Kilonova Detectability with Wide-field Instruments

Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r -process enrichment, among other astrophysical...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 927; no. 2; pp. 163 - 178
Main Authors Chase, Eve A., O’Connor, Brendan, Fryer, Christopher L., Troja, Eleonora, Korobkin, Oleg, Wollaeger, Ryan T., Ristic, Marko, Fontes, Christopher J., Hungerford, Aimee L., Herring, Angela M.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.03.2022
IOP Publishing
American Astronomical Society
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/ac3d25

Cover

Abstract Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r -process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to z ∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out to z ∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters.
AbstractList Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r-process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to z ∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out to z ∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters.
Abstract Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r -process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to z ∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out to z ∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters.
Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r -process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to z ∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out to z ∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters.
Author Herring, Angela M.
O’Connor, Brendan
Chase, Eve A.
Ristic, Marko
Fontes, Christopher J.
Troja, Eleonora
Wollaeger, Ryan T.
Hungerford, Aimee L.
Fryer, Christopher L.
Korobkin, Oleg
Author_xml – sequence: 1
  givenname: Eve A.
  orcidid: 0000-0003-1005-0792
  surname: Chase
  fullname: Chase, Eve A.
  organization: Northwestern University Department of Physics and Astronomy, Evanston, IL 60208, USA
– sequence: 2
  givenname: Brendan
  orcidid: 0000-0002-9700-0036
  surname: O’Connor
  fullname: O’Connor, Brendan
  organization: Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
– sequence: 3
  givenname: Christopher L.
  orcidid: 0000-0003-2624-0056
  surname: Fryer
  fullname: Fryer, Christopher L.
  organization: The University of New Mexico Department of Physics and Astronomy, Albuquerque, NM 87131, USA
– sequence: 4
  givenname: Eleonora
  orcidid: 0000-0002-1869-7817
  surname: Troja
  fullname: Troja, Eleonora
  organization: Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
– sequence: 5
  givenname: Oleg
  orcidid: 0000-0003-4156-5342
  surname: Korobkin
  fullname: Korobkin, Oleg
  organization: Joint Institute for Nuclear Astrophysics—Center for the Evolution of the Elements, USA
– sequence: 6
  givenname: Ryan T.
  orcidid: 0000-0003-3265-4079
  surname: Wollaeger
  fullname: Wollaeger, Ryan T.
  organization: Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 7
  givenname: Marko
  orcidid: 0000-0001-7042-4472
  surname: Ristic
  fullname: Ristic, Marko
  organization: Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623, USA
– sequence: 8
  givenname: Christopher J.
  orcidid: 0000-0003-1087-2964
  surname: Fontes
  fullname: Fontes, Christopher J.
  organization: Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
– sequence: 9
  givenname: Aimee L.
  orcidid: 0000-0001-6893-0608
  surname: Hungerford
  fullname: Hungerford, Aimee L.
  organization: Joint Institute for Nuclear Astrophysics—Center for the Evolution of the Elements, USA
– sequence: 10
  givenname: Angela M.
  orcidid: 0000-0003-0260-8629
  surname: Herring
  fullname: Herring, Angela M.
  organization: Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
BackLink https://www.osti.gov/biblio/1854419$$D View this record in Osti.gov
BookMark eNp9kMtLwzAAh4NMcJvePQ7Fm3V5dWmOMl_DgRdFbyHNg2V0SW0yZf-9LRUFkZ1CwveFj98IDHzwBoBTBK9IQdkU5aTIKMnZVCqicX4Ahj9PAzCEENJsRtjbERjFuO6umPMhwI-uCj58yMmNSUYlWbrKpd3k06XV5NVpk1lnKj1Z-Jia7cb4FI_BoZVVNCff5xi83N0-zx-y5dP9Yn69zBSFLGWaI6sMQggTXRJoS6iNtYZazjFRzEJmNDWGFlAyZEvMcq5K2SqQKq7LgozBWf9viMmJqFzbt1LB-zZToCKnFPEWOu-hugnvWxOTWIdt49sugWcUQkSLHLYU7CnVhBgbY0XduI1sdgJB0c0nuq1Et5Xo52uV2R-lDZDJBZ8a6ap94mUvulD_xuzBL_7BZb0WHDOBBZoRUWtLvgCyYZEW
CitedBy_id crossref_primary_10_1093_mnras_stad257
crossref_primary_10_1093_mnrasl_slac101
crossref_primary_10_1093_mnras_stac1982
crossref_primary_10_1007_s41114_021_00034_3
crossref_primary_10_1051_0004_6361_202245340
crossref_primary_10_3847_1538_4365_ac617c
crossref_primary_10_3390_universe9060245
crossref_primary_10_3847_1538_4357_ad0238
crossref_primary_10_1016_j_astropartphys_2023_102904
crossref_primary_10_1088_1538_3873_ad8b6a
crossref_primary_10_1093_mnras_stad3919
crossref_primary_10_1093_mnras_stac2792
crossref_primary_10_3847_1538_4357_acaa9e
crossref_primary_10_3847_1538_4357_ad9c77
crossref_primary_10_1093_mnras_stae951
crossref_primary_10_3390_universe10010010
crossref_primary_10_3847_1538_4357_ac5d54
crossref_primary_10_3847_1538_4357_ac7f33
crossref_primary_10_3847_1538_4357_acc73b
crossref_primary_10_1093_mnras_stac2920
crossref_primary_10_3847_1538_4357_aca527
crossref_primary_10_3847_1538_4357_ad0462
crossref_primary_10_3847_2041_8213_acca70
crossref_primary_10_1103_PhysRevLett_132_191003
crossref_primary_10_3847_1538_4357_ad4029
crossref_primary_10_1088_1674_4527_adba28
crossref_primary_10_3847_1538_4357_ac8d00
crossref_primary_10_3390_universe10120441
crossref_primary_10_3390_universe9020105
crossref_primary_10_3389_fspas_2024_1386748
crossref_primary_10_1093_mnras_stad1102
crossref_primary_10_1103_PhysRevD_109_043053
crossref_primary_10_1093_mnras_stad2115
crossref_primary_10_1103_PhysRevD_107_123519
crossref_primary_10_3847_1538_4357_acf3dc
crossref_primary_10_3847_2041_8213_ac9b41
crossref_primary_10_1093_mnras_stac2342
crossref_primary_10_3847_1538_4357_ad06b0
crossref_primary_10_1088_1361_6382_ad7b99
crossref_primary_10_1093_mnras_stae080
crossref_primary_10_1103_PhysRevD_107_124007
crossref_primary_10_1093_mnras_stac3052
crossref_primary_10_3847_1538_4357_ac9cd4
Cites_doi 10.1086/342935
10.1093/mnras/staa1845
10.3847/1538-4357/ab6a98
10.1038/s41467-018-06558-7
10.3847/1538-4357/835/1/64
10.1093/mnras/stz2248
10.1038/s41550-017-0285-z
10.1086/184740
10.1086/145583
10.1088/0264-9381/32/11/115012
10.1088/0067-0049/182/1/80
10.1088/1361-6382/abd594
10.1006/adnd.1995.1002
10.1088/0004-637X/815/2/82
10.1111/j.1365-2966.2010.16864.x
10.3847/2041-8213/ab75f5
10.3847/1538-4357/abafaa
10.3847/1538-4357/aac08b
10.3847/1538-4357/aa76db
10.3847/2041-8213/ab4ad8
10.1093/pasj/psx118
10.1088/1538-3873/ab006c
10.3847/2041-8213/aaacd4
10.3847/2041-8213/aa8f41
10.3847/2041-8213/aa90b6
10.1088/0004-637X/725/1/496
10.1093/mnras/stab221
10.1038/308434a0
10.3847/2041-8213/ac4259
10.1093/mnras/staa479
10.1088/0067-0049/214/2/28
10.1007/s41114-020-00026-9
10.1051/0004-6361/201935443
10.1126/science.aap9455
10.3847/1538-4357/ac4508
10.1088/0004-637X/767/2/124
10.3847/1538-3881/aac387
10.3847/2041-8213/aa920c
10.1038/ncomms8323
10.1016/j.ascom.2020.100425
10.1051/0004-6361/202037669
10.3847/1538-4357/abeb71
10.3847/2041-8213/aa8edf
10.1051/0004-6361/201833910
10.1086/307259
10.3847/2041-8213/aa9d82
10.1117/12.2562842
10.3847/1538-4357/aac206
10.1103/PhysRevX.11.021053
10.1126/science.aap9580
10.3847/1538-4357/ac04b4
10.1088/1538-3873/aaecbe
10.3847/1538-4357/aaad67
10.3847/1538-4357/ab70b9
10.1109/MCSE.2007.55
10.1088/0264-9381/27/19/194002
10.3847/1538-4357/ab6a1b
10.3847/1538-4357/abe1b5
10.3847/2041-8213/ab271c
10.1086/307992
10.3847/1538-4357/ab042c
10.1088/0067-0049/209/2/36
10.1038/s41550-018-0658-y
10.1093/mnras/sty1018
10.1038/nature24290
10.3847/0004-637X/816/2/61
10.1038/nature12505
10.3847/2041-8213/aa91c9
10.1088/0004-637X/696/2/1871
10.1086/186969
10.1126/science.aaq0186
10.3847/0004-637X/829/2/110
10.3847/2041-8213/aa8fc7
10.1051/0004-6361/201424973
10.3847/1538-4365/ab4ea2
10.1093/mnras/stz891
10.1126/science.aap9811
10.1007/s41114-019-0024-0
10.1088/0004-6256/150/5/150
10.1093/mnras/staa2798
10.1103/PhysRevD.97.104064
10.1093/mnras/staa3032
10.1088/0264-9381/28/12/125023
10.1088/0004-637X/814/1/25
10.1093/mnras/stab2086
10.1103/PhysRevLett.119.161101
10.1103/PhysRevD.47.2198
10.1088/0004-6256/147/4/79
10.3847/2041-8213/aab267
10.3847/1538-4357/abae61
10.1093/mnras/stu2261
10.3847/1538-4357/abd2c3
10.1038/ncomms12898
10.1038/s41586-020-2649-2
10.1093/mnras/stab2189
10.1117/12.2311865
10.3847/1538-4357/abc74a
10.3847/1538-4357/abc69e
10.3847/2041-8213/ab960f
10.3847/2041-8213/ac082e
10.1093/mnrasl/slab046
10.3847/2041-8213/aa9059
10.1126/science.aaq0049
10.1086/155148
10.3847/2041-8213/aa9c84
10.1088/2041-8205/789/1/L5
10.3847/1538-4357/ac0d03
10.1086/673168
10.1088/1742-6596/610/1/012007
10.1103/PhysRevX.9.031040
10.3847/1538-4357/ab8bdb
10.1086/311680
10.1093/mnras/stab132
10.1117/12.2561008
10.1088/1361-6382/ab41d6
10.1086/186493
10.3847/1538-4357/ac0bc7
10.1038/s41550-019-0964-z
10.1103/PhysRevD.102.043015
10.1038/nature24291
10.1093/mnras/stac013
10.1038/nature24453
10.1093/mnras/staa1252
10.1088/0004-6256/150/6/172
10.1093/mnras/staa485
10.1007/s11214-005-5095-4
10.1051/0004-6361/202040231
10.1088/2041-8205/750/1/L22
10.1111/j.1365-2966.2012.21859.x
10.1038/nature24298
10.1038/nature24303
10.1086/149737
10.3847/1538-4357/ab07b6
10.3847/0004-637X/820/2/136
10.3847/1538-4357/ab38bb
10.3847/2041-8213/aa905c
10.3847/2041-8213/aa92c0
10.1088/2041-8205/774/2/L23
10.1086/312343
10.3847/2041-8205/823/2/L33
10.1017/pasa.2017.65
10.3847/2041-8213/aa8f94
10.1088/1361-6382/aa51f4
10.3847/1538-4357/abc335
10.1088/1361-6382/aa68a9
10.1117/12.2232898
10.1093/mnras/stw1746
10.3847/1538-4365/ab9c19
10.1117/12.2561210
10.1038/340126a0
10.1093/mnras/sty2174
10.1038/s41550-019-0892-y
10.1126/science.aau8815
10.3847/2041-8205/829/1/L15
10.1038/s41592-019-0686-2
10.1051/0004-6361/201322068
10.1088/0953-4075/48/14/144014
10.3847/2041-8213/aa9029
10.1088/0264-9381/32/2/024001
10.1086/107297
10.1086/181612
10.1093/mnras/stx1987
10.3847/1538-4357/ac0aec
10.1093/mnras/stab1523
10.1103/PhysRevResearch.4.013046
10.1093/mnras/stz2255
10.1093/mnras/stv721
ContentType Journal Article
Copyright 2022. The Author(s). Published by the American Astronomical Society.
2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. The Author(s). Published by the American Astronomical Society.
– notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID O3W
TSCCA
AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
OTOTI
DOI 10.3847/1538-4357/ac3d25
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
Database_xml – sequence: 1
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
ExternalDocumentID 1854419
10_3847_1538_4357_ac3d25
apjac3d25
GrantInformation_xml – fundername: National Aeronautics and Space Administration (NASA)
  grantid: NNX16AB66G
  funderid: https://doi.org/10.13039/100000104
– fundername: National Science Foundation (NSF)
  grantid: AST-1909534
  funderid: https://doi.org/10.13039/100000001
– fundername: U.S. Department of Energy (DOE)
  grantid: 89233218CNA000001
  funderid: https://doi.org/10.13039/100000015
– fundername: National Aeronautics and Space Administration (NASA)
  grantid: 80NSSC20K0389
  funderid: https://doi.org/10.13039/100000104
– fundername: National Aeronautics and Space Administration (NASA)
  grantid: NNX17AB18G
  funderid: https://doi.org/10.13039/100000104
– fundername: National Science Foundation (NSF)
  grantid: DGE-1450006
  funderid: https://doi.org/10.13039/100000001
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
TSCCA
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c407t-d91fce11123db30fb0deffe4f9923c7f07ed4ee480a71fb2759cbafce04c9db83
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Fri May 19 00:44:38 EDT 2023
Wed Aug 13 11:02:34 EDT 2025
Tue Jul 01 03:24:52 EDT 2025
Thu Apr 24 22:51:12 EDT 2025
Tue Mar 15 22:40:23 EDT 2022
Wed Aug 21 03:33:48 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-d91fce11123db30fb0deffe4f9923c7f07ed4ee480a71fb2759cbafce04c9db83
Notes AAS32399
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
89233218CNA000001
ORCID 0000-0001-7042-4472
0000-0003-4156-5342
0000-0003-1005-0792
0000-0001-6893-0608
0000-0003-3265-4079
0000-0003-1087-2964
0000-0002-9700-0036
0000-0003-0260-8629
0000-0002-1869-7817
0000-0003-2624-0056
0000000168930608
0000000341565342
0000000332654079
0000000310872964
0000000326240056
0000000297000036
0000000170424472
0000000302608629
0000000310050792
0000000218697817
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ac3d25
PQID 2640014850
PQPubID 4562441
PageCount 16
ParticipantIDs iop_journals_10_3847_1538_4357_ac3d25
proquest_journals_2640014850
crossref_primary_10_3847_1538_4357_ac3d25
osti_scitechconnect_1854419
crossref_citationtrail_10_3847_1538_4357_ac3d25
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
– name: United States
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2022
Publisher The American Astronomical Society
IOP Publishing
American Astronomical Society
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
– name: American Astronomical Society
References Utsumi (apjac3d25bib169) 2017; 69
O’Connor (apjac3d25bib131) 2021; 502
Oke (apjac3d25bib132) 1968; 154
Popham (apjac3d25bib140) 1999; 518
Frostig (apjac3d25bib67) 2020; 11447
Rosswog (apjac3d25bib147) 2017; 34
Valenti (apjac3d25bib170) 2017; 848
Metzger (apjac3d25bib119) 2019; 23
Cowperthwaite (apjac3d25bib47) 2015; 814
Kasen (apjac3d25bib95) 2017; 551
Akutsu (apjac3d25bib15) 2019; 3
Kessler (apjac3d25bib99) 2015; 150
Zhu (apjac3d25bib180) 2021; 906
Côté (apjac3d25bib42) 2018; 855
Humason (apjac3d25bib89) 1956; 61
LVC (apjac3d25bib117) 2019; 24168
Gompertz (apjac3d25bib76) 2018; 860
Pian (apjac3d25bib138) 2017; 551
Li (apjac3d25bib111) 1998; 507
Villar (apjac3d25bib171) 2017; 851
Coulter (apjac3d25bib45) 2017; 358
Finn (apjac3d25bib60) 1993; 47
Yang (apjac3d25bib179) 2015; 6
Paterson (apjac3d25bib136) 2021; 912
Korobkin (apjac3d25bib103) 2012; 426
Wollaeger (apjac3d25bib176) 2018; 478
Fontes (apjac3d25bib64) 2020; 493
Ghirlanda (apjac3d25bib72) 2019; 363
Goldstein (apjac3d25bib73) 2020; 895
Roming (apjac3d25bib145) 2005; 120
Soares-Santos (apjac3d25bib156) 2017; 848
Cowperthwaite (apjac3d25bib48) 2017; 848
Dyer (apjac3d25bib54) 2018; 10704
Norris (apjac3d25bib129) 1984; 308
Rastinejad (apjac3d25bib142) 2021; 916
Wollaeger (apjac3d25bib177) 2014; 214
Coughlin (apjac3d25bib44) 2018; 480
Lattimer (apjac3d25bib109) 1977; 213
Dichiara (apjac3d25bib51) 2021; 923
Korobkin (apjac3d25bib104) 2021; 910
Drout (apjac3d25bib52) 2017; 358
Jin (apjac3d25bib92) 2020; 4
Kourkchi (apjac3d25bib105) 2017; 843
Groot (apjac3d25bib78) 2019; 3
Andreoni (apjac3d25bib18) 2020; 890
Abbott (apjac3d25bib10) 2021a; 11
Kulkarni (apjac3d25bib107) 2005
Oates (apjac3d25bib130) 2021; 507
Banerji (apjac3d25bib27) 2015; 446
Kasen (apjac3d25bib94) 2015; 450
Planck Collaboration (apjac3d25bib139) 2020; 641
Eichler (apjac3d25bib56) 1989; 340
Astropy Collaboration (apjac3d25bib25) 2013; 558
Bellm (apjac3d25bib33) 2019; 131
Goldstein (apjac3d25bib74) 2017; 848
Barnes (apjac3d25bib30) 2021; 918
Ackley (apjac3d25bib14) 2020; 643
Nissanke (apjac3d25bib127) 2010; 725
Abbott (apjac3d25bib9) 2020c; 896
Hounsell (apjac3d25bib88) 2018; 867
Lourie (apjac3d25bib115) 2020; 11447
Sneden (apjac3d25bib155) 2009; 182
Artale (apjac3d25bib22) 2020; 495
Dyer (apjac3d25bib55) 2020; 11445
Pankow (apjac3d25bib135) 2018; 854
Tanvir (apjac3d25bib162) 2013; 500
Möller (apjac3d25bib122) 1995; 59
Aasi (apjac3d25bib1) 2015; 32
Flaugher (apjac3d25bib61) 2015; 150
Chen (apjac3d25bib40) 2021; 38
Abbott (apjac3d25bib5) 2017d; 848
Arcavi (apjac3d25bib20) 2018; 855
Abbott (apjac3d25bib4) 2017c; 119
Kasliwal (apjac3d25bib97) 2017; 358
Abbott (apjac3d25bib12) 2020d; 102
Chornock (apjac3d25bib41) 2017; 848
Evans (apjac3d25bib57) 2017; 358
Lipunov (apjac3d25bib114) 2017; 850
Winteler (apjac3d25bib174) 2012; 750
Lippuner (apjac3d25bib112) 2017; 472
Coughlin (apjac3d25bib43) 2019; 885
Hunter (apjac3d25bib90) 2007; 9
Blanton (apjac3d25bib35) 2003; 125
Nicholl (apjac3d25bib126) 2021; 505
Abbott (apjac3d25bib2) 2017a; 34
Troja (apjac3d25bib165) 2019a; 489
Troja (apjac3d25bib166) 2017; 551
Brown (apjac3d25bib38) 2013; 125
de Wet (apjac3d25bib50) 2021; 649
Abbott (apjac3d25bib7) 2020a; 892
Wollaeger (apjac3d25bib175) 2021; 918
Lattimer (apjac3d25bib110) 1974; 192
Banerjee (apjac3d25bib26) 2020; 901
Thakur (apjac3d25bib164) 2020; 499
Savchenko (apjac3d25bib149) 2017; 848
Punturo (apjac3d25bib141) 2010; 27
Sagiv (apjac3d25bib148) 2014; 147
Ivezić (apjac3d25bib91) 2019; 873
Wollaeger (apjac3d25bib178) 2013; 209
Fong (apjac3d25bib63) 2021; 906
Hogg (apjac3d25bib84) 2002
Bartos (apjac3d25bib31) 2016; 816
Becerra (apjac3d25bib32) 2021; 507
LVC (apjac3d25bib116) 2017; 21513
Shappee (apjac3d25bib152) 2017; 358
Steeghs (apjac3d25bib159) 2022; 511
Even (apjac3d25bib59) 2020; 899
Berger (apjac3d25bib34) 2013; 774
Arcavi (apjac3d25bib21) 2017; 551
Fryer (apjac3d25bib69) 1999; 526
WFIRST SDT Project (apjac3d25bib71) 2015; 610
Jin (apjac3d25bib93) 2016; 7
Gompertz (apjac3d25bib75) 2020; 497
Troja (apjac3d25bib168) 2019b; 489
Soares-Santos (apjac3d25bib157) 2016; 823
Sutherland (apjac3d25bib160) 2015; 575
Abbott (apjac3d25bib11) 2021b; 915
Symbalisty (apjac3d25bib161) 1982; 22
Lippuner (apjac3d25bib113) 2015; 815
Guillochon (apjac3d25bib79) 2017; 835
Kouveliotou (apjac3d25bib106) 1993; 413
Schutz (apjac3d25bib150) 2011; 28
Abbott (apjac3d25bib3) 2017b; 848
Rodrigo (apjac3d25bib144) 2020
Frostig (apjac3d25bib68) 2022; 926
Kasliwal (apjac3d25bib96) 2020; 905
Metzger (apjac3d25bib120) 2010; 406
Virtanen (apjac3d25bib172) 2020; 17
Scolnic (apjac3d25bib151) 2018; 852
Andreoni (apjac3d25bib17) 2021a; 918
Tanvir (apjac3d25bib163) 2017; 848
Paczynski (apjac3d25bib133) 1986; 308
Rossi (apjac3d25bib146) 2020; 493
Harris (apjac3d25bib81) 2020; 585
Hosseinzadeh (apjac3d25bib86) 2019; 880
Freiburghaus (apjac3d25bib66) 1999; 525
Gehrels (apjac3d25bib70) 2016; 820
Narayan (apjac3d25bib124) 1992; 395
King (apjac3d25bib100) 1952; 115
Mills (apjac3d25bib121) 2018; 97
Nissanke (apjac3d25bib128) 2013; 767
Page (apjac3d25bib134) 2020; 499
Ristic (apjac3d25bib143) 2022; 4
Acernese (apjac3d25bib13) 2015; 32
Barbieri (apjac3d25bib28) 2019; 625
Abbott (apjac3d25bib6) 2019; 9
Kasliwal (apjac3d25bib98) 2014; 789
Klingler (apjac3d25bib101) 2019; 245
Klingler (apjac3d25bib102) 2021; 907
Bloemen (apjac3d25bib37) 2015
Holmbeck (apjac3d25bib85) 2020; 249
Foley (apjac3d25bib62) 2019; 51
Troja (apjac3d25bib167) 2018; 9
Andreoni (apjac3d25bib19) 2021b
Morgan (apjac3d25bib123) 2020; 901
Graham (apjac3d25bib77) 2019; 131
Spergel (apjac3d25bib158) 2015
Cowperthwaite (apjac3d25bib49) 2019; 874
Abbott (apjac3d25bib8) 2020b; 23
Evans (apjac3d25bib58) 2016; 462
Perley (apjac3d25bib137) 2009; 696
Fontes (apjac3d25bib65) 2015; 48
Covino (apjac3d25bib46) 2017; 1
Barnes (apjac3d25bib29) 2016; 829
Hotokezaka (apjac3d25bib87) 2020; 891
McMahon (apjac3d25bib118) 2013; 154
Dyer (apjac3d25bib53) 2020
Hall (apjac3d25bib80) 2019; 36
Lamb (apjac3d25bib108) 2019; 883
Singer (apjac3d25bib153) 2016; 829
Ascenzi (apjac3d25bib23) 2019; 486
Bruni (apjac3d25bib39) 2021; 505
Heinzel (apjac3d25bib82) 2021; 502
Nicholl (apjac3d25bib125) 2017; 848
Herner (apjac3d25bib83) 2020; 33
Watson (apjac3d25bib173) 2016; 9910
Blinnikov (apjac3d25bib36) 1984; 10
Smartt (apjac3d25bib154) 2017; 551
Astropy Collaboration (apjac3d25bib24) 2018; 156
Andreoni (apjac3d25bib16) 2017; 34
References_xml – volume: 125
  start-page: 2348
  year: 2003
  ident: apjac3d25bib35
  publication-title: AJ
  doi: 10.1086/342935
– volume: 497
  start-page: 726
  year: 2020
  ident: apjac3d25bib75
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1845
– volume: 891
  start-page: 152
  year: 2020
  ident: apjac3d25bib87
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6a98
– volume: 9
  start-page: 4089
  year: 2018
  ident: apjac3d25bib167
  publication-title: NatCo
  doi: 10.1038/s41467-018-06558-7
– volume: 835
  start-page: 64
  year: 2017
  ident: apjac3d25bib79
  publication-title: ApJ
  doi: 10.3847/1538-4357/835/1/64
– year: 2002
  ident: apjac3d25bib84
– volume: 489
  start-page: 1919
  year: 2019b
  ident: apjac3d25bib168
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2248
– volume: 1
  start-page: 791
  year: 2017
  ident: apjac3d25bib46
  publication-title: NatAs
  doi: 10.1038/s41550-017-0285-z
– volume: 24168
  start-page: 1
  year: 2019
  ident: apjac3d25bib117
  publication-title: GCN Circ.
– volume: 308
  start-page: L43
  year: 1986
  ident: apjac3d25bib133
  publication-title: ApJL
  doi: 10.1086/184740
– volume: 115
  start-page: 580
  year: 1952
  ident: apjac3d25bib100
  publication-title: ApJ
  doi: 10.1086/145583
– volume: 32
  start-page: 074001
  year: 2015
  ident: apjac3d25bib1
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/11/115012
– volume: 182
  start-page: 80
  year: 2009
  ident: apjac3d25bib155
  publication-title: ApJS
  doi: 10.1088/0067-0049/182/1/80
– volume: 38
  start-page: 055010
  year: 2021
  ident: apjac3d25bib40
  publication-title: CQGra
  doi: 10.1088/1361-6382/abd594
– volume: 59
  start-page: 185
  year: 1995
  ident: apjac3d25bib122
  publication-title: ADNDT
  doi: 10.1006/adnd.1995.1002
– volume: 815
  start-page: 82
  year: 2015
  ident: apjac3d25bib113
  publication-title: ApJ
  doi: 10.1088/0004-637X/815/2/82
– volume: 406
  start-page: 2650
  year: 2010
  ident: apjac3d25bib120
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16864.x
– volume: 892
  start-page: L3
  year: 2020a
  ident: apjac3d25bib7
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab75f5
– year: 2005
  ident: apjac3d25bib107
– volume: 901
  start-page: 83
  year: 2020
  ident: apjac3d25bib123
  publication-title: ApJ
  doi: 10.3847/1538-4357/abafaa
– volume: 867
  start-page: 23
  year: 2018
  ident: apjac3d25bib88
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac08b
– volume: 843
  start-page: 16
  year: 2017
  ident: apjac3d25bib105
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa76db
– volume: 885
  start-page: L19
  year: 2019
  ident: apjac3d25bib43
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab4ad8
– volume: 69
  start-page: 101
  year: 2017
  ident: apjac3d25bib169
  publication-title: PASJ
  doi: 10.1093/pasj/psx118
– volume: 131
  start-page: 078001
  year: 2019
  ident: apjac3d25bib77
  publication-title: PASP
  doi: 10.1088/1538-3873/ab006c
– volume: 854
  start-page: L25
  year: 2018
  ident: apjac3d25bib135
  publication-title: ApJL
  doi: 10.3847/2041-8213/aaacd4
– volume: 848
  start-page: L14
  year: 2017
  ident: apjac3d25bib74
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa8f41
– volume: 848
  start-page: L27
  year: 2017
  ident: apjac3d25bib163
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa90b6
– volume: 725
  start-page: 496
  year: 2010
  ident: apjac3d25bib127
  publication-title: ApJ
  doi: 10.1088/0004-637X/725/1/496
– volume: 502
  start-page: 3057
  year: 2021
  ident: apjac3d25bib82
  publication-title: MNRAS
  doi: 10.1093/mnras/stab221
– volume: 308
  start-page: 434
  year: 1984
  ident: apjac3d25bib129
  publication-title: Natur
  doi: 10.1038/308434a0
– volume: 10
  start-page: 177
  year: 1984
  ident: apjac3d25bib36
  publication-title: SvAL
– volume: 923
  start-page: L32
  year: 2021
  ident: apjac3d25bib51
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac4259
– volume: 493
  start-page: 3379
  year: 2020
  ident: apjac3d25bib146
  publication-title: MNRAS
  doi: 10.1093/mnras/staa479
– volume: 214
  start-page: 28
  year: 2014
  ident: apjac3d25bib177
  publication-title: ApJS
  doi: 10.1088/0067-0049/214/2/28
– volume: 23
  start-page: 3
  year: 2020b
  ident: apjac3d25bib8
  publication-title: LRR
  doi: 10.1007/s41114-020-00026-9
– volume: 625
  start-page: A152
  year: 2019
  ident: apjac3d25bib28
  publication-title: A&A
  doi: 10.1051/0004-6361/201935443
– volume: 358
  start-page: 1559
  year: 2017
  ident: apjac3d25bib97
  publication-title: Sci
  doi: 10.1126/science.aap9455
– volume: 21513
  start-page: 1
  year: 2017
  ident: apjac3d25bib116
  publication-title: GCN Circ.
– volume: 926
  start-page: 152
  year: 2022
  ident: apjac3d25bib68
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac4508
– volume: 767
  start-page: 124
  year: 2013
  ident: apjac3d25bib128
  publication-title: ApJ
  doi: 10.1088/0004-637X/767/2/124
– volume: 156
  start-page: 123
  year: 2018
  ident: apjac3d25bib24
  publication-title: AJ
  doi: 10.3847/1538-3881/aac387
– volume: 848
  start-page: L13
  year: 2017b
  ident: apjac3d25bib3
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa920c
– volume: 6
  start-page: 7323
  year: 2015
  ident: apjac3d25bib179
  publication-title: NatCo
  doi: 10.1038/ncomms8323
– volume: 33
  start-page: 100425
  year: 2020
  ident: apjac3d25bib83
  publication-title: A&C
  doi: 10.1016/j.ascom.2020.100425
– volume: 643
  start-page: A113
  year: 2020
  ident: apjac3d25bib14
  publication-title: A&A
  doi: 10.1051/0004-6361/202037669
– volume: 912
  start-page: 128
  year: 2021
  ident: apjac3d25bib136
  publication-title: ApJ
  doi: 10.3847/1538-4357/abeb71
– volume: 154
  start-page: 35
  year: 2013
  ident: apjac3d25bib118
  publication-title: Msngr
– year: 2021b
  ident: apjac3d25bib19
– volume: 51
  start-page: 305
  year: 2019
  ident: apjac3d25bib62
  publication-title: BAAS
– volume: 22
  start-page: 143
  year: 1982
  ident: apjac3d25bib161
  publication-title: ApL
– volume: 848
  start-page: L24
  year: 2017
  ident: apjac3d25bib170
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa8edf
– volume: 641
  start-page: A6
  year: 2020
  ident: apjac3d25bib139
  publication-title: A&A
  doi: 10.1051/0004-6361/201833910
– volume: 518
  start-page: 356
  year: 1999
  ident: apjac3d25bib140
  publication-title: ApJ
  doi: 10.1086/307259
– volume: 852
  start-page: L3
  year: 2018
  ident: apjac3d25bib151
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9d82
– volume: 11447
  start-page: 1144767
  year: 2020
  ident: apjac3d25bib67
  publication-title: Proc. SPIE
  doi: 10.1117/12.2562842
– volume: 860
  start-page: 62
  year: 2018
  ident: apjac3d25bib76
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac206
– volume: 11
  start-page: 021053
  year: 2021a
  ident: apjac3d25bib10
  publication-title: PhRvX
  doi: 10.1103/PhysRevX.11.021053
– volume: 358
  start-page: 1565
  year: 2017
  ident: apjac3d25bib57
  publication-title: Sci
  doi: 10.1126/science.aap9580
– volume: 916
  start-page: 89
  year: 2021
  ident: apjac3d25bib142
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac04b4
– volume: 131
  start-page: 018002
  year: 2019
  ident: apjac3d25bib33
  publication-title: PASP
  doi: 10.1088/1538-3873/aaecbe
– volume: 855
  start-page: 99
  year: 2018
  ident: apjac3d25bib42
  publication-title: ApJ
  doi: 10.3847/1538-4357/aaad67
– volume: 899
  start-page: 24
  year: 2020
  ident: apjac3d25bib59
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab70b9
– volume: 9
  start-page: 90
  year: 2007
  ident: apjac3d25bib90
  publication-title: CSE
  doi: 10.1109/MCSE.2007.55
– volume: 27
  start-page: 194002
  year: 2010
  ident: apjac3d25bib141
  publication-title: CQGra
  doi: 10.1088/0264-9381/27/19/194002
– volume: 890
  start-page: 131
  year: 2020
  ident: apjac3d25bib18
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6a1b
– volume: 910
  start-page: 116
  year: 2021
  ident: apjac3d25bib104
  publication-title: ApJ
  doi: 10.3847/1538-4357/abe1b5
– volume: 880
  start-page: L4
  year: 2019
  ident: apjac3d25bib86
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab271c
– volume: 526
  start-page: 152
  year: 1999
  ident: apjac3d25bib69
  publication-title: ApJ
  doi: 10.1086/307992
– volume: 873
  start-page: 111
  year: 2019
  ident: apjac3d25bib91
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab042c
– start-page: 254
  year: 2015
  ident: apjac3d25bib37
– volume: 209
  start-page: 36
  year: 2013
  ident: apjac3d25bib178
  publication-title: ApJS
  doi: 10.1088/0067-0049/209/2/36
– volume: 3
  start-page: 35
  year: 2019
  ident: apjac3d25bib15
  publication-title: NatAs
  doi: 10.1038/s41550-018-0658-y
– volume: 478
  start-page: 3298
  year: 2018
  ident: apjac3d25bib176
  publication-title: MNRAS
  doi: 10.1093/mnras/sty1018
– volume: 551
  start-page: 71
  year: 2017
  ident: apjac3d25bib166
  publication-title: Natur
  doi: 10.1038/nature24290
– volume: 816
  start-page: 61
  year: 2016
  ident: apjac3d25bib31
  publication-title: ApJ
  doi: 10.3847/0004-637X/816/2/61
– year: 2020
  ident: apjac3d25bib53
– volume: 500
  start-page: 547
  year: 2013
  ident: apjac3d25bib162
  publication-title: Natur
  doi: 10.1038/nature12505
– volume: 848
  start-page: L12
  year: 2017d
  ident: apjac3d25bib5
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa91c9
– volume: 696
  start-page: 1871
  year: 2009
  ident: apjac3d25bib137
  publication-title: ApJ
  doi: 10.1088/0004-637X/696/2/1871
– volume: 413
  start-page: L101
  year: 1993
  ident: apjac3d25bib106
  publication-title: ApJL
  doi: 10.1086/186969
– volume: 358
  start-page: 1574
  year: 2017
  ident: apjac3d25bib152
  publication-title: Sci
  doi: 10.1126/science.aaq0186
– volume: 829
  start-page: 110
  year: 2016
  ident: apjac3d25bib29
  publication-title: ApJ
  doi: 10.3847/0004-637X/829/2/110
– volume: 848
  start-page: L17
  year: 2017
  ident: apjac3d25bib48
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa8fc7
– volume: 575
  start-page: A25
  year: 2015
  ident: apjac3d25bib160
  publication-title: A&A
  doi: 10.1051/0004-6361/201424973
– volume: 245
  start-page: 15
  year: 2019
  ident: apjac3d25bib101
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab4ea2
– volume: 486
  start-page: 672
  year: 2019
  ident: apjac3d25bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/stz891
– volume: 358
  start-page: 1556
  year: 2017
  ident: apjac3d25bib45
  publication-title: Sci
  doi: 10.1126/science.aap9811
– volume: 23
  start-page: 1
  year: 2019
  ident: apjac3d25bib119
  publication-title: LRR
  doi: 10.1007/s41114-019-0024-0
– volume: 150
  start-page: 150
  year: 2015
  ident: apjac3d25bib61
  publication-title: AJ
  doi: 10.1088/0004-6256/150/5/150
– volume: 499
  start-page: 3868
  year: 2020
  ident: apjac3d25bib164
  publication-title: MNRAS
  doi: 10.1093/mnras/staa2798
– volume: 97
  start-page: 104064
  year: 2018
  ident: apjac3d25bib121
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.97.104064
– volume: 499
  start-page: 3459
  year: 2020
  ident: apjac3d25bib134
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3032
– volume: 28
  start-page: 125023
  year: 2011
  ident: apjac3d25bib150
  publication-title: CQGra
  doi: 10.1088/0264-9381/28/12/125023
– volume: 814
  start-page: 25
  year: 2015
  ident: apjac3d25bib47
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/1/25
– volume: 507
  start-page: 1401
  year: 2021
  ident: apjac3d25bib32
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2086
– volume: 119
  start-page: 161101
  year: 2017c
  ident: apjac3d25bib4
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.119.161101
– volume: 47
  start-page: 2198
  year: 1993
  ident: apjac3d25bib60
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.47.2198
– volume: 147
  start-page: 79
  year: 2014
  ident: apjac3d25bib148
  publication-title: AJ
  doi: 10.1088/0004-6256/147/4/79
– volume: 855
  start-page: L23
  year: 2018
  ident: apjac3d25bib20
  publication-title: ApJL
  doi: 10.3847/2041-8213/aab267
– volume: 901
  start-page: 29
  year: 2020
  ident: apjac3d25bib26
  publication-title: ApJ
  doi: 10.3847/1538-4357/abae61
– volume: 446
  start-page: 2523
  year: 2015
  ident: apjac3d25bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/stu2261
– volume: 907
  start-page: 97
  year: 2021
  ident: apjac3d25bib102
  publication-title: ApJ
  doi: 10.3847/1538-4357/abd2c3
– volume: 7
  start-page: 12898
  year: 2016
  ident: apjac3d25bib93
  publication-title: NatCo
  doi: 10.1038/ncomms12898
– volume: 585
  start-page: 357
  year: 2020
  ident: apjac3d25bib81
  publication-title: Natur
  doi: 10.1038/s41586-020-2649-2
– volume: 507
  start-page: 1296
  year: 2021
  ident: apjac3d25bib130
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2189
– volume: 10704
  start-page: 107040C
  year: 2018
  ident: apjac3d25bib54
  publication-title: Proc. SPIE
  doi: 10.1117/12.2311865
– volume: 906
  start-page: 127
  year: 2021
  ident: apjac3d25bib63
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc74a
– volume: 906
  start-page: 94
  year: 2021
  ident: apjac3d25bib180
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc69e
– volume: 896
  start-page: L44
  year: 2020c
  ident: apjac3d25bib9
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab960f
– volume: 915
  start-page: L5
  year: 2021b
  ident: apjac3d25bib11
  publication-title: ApJL
  doi: 10.3847/2041-8213/ac082e
– volume: 505
  start-page: L41
  year: 2021
  ident: apjac3d25bib39
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slab046
– volume: 848
  start-page: L16
  year: 2017
  ident: apjac3d25bib156
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9059
– volume: 358
  start-page: 1570
  year: 2017
  ident: apjac3d25bib52
  publication-title: Sci
  doi: 10.1126/science.aaq0049
– volume: 213
  start-page: 225
  year: 1977
  ident: apjac3d25bib109
  publication-title: ApJ
  doi: 10.1086/155148
– volume: 851
  start-page: L21
  year: 2017
  ident: apjac3d25bib171
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9c84
– volume: 789
  start-page: L5
  year: 2014
  ident: apjac3d25bib98
  publication-title: ApJL
  doi: 10.1088/2041-8205/789/1/L5
– volume: 918
  start-page: 10
  year: 2021
  ident: apjac3d25bib175
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0d03
– volume: 125
  start-page: 1031
  year: 2013
  ident: apjac3d25bib38
  publication-title: PASP
  doi: 10.1086/673168
– volume: 610
  start-page: 012007
  year: 2015
  ident: apjac3d25bib71
  publication-title: JPhCS
  doi: 10.1088/1742-6596/610/1/012007
– volume: 9
  start-page: 031040
  year: 2019
  ident: apjac3d25bib6
  publication-title: PhRvX
  doi: 10.1103/PhysRevX.9.031040
– volume: 895
  start-page: 40
  year: 2020
  ident: apjac3d25bib73
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab8bdb
– volume: 507
  start-page: L59
  year: 1998
  ident: apjac3d25bib111
  publication-title: ApJL
  doi: 10.1086/311680
– volume: 502
  start-page: 1279
  year: 2021
  ident: apjac3d25bib131
  publication-title: MNRAS
  doi: 10.1093/mnras/stab132
– volume: 11445
  start-page: 114457G
  year: 2020
  ident: apjac3d25bib55
  publication-title: Proc. SPIE
  doi: 10.1117/12.2561008
– volume: 36
  start-page: 225002
  year: 2019
  ident: apjac3d25bib80
  publication-title: CQGra
  doi: 10.1088/1361-6382/ab41d6
– volume: 395
  start-page: L83
  year: 1992
  ident: apjac3d25bib124
  publication-title: ApJL
  doi: 10.1086/186493
– volume: 918
  start-page: 63
  year: 2021a
  ident: apjac3d25bib17
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0bc7
– volume: 3
  start-page: 1160
  year: 2019
  ident: apjac3d25bib78
  publication-title: NatAs
  doi: 10.1038/s41550-019-0964-z
– volume: 102
  start-page: 043015
  year: 2020d
  ident: apjac3d25bib12
  publication-title: PhRvD
  doi: 10.1103/PhysRevD.102.043015
– volume: 551
  start-page: 64
  year: 2017
  ident: apjac3d25bib21
  publication-title: Natur
  doi: 10.1038/nature24291
– volume: 511
  start-page: 2405
  year: 2022
  ident: apjac3d25bib159
  publication-title: MNRAS
  doi: 10.1093/mnras/stac013
– volume: 551
  start-page: 80
  year: 2017
  ident: apjac3d25bib95
  publication-title: Natur
  doi: 10.1038/nature24453
– volume: 495
  start-page: 1841
  year: 2020
  ident: apjac3d25bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1252
– volume: 150
  start-page: 172
  year: 2015
  ident: apjac3d25bib99
  publication-title: AJ
  doi: 10.1088/0004-6256/150/6/172
– volume: 493
  start-page: 4143
  year: 2020
  ident: apjac3d25bib64
  publication-title: MNRAS
  doi: 10.1093/mnras/staa485
– volume: 120
  start-page: 95
  year: 2005
  ident: apjac3d25bib145
  publication-title: SSRv
  doi: 10.1007/s11214-005-5095-4
– volume: 649
  start-page: A72
  year: 2021
  ident: apjac3d25bib50
  publication-title: A&A
  doi: 10.1051/0004-6361/202040231
– volume: 750
  start-page: L22
  year: 2012
  ident: apjac3d25bib174
  publication-title: ApJL
  doi: 10.1088/2041-8205/750/1/L22
– volume: 426
  start-page: 1940
  year: 2012
  ident: apjac3d25bib103
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21859.x
– volume: 551
  start-page: 67
  year: 2017
  ident: apjac3d25bib138
  publication-title: Natur
  doi: 10.1038/nature24298
– volume: 551
  start-page: 75
  year: 2017
  ident: apjac3d25bib154
  publication-title: Natur
  doi: 10.1038/nature24303
– volume: 154
  start-page: 21
  year: 1968
  ident: apjac3d25bib132
  publication-title: ApJ
  doi: 10.1086/149737
– volume: 874
  start-page: 88
  year: 2019
  ident: apjac3d25bib49
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab07b6
– volume: 820
  start-page: 136
  year: 2016
  ident: apjac3d25bib70
  publication-title: ApJ
  doi: 10.3847/0004-637X/820/2/136
– volume: 883
  start-page: 48
  year: 2019
  ident: apjac3d25bib108
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab38bb
– volume: 848
  start-page: L19
  year: 2017
  ident: apjac3d25bib41
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa905c
– volume: 850
  start-page: L1
  year: 2017
  ident: apjac3d25bib114
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa92c0
– volume: 774
  start-page: L23
  year: 2013
  ident: apjac3d25bib34
  publication-title: ApJL
  doi: 10.1088/2041-8205/774/2/L23
– volume: 525
  start-page: L121
  year: 1999
  ident: apjac3d25bib66
  publication-title: ApJL
  doi: 10.1086/312343
– volume: 823
  start-page: L33
  year: 2016
  ident: apjac3d25bib157
  publication-title: ApJL
  doi: 10.3847/2041-8205/823/2/L33
– volume: 34
  start-page: e069
  year: 2017
  ident: apjac3d25bib16
  publication-title: PASA
  doi: 10.1017/pasa.2017.65
– start-page: 182
  year: 2020
  ident: apjac3d25bib144
– volume: 848
  start-page: L15
  year: 2017
  ident: apjac3d25bib149
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa8f94
– volume: 34
  year: 2017a
  ident: apjac3d25bib2
  publication-title: CQGra
  doi: 10.1088/1361-6382/aa51f4
– volume: 905
  start-page: 145
  year: 2020
  ident: apjac3d25bib96
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc335
– volume: 34
  start-page: 104001
  year: 2017
  ident: apjac3d25bib147
  publication-title: CQGra
  doi: 10.1088/1361-6382/aa68a9
– volume: 9910
  start-page: 99100G
  year: 2016
  ident: apjac3d25bib173
  publication-title: Proc. SPIE
  doi: 10.1117/12.2232898
– volume: 462
  start-page: 1591
  year: 2016
  ident: apjac3d25bib58
  publication-title: MNRAS
  doi: 10.1093/mnras/stw1746
– volume: 249
  start-page: 30
  year: 2020
  ident: apjac3d25bib85
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab9c19
– volume: 11447
  year: 2020
  ident: apjac3d25bib115
  publication-title: Proc. SPIE
  doi: 10.1117/12.2561210
– volume: 340
  start-page: 126
  year: 1989
  ident: apjac3d25bib56
  publication-title: Natur
  doi: 10.1038/340126a0
– volume: 480
  start-page: 3871
  year: 2018
  ident: apjac3d25bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2174
– volume: 4
  start-page: 77
  year: 2020
  ident: apjac3d25bib92
  publication-title: NatAs
  doi: 10.1038/s41550-019-0892-y
– volume: 363
  start-page: 968
  year: 2019
  ident: apjac3d25bib72
  publication-title: Sci
  doi: 10.1126/science.aau8815
– volume: 829
  start-page: L15
  year: 2016
  ident: apjac3d25bib153
  publication-title: ApJL
  doi: 10.3847/2041-8205/829/1/L15
– volume: 17
  start-page: 261
  year: 2020
  ident: apjac3d25bib172
  publication-title: NatMe
  doi: 10.1038/s41592-019-0686-2
– volume: 558
  start-page: A33
  year: 2013
  ident: apjac3d25bib25
  publication-title: A&A
  doi: 10.1051/0004-6361/201322068
– volume: 48
  year: 2015
  ident: apjac3d25bib65
  publication-title: JPhB
  doi: 10.1088/0953-4075/48/14/144014
– volume: 848
  start-page: L18
  year: 2017
  ident: apjac3d25bib125
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa9029
– year: 2015
  ident: apjac3d25bib158
– volume: 32
  start-page: 024001
  year: 2015
  ident: apjac3d25bib13
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/2/024001
– volume: 61
  start-page: 97
  year: 1956
  ident: apjac3d25bib89
  publication-title: AJ
  doi: 10.1086/107297
– volume: 192
  start-page: L145
  year: 1974
  ident: apjac3d25bib110
  publication-title: ApJL
  doi: 10.1086/181612
– volume: 472
  start-page: 904
  year: 2017
  ident: apjac3d25bib112
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1987
– volume: 918
  start-page: 44
  year: 2021
  ident: apjac3d25bib30
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac0aec
– volume: 505
  start-page: 3016
  year: 2021
  ident: apjac3d25bib126
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1523
– volume: 4
  start-page: 013046
  year: 2022
  ident: apjac3d25bib143
  publication-title: PhRvR
  doi: 10.1103/PhysRevResearch.4.013046
– volume: 489
  start-page: 2104
  year: 2019a
  ident: apjac3d25bib165
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2255
– volume: 450
  start-page: 1777
  year: 2015
  ident: apjac3d25bib94
  publication-title: MNRAS
  doi: 10.1093/mnras/stv721
SSID ssj0004299
Score 2.6145473
Snippet Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint...
Abstract Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Astronomical instruments
Astrophysics
Ejecta
Field of view
Gravitational wave astronomy
Gravitational waves
Heavy elements
Kilonovae
Neutron stars
Radiative transfer
Radiative transfer simulations
Radioactive decay
Red shift
Space telescopes
Transient detection
Title Kilonova Detectability with Wide-field Instruments
URI https://iopscience.iop.org/article/10.3847/1538-4357/ac3d25
https://www.proquest.com/docview/2640014850
https://www.osti.gov/biblio/1854419
Volume 927
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BFRKXQqGIFIj2QCtxcLKxd7Nr9YQKCKhaOIDIoZJle20pPLKREg7w65mxNyAKQlUvKx_82rFn5ht7ZgywI7TMS-5ylmrtWVZklpWoKJnpi4JzV5Ymp0DhX7_7RxfZySAfzMH3p1iYetyI_g4WY6LgSELib4GytBt4FLV80dVWVDyfhw_0cCX58x2fnj0HRXLZYN-M4cCDeEf5Zg8vdNI8jovyuUYOeyWfg9I5XIY_s-lGX5Przt3UdOzDX5kc__N_VuBjA0aTvVj1E8y50Sps7E3oeLy-vU--JaEcTz8mq7B4FktrwH8Ob2p6TzXZd3QNEbN93yd0rJtcDivHgmtcchwS1IYwus9wcXhw_uOINc8vMItW3pRVsuetQ1nIRWVE6k1akY9J5iWCQlv4tHBV5lxWprroecOLXFqjsUmaWVmZUqzDwqgeuQ1I0r4Wwmrfdx4RAxrdRnCN1h8vnTVG9lrQnS2Ask1ucnoi40ahjUJEUkQkRURSkUgt2H1qMY55Od6p-xVprxrmnLxTr_2inh5fKckLxRWCVjWufAs2aVsoXFHKsGvJFclOFUIeBJWyBVuz3fLcB-JNskLLPP3yj7PYhCVOIRbBz20LFnCV3DYCn6lphwODdtjm-D0Vl48k8_vA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB71IRCXAgXUNGnZAyBxcLKxd7PrY0QbNQRKDlTkZmyvLRXabKSkh_DrmbE3VAVUIXHzYdb2znjG39gzY4BXQsu85C5nqdaeZUVmWYkbJTMDUXDuytLklCj88XxwdpG9n-Wz5p3TkAtTLxrT38VmLBQcWUj6LdCW9oKO4i5f9LQVFc97i8pvw25OhVUog-_T9DYxkssG_2YMB5_Fe8q_9nJnX9rGsdFG16hlf9josPGMHsPXzZRjvMn37s3KdO2P36o5_sc_PYG9BpQmw0j-FLbcfB8Ohks6Jq-v18mbJLTjKchyHx5MY-sZ8MnlVU3vqiYnjq4jYtXvdULHu8mXy8qxECKXjEOh2pBO9xwuRqef352x5hkGZtHbW7FK9r11aBO5qIxIvUkrijXJvERwaAufFq7KnMvKVBd9b3iRS2s0fpJmVlamFC9gZ17P3QEk6UALYbUfOI_IAZ1vI7hGL5CXzhoj-y3obYSgbFOjnJ7KuFLoqxCjFDFKEaNUZFQL3v76YhHrc9xD-xr5rxolXd5Dd3yHTi--KckLxRWCV4WSaUGbloZCqVKlXUshSXalEPoguJQt6GxWzG0fiDvJGy3z9PAfZ_ESHk5PRurD-HzShkecsi5C6FsHdlBg7gix0Moch_X-E129_zQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kilonova+Detectability+with+Wide-field+Instruments&rft.jtitle=The+Astrophysical+journal&rft.au=Chase%2C+Eve+A&rft.au=Brendan+O%E2%80%99Connor&rft.au=Fryer%2C+Christopher+L&rft.au=Troja%2C+Eleonora&rft.date=2022-03-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=927&rft.issue=2&rft.spage=163&rft_id=info:doi/10.3847%2F1538-4357%2Fac3d25&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon