Kilonova Detectability with Wide-field Instruments
Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r -process enrichment, among other astrophysical...
Saved in:
Published in | The Astrophysical journal Vol. 927; no. 2; pp. 163 - 178 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.03.2022
IOP Publishing American Astronomical Society |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/ac3d25 |
Cover
Abstract | Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic
r
-process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to
z
∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out to
z
∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters. |
---|---|
AbstractList | Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r-process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to z ∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out to z ∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters. Abstract Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r -process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to z ∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out to z ∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters. Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint observations of kilonovae and gravitational waves can offer key constraints on the source of Galactic r -process enrichment, among other astrophysical topics. However, robust constraints on heavy element production require rapid kilonova detection (within ∼1 day of merger) as well as multiwavelength observations across multiple epochs. In this study, we quantify the ability of 13 wide-field-of-view instruments to detect kilonovae, leveraging a large grid of over 900 radiative transfer simulations with 54 viewing angles per simulation. We consider both current and upcoming instruments, collectively spanning the full kilonova spectrum. The Roman Space Telescope has the highest redshift reach of any instrument in the study, observing kilonovae out to z ∼ 1 within the first day post-merger. We demonstrate that BlackGEM, DECam, GOTO, the Vera C. Rubin Observatory’s LSST, ULTRASAT, VISTA, and WINTER can observe some kilonovae out to z ∼ 0.1 (∼475 Mpc), while DDOTI, MeerLICHT, PRIME, Swift/UVOT, and ZTF are confined to more nearby observations. Furthermore, we provide a framework to infer kilonova ejecta properties following nondetections and explore variation in detectability with these ejecta parameters. |
Author | Herring, Angela M. O’Connor, Brendan Chase, Eve A. Ristic, Marko Fontes, Christopher J. Troja, Eleonora Wollaeger, Ryan T. Hungerford, Aimee L. Fryer, Christopher L. Korobkin, Oleg |
Author_xml | – sequence: 1 givenname: Eve A. orcidid: 0000-0003-1005-0792 surname: Chase fullname: Chase, Eve A. organization: Northwestern University Department of Physics and Astronomy, Evanston, IL 60208, USA – sequence: 2 givenname: Brendan orcidid: 0000-0002-9700-0036 surname: O’Connor fullname: O’Connor, Brendan organization: Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – sequence: 3 givenname: Christopher L. orcidid: 0000-0003-2624-0056 surname: Fryer fullname: Fryer, Christopher L. organization: The University of New Mexico Department of Physics and Astronomy, Albuquerque, NM 87131, USA – sequence: 4 givenname: Eleonora orcidid: 0000-0002-1869-7817 surname: Troja fullname: Troja, Eleonora organization: Astrophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – sequence: 5 givenname: Oleg orcidid: 0000-0003-4156-5342 surname: Korobkin fullname: Korobkin, Oleg organization: Joint Institute for Nuclear Astrophysics—Center for the Evolution of the Elements, USA – sequence: 6 givenname: Ryan T. orcidid: 0000-0003-3265-4079 surname: Wollaeger fullname: Wollaeger, Ryan T. organization: Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 7 givenname: Marko orcidid: 0000-0001-7042-4472 surname: Ristic fullname: Ristic, Marko organization: Center for Computational Relativity and Gravitation, Rochester Institute of Technology, Rochester, NY 14623, USA – sequence: 8 givenname: Christopher J. orcidid: 0000-0003-1087-2964 surname: Fontes fullname: Fontes, Christopher J. organization: Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA – sequence: 9 givenname: Aimee L. orcidid: 0000-0001-6893-0608 surname: Hungerford fullname: Hungerford, Aimee L. organization: Joint Institute for Nuclear Astrophysics—Center for the Evolution of the Elements, USA – sequence: 10 givenname: Angela M. orcidid: 0000-0003-0260-8629 surname: Herring fullname: Herring, Angela M. organization: Computational Physics Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA |
BackLink | https://www.osti.gov/biblio/1854419$$D View this record in Osti.gov |
BookMark | eNp9kMtLwzAAh4NMcJvePQ7Fm3V5dWmOMl_DgRdFbyHNg2V0SW0yZf-9LRUFkZ1CwveFj98IDHzwBoBTBK9IQdkU5aTIKMnZVCqicX4Ahj9PAzCEENJsRtjbERjFuO6umPMhwI-uCj58yMmNSUYlWbrKpd3k06XV5NVpk1lnKj1Z-Jia7cb4FI_BoZVVNCff5xi83N0-zx-y5dP9Yn69zBSFLGWaI6sMQggTXRJoS6iNtYZazjFRzEJmNDWGFlAyZEvMcq5K2SqQKq7LgozBWf9viMmJqFzbt1LB-zZToCKnFPEWOu-hugnvWxOTWIdt49sugWcUQkSLHLYU7CnVhBgbY0XduI1sdgJB0c0nuq1Et5Xo52uV2R-lDZDJBZ8a6ap94mUvulD_xuzBL_7BZb0WHDOBBZoRUWtLvgCyYZEW |
CitedBy_id | crossref_primary_10_1093_mnras_stad257 crossref_primary_10_1093_mnrasl_slac101 crossref_primary_10_1093_mnras_stac1982 crossref_primary_10_1007_s41114_021_00034_3 crossref_primary_10_1051_0004_6361_202245340 crossref_primary_10_3847_1538_4365_ac617c crossref_primary_10_3390_universe9060245 crossref_primary_10_3847_1538_4357_ad0238 crossref_primary_10_1016_j_astropartphys_2023_102904 crossref_primary_10_1088_1538_3873_ad8b6a crossref_primary_10_1093_mnras_stad3919 crossref_primary_10_1093_mnras_stac2792 crossref_primary_10_3847_1538_4357_acaa9e crossref_primary_10_3847_1538_4357_ad9c77 crossref_primary_10_1093_mnras_stae951 crossref_primary_10_3390_universe10010010 crossref_primary_10_3847_1538_4357_ac5d54 crossref_primary_10_3847_1538_4357_ac7f33 crossref_primary_10_3847_1538_4357_acc73b crossref_primary_10_1093_mnras_stac2920 crossref_primary_10_3847_1538_4357_aca527 crossref_primary_10_3847_1538_4357_ad0462 crossref_primary_10_3847_2041_8213_acca70 crossref_primary_10_1103_PhysRevLett_132_191003 crossref_primary_10_3847_1538_4357_ad4029 crossref_primary_10_1088_1674_4527_adba28 crossref_primary_10_3847_1538_4357_ac8d00 crossref_primary_10_3390_universe10120441 crossref_primary_10_3390_universe9020105 crossref_primary_10_3389_fspas_2024_1386748 crossref_primary_10_1093_mnras_stad1102 crossref_primary_10_1103_PhysRevD_109_043053 crossref_primary_10_1093_mnras_stad2115 crossref_primary_10_1103_PhysRevD_107_123519 crossref_primary_10_3847_1538_4357_acf3dc crossref_primary_10_3847_2041_8213_ac9b41 crossref_primary_10_1093_mnras_stac2342 crossref_primary_10_3847_1538_4357_ad06b0 crossref_primary_10_1088_1361_6382_ad7b99 crossref_primary_10_1093_mnras_stae080 crossref_primary_10_1103_PhysRevD_107_124007 crossref_primary_10_1093_mnras_stac3052 crossref_primary_10_3847_1538_4357_ac9cd4 |
Cites_doi | 10.1086/342935 10.1093/mnras/staa1845 10.3847/1538-4357/ab6a98 10.1038/s41467-018-06558-7 10.3847/1538-4357/835/1/64 10.1093/mnras/stz2248 10.1038/s41550-017-0285-z 10.1086/184740 10.1086/145583 10.1088/0264-9381/32/11/115012 10.1088/0067-0049/182/1/80 10.1088/1361-6382/abd594 10.1006/adnd.1995.1002 10.1088/0004-637X/815/2/82 10.1111/j.1365-2966.2010.16864.x 10.3847/2041-8213/ab75f5 10.3847/1538-4357/abafaa 10.3847/1538-4357/aac08b 10.3847/1538-4357/aa76db 10.3847/2041-8213/ab4ad8 10.1093/pasj/psx118 10.1088/1538-3873/ab006c 10.3847/2041-8213/aaacd4 10.3847/2041-8213/aa8f41 10.3847/2041-8213/aa90b6 10.1088/0004-637X/725/1/496 10.1093/mnras/stab221 10.1038/308434a0 10.3847/2041-8213/ac4259 10.1093/mnras/staa479 10.1088/0067-0049/214/2/28 10.1007/s41114-020-00026-9 10.1051/0004-6361/201935443 10.1126/science.aap9455 10.3847/1538-4357/ac4508 10.1088/0004-637X/767/2/124 10.3847/1538-3881/aac387 10.3847/2041-8213/aa920c 10.1038/ncomms8323 10.1016/j.ascom.2020.100425 10.1051/0004-6361/202037669 10.3847/1538-4357/abeb71 10.3847/2041-8213/aa8edf 10.1051/0004-6361/201833910 10.1086/307259 10.3847/2041-8213/aa9d82 10.1117/12.2562842 10.3847/1538-4357/aac206 10.1103/PhysRevX.11.021053 10.1126/science.aap9580 10.3847/1538-4357/ac04b4 10.1088/1538-3873/aaecbe 10.3847/1538-4357/aaad67 10.3847/1538-4357/ab70b9 10.1109/MCSE.2007.55 10.1088/0264-9381/27/19/194002 10.3847/1538-4357/ab6a1b 10.3847/1538-4357/abe1b5 10.3847/2041-8213/ab271c 10.1086/307992 10.3847/1538-4357/ab042c 10.1088/0067-0049/209/2/36 10.1038/s41550-018-0658-y 10.1093/mnras/sty1018 10.1038/nature24290 10.3847/0004-637X/816/2/61 10.1038/nature12505 10.3847/2041-8213/aa91c9 10.1088/0004-637X/696/2/1871 10.1086/186969 10.1126/science.aaq0186 10.3847/0004-637X/829/2/110 10.3847/2041-8213/aa8fc7 10.1051/0004-6361/201424973 10.3847/1538-4365/ab4ea2 10.1093/mnras/stz891 10.1126/science.aap9811 10.1007/s41114-019-0024-0 10.1088/0004-6256/150/5/150 10.1093/mnras/staa2798 10.1103/PhysRevD.97.104064 10.1093/mnras/staa3032 10.1088/0264-9381/28/12/125023 10.1088/0004-637X/814/1/25 10.1093/mnras/stab2086 10.1103/PhysRevLett.119.161101 10.1103/PhysRevD.47.2198 10.1088/0004-6256/147/4/79 10.3847/2041-8213/aab267 10.3847/1538-4357/abae61 10.1093/mnras/stu2261 10.3847/1538-4357/abd2c3 10.1038/ncomms12898 10.1038/s41586-020-2649-2 10.1093/mnras/stab2189 10.1117/12.2311865 10.3847/1538-4357/abc74a 10.3847/1538-4357/abc69e 10.3847/2041-8213/ab960f 10.3847/2041-8213/ac082e 10.1093/mnrasl/slab046 10.3847/2041-8213/aa9059 10.1126/science.aaq0049 10.1086/155148 10.3847/2041-8213/aa9c84 10.1088/2041-8205/789/1/L5 10.3847/1538-4357/ac0d03 10.1086/673168 10.1088/1742-6596/610/1/012007 10.1103/PhysRevX.9.031040 10.3847/1538-4357/ab8bdb 10.1086/311680 10.1093/mnras/stab132 10.1117/12.2561008 10.1088/1361-6382/ab41d6 10.1086/186493 10.3847/1538-4357/ac0bc7 10.1038/s41550-019-0964-z 10.1103/PhysRevD.102.043015 10.1038/nature24291 10.1093/mnras/stac013 10.1038/nature24453 10.1093/mnras/staa1252 10.1088/0004-6256/150/6/172 10.1093/mnras/staa485 10.1007/s11214-005-5095-4 10.1051/0004-6361/202040231 10.1088/2041-8205/750/1/L22 10.1111/j.1365-2966.2012.21859.x 10.1038/nature24298 10.1038/nature24303 10.1086/149737 10.3847/1538-4357/ab07b6 10.3847/0004-637X/820/2/136 10.3847/1538-4357/ab38bb 10.3847/2041-8213/aa905c 10.3847/2041-8213/aa92c0 10.1088/2041-8205/774/2/L23 10.1086/312343 10.3847/2041-8205/823/2/L33 10.1017/pasa.2017.65 10.3847/2041-8213/aa8f94 10.1088/1361-6382/aa51f4 10.3847/1538-4357/abc335 10.1088/1361-6382/aa68a9 10.1117/12.2232898 10.1093/mnras/stw1746 10.3847/1538-4365/ab9c19 10.1117/12.2561210 10.1038/340126a0 10.1093/mnras/sty2174 10.1038/s41550-019-0892-y 10.1126/science.aau8815 10.3847/2041-8205/829/1/L15 10.1038/s41592-019-0686-2 10.1051/0004-6361/201322068 10.1088/0953-4075/48/14/144014 10.3847/2041-8213/aa9029 10.1088/0264-9381/32/2/024001 10.1086/107297 10.1086/181612 10.1093/mnras/stx1987 10.3847/1538-4357/ac0aec 10.1093/mnras/stab1523 10.1103/PhysRevResearch.4.013046 10.1093/mnras/stz2255 10.1093/mnras/stv721 |
ContentType | Journal Article |
Copyright | 2022. The Author(s). Published by the American Astronomical Society. 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: 2022. The Author(s). Published by the American Astronomical Society. – notice: 2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | O3W TSCCA AAYXX CITATION 7TG 8FD H8D KL. L7M OTOTI |
DOI | 10.3847/1538-4357/ac3d25 |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
Database_xml | – sequence: 1 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
ExternalDocumentID | 1854419 10_3847_1538_4357_ac3d25 apjac3d25 |
GrantInformation_xml | – fundername: National Aeronautics and Space Administration (NASA) grantid: NNX16AB66G funderid: https://doi.org/10.13039/100000104 – fundername: National Science Foundation (NSF) grantid: AST-1909534 funderid: https://doi.org/10.13039/100000001 – fundername: U.S. Department of Energy (DOE) grantid: 89233218CNA000001 funderid: https://doi.org/10.13039/100000015 – fundername: National Aeronautics and Space Administration (NASA) grantid: 80NSSC20K0389 funderid: https://doi.org/10.13039/100000104 – fundername: National Aeronautics and Space Administration (NASA) grantid: NNX17AB18G funderid: https://doi.org/10.13039/100000104 – fundername: National Science Foundation (NSF) grantid: DGE-1450006 funderid: https://doi.org/10.13039/100000001 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 TSCCA WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c407t-d91fce11123db30fb0deffe4f9923c7f07ed4ee480a71fb2759cbafce04c9db83 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Fri May 19 00:44:38 EDT 2023 Wed Aug 13 11:02:34 EDT 2025 Tue Jul 01 03:24:52 EDT 2025 Thu Apr 24 22:51:12 EDT 2025 Tue Mar 15 22:40:23 EDT 2022 Wed Aug 21 03:33:48 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-d91fce11123db30fb0deffe4f9923c7f07ed4ee480a71fb2759cbafce04c9db83 |
Notes | AAS32399 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE 89233218CNA000001 |
ORCID | 0000-0001-7042-4472 0000-0003-4156-5342 0000-0003-1005-0792 0000-0001-6893-0608 0000-0003-3265-4079 0000-0003-1087-2964 0000-0002-9700-0036 0000-0003-0260-8629 0000-0002-1869-7817 0000-0003-2624-0056 0000000168930608 0000000341565342 0000000332654079 0000000310872964 0000000326240056 0000000297000036 0000000170424472 0000000302608629 0000000310050792 0000000218697817 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.3847/1538-4357/ac3d25 |
PQID | 2640014850 |
PQPubID | 4562441 |
PageCount | 16 |
ParticipantIDs | iop_journals_10_3847_1538_4357_ac3d25 proquest_journals_2640014850 crossref_primary_10_3847_1538_4357_ac3d25 osti_scitechconnect_1854419 crossref_citationtrail_10_3847_1538_4357_ac3d25 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-01 |
PublicationDateYYYYMMDD | 2022-03-01 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia – name: United States |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2022 |
Publisher | The American Astronomical Society IOP Publishing American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing – name: American Astronomical Society |
References | Utsumi (apjac3d25bib169) 2017; 69 O’Connor (apjac3d25bib131) 2021; 502 Oke (apjac3d25bib132) 1968; 154 Popham (apjac3d25bib140) 1999; 518 Frostig (apjac3d25bib67) 2020; 11447 Rosswog (apjac3d25bib147) 2017; 34 Valenti (apjac3d25bib170) 2017; 848 Metzger (apjac3d25bib119) 2019; 23 Cowperthwaite (apjac3d25bib47) 2015; 814 Kasen (apjac3d25bib95) 2017; 551 Akutsu (apjac3d25bib15) 2019; 3 Kessler (apjac3d25bib99) 2015; 150 Zhu (apjac3d25bib180) 2021; 906 Côté (apjac3d25bib42) 2018; 855 Humason (apjac3d25bib89) 1956; 61 LVC (apjac3d25bib117) 2019; 24168 Gompertz (apjac3d25bib76) 2018; 860 Pian (apjac3d25bib138) 2017; 551 Li (apjac3d25bib111) 1998; 507 Villar (apjac3d25bib171) 2017; 851 Coulter (apjac3d25bib45) 2017; 358 Finn (apjac3d25bib60) 1993; 47 Yang (apjac3d25bib179) 2015; 6 Paterson (apjac3d25bib136) 2021; 912 Korobkin (apjac3d25bib103) 2012; 426 Wollaeger (apjac3d25bib176) 2018; 478 Fontes (apjac3d25bib64) 2020; 493 Ghirlanda (apjac3d25bib72) 2019; 363 Goldstein (apjac3d25bib73) 2020; 895 Roming (apjac3d25bib145) 2005; 120 Soares-Santos (apjac3d25bib156) 2017; 848 Cowperthwaite (apjac3d25bib48) 2017; 848 Dyer (apjac3d25bib54) 2018; 10704 Norris (apjac3d25bib129) 1984; 308 Rastinejad (apjac3d25bib142) 2021; 916 Wollaeger (apjac3d25bib177) 2014; 214 Coughlin (apjac3d25bib44) 2018; 480 Lattimer (apjac3d25bib109) 1977; 213 Dichiara (apjac3d25bib51) 2021; 923 Korobkin (apjac3d25bib104) 2021; 910 Drout (apjac3d25bib52) 2017; 358 Jin (apjac3d25bib92) 2020; 4 Kourkchi (apjac3d25bib105) 2017; 843 Groot (apjac3d25bib78) 2019; 3 Andreoni (apjac3d25bib18) 2020; 890 Abbott (apjac3d25bib10) 2021a; 11 Kulkarni (apjac3d25bib107) 2005 Oates (apjac3d25bib130) 2021; 507 Banerji (apjac3d25bib27) 2015; 446 Kasen (apjac3d25bib94) 2015; 450 Planck Collaboration (apjac3d25bib139) 2020; 641 Eichler (apjac3d25bib56) 1989; 340 Astropy Collaboration (apjac3d25bib25) 2013; 558 Bellm (apjac3d25bib33) 2019; 131 Goldstein (apjac3d25bib74) 2017; 848 Barnes (apjac3d25bib30) 2021; 918 Ackley (apjac3d25bib14) 2020; 643 Nissanke (apjac3d25bib127) 2010; 725 Abbott (apjac3d25bib9) 2020c; 896 Hounsell (apjac3d25bib88) 2018; 867 Lourie (apjac3d25bib115) 2020; 11447 Sneden (apjac3d25bib155) 2009; 182 Artale (apjac3d25bib22) 2020; 495 Dyer (apjac3d25bib55) 2020; 11445 Pankow (apjac3d25bib135) 2018; 854 Tanvir (apjac3d25bib162) 2013; 500 Möller (apjac3d25bib122) 1995; 59 Aasi (apjac3d25bib1) 2015; 32 Flaugher (apjac3d25bib61) 2015; 150 Chen (apjac3d25bib40) 2021; 38 Abbott (apjac3d25bib5) 2017d; 848 Arcavi (apjac3d25bib20) 2018; 855 Abbott (apjac3d25bib4) 2017c; 119 Kasliwal (apjac3d25bib97) 2017; 358 Abbott (apjac3d25bib12) 2020d; 102 Chornock (apjac3d25bib41) 2017; 848 Evans (apjac3d25bib57) 2017; 358 Lipunov (apjac3d25bib114) 2017; 850 Winteler (apjac3d25bib174) 2012; 750 Lippuner (apjac3d25bib112) 2017; 472 Coughlin (apjac3d25bib43) 2019; 885 Hunter (apjac3d25bib90) 2007; 9 Blanton (apjac3d25bib35) 2003; 125 Nicholl (apjac3d25bib126) 2021; 505 Abbott (apjac3d25bib2) 2017a; 34 Troja (apjac3d25bib165) 2019a; 489 Troja (apjac3d25bib166) 2017; 551 Brown (apjac3d25bib38) 2013; 125 de Wet (apjac3d25bib50) 2021; 649 Abbott (apjac3d25bib7) 2020a; 892 Wollaeger (apjac3d25bib175) 2021; 918 Lattimer (apjac3d25bib110) 1974; 192 Banerjee (apjac3d25bib26) 2020; 901 Thakur (apjac3d25bib164) 2020; 499 Savchenko (apjac3d25bib149) 2017; 848 Punturo (apjac3d25bib141) 2010; 27 Sagiv (apjac3d25bib148) 2014; 147 Ivezić (apjac3d25bib91) 2019; 873 Wollaeger (apjac3d25bib178) 2013; 209 Fong (apjac3d25bib63) 2021; 906 Hogg (apjac3d25bib84) 2002 Bartos (apjac3d25bib31) 2016; 816 Becerra (apjac3d25bib32) 2021; 507 LVC (apjac3d25bib116) 2017; 21513 Shappee (apjac3d25bib152) 2017; 358 Steeghs (apjac3d25bib159) 2022; 511 Even (apjac3d25bib59) 2020; 899 Berger (apjac3d25bib34) 2013; 774 Arcavi (apjac3d25bib21) 2017; 551 Fryer (apjac3d25bib69) 1999; 526 WFIRST SDT Project (apjac3d25bib71) 2015; 610 Jin (apjac3d25bib93) 2016; 7 Gompertz (apjac3d25bib75) 2020; 497 Troja (apjac3d25bib168) 2019b; 489 Soares-Santos (apjac3d25bib157) 2016; 823 Sutherland (apjac3d25bib160) 2015; 575 Abbott (apjac3d25bib11) 2021b; 915 Symbalisty (apjac3d25bib161) 1982; 22 Lippuner (apjac3d25bib113) 2015; 815 Guillochon (apjac3d25bib79) 2017; 835 Kouveliotou (apjac3d25bib106) 1993; 413 Schutz (apjac3d25bib150) 2011; 28 Abbott (apjac3d25bib3) 2017b; 848 Rodrigo (apjac3d25bib144) 2020 Frostig (apjac3d25bib68) 2022; 926 Kasliwal (apjac3d25bib96) 2020; 905 Metzger (apjac3d25bib120) 2010; 406 Virtanen (apjac3d25bib172) 2020; 17 Scolnic (apjac3d25bib151) 2018; 852 Andreoni (apjac3d25bib17) 2021a; 918 Tanvir (apjac3d25bib163) 2017; 848 Paczynski (apjac3d25bib133) 1986; 308 Rossi (apjac3d25bib146) 2020; 493 Harris (apjac3d25bib81) 2020; 585 Hosseinzadeh (apjac3d25bib86) 2019; 880 Freiburghaus (apjac3d25bib66) 1999; 525 Gehrels (apjac3d25bib70) 2016; 820 Narayan (apjac3d25bib124) 1992; 395 King (apjac3d25bib100) 1952; 115 Mills (apjac3d25bib121) 2018; 97 Nissanke (apjac3d25bib128) 2013; 767 Page (apjac3d25bib134) 2020; 499 Ristic (apjac3d25bib143) 2022; 4 Acernese (apjac3d25bib13) 2015; 32 Barbieri (apjac3d25bib28) 2019; 625 Abbott (apjac3d25bib6) 2019; 9 Kasliwal (apjac3d25bib98) 2014; 789 Klingler (apjac3d25bib101) 2019; 245 Klingler (apjac3d25bib102) 2021; 907 Bloemen (apjac3d25bib37) 2015 Holmbeck (apjac3d25bib85) 2020; 249 Foley (apjac3d25bib62) 2019; 51 Troja (apjac3d25bib167) 2018; 9 Andreoni (apjac3d25bib19) 2021b Morgan (apjac3d25bib123) 2020; 901 Graham (apjac3d25bib77) 2019; 131 Spergel (apjac3d25bib158) 2015 Cowperthwaite (apjac3d25bib49) 2019; 874 Abbott (apjac3d25bib8) 2020b; 23 Evans (apjac3d25bib58) 2016; 462 Perley (apjac3d25bib137) 2009; 696 Fontes (apjac3d25bib65) 2015; 48 Covino (apjac3d25bib46) 2017; 1 Barnes (apjac3d25bib29) 2016; 829 Hotokezaka (apjac3d25bib87) 2020; 891 McMahon (apjac3d25bib118) 2013; 154 Dyer (apjac3d25bib53) 2020 Hall (apjac3d25bib80) 2019; 36 Lamb (apjac3d25bib108) 2019; 883 Singer (apjac3d25bib153) 2016; 829 Ascenzi (apjac3d25bib23) 2019; 486 Bruni (apjac3d25bib39) 2021; 505 Heinzel (apjac3d25bib82) 2021; 502 Nicholl (apjac3d25bib125) 2017; 848 Herner (apjac3d25bib83) 2020; 33 Watson (apjac3d25bib173) 2016; 9910 Blinnikov (apjac3d25bib36) 1984; 10 Smartt (apjac3d25bib154) 2017; 551 Astropy Collaboration (apjac3d25bib24) 2018; 156 Andreoni (apjac3d25bib16) 2017; 34 |
References_xml | – volume: 125 start-page: 2348 year: 2003 ident: apjac3d25bib35 publication-title: AJ doi: 10.1086/342935 – volume: 497 start-page: 726 year: 2020 ident: apjac3d25bib75 publication-title: MNRAS doi: 10.1093/mnras/staa1845 – volume: 891 start-page: 152 year: 2020 ident: apjac3d25bib87 publication-title: ApJ doi: 10.3847/1538-4357/ab6a98 – volume: 9 start-page: 4089 year: 2018 ident: apjac3d25bib167 publication-title: NatCo doi: 10.1038/s41467-018-06558-7 – volume: 835 start-page: 64 year: 2017 ident: apjac3d25bib79 publication-title: ApJ doi: 10.3847/1538-4357/835/1/64 – year: 2002 ident: apjac3d25bib84 – volume: 489 start-page: 1919 year: 2019b ident: apjac3d25bib168 publication-title: MNRAS doi: 10.1093/mnras/stz2248 – volume: 1 start-page: 791 year: 2017 ident: apjac3d25bib46 publication-title: NatAs doi: 10.1038/s41550-017-0285-z – volume: 24168 start-page: 1 year: 2019 ident: apjac3d25bib117 publication-title: GCN Circ. – volume: 308 start-page: L43 year: 1986 ident: apjac3d25bib133 publication-title: ApJL doi: 10.1086/184740 – volume: 115 start-page: 580 year: 1952 ident: apjac3d25bib100 publication-title: ApJ doi: 10.1086/145583 – volume: 32 start-page: 074001 year: 2015 ident: apjac3d25bib1 publication-title: CQGra doi: 10.1088/0264-9381/32/11/115012 – volume: 182 start-page: 80 year: 2009 ident: apjac3d25bib155 publication-title: ApJS doi: 10.1088/0067-0049/182/1/80 – volume: 38 start-page: 055010 year: 2021 ident: apjac3d25bib40 publication-title: CQGra doi: 10.1088/1361-6382/abd594 – volume: 59 start-page: 185 year: 1995 ident: apjac3d25bib122 publication-title: ADNDT doi: 10.1006/adnd.1995.1002 – volume: 815 start-page: 82 year: 2015 ident: apjac3d25bib113 publication-title: ApJ doi: 10.1088/0004-637X/815/2/82 – volume: 406 start-page: 2650 year: 2010 ident: apjac3d25bib120 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16864.x – volume: 892 start-page: L3 year: 2020a ident: apjac3d25bib7 publication-title: ApJL doi: 10.3847/2041-8213/ab75f5 – year: 2005 ident: apjac3d25bib107 – volume: 901 start-page: 83 year: 2020 ident: apjac3d25bib123 publication-title: ApJ doi: 10.3847/1538-4357/abafaa – volume: 867 start-page: 23 year: 2018 ident: apjac3d25bib88 publication-title: ApJ doi: 10.3847/1538-4357/aac08b – volume: 843 start-page: 16 year: 2017 ident: apjac3d25bib105 publication-title: ApJ doi: 10.3847/1538-4357/aa76db – volume: 885 start-page: L19 year: 2019 ident: apjac3d25bib43 publication-title: ApJL doi: 10.3847/2041-8213/ab4ad8 – volume: 69 start-page: 101 year: 2017 ident: apjac3d25bib169 publication-title: PASJ doi: 10.1093/pasj/psx118 – volume: 131 start-page: 078001 year: 2019 ident: apjac3d25bib77 publication-title: PASP doi: 10.1088/1538-3873/ab006c – volume: 854 start-page: L25 year: 2018 ident: apjac3d25bib135 publication-title: ApJL doi: 10.3847/2041-8213/aaacd4 – volume: 848 start-page: L14 year: 2017 ident: apjac3d25bib74 publication-title: ApJL doi: 10.3847/2041-8213/aa8f41 – volume: 848 start-page: L27 year: 2017 ident: apjac3d25bib163 publication-title: ApJL doi: 10.3847/2041-8213/aa90b6 – volume: 725 start-page: 496 year: 2010 ident: apjac3d25bib127 publication-title: ApJ doi: 10.1088/0004-637X/725/1/496 – volume: 502 start-page: 3057 year: 2021 ident: apjac3d25bib82 publication-title: MNRAS doi: 10.1093/mnras/stab221 – volume: 308 start-page: 434 year: 1984 ident: apjac3d25bib129 publication-title: Natur doi: 10.1038/308434a0 – volume: 10 start-page: 177 year: 1984 ident: apjac3d25bib36 publication-title: SvAL – volume: 923 start-page: L32 year: 2021 ident: apjac3d25bib51 publication-title: ApJL doi: 10.3847/2041-8213/ac4259 – volume: 493 start-page: 3379 year: 2020 ident: apjac3d25bib146 publication-title: MNRAS doi: 10.1093/mnras/staa479 – volume: 214 start-page: 28 year: 2014 ident: apjac3d25bib177 publication-title: ApJS doi: 10.1088/0067-0049/214/2/28 – volume: 23 start-page: 3 year: 2020b ident: apjac3d25bib8 publication-title: LRR doi: 10.1007/s41114-020-00026-9 – volume: 625 start-page: A152 year: 2019 ident: apjac3d25bib28 publication-title: A&A doi: 10.1051/0004-6361/201935443 – volume: 358 start-page: 1559 year: 2017 ident: apjac3d25bib97 publication-title: Sci doi: 10.1126/science.aap9455 – volume: 21513 start-page: 1 year: 2017 ident: apjac3d25bib116 publication-title: GCN Circ. – volume: 926 start-page: 152 year: 2022 ident: apjac3d25bib68 publication-title: ApJ doi: 10.3847/1538-4357/ac4508 – volume: 767 start-page: 124 year: 2013 ident: apjac3d25bib128 publication-title: ApJ doi: 10.1088/0004-637X/767/2/124 – volume: 156 start-page: 123 year: 2018 ident: apjac3d25bib24 publication-title: AJ doi: 10.3847/1538-3881/aac387 – volume: 848 start-page: L13 year: 2017b ident: apjac3d25bib3 publication-title: ApJL doi: 10.3847/2041-8213/aa920c – volume: 6 start-page: 7323 year: 2015 ident: apjac3d25bib179 publication-title: NatCo doi: 10.1038/ncomms8323 – volume: 33 start-page: 100425 year: 2020 ident: apjac3d25bib83 publication-title: A&C doi: 10.1016/j.ascom.2020.100425 – volume: 643 start-page: A113 year: 2020 ident: apjac3d25bib14 publication-title: A&A doi: 10.1051/0004-6361/202037669 – volume: 912 start-page: 128 year: 2021 ident: apjac3d25bib136 publication-title: ApJ doi: 10.3847/1538-4357/abeb71 – volume: 154 start-page: 35 year: 2013 ident: apjac3d25bib118 publication-title: Msngr – year: 2021b ident: apjac3d25bib19 – volume: 51 start-page: 305 year: 2019 ident: apjac3d25bib62 publication-title: BAAS – volume: 22 start-page: 143 year: 1982 ident: apjac3d25bib161 publication-title: ApL – volume: 848 start-page: L24 year: 2017 ident: apjac3d25bib170 publication-title: ApJL doi: 10.3847/2041-8213/aa8edf – volume: 641 start-page: A6 year: 2020 ident: apjac3d25bib139 publication-title: A&A doi: 10.1051/0004-6361/201833910 – volume: 518 start-page: 356 year: 1999 ident: apjac3d25bib140 publication-title: ApJ doi: 10.1086/307259 – volume: 852 start-page: L3 year: 2018 ident: apjac3d25bib151 publication-title: ApJL doi: 10.3847/2041-8213/aa9d82 – volume: 11447 start-page: 1144767 year: 2020 ident: apjac3d25bib67 publication-title: Proc. SPIE doi: 10.1117/12.2562842 – volume: 860 start-page: 62 year: 2018 ident: apjac3d25bib76 publication-title: ApJ doi: 10.3847/1538-4357/aac206 – volume: 11 start-page: 021053 year: 2021a ident: apjac3d25bib10 publication-title: PhRvX doi: 10.1103/PhysRevX.11.021053 – volume: 358 start-page: 1565 year: 2017 ident: apjac3d25bib57 publication-title: Sci doi: 10.1126/science.aap9580 – volume: 916 start-page: 89 year: 2021 ident: apjac3d25bib142 publication-title: ApJ doi: 10.3847/1538-4357/ac04b4 – volume: 131 start-page: 018002 year: 2019 ident: apjac3d25bib33 publication-title: PASP doi: 10.1088/1538-3873/aaecbe – volume: 855 start-page: 99 year: 2018 ident: apjac3d25bib42 publication-title: ApJ doi: 10.3847/1538-4357/aaad67 – volume: 899 start-page: 24 year: 2020 ident: apjac3d25bib59 publication-title: ApJ doi: 10.3847/1538-4357/ab70b9 – volume: 9 start-page: 90 year: 2007 ident: apjac3d25bib90 publication-title: CSE doi: 10.1109/MCSE.2007.55 – volume: 27 start-page: 194002 year: 2010 ident: apjac3d25bib141 publication-title: CQGra doi: 10.1088/0264-9381/27/19/194002 – volume: 890 start-page: 131 year: 2020 ident: apjac3d25bib18 publication-title: ApJ doi: 10.3847/1538-4357/ab6a1b – volume: 910 start-page: 116 year: 2021 ident: apjac3d25bib104 publication-title: ApJ doi: 10.3847/1538-4357/abe1b5 – volume: 880 start-page: L4 year: 2019 ident: apjac3d25bib86 publication-title: ApJL doi: 10.3847/2041-8213/ab271c – volume: 526 start-page: 152 year: 1999 ident: apjac3d25bib69 publication-title: ApJ doi: 10.1086/307992 – volume: 873 start-page: 111 year: 2019 ident: apjac3d25bib91 publication-title: ApJ doi: 10.3847/1538-4357/ab042c – start-page: 254 year: 2015 ident: apjac3d25bib37 – volume: 209 start-page: 36 year: 2013 ident: apjac3d25bib178 publication-title: ApJS doi: 10.1088/0067-0049/209/2/36 – volume: 3 start-page: 35 year: 2019 ident: apjac3d25bib15 publication-title: NatAs doi: 10.1038/s41550-018-0658-y – volume: 478 start-page: 3298 year: 2018 ident: apjac3d25bib176 publication-title: MNRAS doi: 10.1093/mnras/sty1018 – volume: 551 start-page: 71 year: 2017 ident: apjac3d25bib166 publication-title: Natur doi: 10.1038/nature24290 – volume: 816 start-page: 61 year: 2016 ident: apjac3d25bib31 publication-title: ApJ doi: 10.3847/0004-637X/816/2/61 – year: 2020 ident: apjac3d25bib53 – volume: 500 start-page: 547 year: 2013 ident: apjac3d25bib162 publication-title: Natur doi: 10.1038/nature12505 – volume: 848 start-page: L12 year: 2017d ident: apjac3d25bib5 publication-title: ApJL doi: 10.3847/2041-8213/aa91c9 – volume: 696 start-page: 1871 year: 2009 ident: apjac3d25bib137 publication-title: ApJ doi: 10.1088/0004-637X/696/2/1871 – volume: 413 start-page: L101 year: 1993 ident: apjac3d25bib106 publication-title: ApJL doi: 10.1086/186969 – volume: 358 start-page: 1574 year: 2017 ident: apjac3d25bib152 publication-title: Sci doi: 10.1126/science.aaq0186 – volume: 829 start-page: 110 year: 2016 ident: apjac3d25bib29 publication-title: ApJ doi: 10.3847/0004-637X/829/2/110 – volume: 848 start-page: L17 year: 2017 ident: apjac3d25bib48 publication-title: ApJL doi: 10.3847/2041-8213/aa8fc7 – volume: 575 start-page: A25 year: 2015 ident: apjac3d25bib160 publication-title: A&A doi: 10.1051/0004-6361/201424973 – volume: 245 start-page: 15 year: 2019 ident: apjac3d25bib101 publication-title: ApJS doi: 10.3847/1538-4365/ab4ea2 – volume: 486 start-page: 672 year: 2019 ident: apjac3d25bib23 publication-title: MNRAS doi: 10.1093/mnras/stz891 – volume: 358 start-page: 1556 year: 2017 ident: apjac3d25bib45 publication-title: Sci doi: 10.1126/science.aap9811 – volume: 23 start-page: 1 year: 2019 ident: apjac3d25bib119 publication-title: LRR doi: 10.1007/s41114-019-0024-0 – volume: 150 start-page: 150 year: 2015 ident: apjac3d25bib61 publication-title: AJ doi: 10.1088/0004-6256/150/5/150 – volume: 499 start-page: 3868 year: 2020 ident: apjac3d25bib164 publication-title: MNRAS doi: 10.1093/mnras/staa2798 – volume: 97 start-page: 104064 year: 2018 ident: apjac3d25bib121 publication-title: PhRvD doi: 10.1103/PhysRevD.97.104064 – volume: 499 start-page: 3459 year: 2020 ident: apjac3d25bib134 publication-title: MNRAS doi: 10.1093/mnras/staa3032 – volume: 28 start-page: 125023 year: 2011 ident: apjac3d25bib150 publication-title: CQGra doi: 10.1088/0264-9381/28/12/125023 – volume: 814 start-page: 25 year: 2015 ident: apjac3d25bib47 publication-title: ApJ doi: 10.1088/0004-637X/814/1/25 – volume: 507 start-page: 1401 year: 2021 ident: apjac3d25bib32 publication-title: MNRAS doi: 10.1093/mnras/stab2086 – volume: 119 start-page: 161101 year: 2017c ident: apjac3d25bib4 publication-title: PhRvL doi: 10.1103/PhysRevLett.119.161101 – volume: 47 start-page: 2198 year: 1993 ident: apjac3d25bib60 publication-title: PhRvD doi: 10.1103/PhysRevD.47.2198 – volume: 147 start-page: 79 year: 2014 ident: apjac3d25bib148 publication-title: AJ doi: 10.1088/0004-6256/147/4/79 – volume: 855 start-page: L23 year: 2018 ident: apjac3d25bib20 publication-title: ApJL doi: 10.3847/2041-8213/aab267 – volume: 901 start-page: 29 year: 2020 ident: apjac3d25bib26 publication-title: ApJ doi: 10.3847/1538-4357/abae61 – volume: 446 start-page: 2523 year: 2015 ident: apjac3d25bib27 publication-title: MNRAS doi: 10.1093/mnras/stu2261 – volume: 907 start-page: 97 year: 2021 ident: apjac3d25bib102 publication-title: ApJ doi: 10.3847/1538-4357/abd2c3 – volume: 7 start-page: 12898 year: 2016 ident: apjac3d25bib93 publication-title: NatCo doi: 10.1038/ncomms12898 – volume: 585 start-page: 357 year: 2020 ident: apjac3d25bib81 publication-title: Natur doi: 10.1038/s41586-020-2649-2 – volume: 507 start-page: 1296 year: 2021 ident: apjac3d25bib130 publication-title: MNRAS doi: 10.1093/mnras/stab2189 – volume: 10704 start-page: 107040C year: 2018 ident: apjac3d25bib54 publication-title: Proc. SPIE doi: 10.1117/12.2311865 – volume: 906 start-page: 127 year: 2021 ident: apjac3d25bib63 publication-title: ApJ doi: 10.3847/1538-4357/abc74a – volume: 906 start-page: 94 year: 2021 ident: apjac3d25bib180 publication-title: ApJ doi: 10.3847/1538-4357/abc69e – volume: 896 start-page: L44 year: 2020c ident: apjac3d25bib9 publication-title: ApJL doi: 10.3847/2041-8213/ab960f – volume: 915 start-page: L5 year: 2021b ident: apjac3d25bib11 publication-title: ApJL doi: 10.3847/2041-8213/ac082e – volume: 505 start-page: L41 year: 2021 ident: apjac3d25bib39 publication-title: MNRAS doi: 10.1093/mnrasl/slab046 – volume: 848 start-page: L16 year: 2017 ident: apjac3d25bib156 publication-title: ApJL doi: 10.3847/2041-8213/aa9059 – volume: 358 start-page: 1570 year: 2017 ident: apjac3d25bib52 publication-title: Sci doi: 10.1126/science.aaq0049 – volume: 213 start-page: 225 year: 1977 ident: apjac3d25bib109 publication-title: ApJ doi: 10.1086/155148 – volume: 851 start-page: L21 year: 2017 ident: apjac3d25bib171 publication-title: ApJL doi: 10.3847/2041-8213/aa9c84 – volume: 789 start-page: L5 year: 2014 ident: apjac3d25bib98 publication-title: ApJL doi: 10.1088/2041-8205/789/1/L5 – volume: 918 start-page: 10 year: 2021 ident: apjac3d25bib175 publication-title: ApJ doi: 10.3847/1538-4357/ac0d03 – volume: 125 start-page: 1031 year: 2013 ident: apjac3d25bib38 publication-title: PASP doi: 10.1086/673168 – volume: 610 start-page: 012007 year: 2015 ident: apjac3d25bib71 publication-title: JPhCS doi: 10.1088/1742-6596/610/1/012007 – volume: 9 start-page: 031040 year: 2019 ident: apjac3d25bib6 publication-title: PhRvX doi: 10.1103/PhysRevX.9.031040 – volume: 895 start-page: 40 year: 2020 ident: apjac3d25bib73 publication-title: ApJ doi: 10.3847/1538-4357/ab8bdb – volume: 507 start-page: L59 year: 1998 ident: apjac3d25bib111 publication-title: ApJL doi: 10.1086/311680 – volume: 502 start-page: 1279 year: 2021 ident: apjac3d25bib131 publication-title: MNRAS doi: 10.1093/mnras/stab132 – volume: 11445 start-page: 114457G year: 2020 ident: apjac3d25bib55 publication-title: Proc. SPIE doi: 10.1117/12.2561008 – volume: 36 start-page: 225002 year: 2019 ident: apjac3d25bib80 publication-title: CQGra doi: 10.1088/1361-6382/ab41d6 – volume: 395 start-page: L83 year: 1992 ident: apjac3d25bib124 publication-title: ApJL doi: 10.1086/186493 – volume: 918 start-page: 63 year: 2021a ident: apjac3d25bib17 publication-title: ApJ doi: 10.3847/1538-4357/ac0bc7 – volume: 3 start-page: 1160 year: 2019 ident: apjac3d25bib78 publication-title: NatAs doi: 10.1038/s41550-019-0964-z – volume: 102 start-page: 043015 year: 2020d ident: apjac3d25bib12 publication-title: PhRvD doi: 10.1103/PhysRevD.102.043015 – volume: 551 start-page: 64 year: 2017 ident: apjac3d25bib21 publication-title: Natur doi: 10.1038/nature24291 – volume: 511 start-page: 2405 year: 2022 ident: apjac3d25bib159 publication-title: MNRAS doi: 10.1093/mnras/stac013 – volume: 551 start-page: 80 year: 2017 ident: apjac3d25bib95 publication-title: Natur doi: 10.1038/nature24453 – volume: 495 start-page: 1841 year: 2020 ident: apjac3d25bib22 publication-title: MNRAS doi: 10.1093/mnras/staa1252 – volume: 150 start-page: 172 year: 2015 ident: apjac3d25bib99 publication-title: AJ doi: 10.1088/0004-6256/150/6/172 – volume: 493 start-page: 4143 year: 2020 ident: apjac3d25bib64 publication-title: MNRAS doi: 10.1093/mnras/staa485 – volume: 120 start-page: 95 year: 2005 ident: apjac3d25bib145 publication-title: SSRv doi: 10.1007/s11214-005-5095-4 – volume: 649 start-page: A72 year: 2021 ident: apjac3d25bib50 publication-title: A&A doi: 10.1051/0004-6361/202040231 – volume: 750 start-page: L22 year: 2012 ident: apjac3d25bib174 publication-title: ApJL doi: 10.1088/2041-8205/750/1/L22 – volume: 426 start-page: 1940 year: 2012 ident: apjac3d25bib103 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21859.x – volume: 551 start-page: 67 year: 2017 ident: apjac3d25bib138 publication-title: Natur doi: 10.1038/nature24298 – volume: 551 start-page: 75 year: 2017 ident: apjac3d25bib154 publication-title: Natur doi: 10.1038/nature24303 – volume: 154 start-page: 21 year: 1968 ident: apjac3d25bib132 publication-title: ApJ doi: 10.1086/149737 – volume: 874 start-page: 88 year: 2019 ident: apjac3d25bib49 publication-title: ApJ doi: 10.3847/1538-4357/ab07b6 – volume: 820 start-page: 136 year: 2016 ident: apjac3d25bib70 publication-title: ApJ doi: 10.3847/0004-637X/820/2/136 – volume: 883 start-page: 48 year: 2019 ident: apjac3d25bib108 publication-title: ApJ doi: 10.3847/1538-4357/ab38bb – volume: 848 start-page: L19 year: 2017 ident: apjac3d25bib41 publication-title: ApJL doi: 10.3847/2041-8213/aa905c – volume: 850 start-page: L1 year: 2017 ident: apjac3d25bib114 publication-title: ApJL doi: 10.3847/2041-8213/aa92c0 – volume: 774 start-page: L23 year: 2013 ident: apjac3d25bib34 publication-title: ApJL doi: 10.1088/2041-8205/774/2/L23 – volume: 525 start-page: L121 year: 1999 ident: apjac3d25bib66 publication-title: ApJL doi: 10.1086/312343 – volume: 823 start-page: L33 year: 2016 ident: apjac3d25bib157 publication-title: ApJL doi: 10.3847/2041-8205/823/2/L33 – volume: 34 start-page: e069 year: 2017 ident: apjac3d25bib16 publication-title: PASA doi: 10.1017/pasa.2017.65 – start-page: 182 year: 2020 ident: apjac3d25bib144 – volume: 848 start-page: L15 year: 2017 ident: apjac3d25bib149 publication-title: ApJL doi: 10.3847/2041-8213/aa8f94 – volume: 34 year: 2017a ident: apjac3d25bib2 publication-title: CQGra doi: 10.1088/1361-6382/aa51f4 – volume: 905 start-page: 145 year: 2020 ident: apjac3d25bib96 publication-title: ApJ doi: 10.3847/1538-4357/abc335 – volume: 34 start-page: 104001 year: 2017 ident: apjac3d25bib147 publication-title: CQGra doi: 10.1088/1361-6382/aa68a9 – volume: 9910 start-page: 99100G year: 2016 ident: apjac3d25bib173 publication-title: Proc. SPIE doi: 10.1117/12.2232898 – volume: 462 start-page: 1591 year: 2016 ident: apjac3d25bib58 publication-title: MNRAS doi: 10.1093/mnras/stw1746 – volume: 249 start-page: 30 year: 2020 ident: apjac3d25bib85 publication-title: ApJS doi: 10.3847/1538-4365/ab9c19 – volume: 11447 year: 2020 ident: apjac3d25bib115 publication-title: Proc. SPIE doi: 10.1117/12.2561210 – volume: 340 start-page: 126 year: 1989 ident: apjac3d25bib56 publication-title: Natur doi: 10.1038/340126a0 – volume: 480 start-page: 3871 year: 2018 ident: apjac3d25bib44 publication-title: MNRAS doi: 10.1093/mnras/sty2174 – volume: 4 start-page: 77 year: 2020 ident: apjac3d25bib92 publication-title: NatAs doi: 10.1038/s41550-019-0892-y – volume: 363 start-page: 968 year: 2019 ident: apjac3d25bib72 publication-title: Sci doi: 10.1126/science.aau8815 – volume: 829 start-page: L15 year: 2016 ident: apjac3d25bib153 publication-title: ApJL doi: 10.3847/2041-8205/829/1/L15 – volume: 17 start-page: 261 year: 2020 ident: apjac3d25bib172 publication-title: NatMe doi: 10.1038/s41592-019-0686-2 – volume: 558 start-page: A33 year: 2013 ident: apjac3d25bib25 publication-title: A&A doi: 10.1051/0004-6361/201322068 – volume: 48 year: 2015 ident: apjac3d25bib65 publication-title: JPhB doi: 10.1088/0953-4075/48/14/144014 – volume: 848 start-page: L18 year: 2017 ident: apjac3d25bib125 publication-title: ApJL doi: 10.3847/2041-8213/aa9029 – year: 2015 ident: apjac3d25bib158 – volume: 32 start-page: 024001 year: 2015 ident: apjac3d25bib13 publication-title: CQGra doi: 10.1088/0264-9381/32/2/024001 – volume: 61 start-page: 97 year: 1956 ident: apjac3d25bib89 publication-title: AJ doi: 10.1086/107297 – volume: 192 start-page: L145 year: 1974 ident: apjac3d25bib110 publication-title: ApJL doi: 10.1086/181612 – volume: 472 start-page: 904 year: 2017 ident: apjac3d25bib112 publication-title: MNRAS doi: 10.1093/mnras/stx1987 – volume: 918 start-page: 44 year: 2021 ident: apjac3d25bib30 publication-title: ApJ doi: 10.3847/1538-4357/ac0aec – volume: 505 start-page: 3016 year: 2021 ident: apjac3d25bib126 publication-title: MNRAS doi: 10.1093/mnras/stab1523 – volume: 4 start-page: 013046 year: 2022 ident: apjac3d25bib143 publication-title: PhRvR doi: 10.1103/PhysRevResearch.4.013046 – volume: 489 start-page: 2104 year: 2019a ident: apjac3d25bib165 publication-title: MNRAS doi: 10.1093/mnras/stz2255 – volume: 450 start-page: 1777 year: 2015 ident: apjac3d25bib94 publication-title: MNRAS doi: 10.1093/mnras/stv721 |
SSID | ssj0004299 |
Score | 2.6145473 |
Snippet | Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint... Abstract Kilonovae are ultraviolet, optical, and infrared transients powered by the radioactive decay of heavy elements following a neutron star merger. Joint... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 163 |
SubjectTerms | Astronomical instruments Astrophysics Ejecta Field of view Gravitational wave astronomy Gravitational waves Heavy elements Kilonovae Neutron stars Radiative transfer Radiative transfer simulations Radioactive decay Red shift Space telescopes Transient detection |
Title | Kilonova Detectability with Wide-field Instruments |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/ac3d25 https://www.proquest.com/docview/2640014850 https://www.osti.gov/biblio/1854419 |
Volume | 927 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxEB4BFRKXQqGIFIj2QCtxcLKxd7Nr9YQKCKhaOIDIoZJle20pPLKREg7w65mxNyAKQlUvKx_82rFn5ht7ZgywI7TMS-5ylmrtWVZklpWoKJnpi4JzV5Ymp0DhX7_7RxfZySAfzMH3p1iYetyI_g4WY6LgSELib4GytBt4FLV80dVWVDyfhw_0cCX58x2fnj0HRXLZYN-M4cCDeEf5Zg8vdNI8jovyuUYOeyWfg9I5XIY_s-lGX5Przt3UdOzDX5kc__N_VuBjA0aTvVj1E8y50Sps7E3oeLy-vU--JaEcTz8mq7B4FktrwH8Ob2p6TzXZd3QNEbN93yd0rJtcDivHgmtcchwS1IYwus9wcXhw_uOINc8vMItW3pRVsuetQ1nIRWVE6k1akY9J5iWCQlv4tHBV5lxWprroecOLXFqjsUmaWVmZUqzDwqgeuQ1I0r4Wwmrfdx4RAxrdRnCN1h8vnTVG9lrQnS2Ask1ucnoi40ahjUJEUkQkRURSkUgt2H1qMY55Od6p-xVprxrmnLxTr_2inh5fKckLxRWCVjWufAs2aVsoXFHKsGvJFclOFUIeBJWyBVuz3fLcB-JNskLLPP3yj7PYhCVOIRbBz20LFnCV3DYCn6lphwODdtjm-D0Vl48k8_vA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB71IRCXAgXUNGnZAyBxcLKxd7PrY0QbNQRKDlTkZmyvLRXabKSkh_DrmbE3VAVUIXHzYdb2znjG39gzY4BXQsu85C5nqdaeZUVmWYkbJTMDUXDuytLklCj88XxwdpG9n-Wz5p3TkAtTLxrT38VmLBQcWUj6LdCW9oKO4i5f9LQVFc97i8pvw25OhVUog-_T9DYxkssG_2YMB5_Fe8q_9nJnX9rGsdFG16hlf9josPGMHsPXzZRjvMn37s3KdO2P36o5_sc_PYG9BpQmw0j-FLbcfB8Ohks6Jq-v18mbJLTjKchyHx5MY-sZ8MnlVU3vqiYnjq4jYtXvdULHu8mXy8qxECKXjEOh2pBO9xwuRqef352x5hkGZtHbW7FK9r11aBO5qIxIvUkrijXJvERwaAufFq7KnMvKVBd9b3iRS2s0fpJmVlamFC9gZ17P3QEk6UALYbUfOI_IAZ1vI7hGL5CXzhoj-y3obYSgbFOjnJ7KuFLoqxCjFDFKEaNUZFQL3v76YhHrc9xD-xr5rxolXd5Dd3yHTi--KckLxRWCV4WSaUGbloZCqVKlXUshSXalEPoguJQt6GxWzG0fiDvJGy3z9PAfZ_ESHk5PRurD-HzShkecsi5C6FsHdlBg7gix0Moch_X-E129_zQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Kilonova+Detectability+with+Wide-field+Instruments&rft.jtitle=The+Astrophysical+journal&rft.au=Chase%2C+Eve+A&rft.au=Brendan+O%E2%80%99Connor&rft.au=Fryer%2C+Christopher+L&rft.au=Troja%2C+Eleonora&rft.date=2022-03-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=927&rft.issue=2&rft.spage=163&rft_id=info:doi/10.3847%2F1538-4357%2Fac3d25&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |