KnotSeeker: Heuristic pseudoknot detection in long RNA sequences

Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of...

Full description

Saved in:
Bibliographic Details
Published inRNA (Cambridge) Vol. 14; no. 4; pp. 630 - 640
Main Authors Sperschneider, Jana, Datta, Amitava
Format Journal Article
LanguageEnglish
Published United States Cold Spring Harbor Laboratory Press 01.04.2008
Subjects
Online AccessGet full text
ISSN1355-8382
1469-9001
1469-9001
DOI10.1261/rna.968808

Cover

Abstract Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/∼datta/pseudoknot .
AbstractList Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/∼datta/pseudoknot.
Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/ similar to datta/pseudoknot.
Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/~datta/pseudoknot.Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/~datta/pseudoknot.
Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/~datta/pseudoknot.
Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The prediction of these structures in RNA molecules has important implications in antiviral drug design. It has been shown that the prediction of pseudoknots is an NP-complete problem. Practical structure prediction algorithms based on free energy minimization employ a restricted problem class and dynamic programming. However, these algorithms are computationally very expensive, and their accuracy deteriorates if the input sequence containing the pseudoknot is too long. Heuristic methods can be more efficient, but do not guarantee an optimal solution in regards to the minimum free energy model. We present KnotSeeker, a new heuristic algorithm for the detection of pseudoknots in RNA sequences as a preliminary step for structure prediction. Our method uses a hybrid sequence matching and free energy minimization approach to perform a screening of the primary sequence. We select short sequence fragments as possible candidates that may contain pseudoknots and verify them by using an existing dynamic programming algorithm and a minimum weight independent set calculation. KnotSeeker is significantly more accurate in detecting pseudoknots compared to other common methods as reported in the literature. It is very efficient and therefore a practical tool, especially for long sequences. The algorithm has been implemented in Python and it also uses C/C++ code from several other known techniques. The code is available from http://www.csse.uwa.edu.au/∼datta/pseudoknot .
Author Sperschneider, Jana
Datta, Amitava
AuthorAffiliation 1 School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia
2 Institut für Informatik, Albert-Ludwigs-Universität Freiburg, 79085 Freiburg, Germany
AuthorAffiliation_xml – name: 1 School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia
– name: 2 Institut für Informatik, Albert-Ludwigs-Universität Freiburg, 79085 Freiburg, Germany
Author_xml – sequence: 1
  givenname: Jana
  surname: Sperschneider
  fullname: Sperschneider, Jana
– sequence: 2
  givenname: Amitava
  surname: Datta
  fullname: Datta, Amitava
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18314500$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlP5DAQhS0EYr_wA1BOHAYFbMdJOxwQLTQsAoHEcrYqdoXxkLYbOxnEvx-3uiUWjYaTS66vSu-92iDLzjskZIfRA8YrdhgcHNSVlFQukXUmqjqvKWXLqS7KMpeF5GtkI8bf6bNI7VWyxmQqSkrXycmV8_094jOGo-wCh2Bjb3U2jTgY_5x6mcEedW-9y6zLOu-esrubcRbxZUCnMW6RlRa6iNuLd5M8nv18OL3Ir2_PL0_H17kWdNTnRlRUgqkZgK6lhGYki8a0aDgYgwlpoS1aQaUQkqFkjdCyMVK0UFIDbV1skv353sFN4e0Vuk5Ng51AeFOMqlkOKuWg5jkk-nhOT4dmgkaj6wO8T3iw6nPH2V_qyf9RnI9mqaUFe4sFwSensVcTGzV2HTj0Q1QjKjjntPoW5MlSmeQlcPejpHf1i1sk4Mcc0MHHGLD9v0H6Bda2h9mZkh3b_WvkLyX5q_g
CitedBy_id crossref_primary_10_1108_IJICC_02_2015_0007
crossref_primary_10_1371_journal_pone_0024067
crossref_primary_10_1063_1_4861037
crossref_primary_10_1261_rna_1429009
crossref_primary_10_1016_j_virusres_2010_09_020
crossref_primary_10_1099_vir_0_055335_0
crossref_primary_10_1002_ange_200900369
crossref_primary_10_1093_nar_gkq021
crossref_primary_10_1371_journal_pone_0112061
crossref_primary_10_1002_anie_200900369
crossref_primary_10_1186_1471_2148_12_91
crossref_primary_10_1080_07391102_2011_10507373
crossref_primary_10_1021_ja905068s
crossref_primary_10_1371_journal_pone_0194583
crossref_primary_10_1007_s00705_010_0770_5
crossref_primary_10_1016_j_virusres_2008_11_018
crossref_primary_10_1002_wrna_1134
crossref_primary_10_1002_cpz1_661
crossref_primary_10_1007_s00705_015_2657_y
crossref_primary_10_1186_1471_2105_15_147
crossref_primary_10_4161_rna_18386
Cites_doi 10.1038/nrm1497
10.1093/nar/28.1.201
10.1017/S135583820202071X
10.1093/bioinformatics/14.8.691
10.1073/pnas.2536430100
10.1093/bioinformatics/btg373
10.1006/jmbi.2000.3668
10.1093/nar/gkl210
10.1089/106652700750050862
10.1002/bip.360290621
10.1093/bioinformatics/bti568
10.1006/jmbi.1998.2436
10.1016/S0092-8674(00)80687-X
10.1006/jmbi.1995.0356
10.1093/nar/gkl943
10.1099/vir.0.19424-0
10.1016/S0022-2836(03)00784-8
10.1186/1471-2105-3-2
10.1073/pnas.081082398
10.1093/nar/28.1.168
10.1261/rna.7284905
10.1093/nar/9.1.133
10.1128/JVI.76.24.13116-13122.2002
10.1146/annurev.biophys.26.1.113
10.1006/jmbi.1999.2688
10.1093/nar/13.5.1717
10.1006/jmbi.1999.3001
10.1093/nar/18.10.3035
10.1186/1471-2105-5-104
10.1093/nar/26.1.148
10.1093/bioinformatics/btk041
10.1006/jtbi.1995.0098
10.1038/nrmicro1704
10.1016/S0166-218X(00)00186-4
10.1093/nar/gkg107
10.1093/nar/gkl346
10.1002/jcc.10296
10.1006/jmbi.1999.2700
10.1073/pnas.95.20.11555
10.1093/bioinformatics/16.5.412
10.1093/nar/gkj112
10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3
10.1371/journal.pbio.0030213
10.1007/BF00818163
10.1093/bioinformatics/btg1007
10.1016/0020-0190(92)90216-I
10.1017/S135583829998189X
ContentType Journal Article
Copyright Copyright © 2008 RNA Society 2008
Copyright_xml – notice: Copyright © 2008 RNA Society 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7TM
7U9
H94
7X8
5PM
ADTOC
UNPAY
DOI 10.1261/rna.968808
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Nucleic Acids Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
AIDS and Cancer Research Abstracts
Virology and AIDS Abstracts
Nucleic Acids Abstracts
MEDLINE - Academic
DatabaseTitleList
AIDS and Cancer Research Abstracts
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
DocumentTitleAlternate Sperschneider and Datta
EISSN 1469-9001
EndPage 640
ExternalDocumentID 10.1261/rna.968808
PMC2271355
18314500
10_1261_rna_968808
Genre Journal Article
GroupedDBID ---
.GJ
0VX
123
18M
29P
2WC
34G
39C
4.4
53G
5RE
5VS
8R4
8R5
AAYXX
ABDIX
ABDNZ
ABGDZ
ABVKB
ACGFO
ACLKE
ACNCT
ACQPF
ACYGS
ADBBV
AENEX
AFFNX
AHPUY
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BTFSW
C1A
CAG
CITATION
COF
CS3
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
GX1
H13
HH5
HYE
KQ8
MV1
OK1
P2P
RCA
RCX
RHI
ROL
RPM
SJN
TR2
W8F
WOQ
YKV
ZGI
ZWS
AEILP
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7TM
7U9
H94
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c407t-d4608ad91aac988ab783bdfed2adde407faf3f4084481e81b4c8bd84fa50daf93
IEDL.DBID UNPAY
ISSN 1355-8382
1469-9001
IngestDate Wed Oct 29 12:15:50 EDT 2025
Tue Sep 30 16:56:51 EDT 2025
Thu Sep 04 16:03:04 EDT 2025
Fri Sep 05 13:56:53 EDT 2025
Mon Jul 21 05:26:04 EDT 2025
Wed Oct 01 01:57:46 EDT 2025
Thu Apr 24 23:04:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License False
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-d4608ad91aac988ab783bdfed2adde407faf3f4084481e81b4c8bd84fa50daf93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reprint requests to: Jana Sperschneider, School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia; e-mail: janaspe@csse.uwa.edu.au; fax: 61-8-6488-1089; or Amitava Datta, School of Computer Science and Software Engineering, University of Western Australia, Perth, WA 6009, Australia; e-mail: datta@csse.uwa.edu.au.
OpenAccessLink https://proxy.k.utb.cz/login?url=http://rnajournal.cshlp.org/content/14/4/630.full.pdf
PMID 18314500
PQID 20845126
PQPubID 23462
PageCount 11
ParticipantIDs unpaywall_primary_10_1261_rna_968808
pubmedcentral_primary_oai_pubmedcentral_nih_gov_2271355
proquest_miscellaneous_70422206
proquest_miscellaneous_20845126
pubmed_primary_18314500
crossref_primary_10_1261_rna_968808
crossref_citationtrail_10_1261_rna_968808
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-04-00
2008-Apr
20080401
PublicationDateYYYYMMDD 2008-04-01
PublicationDate_xml – month: 04
  year: 2008
  text: 2008-04-00
PublicationDecade 2000
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle RNA (Cambridge)
PublicationTitleAlternate RNA
PublicationYear 2008
Publisher Cold Spring Harbor Laboratory Press
Publisher_xml – name: Cold Spring Harbor Laboratory Press
References 2021112105472426000_14.4.630.10
2021112105472426000_14.4.630.32
2021112105472426000_14.4.630.11
2021112105472426000_14.4.630.33
2021112105472426000_14.4.630.30
2021112105472426000_14.4.630.31
2021112105472426000_14.4.630.18
2021112105472426000_14.4.630.19
2021112105472426000_14.4.630.16
2021112105472426000_14.4.630.38
2021112105472426000_14.4.630.17
2021112105472426000_14.4.630.39
2021112105472426000_14.4.630.14
2021112105472426000_14.4.630.36
2021112105472426000_14.4.630.15
2021112105472426000_14.4.630.37
2021112105472426000_14.4.630.12
2021112105472426000_14.4.630.34
2021112105472426000_14.4.630.13
2021112105472426000_14.4.630.35
2021112105472426000_14.4.630.1
2021112105472426000_14.4.630.2
2021112105472426000_14.4.630.3
2021112105472426000_14.4.630.4
2021112105472426000_14.4.630.5
2021112105472426000_14.4.630.6
2021112105472426000_14.4.630.7
2021112105472426000_14.4.630.21
2021112105472426000_14.4.630.43
2021112105472426000_14.4.630.8
2021112105472426000_14.4.630.22
2021112105472426000_14.4.630.44
2021112105472426000_14.4.630.9
2021112105472426000_14.4.630.41
2021112105472426000_14.4.630.20
2021112105472426000_14.4.630.42
2021112105472426000_14.4.630.40
2021112105472426000_14.4.630.29
2021112105472426000_14.4.630.27
2021112105472426000_14.4.630.28
2021112105472426000_14.4.630.25
2021112105472426000_14.4.630.47
2021112105472426000_14.4.630.26
2021112105472426000_14.4.630.48
2021112105472426000_14.4.630.23
2021112105472426000_14.4.630.45
2021112105472426000_14.4.630.24
2021112105472426000_14.4.630.46
16381832 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4
10592225 - Nucleic Acids Res. 2000 Jan 1;28(1):201-4
14676318 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15310-5
15941360 - PLoS Biol. 2005 Jun;3(6):e213
11108471 - J Comput Biol. 2000;7(3-4):409-27
14693809 - Bioinformatics. 2004 Jan 1;20(1):58-66
12022227 - RNA. 2002 May;8(5):601-11
12438643 - J Virol. 2002 Dec;76(24):13116-22
1693421 - Nucleic Acids Res. 1990 May 25;18(10):3035-44
15294028 - BMC Bioinformatics. 2004 Aug 4;5:104
12917450 - J Gen Virol. 2003 Sep;84(Pt 9):2305-15
10871264 - Bioinformatics. 2000 May;16(5):412-24
7541471 - J Mol Biol. 1995 Jun 30;250(1):37-51
9390227 - Pac Symp Biocomput. 1996;:109-25
9925784 - J Mol Biol. 1999 Feb 5;285(5):2053-68
16199760 - RNA. 2005 Oct;11(10):1494-504
4000943 - Nucleic Acids Res. 1985 Mar 11;13(5):1717-31
15520810 - Nat Rev Mol Cell Biol. 2004 Nov;5(11):908-19
11869452 - BMC Bioinformatics. 2002;3:2
10592213 - Nucleic Acids Res. 2000 Jan 1;28(1):168
16403789 - Bioinformatics. 2006 Mar 15;22(6):762-4
17179177 - Nucleic Acids Res. 2007;35(2):656-63
1695107 - Biopolymers. 1990 May-Jun;29(6-7):1105-19
10721988 - Cell. 2000 Mar 3;100(5):503-14
9789095 - Bioinformatics. 1998;14(8):691-9
11296253 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4899-903
16709732 - Nucleic Acids Res. 2006;34(9):2634-52
10458781 - Angew Chem Int Ed Engl. 1999 Aug;38(16):2326-2343
15994188 - Bioinformatics. 2005 Sep 1;21(17):3501-8
10764589 - J Mol Biol. 2000 Apr 28;298(2):167-85
6163133 - Nucleic Acids Res. 1981 Jan 10;9(1):133-48
10334330 - RNA. 1999 May;5(5):609-17
12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4
16845039 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W416-22
7545258 - J Theor Biol. 1995 Jun 7;174(3):269-80
10550208 - J Mol Biol. 1999 Oct 22;293(2):271-81
12855439 - Bioinformatics. 2003;19 Suppl 1:i66-73
10329189 - J Mol Biol. 1999 May 21;288(5):911-40
12926009 - J Comput Chem. 2003 Oct;24(13):1664-77
17632571 - Nat Rev Microbiol. 2007 Aug;5(8):598-610
9751704 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555-60
9399820 - Nucleic Acids Res. 1998 Jan 1;26(1):148-53
12899829 - J Mol Biol. 2003 Aug 15;331(3):571-83
10329144 - J Mol Biol. 1999 May 7;288(3):305-20
9241415 - Annu Rev Biophys Biomol Struct. 1997;26:113-37
References_xml – ident: 2021112105472426000_14.4.630.37
  doi: 10.1038/nrm1497
– ident: 2021112105472426000_14.4.630.45
  doi: 10.1093/nar/28.1.201
– ident: 2021112105472426000_14.4.630.15
  doi: 10.1017/S135583820202071X
– ident: 2021112105472426000_14.4.630.40
  doi: 10.1093/bioinformatics/14.8.691
– ident: 2021112105472426000_14.4.630.47
  doi: 10.1073/pnas.2536430100
– ident: 2021112105472426000_14.4.630.36
  doi: 10.1093/bioinformatics/btg373
– ident: 2021112105472426000_14.4.630.17
  doi: 10.1006/jmbi.2000.3668
– ident: 2021112105472426000_14.4.630.9
  doi: 10.1093/nar/gkl210
– ident: 2021112105472426000_14.4.630.25
  doi: 10.1089/106652700750050862
– ident: 2021112105472426000_14.4.630.27
  doi: 10.1002/bip.360290621
– ident: 2021112105472426000_14.4.630.24
  doi: 10.1093/bioinformatics/bti568
– ident: 2021112105472426000_14.4.630.34
  doi: 10.1006/jmbi.1998.2436
– ident: 2021112105472426000_14.4.630.13
  doi: 10.1016/S0092-8674(00)80687-X
– ident: 2021112105472426000_14.4.630.19
  doi: 10.1006/jmbi.1995.0356
– ident: 2021112105472426000_14.4.630.23
  doi: 10.1093/nar/gkl943
– ident: 2021112105472426000_14.4.630.41
  doi: 10.1099/vir.0.19424-0
– ident: 2021112105472426000_14.4.630.4
  doi: 10.1016/S0022-2836(03)00784-8
– ident: 2021112105472426000_14.4.630.11
  doi: 10.1186/1471-2105-3-2
– ident: 2021112105472426000_14.4.630.30
  doi: 10.1073/pnas.081082398
– ident: 2021112105472426000_14.4.630.46
  doi: 10.1093/nar/28.1.168
– ident: 2021112105472426000_14.4.630.33
  doi: 10.1261/rna.7284905
– ident: 2021112105472426000_14.4.630.48
  doi: 10.1093/nar/9.1.133
– ident: 2021112105472426000_14.4.630.29
  doi: 10.1128/JVI.76.24.13116-13122.2002
– ident: 2021112105472426000_14.4.630.7
  doi: 10.1146/annurev.biophys.26.1.113
– ident: 2021112105472426000_14.4.630.28
  doi: 10.1006/jmbi.1999.2688
– ident: 2021112105472426000_14.4.630.31
  doi: 10.1093/nar/13.5.1717
– ident: 2021112105472426000_14.4.630.42
  doi: 10.1006/jmbi.1999.3001
– ident: 2021112105472426000_14.4.630.1
  doi: 10.1093/nar/18.10.3035
– ident: 2021112105472426000_14.4.630.32
  doi: 10.1186/1471-2105-5-104
– ident: 2021112105472426000_14.4.630.38
  doi: 10.1093/nar/26.1.148
– ident: 2021112105472426000_14.4.630.16
  doi: 10.1093/bioinformatics/btk041
– ident: 2021112105472426000_14.4.630.44
  doi: 10.1006/jtbi.1995.0098
– ident: 2021112105472426000_14.4.630.6
  doi: 10.1038/nrmicro1704
– ident: 2021112105472426000_14.4.630.2
  doi: 10.1016/S0166-218X(00)00186-4
– ident: 2021112105472426000_14.4.630.35
  doi: 10.1093/nar/gkg107
– ident: 2021112105472426000_14.4.630.12
  doi: 10.1093/nar/gkl346
– ident: 2021112105472426000_14.4.630.14
  doi: 10.1002/jcc.10296
– ident: 2021112105472426000_14.4.630.26
  doi: 10.1006/jmbi.1999.2700
– ident: 2021112105472426000_14.4.630.43
  doi: 10.1073/pnas.95.20.11555
– ident: 2021112105472426000_14.4.630.8
– ident: 2021112105472426000_14.4.630.3
  doi: 10.1093/bioinformatics/16.5.412
– ident: 2021112105472426000_14.4.630.18
  doi: 10.1093/nar/gkj112
– ident: 2021112105472426000_14.4.630.5
  doi: 10.1002/(SICI)1521-3773(19990816)38:16<2326::AID-ANIE2326>3.0.CO;2-3
– ident: 2021112105472426000_14.4.630.39
  doi: 10.1371/journal.pbio.0030213
– ident: 2021112105472426000_14.4.630.21
  doi: 10.1007/BF00818163
– ident: 2021112105472426000_14.4.630.10
  doi: 10.1093/bioinformatics/btg1007
– ident: 2021112105472426000_14.4.630.22
  doi: 10.1016/0020-0190(92)90216-I
– ident: 2021112105472426000_14.4.630.20
  doi: 10.1017/S135583829998189X
– reference: 11296253 - Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):4899-903
– reference: 10329144 - J Mol Biol. 1999 May 7;288(3):305-20
– reference: 16381832 - Nucleic Acids Res. 2006 Jan 1;34(Database issue):D140-4
– reference: 12520023 - Nucleic Acids Res. 2003 Jan 1;31(1):363-4
– reference: 15994188 - Bioinformatics. 2005 Sep 1;21(17):3501-8
– reference: 16845039 - Nucleic Acids Res. 2006 Jul 1;34(Web Server issue):W416-22
– reference: 11108471 - J Comput Biol. 2000;7(3-4):409-27
– reference: 10329189 - J Mol Biol. 1999 May 21;288(5):911-40
– reference: 10334330 - RNA. 1999 May;5(5):609-17
– reference: 17632571 - Nat Rev Microbiol. 2007 Aug;5(8):598-610
– reference: 10871264 - Bioinformatics. 2000 May;16(5):412-24
– reference: 1695107 - Biopolymers. 1990 May-Jun;29(6-7):1105-19
– reference: 9390227 - Pac Symp Biocomput. 1996;:109-25
– reference: 15520810 - Nat Rev Mol Cell Biol. 2004 Nov;5(11):908-19
– reference: 12438643 - J Virol. 2002 Dec;76(24):13116-22
– reference: 9751704 - Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11555-60
– reference: 16709732 - Nucleic Acids Res. 2006;34(9):2634-52
– reference: 7545258 - J Theor Biol. 1995 Jun 7;174(3):269-80
– reference: 10550208 - J Mol Biol. 1999 Oct 22;293(2):271-81
– reference: 4000943 - Nucleic Acids Res. 1985 Mar 11;13(5):1717-31
– reference: 12917450 - J Gen Virol. 2003 Sep;84(Pt 9):2305-15
– reference: 10764589 - J Mol Biol. 2000 Apr 28;298(2):167-85
– reference: 15294028 - BMC Bioinformatics. 2004 Aug 4;5:104
– reference: 10458781 - Angew Chem Int Ed Engl. 1999 Aug;38(16):2326-2343
– reference: 17179177 - Nucleic Acids Res. 2007;35(2):656-63
– reference: 16199760 - RNA. 2005 Oct;11(10):1494-504
– reference: 14676318 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15310-5
– reference: 9925784 - J Mol Biol. 1999 Feb 5;285(5):2053-68
– reference: 1693421 - Nucleic Acids Res. 1990 May 25;18(10):3035-44
– reference: 7541471 - J Mol Biol. 1995 Jun 30;250(1):37-51
– reference: 10592213 - Nucleic Acids Res. 2000 Jan 1;28(1):168
– reference: 14693809 - Bioinformatics. 2004 Jan 1;20(1):58-66
– reference: 9241415 - Annu Rev Biophys Biomol Struct. 1997;26:113-37
– reference: 9789095 - Bioinformatics. 1998;14(8):691-9
– reference: 6163133 - Nucleic Acids Res. 1981 Jan 10;9(1):133-48
– reference: 9399820 - Nucleic Acids Res. 1998 Jan 1;26(1):148-53
– reference: 11869452 - BMC Bioinformatics. 2002;3:2
– reference: 10721988 - Cell. 2000 Mar 3;100(5):503-14
– reference: 12926009 - J Comput Chem. 2003 Oct;24(13):1664-77
– reference: 12022227 - RNA. 2002 May;8(5):601-11
– reference: 12855439 - Bioinformatics. 2003;19 Suppl 1:i66-73
– reference: 15941360 - PLoS Biol. 2005 Jun;3(6):e213
– reference: 10592225 - Nucleic Acids Res. 2000 Jan 1;28(1):201-4
– reference: 16403789 - Bioinformatics. 2006 Mar 15;22(6):762-4
– reference: 12899829 - J Mol Biol. 2003 Aug 15;331(3):571-83
SSID ssj0013146
Score 2.023413
Snippet Pseudoknots are folded structures in RNA molecules that perform essential functions as part of cellular transcription machinery and regulatory processes. The...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 630
SubjectTerms Algorithms
Base Sequence
Bioinformatics
Computational Biology
Computer Simulation
Models, Molecular
Nucleic Acid Conformation
Python
RNA - chemistry
RNA - genetics
Software
Thermodynamics
Title KnotSeeker: Heuristic pseudoknot detection in long RNA sequences
URI https://www.ncbi.nlm.nih.gov/pubmed/18314500
https://www.proquest.com/docview/20845126
https://www.proquest.com/docview/70422206
https://pubmed.ncbi.nlm.nih.gov/PMC2271355
http://rnajournal.cshlp.org/content/14/4/630.full.pdf
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: HH5
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: KQ8
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1469-9001
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0013146
  issn: 1355-8382
  databaseCode: RPM
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwELdGJ7SnARuMIhiWmJB4SJoPO3F4okxMFUgVAorGU-RPNjVzojURGn8953wUqgKCt0i-xPbd-XxnX36H0IlhJBSpCEECVEGAopTHiJAerC0lpRZcyzbLd57MFuTtOT3fQUOlQuBez0Nfri6Kqr3Ld0nbYIEnIZmQSRIHvjuZ9itlbqHdhIILPkK7i_n76Zc2uKLUY3FbJAqMQOZlYId7WFIIFlwHfpaA0rLNjWjLu9xOktxrbMVvvvGi-GUHOruDPg__8XSJJ0u_qYUvv2_DOv7f5O6i_d4nxdNOie6hHW0P0OHUQjx-dYOf4zZLtD1-P0C3Xw9Pe6dDrbhD9OqdLeuPWi_19Us8000H_4yrlW5UuYQ2rHTdJn1ZfGlxUdqv-MN8iteJ3PfR4uzNp9OZ19dm8CSEgLWnSBIwrrKQc5kxxkXKYqGMVpEzmEBiuIkNCRiEf6EG35hIJhQjhtNAcZPFD9DIllY_RDgGMxIb-EqWclCTVBBFTRRx9zZlaTRGLwZB5bIHLnf1M4rcBTAg1ByYlHdCHaNna9qqg-v4LdXTQd45MMpdkXCry2aVRzBgcIGSP1OkDjQtCoDiqNOPn_2wOCQ0CMYo3dCcNYFD8t5ssZcXLaJ3FLlKiXSMTtY69pfhP_o3ssdoVF83-gk4TbU4bs-xjvuF8gNVdx1X
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwELbKVqhPHC3HIgqWqJB4SDaHnTh96lJRrUBaIWBReYp80mqDE3UTofLrO86xsFpA8BbJk9ieGY9n7Mk3CB0ZRkKRihAkQBUEKEp5jAjpwdpSUmrBtWyzfOfJbEHentPzHTRUKgTu9Tz05eqiqNq7fJe0DRZ4EpIJmSRx4LuTab9S5hbaTSi44CO0u5i_n35pgytKPRa3RaLACGReBna4hyWFYMF14GcJKC3b3Ii2vMvtJMm9xlb8-jsvil92oLO76PPwH0-XeLL0m1r48sc2rOP_Te4eutP7pHjaKdF9tKPtPjqYWojHv13jl7jNEm2P3_fR7dfD097pUCvuAJ28s2X9UeulvjrGM9108M-4WulGlUtow0rXbdKXxZcWF6X9ij_Mp3idyP0ALc7efDqdeX1tBk9CCFh7iiQB4yoLOZcZY1ykLBbKaBU5gwkkhpvYkIBB-Bdq8I2JZEIxYjgNFDdZ_BCNbGn1Y4RjMCOxga9kKQc1SQVR1EQRd29TlkZj9GoQVC574HJXP6PIXQADQs2BSXkn1DF6saatOriO31I9H-SdA6PcFQm3umxWeQQDBhco-TNF6kDTogAoHnX68bMfFoeEBsEYpRuasyZwSN6bLfbyokX0jiJXKZGO0dFax_4y_Cf_RvYUjeqrRh-C01SLZ_0SuQGquxxH
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KnotSeeker%3A+Heuristic+pseudoknot+detection+in+long+RNA+sequences&rft.jtitle=RNA+%28Cambridge%29&rft.au=Sperschneider%2C+Jana&rft.au=Datta%2C+Amitava&rft.date=2008-04-01&rft.issn=1355-8382&rft.eissn=1469-9001&rft.volume=14&rft.issue=4&rft.spage=630&rft.epage=640&rft_id=info:doi/10.1261%2Frna.968808&rft.externalDBID=n%2Fa&rft.externalDocID=10_1261_rna_968808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1355-8382&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1355-8382&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1355-8382&client=summon