
bd5558d6657e40466bde851c3e4e7105f
Mertsch (beaa172ea124a9d1462b40c0c8fa4593f) 2014; 90
bfb34a376c76faa9d3dd07ef1591a78dd
Serpico (bcefc95f0a6ed65f860ec3b2de9393c1d) 2012; 39-40
b2f5b952af0920a0a56b958c47d126c74
Pizzolotto (b829ad7abd0e6cb7b15df7a72fce87cde) 2018; ICRC2017
bdfb592bb01b6e2fb5486becc3a327d33
Cholis (b64a0bb5a9323b8052e25be02880926fb) 2019; 99
Evoli (b2eed7e06021b0b7f55695164928ce316) 2018; 07
Duperray (b089402e4e64134418549714487726077) 2003; 68
b52caedc4d063ed700abf7ff16ad11c54
bb20ecb7883dc463c4c010dbef5ae24d9
ba669ab3fe1f9d44f56408112c24840e7
Boschini (b1283deb0965582d666874b3e3c29efa2) 2020; 889
Luque (b30678bc01ea6999e2af50ab5a1a4e54a) 2021
bb4f696e4108f82b40a2e65d004f7868a
Sudoh (b6b6b488551b8b6331dca79e5f424b1ae) 2019; 100
Heisig (b7ed337a169c952e5e479e9acf96a3efc) 2021; 36
Cummings (bf6bec102e8df4952159a84f454a0e0bd) 2016; 831
Hooper (bc66a182170f668d6fc05011057a17a35) 2020; 07
Weinrich (bc84e0d510c8a3498844766f51150a06f) 2020; 639
Aguilar (bcff86c74e7a2916604d27146d365014d) 2018; 120
Winkler (bfe0561a31542911b3629506174bda39f) 2017; 02
Evoli (b67093f7bc557b3bdc78cb8c7fbd2b1ab) 2017; 02
b5d3a23217d897c268dff323d10c20d60
b67a745e81f69245daafa92485a63b1a8
Hams (b1917257461f8c796685e9ad5e63bb08f) 2004; 611
b76a4b15765fcda490d56290358be74b8
bee47d0082c12fcd4d7ef32eb8151074c
Korsmeier (bff4bdbe478d1654c2a834d4bdffb4d2b) 2018; 97
di Mauro (bd3d446b6cfc75ed400c9f5f384bed8ed) 2014; 90
References_xml – ident: b7875cae1c8d6c1ef8d351ff08f2c78fd
  doi: 10.1016/j.physrep.2020.09.003
– volume: 90
  year: 2014
  ident: ba21d58275de36ce7b3c4d8c6cd5f69a8
  article-title: New evaluation of the antiproton production cross section for cosmic ray studies
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.085017
– year: 2021
  ident: b30678bc01ea6999e2af50ab5a1a4e54a
  article-title: Markov chain Monte Carlo analyses of the flux ratios of B, Be and Li with the DRAGON2 code
  doi: 10.1088/1475-7516/2021/07/010
– ident: b9873881f1127bb4dad3feec62fa8671f
  doi: 10.1051/0004-6361/201629526
– ident: b3f84183918bbcce913eecb6fd74a27d0
  doi: 10.1111/j.1365-2966.2004.08094.x
– ident: bd66bb118db0d4c0d6187d56489430bb2
  doi: 10.1086/323842
– volume: 103
  year: 2021
  ident: ba4d95aa9f2985053a08875a55d974a99
  article-title: Characteristics of the Galactic Center excess measured with 11 years of Fermi-LAT data
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.063029
– volume: 03
  year: 2011
  ident: bef97e97dda3cc0df11f653ea552aa1cc
  article-title: PPPC 4 DM ID: a poor particle physicist cookbook for dark matter indirect detection
  publication-title: JCAP
  doi: 10.1088/1475-7516/2012/10/E01
– volume: 110
  year: 2013
  ident: bcb9925e010750ca7deba0d4b51ebc820
  article-title: First result from the Alpha Magnetic Spectrometer on the International Space Station: precision measurement of the positron fraction in primary cosmic rays of 0.5–350 GeV
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.110.141102
– volume: 90
  year: 2014
  ident: bd3d446b6cfc75ed400c9f5f384bed8ed
  article-title: New evaluation of the antiproton production cross section for cosmic ray studies
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.085017
– volume: 114
  year: 2015
  ident: b9cc287f2671c3fbab8f1949bf2779409
  article-title: Precision measurement of the proton flux in primary cosmic rays from rigidity 1 GV to 1.8 TV with the Alpha Magnetic Spectrometer on the International Space Station
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.171103
– ident: b67a745e81f69245daafa92485a63b1a8
– volume: 639
  start-page: A131
  year: 2020
  ident: bc84e0d510c8a3498844766f51150a06f
  article-title: Combined analysis of AMS-02 (Li,Be,B)/C, N/O, 3He, and 4He data
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202037875
– volume: 834
  start-page: 110
  year: 2017
  ident: b9a81968641aa7f63e0cfcd36935ad3a4
  article-title: Searching for dark matter annihilation in recently discovered Milky Way satellites with Fermi-LAT
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/834/2/110
– ident: b85327e989d01bcd0ae268ff37dd4a4e6
  doi: 10.1016/j.physrep.2004.08.031
– ident: b2f5b952af0920a0a56b958c47d126c74
– volume: 122
  year: 2019
  ident: bddf8185a6e19870c0a185fa440e39a64
  article-title: Towards understanding the origin of cosmic-ray electrons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.101101
– volume: 119
  year: 2017
  ident: b234e7b7a38e0c9b518d83b5c85d4b8bd
  article-title: Indications for a high-rigidity break in the cosmic-ray diffusion coefficient
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.241101
– ident: bb20ecb7883dc463c4c010dbef5ae24d9
  doi: 10.1103/PhysRevResearch.2.023022
– volume: 126
  year: 2021
  ident: b95a40f3be4c1416a847683f1179233f2
  article-title: Properties of heavy secondary fluorine cosmic rays: results from the Alpha Magnetic Spectrometer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.126.081102
– ident: ba7adee3f6aa6319519706a2d76660575
– ident: bfb34a376c76faa9d3dd07ef1591a78dd
  doi: 10.1093/mnras/182.3.443
– ident: bb478a7d98a7f2a8708a23db5e863fda9
– volume: 103
  year: 2021
  ident: b742b81acc136f9122dba9d7ead12f66c
  article-title: Implications of lithium to oxygen AMS-02 spectra on our understanding of cosmic-ray diffusion
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.103016
– volume: 569
  start-page: A32
  year: 2014
  ident: be4d6fe1daba48a934ff783f12ffb24dc
  article-title: A database of charged cosmic rays
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201321344
– ident: b7afc85e2c3f8fb4997f3d0e61bf10d04
  doi: 10.1126/science.1236408
– ident: bed6eb11b0ce381a8acc66415c4acdbff
– volume: 119
  year: 2017
  ident: b0bf94cb1cf3a595770a0d655970231f4
  article-title: Observation of the identical rigidity dependence of He, C, and O cosmic rays at high rigidities by the Alpha Magnetic Spectrometer on the International Space Station
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.251101
– volume: 06
  year: 2018
  ident: bc2d4aa2c32244cca443fbd0b8c82e6bf
  article-title: Revisit of cosmic ray antiprotons from dark matter annihilation with updated constraints on the background model from AMS-02 and collider data
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/06/024
– volume: 352
  start-page: 1109
  year: 2004
  ident: b6134fa74173a53114651a15e5774b517
  article-title: On the physical origin of dark matter density profiles
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1111/j.1365-2966.2004.08005.x
– volume: 97
  year: 2018
  ident: bff4bdbe478d1654c2a834d4bdffb4d2b
  article-title: Production cross sections of cosmic antiprotons in the light of new data from the NA61 and LHCb experiments
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.97.103019
– volume: 93
  year: 2016
  ident: b811c07540ad7615d7d25f8042a51d46e
  article-title: A Predictive Analytic Model for the Solar Modulation of Cosmic Rays
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.043016
– volume: 02
  year: 2017
  ident: b67093f7bc557b3bdc78cb8c7fbd2b1ab
  article-title: Cosmic-ray propagation with DRAGON2. Part I. Numerical solver and astrophysical ingredients
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/02/015
– ident: bf5f5c67bfdb13eee7790eb4b5eb6dd65
– volume: 121
  year: 2018
  ident: b12aec55a3d4d87a9548f9bd6aa5893c7
  article-title: Precision measurement of cosmic-ray nitrogen and its primary and secondary components with the Alpha Magnetic Spectrometer on the International Space Station
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.051103
– ident: bfd655b2e94f122bfe062a27414ca2cb5
  doi: 10.1111/j.1365-2966.2009.15878.x
– volume: 90
  year: 2014
  ident: beaa172ea124a9d1462b40c0c8fa4593f
  article-title: AMS-02 data confront acceleration of cosmic ray secondaries in nearby sources
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.061301
– volume: 120
  year: 2018
  ident: bcff86c74e7a2916604d27146d365014d
  article-title: Observation of new properties of secondary cosmic rays lithium, beryllium, and boron by the Alpha Magnetic Spectrometer on the International Space Station
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.021101
– volume: 462
  start-page: 563
  year: 1996
  ident: b03e2a1c70ae9252eff5ad15026c8c36d
  article-title: The structure of cold dark matter halos
  publication-title: Astrophys. J.
  doi: 10.1086/177173
– volume: 502
  start-page: 5821
  year: 2021
  ident: bd9aee15a58799469d4b9f9d6615ae22a
  article-title: The theory of cosmic-ray scattering on pre-existing MHD modes meets data
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/stab355
– volume: 09
  year: 2014
  ident: bf1ebc919858324fa03165f870352d9b3
  article-title: The cosmic ray antiproton background for AMS-02
  publication-title: JCAP
  doi: 10.1088/1475-7516/2014/09/051
– volume: 03
  year: 2021
  ident: b79b29cd54a3cedb526297297e26fe86c
  article-title: Implications of current nuclear cross sections on secondary cosmic rays with the upcoming DRAGON2 code
  publication-title: JCAP
  doi: 10.1088/1475-7516/2021/03/099
– volume: 6
  start-page: 102
  year: 2020
  ident: b75d525e3f538afead08ac3132522c7e3
  article-title: Cosmic-ray database update: ultra-high energy, ultra-heavy, and antinuclei cosmic-ray data (CRDB v4.0)
  publication-title: Universe
  doi: 10.3390/universe6080102
– volume: 39-40
  start-page: 2
  year: 2012
  ident: bcefc95f0a6ed65f860ec3b2de9393c1d
  article-title: Astrophysical models for the origin of the positron `excess'
  publication-title: Astropart. Phys.
  doi: 10.1016/j.astropartphys.2011.08.007
– volume: 447
  start-page: L25
  year: 1995
  ident: bc5d4367c2ab113348873c0cadc786a66
  article-title: The structure of dark matter halos in dwarf galaxies
  publication-title: Astrophys. J. Lett.
  doi: 10.1086/309560
– volume: 101
  year: 2020
  ident: b069aca6346fbd1dd6bb1e09b8e53fc79
  article-title: AMS-02 beryllium data and its implication for cosmic ray transport
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.023013
– volume: 381
  start-page: 539
  year: 2002
  ident: b41298e9f3dcacee2c0cd64f512060e70
  article-title: Beta-radioactive cosmic rays in a diffusion model: test for a local bubble?
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361:20011447
– year: 2021
  ident: b6b93cba23e16c6e8d395b7c1164d2437
  article-title: Constraints on the spatially dependent cosmic-ray propagation model from Bayesian Analysis
  doi: 10.1103/PhysRevD.104.123001
– volume: 04
  year: 2014
  ident: b269feba2a3d1bd59a6132ebd9554d802
  article-title: Constraints on particle dark matter from cosmic-ray antiprotons
  publication-title: JCAP
  doi: 10.1088/1475-7516/2014/04/003
– ident: ba669ab3fe1f9d44f56408112c24840e7
  doi: 10.1086/306470
– ident: bb4f696e4108f82b40a2e65d004f7868a
  doi: 10.1111/j.1365-2966.2006.10887.x
– volume: 86
  year: 2012
  ident: bff261a5ff6cf890af6ec58aac76eef2f
  article-title: Precise Relic WIMP Abundance and its Impact on Searches for Dark Matter Annihilation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.86.023506
– ident: b5d3a23217d897c268dff323d10c20d60
– volume: 118
  year: 2017
  ident: be19968dd1745ae5186aa0b971f97f10b
  article-title: Novel dark matter constraints from antiprotons in light of AMS-02
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.191102
– ident: bbd59125649d939b1be97e4b3622e7abf
  doi: 10.1111/j.1365-2966.2011.19114.x
– volume: 98
  year: 2018
  ident: b739a4c9f6a17782348ac06c687a5c600
  article-title: Current status and desired precision of the isotopic production cross sections relevant to astrophysics of cosmic rays: Li, Be, B, C, and N
  publication-title: Phys. Rev. C
  doi: 10.1103/PhysRevC.98.034611
– volume: 498
  start-page: 5051
  year: 2020
  ident: b3d811db368f815bd78a40d5f9935ecc9
  article-title: Turbulence-level dependence of cosmic-ray parallel diffusion
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/staa2533
– ident: bdfb592bb01b6e2fb5486becc3a327d33
  doi: 10.1086/311437
– ident: b8b692dd2ba6455d7669c69dfd963e46b
– ident: bd70cdf1fc163ee24a0a7e5e06a52c623
  doi: 10.1086/423193
– volume: 9
  start-page: 227
  year: 1983
  ident: bd3651d098b4efe4f42ece5901ec289fb
  article-title: CALCULATION OF THE EQUILIBRIUM ANTI-PROTON SPECTRUM
  publication-title: J. Phys. G
  doi: 10.1088/0305-4616/9/2/015
– ident: bd5558d6657e40466bde851c3e4e7105f
  doi: 10.1086/155632
– volume: 639
  start-page: A74
  year: 2020
  ident: b4d7af20c93b1bd3c92e247a68e84eb38
  article-title: Galactic halo size in the light of recent AMS-02 data
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/202038064
– volume: 523
  start-page: A83
  year: 2010
  ident: b8846a4c734aa9b1c6f5285d7326312a4
  article-title: The dark matter density at the Sun's location
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201014385
– volume: 01
  year: 2018
  ident: b9735026d329315d1d806b29cf44ca4c9
  article-title: A precision search for WIMPs with charged cosmic rays
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/01/055
– volume: 99
  year: 2019
  ident: b64a0bb5a9323b8052e25be02880926fb
  article-title: A robust excess in the cosmic-ray antiproton spectrum: implications for annihilating dark matter
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.103026
– volume: 889
  start-page: 167
  year: 2020
  ident: b1283deb0965582d666874b3e3c29efa2
  article-title: Deciphering the local Interstellar spectra of secondary nuclei with GALPROP/HelMod framework and a hint for primary lithium in cosmic rays
  publication-title: Astrophys. J.
  doi: 10.3847/1538-4357/ab64f1
– volume: 68
  year: 2003
  ident: b089402e4e64134418549714487726077
  article-title: Parameterization of the antiproton inclusive production cross-section on nuclei
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.68.094017
– year: 2021
  ident: b946eff28632238733d288a0ff142823b
  article-title: A model with light and heavy scalars in view of the effective theory
  doi: 10.1093/ptep
– volume: 01
  year: 2009
  ident: b6c0a81fd6a53c178eb166baefa711b9a
  article-title: Pulsars as the sources of high energy cosmic ray positrons
  publication-title: JCAP
  doi: 10.1088/1475-7516/2009/01/025
– volume: 368
  start-page: 1931
  year: 2006
  ident: b2f1e4e21fbf63a3299ed2589fd69d32d
  article-title: On the origin of cold dark matter halo density profiles
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1111/j.1365-2966.2006.10270.x
– volume: 103
  year: 2021
  ident: ba58a57b4cb7cb96c73abc56a09e2a8b2
  article-title: Multimessenger constraints on the dark matter interpretation of the Fermi-LAT Galactic center excess
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.123005
– volume: 94
  year: 2016
  ident: b2ae6cd613828a86796a6533eaf91a119
  article-title: Bayesian analysis of spatial-dependent cosmic-ray propagation: astrophysical background of antiprotons and positrons
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.123007
– volume: 07
  year: 2018
  ident: b2eed7e06021b0b7f55695164928ce316
  article-title: Cosmic-ray propagation with DRAGON2: II. Nuclear interactions with the interstellar gas
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/07/006
– volume: 102
  year: 2020
  ident: bbf0f6e1c5c8173f05396b379bd60f134
  article-title: Contribution of pulsars to cosmic-ray positrons in light of recent observation of inverse-Compton halos
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.102.023015
– volume: 831
  start-page: 18
  year: 2016
  ident: bf6bec102e8df4952159a84f454a0e0bd
  article-title: Galactic cosmic rays in the local interstellar medium: Voyager 1 observations and model results
  publication-title: Astrophys. J.
  doi: 10.3847/0004-637X/831/1/18
– volume: 132
  start-page: 2685
  year: 2006
  ident: b0a83862f9b64c9978c94e62f22e273d0
  article-title: Empirical models for dark matter halos. I. Nonparametric construction of density profiles and comparison with parametric models
  publication-title: Astron. J.
  doi: 10.1086/508988
– volume: 07
  year: 2018
  ident: b1603d4cd9f0ee69293d6ce180fd4d47a
  article-title: DarkSUSY 6: an advanced tool to compute dark matter properties numerically
  publication-title: JCAP
  doi: 10.1088/1475-7516/2018/07/033
– volume: 1366
  start-page: 97
  year: 2011
  ident: b63ead64279cc64d14cb67a079801b784
  article-title: Ion-neutral collisions in the interstellar medium: wave damping and elimination of collisionless processes
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.3625594
– ident: bda337d3c6a6f086097e9eec8274cef69
  doi: 10.1086/183310
– ident: bda0abfb46965ef402763c944d3b12696
  doi: 10.1103/PhysRevResearch.2.023022
– volume: 591
  start-page: A94
  year: 2016
  ident: b83a9cdc90f875e4d8f0196a3fe919ffb
  article-title: Non-parametric determination of H and He interstellar fluxes from cosmic-ray data
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201527852
– volume: 36
  year: 2021
  ident: b7ed337a169c952e5e479e9acf96a3efc
  article-title: Cosmic-ray antiprotons in the AMS-02 era: a sensitive probe of dark matter
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732321300032
– volume: 98
  year: 2018
  ident: bf0cb493a146bd52f1d2569076561f33f
  article-title: GeV-scale thermal WIMPs: Not even slightly ruled out
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.98.023016
– volume: ICRC2017
  start-page: 227
  year: 2018
  ident: b829ad7abd0e6cb7b15df7a72fce87cde
  article-title: Looking for cosmic ray data? The ASI Cosmic Ray Database
  publication-title: PoS
  doi: 10.22323/1.301.0227
– volume: 124
  year: 2020
  ident: b89e84bb4dc5d3a25b588e2f081b52c51
  article-title: Properties of neon, magnesium, and silicon primary cosmic rays results from the Alpha Magnetic Spectrometer
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.211102
– volume: 6
  start-page: 102
  year: 2020
  ident: b0e94ff76280cacf01ef9e53585bc0a7e
  article-title: Cosmic-ray database update: ultra-high energy, ultra-heavy, and antinuclei cosmic-ray data (CRDB v4.0)
  publication-title: Universe
  doi: 10.3390/universe6080102
– volume: 99
  year: 2019
  ident: b4c3d152e1bc4528972156c6fbc9b0dee
  article-title: Scrutinizing the evidence for dark matter in cosmic-ray antiprotons
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.103014
– ident: bee47d0082c12fcd4d7ef32eb8151074c
  doi: 10.1111/j.1365-2966.2004.07836.x
– volume: 100
  year: 2019
  ident: b6b6b488551b8b6331dca79e5f424b1ae
  article-title: TeV halos are everywhere: prospects for new discoveries
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.043016
– ident: b1cb3b1cf17792b5283c1c4b985d83433
  doi: 10.1007/BF00649180
– ident: b76a4b15765fcda490d56290358be74b8
– volume: 611
  start-page: 892
  year: 2004
  ident: b1917257461f8c796685e9ad5e63bb08f
  article-title: Measurement of the abundance of radioactive Be-10 and other light isotopes in cosmic radiation up to 2-GeV/nucleon with the balloon-borne instrument ISOMAX
  publication-title: Astrophys. J.
  doi: 10.1086/422384
– ident: ba6cf794744d7ca8a4e46ea9a09ff5ed0
  doi: 10.1093/mnras/249.3.523
– volume: 02
  year: 2017
  ident: bfe0561a31542911b3629506174bda39f
  article-title: Cosmic ray antiprotons at high energies
  publication-title: JCAP
  doi: 10.1088/1475-7516/2017/02/048
– ident: b7c40cc2dd6ae501be66d571f3ce6fa36
  doi: 10.1086/501117
– volume: 553
  start-page: A34
  year: 2013
  ident: b2dd44bd196cf46218d51162da20c6a75
  article-title: Gamma rays from cosmic rays in supernova remnants
  publication-title: Astron. Astrophys.
  doi: 10.1051/0004-6361/201220394
– ident: bc595c1a1edbea1790282b205dcc27773
  doi: 10.1088/1742-6596/1690/1/012010
– volume: 154
  start-page: 1
  year: 1987
  ident: bc495abd5b4a3c30727f2bae78b258d8a
  article-title: Particle acceleration at astrophysical shocks: a theory of cosmic ray origin
  publication-title: Phys. Rept.
  doi: 10.1016/0370-1573(87)90134-7
– volume: 96
  year: 2017
  ident: b2d86e830d6f3b160ff1b08126c5b5559
  article-title: Solar and nuclear physics uncertainties in cosmic-ray propagation
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.96.103005
– ident: bdeed23e1e64efe4fdec7e771a5851162
  doi: 10.1103/PhysRevResearch.2.043017
– volume: 07
  start-page: 163
  year: 2020
  ident: bc66a182170f668d6fc05011057a17a35
  article-title: A systematic study of hidden sector dark matter:application to the gamma-ray and antiproton excesses
  publication-title: JHEP
  doi: 10.1007/JHEP07(2020)163
– ident: b52caedc4d063ed700abf7ff16ad11c54
– volume: 100
  year: 2019
  ident: b18decc9d56cfa9374a1a8fa80875a945
  article-title: Investigating the dark matter signal in the cosmic ray antiproton flux with the machine learning method
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.100.103014
– volume: 60
  start-page: 833
  year: 2017
  ident: b15d0f4b3d249f333563a60bbda84fe58
  article-title: Neutron monitors and muon detectors for solar modulation studies: 2. ϕ time series
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2016.06.027
SSID ssj0026338
Score 2.471687
Snippet Recent cosmic-ray (CR) studies have claimed the possibility of an excess on the antiproton flux over the predicted models at around 10 GeV, which can be the...
SourceID unpaywall
swepub
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 18
SubjectTerms Antiparticles
Antiprotons
cosmic ray experiments
cosmic ray theory
Cosmic rays
Cross-sections
Dark matter
dark matter simulations
Galactic halos
Lithium
Markov chains
Monte Carlo simulation
Parameters
Propagation
Spallation
Uncertainty
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t3QPwwDdax0B-AB6Q0tRtEqePFWOaeJh4oGg8Wf64SNXaJGpSofLX72yngSGhgXizpVxin8_x7y653wG8UVOeCi3GES8EOShoVKRdIB_pLMd8LFBbz_Z5mV0skk9X6dUBnPW5MFXdvfpH1AxEwUGF3Q9xecwTkUYi5Zlz3HnMeTzmeVzb4hCOspQQ-QCOFpef5998YpG_1hem6-X2iTx_utetI-qQhnEbfQZG0Qdwb1vWavddrVa_nEjnjwD3cwk_olyPtq0emR-_0Tz-72Qfw8MOsrJ5kHkCB1g-heN544Lo1XrH3jHfDjGS5hlU9I4hfxstU57xBBtWFYyAJvXbpSOGqEpWB6ZZsgrmMlyYqZr10kQbtWOOwWIT8i0aErFs2TasrtzmXSGzanPN1p4VlIWqXs9hcf7xy4eLqKvrEBlyH9vIzrTl1nCTz8yk4CoTmc0mRie6KFSiOKIRM6HRaq0018Zkzskl4GRTq5Aw4wsYlFWJx8CmU260C4xZV0stEcpyhShsMVHui3o2hGS_lNJ0pOeu9sZK-o_veS6dgqVTsHQKJodIkoKHMOrF6sD6cZfAe1pB2e3_5q6LT_fm9FOC3FCClpzg4xDeBhPrH-0owM-WX-eSLEQ2W-mr3vMhxL0F_t0oT_5Z4iXcd72QfHkKg3azxVeEwlr9uttkN_zZJGk
  priority: 102
  providerName: Unpaywall
Title Combined analyses of the antiproton production from cosmic-ray interactions and its possible dark matter origin
URI https://iopscience.iop.org/article/10.1088/1475-7516/2021/11/018
https://www.proquest.com/docview/2595151893
https://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-203201
https://iopscience.iop.org/article/10.1088/1475-7516/2021/11/018/pdf
UnpaywallVersion publishedVersion
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1475-7516
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0026338
  issn: 1475-7516
  databaseCode: IOP
  dateStart: 20030101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB71cQAOUF5qoFR7oByQnGTjxzrHCKiqHtoeGiin1b4sWU1sK3aEwq9nxuuEFgm1VS_WWvLI6_Gs9_vWO98AfFQhj4UWw4BnAgmKMyrQtJDvcC536VA4bVu1z7PkZBqdXsVXN7L487LqPv19bHqhYO_CbkNcOuCRiAMR84SIOx9wPhjydBt2wxTRMaXwnV9sKFeCDGydt_M_01sz0jbe9TbY9AKiz-DJsqjU6peazW5MQMcvQK277vedXPeXje6b3_-oOj7m2fbgeYdO2cRf_xK2XPEK9ic1rZeX8xX7xNq2Xw6pX0OJnxOk1s4y1YqbuJqVGUNMiedNThoQZcEqLyqLAcAomYWZsp7nJlioFSOxioVPrajRxLK8qVlV0jidOWbV4prNWwFQ5gt4vYHp8bfLLydBV8IhMMgUm8COteXWcJOOzSjjKhGJTUZGRzrLVKS4c0aMhXZWa6W5NiYhPosYycZWOYSHb2GnKAu3DywMudG0BmapbFoklOXKOWGzkaKf50kPovVrlKbTN6cyGzPZ_mdPU0nOleRcSc5F7iPRuT3ob8wqL_Bxl8FnfHuyG-r1XRcfrEPprwUyTkSRHJFiD458eG1uTWrfX_PvE4nRIeulbAvc8x4MNtF3v16-e0gv38NTOvMplgew0yyW7gNirUYftsMJj-fhj0PYnZ5dTH7-AdtwH8M
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9tQ-LjYeNjaIUN_AA8IKWp2yROHytKNT409sDQ3ix_RarWJlGTCpW_nrs4DRsSGog3R8nJzvls38_2_Q7glRrxWGgxCHgmEKA4owJNG_kO13KXDoTTtmH7PEtOL6KPl_HlDky7WJiibKf-PhY9UbBXYXshLg15JOJAxDwh4M5DzsMBT8PSZrtwpyEroTC-L-cd7EoQhW1jd_4kfmNV2sWabzqcnkT0Adxb56XafFeLxbVFaHYAbtt8f_fkqr-udd_8-I3Z8X__7yHst14qm3iZR7Dj8sdwNKlo37xYbtgb1pT9tkj1BAqcVhBiO8tUQ3LiKlZkDH1LfK7nxAVR5Kz05LJoCIyCWpgpquXcBCu1YURasfIhFhWKWDavK1YWNF4Xjlm1umLLhgiU-UReh3Axe__13WnQpnIIDCLGOrBjbbk13KRjM8y4SkRik6HRkc4yFSnunBFjoZ3VWmmujUkI16KvZGOrHLqJT2EvL3J3BGw04kbTXpil9GmRUJYr54TNhooO0ZMeRNuulKblOad0GwvZnLenqSQFS1KwJAUjBpKo4B70O7HSE33cJvAWe1C2Q7667ePjrTn9kkDkid4kR4-xB6-9iXVVE-v3dP5tItFCZLWWTaJ73oOws8C_a-Wzf2nlS7h7Pp3Jzx_OPj2H-_TCR10ew169WrsTdL9q_aIZXT8B5Ccieg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED9t3QPwwDdax0B-AB6Q0tRtEqePFWOaeJh4oGg8Wf64SNXaJGpSofLX72yngSGhgXizpVxin8_x7y653wG8UVOeCi3GES8EOShoVKRdIB_pLMd8LFBbz_Z5mV0skk9X6dUBnPW5MFXdvfpH1AxEwUGF3Q9xecwTkUYi5Zlz3HnMeTzmeVzb4hCOspQQ-QCOFpef5998YpG_1hem6-X2iTx_utetI-qQhnEbfQZG0Qdwb1vWavddrVa_nEjnjwD3cwk_olyPtq0emR-_0Tz-72Qfw8MOsrJ5kHkCB1g-heN544Lo1XrH3jHfDjGS5hlU9I4hfxstU57xBBtWFYyAJvXbpSOGqEpWB6ZZsgrmMlyYqZr10kQbtWOOwWIT8i0aErFs2TasrtzmXSGzanPN1p4VlIWqXs9hcf7xy4eLqKvrEBlyH9vIzrTl1nCTz8yk4CoTmc0mRie6KFSiOKIRM6HRaq0018Zkzskl4GRTq5Aw4wsYlFWJx8CmU260C4xZV0stEcpyhShsMVHui3o2hGS_lNJ0pOeu9sZK-o_veS6dgqVTsHQKJodIkoKHMOrF6sD6cZfAe1pB2e3_5q6LT_fm9FOC3FCClpzg4xDeBhPrH-0owM-WX-eSLEQ2W-mr3vMhxL0F_t0oT_5Z4iXcd72QfHkKg3azxVeEwlr9uttkN_zZJGk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combined+analyses+of+the+antiproton+production+from+cosmic-ray+interactions+and+its+possible+dark+matter+origin&rft.jtitle=Journal+of+cosmology+and+astroparticle+physics&rft.au=De%C2%A0La%C2%A0Torre%C2%A0Luque%2C+Pedro&rft.date=2021-11-01&rft.pub=IOP+Publishing&rft.eissn=1475-7516&rft.volume=2021&rft.issue=11&rft_id=info:doi/10.1088%2F1475-7516%2F2021%2F11%2F018&rft.externalDocID=JCAP_095P_0721
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1475-7516&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1475-7516&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1475-7516&client=summon