Damage Quantitative Detection of Curved Composite Laminates Based on Improved Particle Swarm Optimization Algorithm

In order to solve the problem of damage identification of composite laminates during processing and service, a quantitative damage detection method based on swarm intelligence optimization was proposed for structural damage detection of curved composite laminates. Firstly, the structural damage elem...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 18; no. 10; p. 2317
Main Authors Tian, Shuxia, Wang, Shunqiang, Chen, Zhenmao, Hao, Ran, Qin, Zhihui, Ma, Jiangdong, Xu, Linfeng
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 16.05.2025
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma18102317

Cover

Abstract In order to solve the problem of damage identification of composite laminates during processing and service, a quantitative damage detection method based on swarm intelligence optimization was proposed for structural damage detection of curved composite laminates. Firstly, the structural damage element was defined by the method of reducing the elastic modulus of the element, and the modal parameters of the numerical model of the laminate under different damage conditions were obtained by analyzing the structural vibration characteristics. Secondly, the objective function was constructed from the vibration data, and the precise location and degree of damage were quantitatively calculated by the swarm intelligence optimization algorithm. In order to prevent the particles from falling into the local optimal, the boundary rebound strategy was used to process the boundary, and the MS operator was introduced to greatly accelerate the convergence speed of the algorithm. The numerical results indicate that without the influence of noise, the algorithm was not affected by the quantity, location or size of the damage and could effectively detect damage in curved fiber-reinforced composites, with the detection error rates being within 0.5%. After adding 1% and 5% noise to the frequency and vibration mode, respectively, the convergence speed of the algorithm slowed down, and the convergence times obviously increased. However, it could still accurately locate the damage, and the calculation error of the damage degree was less than 6%. Finally, the effectiveness of the proposed algorithm was verified through experimental tests.
AbstractList In order to solve the problem of damage identification of composite laminates during processing and service, a quantitative damage detection method based on swarm intelligence optimization was proposed for structural damage detection of curved composite laminates. Firstly, the structural damage element was defined by the method of reducing the elastic modulus of the element, and the modal parameters of the numerical model of the laminate under different damage conditions were obtained by analyzing the structural vibration characteristics. Secondly, the objective function was constructed from the vibration data, and the precise location and degree of damage were quantitatively calculated by the swarm intelligence optimization algorithm. In order to prevent the particles from falling into the local optimal, the boundary rebound strategy was used to process the boundary, and the MS operator was introduced to greatly accelerate the convergence speed of the algorithm. The numerical results indicate that without the influence of noise, the algorithm was not affected by the quantity, location or size of the damage and could effectively detect damage in curved fiber-reinforced composites, with the detection error rates being within 0.5%. After adding 1% and 5% noise to the frequency and vibration mode, respectively, the convergence speed of the algorithm slowed down, and the convergence times obviously increased. However, it could still accurately locate the damage, and the calculation error of the damage degree was less than 6%. Finally, the effectiveness of the proposed algorithm was verified through experimental tests.
In order to solve the problem of damage identification of composite laminates during processing and service, a quantitative damage detection method based on swarm intelligence optimization was proposed for structural damage detection of curved composite laminates. Firstly, the structural damage element was defined by the method of reducing the elastic modulus of the element, and the modal parameters of the numerical model of the laminate under different damage conditions were obtained by analyzing the structural vibration characteristics. Secondly, the objective function was constructed from the vibration data, and the precise location and degree of damage were quantitatively calculated by the swarm intelligence optimization algorithm. In order to prevent the particles from falling into the local optimal, the boundary rebound strategy was used to process the boundary, and the MS operator was introduced to greatly accelerate the convergence speed of the algorithm. The numerical results indicate that without the influence of noise, the algorithm was not affected by the quantity, location or size of the damage and could effectively detect damage in curved fiber-reinforced composites, with the detection error rates being within 0.5%. After adding 1% and 5% noise to the frequency and vibration mode, respectively, the convergence speed of the algorithm slowed down, and the convergence times obviously increased. However, it could still accurately locate the damage, and the calculation error of the damage degree was less than 6%. Finally, the effectiveness of the proposed algorithm was verified through experimental tests.In order to solve the problem of damage identification of composite laminates during processing and service, a quantitative damage detection method based on swarm intelligence optimization was proposed for structural damage detection of curved composite laminates. Firstly, the structural damage element was defined by the method of reducing the elastic modulus of the element, and the modal parameters of the numerical model of the laminate under different damage conditions were obtained by analyzing the structural vibration characteristics. Secondly, the objective function was constructed from the vibration data, and the precise location and degree of damage were quantitatively calculated by the swarm intelligence optimization algorithm. In order to prevent the particles from falling into the local optimal, the boundary rebound strategy was used to process the boundary, and the MS operator was introduced to greatly accelerate the convergence speed of the algorithm. The numerical results indicate that without the influence of noise, the algorithm was not affected by the quantity, location or size of the damage and could effectively detect damage in curved fiber-reinforced composites, with the detection error rates being within 0.5%. After adding 1% and 5% noise to the frequency and vibration mode, respectively, the convergence speed of the algorithm slowed down, and the convergence times obviously increased. However, it could still accurately locate the damage, and the calculation error of the damage degree was less than 6%. Finally, the effectiveness of the proposed algorithm was verified through experimental tests.
Audience Academic
Author Chen, Zhenmao
Wang, Shunqiang
Ma, Jiangdong
Hao, Ran
Xu, Linfeng
Qin, Zhihui
Tian, Shuxia
AuthorAffiliation 1 Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; tiansx@zzuli.edu.cn (S.T.); 3323040400425@zzuli.edu.cn (S.W.); 332102040141@zzuli.edu.cn (R.H.); 331902040103@zzuli.edu.cn (Z.Q.); 332202040186@zzuli.edu.cn (L.X.)
3 Henan Boiler and Pressure Vessel Inspection Technology Research Institute, Zhengzhou 450016, China; majiangdong123@126.com
2 State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
AuthorAffiliation_xml – name: 2 State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an 710049, China
– name: 1 Henan Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou 450002, China; tiansx@zzuli.edu.cn (S.T.); 3323040400425@zzuli.edu.cn (S.W.); 332102040141@zzuli.edu.cn (R.H.); 331902040103@zzuli.edu.cn (Z.Q.); 332202040186@zzuli.edu.cn (L.X.)
– name: 3 Henan Boiler and Pressure Vessel Inspection Technology Research Institute, Zhengzhou 450016, China; majiangdong123@126.com
Author_xml – sequence: 1
  givenname: Shuxia
  surname: Tian
  fullname: Tian, Shuxia
– sequence: 2
  givenname: Shunqiang
  surname: Wang
  fullname: Wang, Shunqiang
– sequence: 3
  givenname: Zhenmao
  orcidid: 0000-0003-3203-4320
  surname: Chen
  fullname: Chen, Zhenmao
– sequence: 4
  givenname: Ran
  surname: Hao
  fullname: Hao, Ran
– sequence: 5
  givenname: Zhihui
  surname: Qin
  fullname: Qin, Zhihui
– sequence: 6
  givenname: Jiangdong
  surname: Ma
  fullname: Ma, Jiangdong
– sequence: 7
  givenname: Linfeng
  surname: Xu
  fullname: Xu, Linfeng
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40429054$$D View this record in MEDLINE/PubMed
BookMark eNp9kl1vFCEUhompsbX2xh9gJvHGaLbyNcNwZdatH002qUa9JszMYUszwBSYbeqvl3arrV4IF5BznvNyeOEp2vPBA0LPCT5mTOK3TpOWYMqIeIQOiJTNgkjO9x7s99FRShe4DMZIS-UTtM8xpxLX_AClE-30Bqqvs_bZZp3tFqoTyNBnG3wVTLWa4xaGahXcFJLNUK21s15nSNV7nUqmYKduiuGG-qJjtv0I1bcrHV11NmXr7E99q7UcNyHafO6eocdGjwmO7tZD9OPjh--rz4v12afT1XK96DkWeTGIGtoGS0JN3TPaMOBdLw1npjEEA-BOs5oTw1rcGGhwx-XAGyE7QQXDA2WH6M1Od_aTvr7S46imaJ2O14pgdeOeunev0O929DR3DoYefI76viJoq_7OeHuuNmGrCCWE4ZoUhVd3CjFczpCycjb1MI7aQ5iTYpRQIYSUrKAv_0Evwhx9ceOWwkIyKgt1vKM2egRlvQnl4L7MAZztyz8wtsSXLaei5bWoS8GLh3f40_zv9y7A6x3Qx5BSBPM_R34BsMK7KQ
Cites_doi 10.1016/j.microrel.2021.114077
10.1155/2022/4456439
10.3901/JME.2023.19.348
10.3390/ma17215332
10.1155/2023/6321012
10.3390/ma17102198
10.3390/ma18081833
10.1016/j.apm.2019.11.023
10.1016/j.actaastro.2021.08.013
10.1007/s11709-022-0840-2
10.3233/JAE-171198
10.1007/s11831-021-09666-8
10.1016/j.compstruct.2023.117091
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2025 by the authors. 2025
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2025 by the authors. 2025
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ma18102317
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
ProQuest SciTech Collection
Materials Research Database
Materials Science Database (Proquest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

MEDLINE - Academic
CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID 10.3390/ma18102317
PMC12113051
A842784575
40429054
10_3390_ma18102317
Genre Journal Article
GrantInformation_xml – fundername: Open Project of the State Key Laboratory for Strength and Vibration of Mechanical Structures
  grantid: SV2023-KF-02
– fundername: National Natural Science Foundation of China
  grantid: 52275138
– fundername: National Natural Science Foundation of China
  grantid: 52475172
– fundername: Key Science and Technology Research Project of the Henan Province
  grantid: 252102241039
– fundername: National Natural Science Foundation of China
  grantid: 52475172; 52275138
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
NPM
PMFND
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c407t-d75e860912f5c3263e4bc9f43f6f10ee0ba3541f3806fe60b49d4679b72730d23
IEDL.DBID BENPR
ISSN 1996-1944
IngestDate Sun Oct 26 04:37:31 EDT 2025
Tue Sep 30 17:04:51 EDT 2025
Fri Sep 05 15:59:31 EDT 2025
Fri Jul 25 09:45:01 EDT 2025
Mon Oct 20 16:53:53 EDT 2025
Sun Jun 01 01:35:19 EDT 2025
Thu Oct 16 04:40:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords swarm intelligence optimization
damage quantification
curved fiber-reinforced composites
finite difference method
structural damage assessment
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-d75e860912f5c3263e4bc9f43f6f10ee0ba3541f3806fe60b49d4679b72730d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3203-4320
OpenAccessLink https://www.proquest.com/docview/3212079329?pq-origsite=%requestingapplication%&accountid=15518
PMID 40429054
PQID 3212079329
PQPubID 2032366
ParticipantIDs unpaywall_primary_10_3390_ma18102317
pubmedcentral_primary_oai_pubmedcentral_nih_gov_12113051
proquest_miscellaneous_3212777993
proquest_journals_3212079329
gale_infotracacademiconefile_A842784575
pubmed_primary_40429054
crossref_primary_10_3390_ma18102317
PublicationCentury 2000
PublicationDate 2025-05-16
PublicationDateYYYYMMDD 2025-05-16
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-16
  day: 16
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2025
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Singh (ref_4) 2022; 29
Khatir (ref_8) 2022; 16
Tian (ref_17) 2019; 59
Bardenhagen (ref_1) 2022; 193
Zhu (ref_20) 2021; 43
Jia (ref_3) 2023; 59
Yan (ref_7) 2023; 55
Niu (ref_9) 2023; 57
Le (ref_11) 2022; 18
ref_18
He (ref_10) 2023; 42
Yang (ref_2) 2023; 40
Zhou (ref_6) 2023; 318
ref_16
Mahdavi (ref_12) 2023; 2023
Banimahd (ref_14) 2019; 19
ref_15
Guedria (ref_13) 2020; 80
ref_5
Schemmel (ref_19) 2021; 119
References_xml – volume: 40
  start-page: 4295
  year: 2023
  ident: ref_2
  article-title: Progress in ultrasonic testing and imaging method for damage of carbon fiber composites
  publication-title: Acta Mater. Compos. Sin.
– volume: 119
  start-page: 114077
  year: 2021
  ident: ref_19
  article-title: Co-simulation of MATLAB and ANSYS for ultrasonic wire bonding process optimization
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2021.114077
– volume: 18
  start-page: 4456439
  year: 2022
  ident: ref_11
  article-title: Structural Damage Localization in Plates Using Global and Local Modal Strain Energy Method
  publication-title: Adv. Civ. Eng.
  doi: 10.1155/2022/4456439
– volume: 42
  start-page: 189
  year: 2023
  ident: ref_10
  article-title: An improved method for modal shape identification of loaded bridges based on frequency variation
  publication-title: J. Vib. Shock
– volume: 59
  start-page: 348
  year: 2023
  ident: ref_3
  article-title: Research Advance Review of Machining Technology for Carbon Fiber Reinforced Polymer Composite Components
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2023.19.348
– ident: ref_16
  doi: 10.3390/ma17215332
– volume: 2023
  start-page: 6321012
  year: 2023
  ident: ref_12
  article-title: Time-Domain Structural Damage Identification Using Ensemble Bagged Trees and Evolutionary Optimization Algorithms
  publication-title: Struct. Control Health Monit.
  doi: 10.1155/2023/6321012
– ident: ref_15
  doi: 10.3390/ma17102198
– ident: ref_5
  doi: 10.3390/ma18081833
– volume: 80
  start-page: 366
  year: 2020
  ident: ref_13
  article-title: An accelerated differential evolution algorithm with new operators for multi-damage detection in plate-like structures
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.11.023
– volume: 193
  start-page: 704
  year: 2022
  ident: ref_1
  article-title: Spider-silk composite material for aerospace application
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2021.08.013
– volume: 19
  start-page: 17
  year: 2019
  ident: ref_14
  article-title: Structural Damage Detection Using Artificial Bee Colony Optimization Algorithm
  publication-title: Modares Civ. Eng. J.
– ident: ref_18
– volume: 16
  start-page: 976
  year: 2022
  ident: ref_8
  article-title: Vibration-based crack prediction on a beam model using hybrid butterfly optimization algorithm with artificial neural network
  publication-title: Front. Struct. Civ. Eng.
  doi: 10.1007/s11709-022-0840-2
– volume: 59
  start-page: 1431
  year: 2019
  ident: ref_17
  article-title: Vibration based numerical and experimental analysis on debonding defect identification for lattice sandwich plate
  publication-title: Int. J. Appl. Electromagn. Mech.
  doi: 10.3233/JAE-171198
– volume: 57
  start-page: 1
  year: 2023
  ident: ref_9
  article-title: An Improved Generalized Flexibility Sensitivity Method for Structural Damage Detection
  publication-title: J. Shanghai Jiaotong Univ.
– volume: 43
  start-page: 144
  year: 2021
  ident: ref_20
  article-title: Local Stress Analysis of Railway Steel Truss Bridge Based on Co-simulation Method
  publication-title: J. China Railw. Soc.
– volume: 55
  start-page: 1939
  year: 2023
  ident: ref_7
  article-title: Analysis of Lamb Wave Dispersion Characteristics of Thermoelastic Anisotropic Laminates Based on the Polynomial Method
  publication-title: Chin. J. Theor. Appl. Mech.
– volume: 29
  start-page: 1997
  year: 2022
  ident: ref_4
  article-title: Structural Health Monitoring of Composite Materials
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-021-09666-8
– volume: 318
  start-page: 117091
  year: 2023
  ident: ref_6
  article-title: Application of two dimensional Morlet wavelet transform in damage detection for composite laminates
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2023.117091
SSID ssj0000331829
Score 2.41142
Snippet In order to solve the problem of damage identification of composite laminates during processing and service, a quantitative damage detection method based on...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage 2317
SubjectTerms Accuracy
Algorithms
Analysis
Composite materials
Convergence
Damage detection
Error detection
Fiber composites
Finite element analysis
Flexibility
Laminated materials
Laminates
Mathematical analysis
Mathematical optimization
Methods
Modulus of elasticity
Numerical models
Optimization algorithms
Optimization techniques
Particle swarm optimization
Structural vibration
Swarm intelligence
Vibration analysis
Vibration mode
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BegAOvB-GghZRiZMb2_uwfUKhpaoQlCKIVE7Wrr1LI2InSu1W8OuZsZ2Q5ICQuEXyRsl6Ht839sy3AHuRM8i7w9CPleO-KHLpa4R9XxYW0ROzYcRpUPjjiToei_dn8mxtip_aKrEUn7RJuu2QxSpbDMMEw3uIXCQezgv35rJ_loR0OuaE6OI67CiJbHwAO-OT09G39mVy_-1OlZRjdT8sNSIaSZ7FGzi0nY3X4Gi7VfJGU831zys9na7h0NEd0MsddO0nP_ab2uznv7bEHf9ni3fhdk9S2ajzqntwzVb34daadOEDuDjUJaYi9rnRVTunhlmTHdq67eyq2Myxg2ZxaQtGCYcawyz7oKntBqkte4vQWTBc1j3SwM-nvQezL1d6UbJPmMjKfkKUjabfZ4tJfV4-hPHRu68Hx35_gIOfY51Y-0UsbaKQkURO5sgTuRUmT53gTrkwsDYwmksROp4EylkVGJEWmLhTQ6QqKCL-CAbVrLJPgBU8zE2acCfxXuWJMGESxDbUSkusIqXz4NXSnNm80-nIsL4ho2d_jO7Ba7J0RsGL5sx1P4OAv0EyWNkooZNHBFJYD3aXzpD1UX2RccR5EhSMUg9eri5jPNJLFl3ZWdOtieMYaZ8HjzvfWf0hQeiPHNmDZMOrVgtI63vzSjU5bzW_SYkPU3Powd7KAf-y0af_tuwZ3IzoPGNSo1W7MKgXjX2OJKs2L_o4-g2c6CE8
  priority: 102
  providerName: Unpaywall
Title Damage Quantitative Detection of Curved Composite Laminates Based on Improved Particle Swarm Optimization Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/40429054
https://www.proquest.com/docview/3212079329
https://www.proquest.com/docview/3212777993
https://pubmed.ncbi.nlm.nih.gov/PMC12113051
https://www.mdpi.com/1996-1944/18/10/2317/pdf?version=1747364414
UnpaywallVersion publishedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: HH5
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616QE4IMqjGNpqEZU4WbW969cBofSRVghCeEQKJ2vt3aVIsRNSm4p_z4xfTXroLZZXsrMz-82365lvAI48kyLvdl07DAy3hcp8W2LYt32lMXoiGnqcCoU_j4PLqfg482dbMO5qYSitssPEGqjVIqMz8mOOGEtibl78YfnHpq5R9HW1a6Eh29YK6n0tMbYNOx4pYw1g5-R8PPnWn7o4HH3YixudUo77_eNcYowjEbRwIzLdxee1AHU3efJBVSzlvxs5n69FptETeNxSSjZsfGAXtnTxFB6tCQ0-g-szmSNwsK-VLOqqMsQ4dqbLOg-rYAvDTqvVX60YwQOlcWn2SVKSDBJRdoKBTjEc1hxA4O9J62_s-41c5ewLwk7e1nOy4fwXTlt5lT-H6ej8x-ml3bZbsDPc1ZW2Cn0dBcgfPONnyOq4FmkWG8FNYFxHayeV3Beu4ZETGB04qYgVwmycEgVylMdfwKBYFPolMMXdLI0jbvxYiCwSqRs5oXZlIH3c8_nGgrfdVCfLRlUjwd0IGSS5NYgF78gKCS01nOpMthUD-AwSrUqGEfUJEUg4LdjvDJW0a_A6ufUYC970t3H10CcRWehF1YwJwxBJmgV7jV37FxIUq5HRWhBtWLwfQMrcm3eK31e1Qjfp5iGQuhYc9c5xzx99df_rv4aHHnUdJs3YYB8G5arSB0iFyvQQtqPRxWHr5Xh1MXPxajqeDH_-B7hUDTo
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V7aFwQLwxFFhEESertnf9OlQobVqlNA0FWqk3d23vUqTYCYlN1D_Hb2PGryY99NabJa9ke-fxzaxnvgHYdnSMcbdtm76nuSnSxDUlwr7ppgrRE72hw6lR-GTkDc7F1wv3Yg3-tb0wVFbZ-sTKUaeThM7Idzj6WCJzc8Iv0z8mTY2iv6vtCA3ZjFZIdyuKsaax41hdLzCFm-8e9VHenxzn8OBsf2A2UwbMBJOZwkx9VwUewqaj3QSDGa5EnIRacO1p21LKiiV3ha15YHlaeVYswhS9SxgT8lspER8gBGwILkJM_jb2DkanP7pTHoujzThhzYvKeWjtZBIxlUjX_BUkvI0HS4B4u1hzs8yn8nohx-MlJDx8DI-aEJb1ap17AmsqfwoPl4gNn8G8LzN0VOx7KfOqiw19Kuuroqr7ytlEs_1y9leljNwRlY0pNpRUlIOBL9tDYE0ZLqsPPPD6tNFv9nMhZxn7hm4ua_pHWW_8C8VUXGXP4fxeNv4FrOeTXL0ClnI7icOAazcUIglEbAeWr2zpSRdzTFcb8LHd6mhas3hEmP2QQKIbgRjwmaQQkWnjViey6VDAZxBJVtQLaC6JwADXgK1WUFFj8_PoRkMN-NDdRmulXzAyV5OyXuP7PgaFBrys5dq9kKDYACNoA4IViXcLiAl89U7--6piBCeePnTctgHbnXLc8aGv737997A5ODsZRsOj0fEbeODQxGPiq_W2YL2YleothmFF_K7RdQaX921e_wE2XkVd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VReJxQLwJFDCiiFO0Sey8DggtXZaWllIElXpLndimSJvsspuw6l_j1zGTV3d76K23SLGUxDPzfWNn5jPAtmdSzLtd1w4Dw22hMt-WSPu2rzSyJ6Khx6lR-OthsHssvpz4Jxvwr-uFobLKDhNroFbTjPbIBxwxlsTcvHhg2rKIo9H4w-yPTSdI0Z_W7jiNxkX29fkSl2-L93sjtPVbzxt_-rmza7cnDNgZLmRKW4W-jgKkTM_4GSYyXIs0i43gJjCuo7WTSu4L1_DICYwOnFTECpElTon1HUWiBwj_N0JScacu9fHnfn_H4RgtXtwoonIeO4NcIpuS3Fq4xoGXmWCFCi-Xad6qipk8X8rJZIUDx_fgbpu8smHjbfdhQxcP4M6KpOFDWIxkjhDFvleyqPvXEE3ZSJd1xVfBpobtVPO_WjECIioY0-xAUjkOprzsI1KqYjis2erA66PWs9mPpZzn7BsCXN52jrLh5BcapTzLH8HxtUz7Y9gspoV-CkxxN0vjiBs_FiKLROpGTqhdGUgfV5e-seBNN9XJrNHvSHDdQwZJLgxiwTuyQkJBjVOdybY3AZ9B8ljJMKITSQSmthZsdYZK2mhfJBe-acHr_jbGKf18kYWeVs2YMAwxHbTgSWPX_oUEZQWYO1sQrVm8H0Aa4Ot3it9ntRY4KfQhZLsWbPfOccWHPrv69V_BTQyq5GDvcP853PboqGMSqg22YLOcV_oF5l9l-rJ2dAan1x1Z_wFVfUL3
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BegAOvB-GghZRiZMb2_uwfUKhpaoQlCKIVE7Wrr1LI2InSu1W8OuZsZ2Q5ICQuEXyRsl6Ht839sy3AHuRM8i7w9CPleO-KHLpa4R9XxYW0ROzYcRpUPjjiToei_dn8mxtip_aKrEUn7RJuu2QxSpbDMMEw3uIXCQezgv35rJ_loR0OuaE6OI67CiJbHwAO-OT09G39mVy_-1OlZRjdT8sNSIaSZ7FGzi0nY3X4Gi7VfJGU831zys9na7h0NEd0MsddO0nP_ab2uznv7bEHf9ni3fhdk9S2ajzqntwzVb34daadOEDuDjUJaYi9rnRVTunhlmTHdq67eyq2Myxg2ZxaQtGCYcawyz7oKntBqkte4vQWTBc1j3SwM-nvQezL1d6UbJPmMjKfkKUjabfZ4tJfV4-hPHRu68Hx35_gIOfY51Y-0UsbaKQkURO5sgTuRUmT53gTrkwsDYwmksROp4EylkVGJEWmLhTQ6QqKCL-CAbVrLJPgBU8zE2acCfxXuWJMGESxDbUSkusIqXz4NXSnNm80-nIsL4ho2d_jO7Ba7J0RsGL5sx1P4OAv0EyWNkooZNHBFJYD3aXzpD1UX2RccR5EhSMUg9eri5jPNJLFl3ZWdOtieMYaZ8HjzvfWf0hQeiPHNmDZMOrVgtI63vzSjU5bzW_SYkPU3Powd7KAf-y0af_tuwZ3IzoPGNSo1W7MKgXjX2OJKs2L_o4-g2c6CE8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Damage+Quantitative+Detection+of+Curved+Composite+Laminates+Based+on+Improved+Particle+Swarm+Optimization+Algorithm&rft.jtitle=Materials&rft.au=Tian%2C+Shuxia&rft.au=Wang%2C+Shunqiang&rft.au=Chen%2C+Zhenmao&rft.au=Hao%2C+Ran&rft.date=2025-05-16&rft.pub=MDPI+AG&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=18&rft.issue=10&rft_id=info:doi/10.3390%2Fma18102317&rft.externalDocID=A842784575
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon