KnotSeeker: Heuristic pseudoknot detection in long RNA sequences
Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of...
        Saved in:
      
    
          | Published in | RNA (Cambridge) Vol. 14; no. 4; pp. 630 - 640 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Cold Spring Harbor Laboratory Press
    
        01.04.2008
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1355-8382 1469-9001 1469-9001  | 
| DOI | 10.1261/rna.968808 | 
Cover
| Abstract | Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from
http://www.csse.uwa.edu.au/∼datta/pseudoknot
. | 
    
|---|---|
| AbstractList | Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/∼datta/pseudoknot. Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/ similar to datta/pseudoknot. Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/~datta/pseudoknot.Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/~datta/pseudoknot. Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/~datta/pseudoknot. Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/∼datta/pseudoknot .  | 
    
| Author | Sperschneider, Jana Datta, Amitava  | 
    
| AuthorAffiliation | 1 School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia 2 Institut für Informatik, Albert-Ludwigs-Universität Freiburg, 79085 Freiburg, Germany  | 
    
| AuthorAffiliation_xml | – name: 1 School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia – name: 2 Institut für Informatik, Albert-Ludwigs-Universität Freiburg, 79085 Freiburg, Germany  | 
    
| Author_xml | – sequence: 1 givenname: Jana surname: Sperschneider fullname: Sperschneider, Jana – sequence: 2 givenname: Amitava surname: Datta fullname: Datta, Amitava  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18314500$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkUlP5DAQhS0EYr_wA1BOHAYFbMdJOxwQLTQsAoHEcrYqdoXxkLYbOxnEvx-3uiUWjYaTS66vSu-92iDLzjskZIfRA8YrdhgcHNSVlFQukXUmqjqvKWXLqS7KMpeF5GtkI8bf6bNI7VWyxmQqSkrXycmV8_094jOGo-wCh2Bjb3U2jTgY_5x6mcEedW-9y6zLOu-esrubcRbxZUCnMW6RlRa6iNuLd5M8nv18OL3Ir2_PL0_H17kWdNTnRlRUgqkZgK6lhGYki8a0aDgYgwlpoS1aQaUQkqFkjdCyMVK0UFIDbV1skv353sFN4e0Vuk5Ng51AeFOMqlkOKuWg5jkk-nhOT4dmgkaj6wO8T3iw6nPH2V_qyf9RnI9mqaUFe4sFwSensVcTGzV2HTj0Q1QjKjjntPoW5MlSmeQlcPejpHf1i1sk4Mcc0MHHGLD9v0H6Bda2h9mZkh3b_WvkLyX5q_g | 
    
| CitedBy_id | crossref_primary_10_1108_IJICC_02_2015_0007 crossref_primary_10_1371_journal_pone_0024067 crossref_primary_10_1063_1_4861037 crossref_primary_10_1261_rna_1429009 crossref_primary_10_1016_j_virusres_2010_09_020 crossref_primary_10_1099_vir_0_055335_0 crossref_primary_10_1002_ange_200900369 crossref_primary_10_1093_nar_gkq021 crossref_primary_10_1371_journal_pone_0112061 crossref_primary_10_1002_anie_200900369 crossref_primary_10_1186_1471_2148_12_91 crossref_primary_10_1080_07391102_2011_10507373 crossref_primary_10_1021_ja905068s crossref_primary_10_1371_journal_pone_0194583 crossref_primary_10_1007_s00705_010_0770_5 crossref_primary_10_1016_j_virusres_2008_11_018 crossref_primary_10_1002_wrna_1134 crossref_primary_10_1002_cpz1_661 crossref_primary_10_1007_s00705_015_2657_y crossref_primary_10_1186_1471_2105_15_147 crossref_primary_10_4161_rna_18386  | 
    
| Cites_doi | 10.1038/nrm1497 10.1093/nar/28.1.201 10.1017/S135583820202071X 10.1093/bioinformatics/14.8.691 10.1073/pnas.2536430100 10.1093/bioinformatics/btg373 10.1006/jmbi.2000.3668 10.1093/nar/gkl210 10.1089/106652700750050862 10.1002/bip.360290621 10.1093/bioinformatics/bti568 10.1006/jmbi.1998.2436 10.1016/S0092-8674(00)80687-X 10.1006/jmbi.1995.0356 10.1093/nar/gkl943 10.1099/vir.0.19424-0 10.1016/S0022-2836(03)00784-8 10.1186/1471-2105-3-2 10.1073/pnas.081082398 10.1093/nar/28.1.168 10.1261/rna.7284905 10.1093/nar/9.1.133 10.1128/JVI.76.24.13116-13122.2002 10.1146/annurev.biophys.26.1.113 10.1006/jmbi.1999.2688 10.1093/nar/13.5.1717 10.1006/jmbi.1999.3001 10.1093/nar/18.10.3035 10.1186/1471-2105-5-104 10.1093/nar/26.1.148 10.1093/bioinformatics/btk041 10.1006/jtbi.1995.0098 10.1038/nrmicro1704 10.1016/S0166-218X(00)00186-4 10.1093/nar/gkg107 10.1093/nar/gkl346 10.1002/jcc.10296 10.1006/jmbi.1999.2700 10.1073/pnas.95.20.11555 10.1093/bioinformatics/16.5.412 10.1093/nar/gkj112 10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3 10.1371/journal.pbio.0030213 10.1007/BF00818163 10.1093/bioinformatics/btg1007 10.1016/0020-0190(92)90216-I 10.1017/S135583829998189X  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2008 RNA Society 2008 | 
    
| Copyright_xml | – notice: Copyright © 2008 RNA Society 2008 | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7TM 7U9 H94 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.1261/rna.968808 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Nucleic Acids Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) AIDS and Cancer Research Abstracts Virology and AIDS Abstracts Nucleic Acids Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | AIDS and Cancer Research Abstracts MEDLINE - Academic MEDLINE CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Anatomy & Physiology Chemistry Biology  | 
    
| DocumentTitleAlternate | Sperschneider and Datta | 
    
| EISSN | 1469-9001 | 
    
| EndPage | 640 | 
    
| ExternalDocumentID | 10.1261/rna.968808 PMC2271355 18314500 10_1261_rna_968808  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- .GJ 0VX 123 18M 29P 2WC 34G 39C 4.4 53G 5RE 5VS 8R4 8R5 AAYXX ABDIX ABDNZ ABGDZ ABVKB ACGFO ACLKE ACNCT ACQPF ACYGS ADBBV AENEX AFFNX AHPUY ALMA_UNASSIGNED_HOLDINGS BAWUL BTFSW C1A CAG CITATION COF CS3 D0L DIK DU5 E3Z EBS EJD F5P GX1 H13 HH5 HYE KQ8 MV1 OK1 P2P RCA RCX RHI ROL RPM SJN TR2 W8F WOQ YKV ZGI ZWS AEILP CGR CUY CVF ECM EIF NPM RIG 7TM 7U9 H94 7X8 5PM ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c407t-d4608ad91aac988ab783bdfed2adde407faf3f4084481e81b4c8bd84fa50daf93 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1355-8382 1469-9001  | 
    
| IngestDate | Wed Oct 29 12:15:50 EDT 2025 Tue Sep 30 16:56:51 EDT 2025 Thu Sep 04 16:03:04 EDT 2025 Fri Sep 05 13:56:53 EDT 2025 Mon Jul 21 05:26:04 EDT 2025 Wed Oct 01 01:57:46 EDT 2025 Thu Apr 24 23:04:47 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | False | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c407t-d4608ad91aac988ab783bdfed2adde407faf3f4084481e81b4c8bd84fa50daf93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Reprint requests to: Jana Sperschneider, School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia; e-mail: janaspe@csse.uwa.edu.au; fax: 61-8-6488-1089; or Amitava Datta, School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia; e-mail: datta@csse.uwa.edu.au.  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://rnajournal.cshlp.org/content/14/4/630.full.pdf | 
    
| PMID | 18314500 | 
    
| PQID | 20845126 | 
    
| PQPubID | 23462 | 
    
| PageCount | 11 | 
    
| ParticipantIDs | unpaywall_primary_10_1261_rna_968808 pubmedcentral_primary_oai_pubmedcentral_nih_gov_2271355 proquest_miscellaneous_70422206 proquest_miscellaneous_20845126 pubmed_primary_18314500 crossref_primary_10_1261_rna_968808 crossref_citationtrail_10_1261_rna_968808  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2008-04-00 2008-Apr 20080401  | 
    
| PublicationDateYYYYMMDD | 2008-04-01 | 
    
| PublicationDate_xml | – month: 04 year: 2008 text: 2008-04-00  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | RNA (Cambridge) | 
    
| PublicationTitleAlternate | RNA | 
    
| PublicationYear | 2008 | 
    
| Publisher | Cold Spring Harbor Laboratory Press | 
    
| Publisher_xml | – name: Cold Spring Harbor Laboratory Press | 
    
| References | 2021112105472426000_14.4.630.10 2021112105472426000_14.4.630.32 2021112105472426000_14.4.630.11 2021112105472426000_14.4.630.33 2021112105472426000_14.4.630.30 2021112105472426000_14.4.630.31 2021112105472426000_14.4.630.18 2021112105472426000_14.4.630.19 2021112105472426000_14.4.630.16 2021112105472426000_14.4.630.38 2021112105472426000_14.4.630.17 2021112105472426000_14.4.630.39 2021112105472426000_14.4.630.14 2021112105472426000_14.4.630.36 2021112105472426000_14.4.630.15 2021112105472426000_14.4.630.37 2021112105472426000_14.4.630.12 2021112105472426000_14.4.630.34 2021112105472426000_14.4.630.13 2021112105472426000_14.4.630.35 2021112105472426000_14.4.630.1 2021112105472426000_14.4.630.2 2021112105472426000_14.4.630.3 2021112105472426000_14.4.630.4 2021112105472426000_14.4.630.5 2021112105472426000_14.4.630.6 2021112105472426000_14.4.630.7 2021112105472426000_14.4.630.21 2021112105472426000_14.4.630.43 2021112105472426000_14.4.630.8 2021112105472426000_14.4.630.22 2021112105472426000_14.4.630.44 2021112105472426000_14.4.630.9 2021112105472426000_14.4.630.41 2021112105472426000_14.4.630.20 2021112105472426000_14.4.630.42 2021112105472426000_14.4.630.40 2021112105472426000_14.4.630.29 2021112105472426000_14.4.630.27 2021112105472426000_14.4.630.28 2021112105472426000_14.4.630.25 2021112105472426000_14.4.630.47 2021112105472426000_14.4.630.26 2021112105472426000_14.4.630.48 2021112105472426000_14.4.630.23 2021112105472426000_14.4.630.45 2021112105472426000_14.4.630.24 2021112105472426000_14.4.630.46 16381832 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4 10592225 - Nucleic Acids Res. 2000 Jan 1;28(1):201-4 14676318 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15310-5 15941360 - PLoS Biol. 2005 Jun;3(6):e213 11108471 - J Comput Biol. 2000;7(3-4):409-27 14693809 - Bioinformatics. 2004 Jan 1;20(1):58-66 12022227 - RNA. 2002 May;8(5):601-11 12438643 - J Virol. 2002 Dec;76(24):13116-22 1693421 - Nucleic Acids Res. 1990 May 25;18(10):3035-44 15294028 - BMC Bioinformatics. 2004 Aug 4;5:104 12917450 - J Gen Virol. 2003 Sep;84(Pt 9):2305-15 10871264 - Bioinformatics. 2000 May;16(5):412-24 7541471 - J Mol Biol. 1995 Jun 30;250(1):37-51 9390227 - Pac Symp Biocomput. 1996;:109-25 9925784 - J Mol Biol. 1999 Feb 5;285(5):2053-68 16199760 - RNA. 2005 Oct;11(10):1494-504 4000943 - Nucleic Acids Res. 1985 Mar 11;13(5):1717-31 15520810 - Nat Rev Mol Cell Biol. 2004 Nov;5(11):908-19 11869452 - BMC Bioinformatics. 2002;3:2 10592213 - Nucleic Acids Res. 2000 Jan 1;28(1):168 16403789 - Bioinformatics. 2006 Mar 15;22(6):762-4 17179177 - Nucleic Acids Res. 2007;35(2):656-63 1695107 - Biopolymers. 1990 May-Jun;29(6-7):1105-19 10721988 - Cell. 2000 Mar 3;100(5):503-14 9789095 - Bioinformatics. 1998;14(8):691-9 11296253 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4899-903 16709732 - Nucleic Acids Res. 2006;34(9):2634-52 10458781 - Angew Chem Int Ed Engl. 1999 Aug;38(16):2326-2343 15994188 - Bioinformatics. 2005 Sep 1;21(17):3501-8 10764589 - J Mol Biol. 2000 Apr 28;298(2):167-85 6163133 - Nucleic Acids Res. 1981 Jan 10;9(1):133-48 10334330 - RNA. 1999 May;5(5):609-17 12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4 16845039 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W416-22 7545258 - J Theor Biol. 1995 Jun 7;174(3):269-80 10550208 - J Mol Biol. 1999 Oct 22;293(2):271-81 12855439 - Bioinformatics. 2003;19 Suppl 1:i66-73 10329189 - J Mol Biol. 1999 May 21;288(5):911-40 12926009 - J Comput Chem. 2003 Oct;24(13):1664-77 17632571 - Nat Rev Microbiol. 2007 Aug;5(8):598-610 9751704 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555-60 9399820 - Nucleic Acids Res. 1998 Jan 1;26(1):148-53 12899829 - J Mol Biol. 2003 Aug 15;331(3):571-83 10329144 - J Mol Biol. 1999 May 7;288(3):305-20 9241415 - Annu Rev Biophys Biomol Struct. 1997;26:113-37  | 
    
| References_xml | – ident: 2021112105472426000_14.4.630.37 doi: 10.1038/nrm1497 – ident: 2021112105472426000_14.4.630.45 doi: 10.1093/nar/28.1.201 – ident: 2021112105472426000_14.4.630.15 doi: 10.1017/S135583820202071X – ident: 2021112105472426000_14.4.630.40 doi: 10.1093/bioinformatics/14.8.691 – ident: 2021112105472426000_14.4.630.47 doi: 10.1073/pnas.2536430100 – ident: 2021112105472426000_14.4.630.36 doi: 10.1093/bioinformatics/btg373 – ident: 2021112105472426000_14.4.630.17 doi: 10.1006/jmbi.2000.3668 – ident: 2021112105472426000_14.4.630.9 doi: 10.1093/nar/gkl210 – ident: 2021112105472426000_14.4.630.25 doi: 10.1089/106652700750050862 – ident: 2021112105472426000_14.4.630.27 doi: 10.1002/bip.360290621 – ident: 2021112105472426000_14.4.630.24 doi: 10.1093/bioinformatics/bti568 – ident: 2021112105472426000_14.4.630.34 doi: 10.1006/jmbi.1998.2436 – ident: 2021112105472426000_14.4.630.13 doi: 10.1016/S0092-8674(00)80687-X – ident: 2021112105472426000_14.4.630.19 doi: 10.1006/jmbi.1995.0356 – ident: 2021112105472426000_14.4.630.23 doi: 10.1093/nar/gkl943 – ident: 2021112105472426000_14.4.630.41 doi: 10.1099/vir.0.19424-0 – ident: 2021112105472426000_14.4.630.4 doi: 10.1016/S0022-2836(03)00784-8 – ident: 2021112105472426000_14.4.630.11 doi: 10.1186/1471-2105-3-2 – ident: 2021112105472426000_14.4.630.30 doi: 10.1073/pnas.081082398 – ident: 2021112105472426000_14.4.630.46 doi: 10.1093/nar/28.1.168 – ident: 2021112105472426000_14.4.630.33 doi: 10.1261/rna.7284905 – ident: 2021112105472426000_14.4.630.48 doi: 10.1093/nar/9.1.133 – ident: 2021112105472426000_14.4.630.29 doi: 10.1128/JVI.76.24.13116-13122.2002 – ident: 2021112105472426000_14.4.630.7 doi: 10.1146/annurev.biophys.26.1.113 – ident: 2021112105472426000_14.4.630.28 doi: 10.1006/jmbi.1999.2688 – ident: 2021112105472426000_14.4.630.31 doi: 10.1093/nar/13.5.1717 – ident: 2021112105472426000_14.4.630.42 doi: 10.1006/jmbi.1999.3001 – ident: 2021112105472426000_14.4.630.1 doi: 10.1093/nar/18.10.3035 – ident: 2021112105472426000_14.4.630.32 doi: 10.1186/1471-2105-5-104 – ident: 2021112105472426000_14.4.630.38 doi: 10.1093/nar/26.1.148 – ident: 2021112105472426000_14.4.630.16 doi: 10.1093/bioinformatics/btk041 – ident: 2021112105472426000_14.4.630.44 doi: 10.1006/jtbi.1995.0098 – ident: 2021112105472426000_14.4.630.6 doi: 10.1038/nrmicro1704 – ident: 2021112105472426000_14.4.630.2 doi: 10.1016/S0166-218X(00)00186-4 – ident: 2021112105472426000_14.4.630.35 doi: 10.1093/nar/gkg107 – ident: 2021112105472426000_14.4.630.12 doi: 10.1093/nar/gkl346 – ident: 2021112105472426000_14.4.630.14 doi: 10.1002/jcc.10296 – ident: 2021112105472426000_14.4.630.26 doi: 10.1006/jmbi.1999.2700 – ident: 2021112105472426000_14.4.630.43 doi: 10.1073/pnas.95.20.11555 – ident: 2021112105472426000_14.4.630.8 – ident: 2021112105472426000_14.4.630.3 doi: 10.1093/bioinformatics/16.5.412 – ident: 2021112105472426000_14.4.630.18 doi: 10.1093/nar/gkj112 – ident: 2021112105472426000_14.4.630.5 doi: 10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3 – ident: 2021112105472426000_14.4.630.39 doi: 10.1371/journal.pbio.0030213 – ident: 2021112105472426000_14.4.630.21 doi: 10.1007/BF00818163 – ident: 2021112105472426000_14.4.630.10 doi: 10.1093/bioinformatics/btg1007 – ident: 2021112105472426000_14.4.630.22 doi: 10.1016/0020-0190(92)90216-I – ident: 2021112105472426000_14.4.630.20 doi: 10.1017/S135583829998189X – reference: 11296253 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4899-903 – reference: 10329144 - J Mol Biol. 1999 May 7;288(3):305-20 – reference: 16381832 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4 – reference: 12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4 – reference: 15994188 - Bioinformatics. 2005 Sep 1;21(17):3501-8 – reference: 16845039 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W416-22 – reference: 11108471 - J Comput Biol. 2000;7(3-4):409-27 – reference: 10329189 - J Mol Biol. 1999 May 21;288(5):911-40 – reference: 10334330 - RNA. 1999 May;5(5):609-17 – reference: 17632571 - Nat Rev Microbiol. 2007 Aug;5(8):598-610 – reference: 10871264 - Bioinformatics. 2000 May;16(5):412-24 – reference: 1695107 - Biopolymers. 1990 May-Jun;29(6-7):1105-19 – reference: 9390227 - Pac Symp Biocomput. 1996;:109-25 – reference: 15520810 - Nat Rev Mol Cell Biol. 2004 Nov;5(11):908-19 – reference: 12438643 - J Virol. 2002 Dec;76(24):13116-22 – reference: 9751704 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555-60 – reference: 16709732 - Nucleic Acids Res. 2006;34(9):2634-52 – reference: 7545258 - J Theor Biol. 1995 Jun 7;174(3):269-80 – reference: 10550208 - J Mol Biol. 1999 Oct 22;293(2):271-81 – reference: 4000943 - Nucleic Acids Res. 1985 Mar 11;13(5):1717-31 – reference: 12917450 - J Gen Virol. 2003 Sep;84(Pt 9):2305-15 – reference: 10764589 - J Mol Biol. 2000 Apr 28;298(2):167-85 – reference: 15294028 - BMC Bioinformatics. 2004 Aug 4;5:104 – reference: 10458781 - Angew Chem Int Ed Engl. 1999 Aug;38(16):2326-2343 – reference: 17179177 - Nucleic Acids Res. 2007;35(2):656-63 – reference: 16199760 - RNA. 2005 Oct;11(10):1494-504 – reference: 14676318 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15310-5 – reference: 9925784 - J Mol Biol. 1999 Feb 5;285(5):2053-68 – reference: 1693421 - Nucleic Acids Res. 1990 May 25;18(10):3035-44 – reference: 7541471 - J Mol Biol. 1995 Jun 30;250(1):37-51 – reference: 10592213 - Nucleic Acids Res. 2000 Jan 1;28(1):168 – reference: 14693809 - Bioinformatics. 2004 Jan 1;20(1):58-66 – reference: 9241415 - Annu Rev Biophys Biomol Struct. 1997;26:113-37 – reference: 9789095 - Bioinformatics. 1998;14(8):691-9 – reference: 6163133 - Nucleic Acids Res. 1981 Jan 10;9(1):133-48 – reference: 9399820 - Nucleic Acids Res. 1998 Jan 1;26(1):148-53 – reference: 11869452 - BMC Bioinformatics. 2002;3:2 – reference: 10721988 - Cell. 2000 Mar 3;100(5):503-14 – reference: 12926009 - J Comput Chem. 2003 Oct;24(13):1664-77 – reference: 12022227 - RNA. 2002 May;8(5):601-11 – reference: 12855439 - Bioinformatics. 2003;19 Suppl 1:i66-73 – reference: 15941360 - PLoS Biol. 2005 Jun;3(6):e213 – reference: 10592225 - Nucleic Acids Res. 2000 Jan 1;28(1):201-4 – reference: 16403789 - Bioinformatics. 2006 Mar 15;22(6):762-4 – reference: 12899829 - J Mol Biol. 2003 Aug 15;331(3):571-83  | 
    
| SSID | ssj0013146 | 
    
| Score | 2.023413 | 
    
| Snippet | Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 630 | 
    
| SubjectTerms | Algorithms Base Sequence Bioinformatics Computational Biology Computer Simulation Models, Molecular Nucleic Acid Conformation Python RNA - chemistry RNA - genetics Software Thermodynamics  | 
    
| Title | KnotSeeker: Heuristic pseudoknot detection in long RNA sequences | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/18314500 https://www.proquest.com/docview/20845126 https://www.proquest.com/docview/70422206 https://pubmed.ncbi.nlm.nih.gov/PMC2271355 http://rnajournal.cshlp.org/content/14/4/630.full.pdf  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 14 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1469-9001 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: HH5 dateStart: 19950101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1469-9001 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: KQ8 dateStart: 19950301 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1469-9001 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: DIK dateStart: 19950101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1469-9001 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1469-9001 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0013146 issn: 1355-8382 databaseCode: RPM dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJ7SnARuMIhiWmJB4SJoPO3F4okxMFUgVAorGU-RPNjVzojURGn8953wUqgKCt0i-xPbd-XxnX36H0IlhJBSpCEECVEGAopTHiJAerC0lpRZcyzbLd57MFuTtOT3fQUOlQuBez0Nfri6Kqr3Ld0nbYIEnIZmQSRIHvjuZ9itlbqHdhIILPkK7i_n76Zc2uKLUY3FbJAqMQOZlYId7WFIIFlwHfpaA0rLNjWjLu9xOktxrbMVvvvGi-GUHOruDPg__8XSJJ0u_qYUvv2_DOv7f5O6i_d4nxdNOie6hHW0P0OHUQjx-dYOf4zZLtD1-P0C3Xw9Pe6dDrbhD9OqdLeuPWi_19Us8000H_4yrlW5UuYQ2rHTdJn1ZfGlxUdqv-MN8iteJ3PfR4uzNp9OZ19dm8CSEgLWnSBIwrrKQc5kxxkXKYqGMVpEzmEBiuIkNCRiEf6EG35hIJhQjhtNAcZPFD9DIllY_RDgGMxIb-EqWclCTVBBFTRRx9zZlaTRGLwZB5bIHLnf1M4rcBTAg1ByYlHdCHaNna9qqg-v4LdXTQd45MMpdkXCry2aVRzBgcIGSP1OkDjQtCoDiqNOPn_2wOCQ0CMYo3dCcNYFD8t5ssZcXLaJ3FLlKiXSMTtY69pfhP_o3ssdoVF83-gk4TbU4bs-xjvuF8gNVdx1X | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbKVqhPHC3HIgqWqJB4SDaHnTh96lJRrUBaIWBReYp80mqDE3UTofLrO86xsFpA8BbJk9ieGY9n7Mk3CB0ZRkKRihAkQBUEKEp5jAjpwdpSUmrBtWyzfOfJbEHentPzHTRUKgTu9Tz05eqiqNq7fJe0DRZ4EpIJmSRx4LuTab9S5hbaTSi44CO0u5i_n35pgytKPRa3RaLACGReBna4hyWFYMF14GcJKC3b3Ii2vMvtJMm9xlb8-jsvil92oLO76PPwH0-XeLL0m1r48sc2rOP_Te4eutP7pHjaKdF9tKPtPjqYWojHv13jl7jNEm2P3_fR7dfD097pUCvuAJ28s2X9UeulvjrGM9108M-4WulGlUtow0rXbdKXxZcWF6X9ij_Mp3idyP0ALc7efDqdeX1tBk9CCFh7iiQB4yoLOZcZY1ykLBbKaBU5gwkkhpvYkIBB-Bdq8I2JZEIxYjgNFDdZ_BCNbGn1Y4RjMCOxga9kKQc1SQVR1EQRd29TlkZj9GoQVC574HJXP6PIXQADQs2BSXkn1DF6saatOriO31I9H-SdA6PcFQm3umxWeQQDBhco-TNF6kDTogAoHnX68bMfFoeEBsEYpRuasyZwSN6bLfbyokX0jiJXKZGO0dFax_4y_Cf_RvYUjeqrRh-C01SLZ_0SuQGquxxH | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KnotSeeker%3A+Heuristic+pseudoknot+detection+in+long+RNA+sequences&rft.jtitle=RNA+%28Cambridge%29&rft.au=Sperschneider%2C+Jana&rft.au=Datta%2C+Amitava&rft.date=2008-04-01&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=14&rft.issue=4&rft.spage=630&rft.epage=640&rft_id=info:doi/10.1261%2Frna.968808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1261_rna_968808 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon |