Artificial Intelligence Using Open Source BI-RADS Data Exemplifying Potential Future Use
With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist’s opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on ima...
Saved in:
| Published in | Journal of the American College of Radiology Vol. 16; no. 1; pp. 64 - 72 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.01.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1546-1440 1558-349X 1558-349X |
| DOI | 10.1016/j.jacr.2018.09.040 |
Cover
| Abstract | With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist’s opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on imaging parameters alone. Open-source BI-RADS data sets were evaluated to see whether inclusion of a radiologist’s opinion (in the form of BI-RADS classification) in addition to image parameters improved the accuracy of prediction of histology using three machine learning algorithms vis-à-vis algorithms using image parameters alone.
BI-RADS data sets were obtained from the University of California, Irvine Machine Learning Repository (data set 1) and the Digital Database for Screening Mammography repository (data set 2); three machine learning algorithms were trained using 10-fold cross-validation. Two sets of models were trained: M1, using lesion shape, margin, density, and patient age for data set 1 and image texture parameters for data set 2, and M2, using the previous image parameters and the BI-RADS classification provided by radiologists. The area under the curve and the Gini coefficient for M1 and M2 were compared for the validation data set.
The models using the radiologist-provided BI-RADS classification performed significantly better than the models not using them (P < .0001).
AI and radiologist working together can achieve better results, helping in case-based decision making. Further evaluation of the metrics involved in predictor handling by AI algorithms will provide newer insights into imaging. |
|---|---|
| AbstractList | With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist's opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on imaging parameters alone. Open-source BI-RADS data sets were evaluated to see whether inclusion of a radiologist's opinion (in the form of BI-RADS classification) in addition to image parameters improved the accuracy of prediction of histology using three machine learning algorithms vis-à-vis algorithms using image parameters alone.OBJECTIVESWith much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist's opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on imaging parameters alone. Open-source BI-RADS data sets were evaluated to see whether inclusion of a radiologist's opinion (in the form of BI-RADS classification) in addition to image parameters improved the accuracy of prediction of histology using three machine learning algorithms vis-à-vis algorithms using image parameters alone.BI-RADS data sets were obtained from the University of California, Irvine Machine Learning Repository (data set 1) and the Digital Database for Screening Mammography repository (data set 2); three machine learning algorithms were trained using 10-fold cross-validation. Two sets of models were trained: M1, using lesion shape, margin, density, and patient age for data set 1 and image texture parameters for data set 2, and M2, using the previous image parameters and the BI-RADS classification provided by radiologists. The area under the curve and the Gini coefficient for M1 and M2 were compared for the validation data set.MATERIALS AND METHODSBI-RADS data sets were obtained from the University of California, Irvine Machine Learning Repository (data set 1) and the Digital Database for Screening Mammography repository (data set 2); three machine learning algorithms were trained using 10-fold cross-validation. Two sets of models were trained: M1, using lesion shape, margin, density, and patient age for data set 1 and image texture parameters for data set 2, and M2, using the previous image parameters and the BI-RADS classification provided by radiologists. The area under the curve and the Gini coefficient for M1 and M2 were compared for the validation data set.The models using the radiologist-provided BI-RADS classification performed significantly better than the models not using them (P < .0001).RESULTSThe models using the radiologist-provided BI-RADS classification performed significantly better than the models not using them (P < .0001).AI and radiologist working together can achieve better results, helping in case-based decision making. Further evaluation of the metrics involved in predictor handling by AI algorithms will provide newer insights into imaging.CONCLUSIONAI and radiologist working together can achieve better results, helping in case-based decision making. Further evaluation of the metrics involved in predictor handling by AI algorithms will provide newer insights into imaging. With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist’s opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on imaging parameters alone. Open-source BI-RADS data sets were evaluated to see whether inclusion of a radiologist’s opinion (in the form of BI-RADS classification) in addition to image parameters improved the accuracy of prediction of histology using three machine learning algorithms vis-à-vis algorithms using image parameters alone. BI-RADS data sets were obtained from the University of California, Irvine Machine Learning Repository (data set 1) and the Digital Database for Screening Mammography repository (data set 2); three machine learning algorithms were trained using 10-fold cross-validation. Two sets of models were trained: M1, using lesion shape, margin, density, and patient age for data set 1 and image texture parameters for data set 2, and M2, using the previous image parameters and the BI-RADS classification provided by radiologists. The area under the curve and the Gini coefficient for M1 and M2 were compared for the validation data set. The models using the radiologist-provided BI-RADS classification performed significantly better than the models not using them (P < .0001). AI and radiologist working together can achieve better results, helping in case-based decision making. Further evaluation of the metrics involved in predictor handling by AI algorithms will provide newer insights into imaging. |
| Author | Ghosh, Adarsh |
| Author_xml | – sequence: 1 givenname: Adarsh surname: Ghosh fullname: Ghosh, Adarsh email: adarsh11g11@icloud.com organization: Department of Radiodiagnosis and Imaging, AIIMS, New Delhi, India |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30337213$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkEtP3DAURq0KVB7tH2CBsuwmwa9kkqqb4T0SEqgUiZ3lONfoTjPOYDuo8-8ba2DDAla-sr7z6d5zQHbc4ICQI0YLRll1siyW2viCU1YXtCmopF_IPivLOheyedxJs6xyJiXdIwchLCnls1ldfyV7ggox40zsk8e5j2jRoO6zhYvQ9_gEzkD2ENA9ZbdrcNn9MPrp53SR_56f32fnOurs4h-s1j3aTUrdDRFcTBWXYxx9guEb2bW6D_D99T0kD5cXf86u85vbq8XZ_CY3ks5i3nHZVVa0grZMTLvLVljBWtHIkjJudC1ba-qOaSka2tqy4ryzpqo158YKKMUh-bHtXfvheYQQ1QqDme7QDoYxKM74dKqgTYoev0bHdgWdWntcab9RbzamQL0NGD-E4MEqg1FHHFz0GnvFqEri1VIl8SqJV7RRk_gJ5e_Qt_YPoV9bCCZBLwheBYPJfoceTFTdgB_jP9_hpkeHRvd_YfMZ_B8GMa52 |
| CitedBy_id | crossref_primary_10_4103_CRST_CRST_59_20 crossref_primary_10_2144_fsoa_2021_0074 crossref_primary_10_1097_CM9_0000000000001329 crossref_primary_10_1016_j_diii_2021_06_005 crossref_primary_10_1007_s10916_020_01689_1 crossref_primary_10_1016_j_artmed_2022_102285 crossref_primary_10_1038_s41746_019_0142_9 |
| Cites_doi | 10.1109/42.974917 10.2307/2531595 10.1007/s10278-013-9622-7 10.1148/radiol.2017161950 10.1109/42.819326 10.1109/42.887618 10.2214/AJR.15.15813 10.1259/bjr.72.857.10505010 10.1148/rg.2017170056 10.1148/radiol.2017171734 10.1097/RLI.0000000000000358 10.1148/radiol.2017170236 10.1118/1.2786864 10.1148/rg.2017160130 10.1148/radiol.2017162326 10.1088/1361-6560/aa82ec |
| ContentType | Journal Article |
| Copyright | 2018 American College of Radiology Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2018 American College of Radiology – notice: Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.jacr.2018.09.040 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1558-349X |
| EndPage | 72 |
| ExternalDocumentID | 30337213 10_1016_j_jacr_2018_09_040 S154614401831202X |
| Genre | Journal Article |
| GroupedDBID | --K .1- .FO 0R~ 1B1 1P~ 4.4 457 53G 5GY 5VS 6PF AAEDT AAEDW AALRI AAQFI AAQQT AAWTL AAXUO AAYWO ABJNI ABLJU ABMAC ABWVN ACGFS ACRPL ACVFH ADBBV ADCNI ADMUD ADNMO ADVLN AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AIGII AITUG AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ APXCP BELOY CS3 EBS EFKBS EJD EO8 F5P FDB G-Q HX~ HZ~ IHE J1W M41 NQ- O9- OI~ OU0 P2P ROL RPZ SES SEW XH2 Z5R AAIAV ADPAM AFCTW AGZHU ALXNB RIG AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c407t-d24d6f3b30b131554b3f31b3945012ca84bfc8d1a4390bf5622dfc68a22cf3e53 |
| ISSN | 1546-1440 1558-349X |
| IngestDate | Sun Sep 28 10:14:55 EDT 2025 Thu Apr 03 07:02:02 EDT 2025 Wed Oct 01 04:35:04 EDT 2025 Thu Apr 24 23:11:45 EDT 2025 Fri Feb 23 02:26:00 EST 2024 Tue Oct 14 19:28:40 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | BI-RADS machine learning Artificial intelligence radiologist-augmented workflow |
| Language | English |
| License | Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c407t-d24d6f3b30b131554b3f31b3945012ca84bfc8d1a4390bf5622dfc68a22cf3e53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 30337213 |
| PQID | 2123723095 |
| PQPubID | 23479 |
| PageCount | 9 |
| ParticipantIDs | proquest_miscellaneous_2123723095 pubmed_primary_30337213 crossref_citationtrail_10_1016_j_jacr_2018_09_040 crossref_primary_10_1016_j_jacr_2018_09_040 elsevier_sciencedirect_doi_10_1016_j_jacr_2018_09_040 elsevier_clinicalkey_doi_10_1016_j_jacr_2018_09_040 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | January 2019 2019-01-00 2019-Jan 20190101 |
| PublicationDateYYYYMMDD | 2019-01-01 |
| PublicationDate_xml | – month: 01 year: 2019 text: January 2019 |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Journal of the American College of Radiology |
| PublicationTitleAlternate | J Am Coll Radiol |
| PublicationYear | 2019 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Accessed April 22, 2018. Lakhani, Sundaram (bib6) 2017; 284 Sawyer-Lee, Gimenez, Hoogi, Rubin (bib9) 2016 Erickson, Korfiatis, Akkus, Kline (bib3) 2017; 37 August 8, 2018. Elter, Schulz-Wendtland, Wittenberg (bib8) 2007; 34 Mudigonda, Rangayyan, Leo Desautels (bib16) 2001; 20 Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not just a black box: learning important features through propagating activation differences. ArXiv160501713 Cs. Available at Accessed April 22, 2018. Bruce, Adhami (bib18) 1999; 18 Groell, Lindbichler, Riepl, Gherra, Roposch, Fotter (bib15) 1999; 72 Harvey H. Why AI will not replace radiologists. Towards Data Science. Available at Larson, Chen, Lungren, Halabi, Stence, Langlotz (bib4) 2018; 287 Frosst N, Hinton G. Distilling a neural network into a soft decision tree. ArXiv171109784 Cs Stat. Available at Desautels, Rangayyan, Mudigonda (bib17) 2000; 19 Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier. ArXiv160204938 Cs Stat. Available at Ueno, Forghani, Forghani, Dohan, Zeng, Chamming’s (bib12) 2017; 284 Wu, Deng, Zhang, Liu, Chen (bib5) 2016; 207 Han, Kang, Jeong, Park, Kim, Bang (bib13) 2017; 62 Hardesty L. Making computers explain themselves. MIT News. Available at Becker, Marcon, Ghafoor, Wurnig, Frauenfelder, Boss (bib11) 2017; 52 Accessed April 20, 2018. Zhang Q, Wu YN, Zhu S-C. Interpretable convolutional neural networks. ArXiv171000935 Cs. Available at Lubner, Smith, Sandrasegaran, Sahani, Pickhardt (bib14) 2017; 37 04938. Accessed April 20, 2018. 01713. Accessed April 20, 2018. Dheeru D, Karra Taniskidou E. UCI machine learning repository. Available at Clark, Vendt, Smith, Freymann, Kirby, Koppel (bib10) 2013; 26 Kahn (bib2) 2017; 285 Accessed April 19, 2018. DeLong, DeLong, Clarke-Pearson (bib25) 1988 Kumar D, Wong A, Clausi DA. Lung nodule classification using deep features in CT images. Available at Bruce (10.1016/j.jacr.2018.09.040_bib18) 1999; 18 Lubner (10.1016/j.jacr.2018.09.040_bib14) 2017; 37 10.1016/j.jacr.2018.09.040_bib1 Ueno (10.1016/j.jacr.2018.09.040_bib12) 2017; 284 DeLong (10.1016/j.jacr.2018.09.040_bib25) 1988 Desautels (10.1016/j.jacr.2018.09.040_bib17) 2000; 19 Wu (10.1016/j.jacr.2018.09.040_bib5) 2016; 207 Kahn (10.1016/j.jacr.2018.09.040_bib2) 2017; 285 Clark (10.1016/j.jacr.2018.09.040_bib10) 2013; 26 10.1016/j.jacr.2018.09.040_bib7 10.1016/j.jacr.2018.09.040_bib24 10.1016/j.jacr.2018.09.040_bib23 10.1016/j.jacr.2018.09.040_bib22 10.1016/j.jacr.2018.09.040_bib21 10.1016/j.jacr.2018.09.040_bib20 Elter (10.1016/j.jacr.2018.09.040_bib8) 2007; 34 Becker (10.1016/j.jacr.2018.09.040_bib11) 2017; 52 Han (10.1016/j.jacr.2018.09.040_bib13) 2017; 62 Mudigonda (10.1016/j.jacr.2018.09.040_bib16) 2001; 20 Sawyer-Lee (10.1016/j.jacr.2018.09.040_bib9) 2016 Erickson (10.1016/j.jacr.2018.09.040_bib3) 2017; 37 10.1016/j.jacr.2018.09.040_bib19 Groell (10.1016/j.jacr.2018.09.040_bib15) 1999; 72 Larson (10.1016/j.jacr.2018.09.040_bib4) 2018; 287 Lakhani (10.1016/j.jacr.2018.09.040_bib6) 2017; 284 |
| References_xml | – volume: 52 start-page: 434 year: 2017 end-page: 440 ident: bib11 article-title: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer publication-title: Invest Radiol – volume: 26 start-page: 1045 year: 2013 end-page: 1057 ident: bib10 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging – reference: Kumar D, Wong A, Clausi DA. Lung nodule classification using deep features in CT images. Available at: – reference: . Accessed April 22, 2018. – year: 2016 ident: bib9 article-title: Curated breast imaging subset of DDSM – volume: 284 start-page: 748 year: 2017 end-page: 757 ident: bib12 article-title: Endometrial carcinoma: MR imaging–based texture model for preoperative risk stratification—a preliminary analysis publication-title: Radiology – volume: 37 start-page: 1483 year: 2017 end-page: 1503 ident: bib14 article-title: CT Texture analysis: definitions, applications, biologic correlates, and challenges publication-title: Radiographics – reference: Harvey H. Why AI will not replace radiologists. Towards Data Science. Available at: – reference: Frosst N, Hinton G. Distilling a neural network into a soft decision tree. ArXiv171109784 Cs Stat. Available at: – reference: .01713. Accessed April 20, 2018. – volume: 62 start-page: 7714 year: 2017 end-page: 7728 ident: bib13 article-title: A deep learning framework for supporting the classification of breast lesions in ultrasound images publication-title: Phys Med Biol – reference: . August 8, 2018. – reference: . Accessed April 20, 2018. – volume: 19 start-page: 1032 year: 2000 end-page: 1043 ident: bib17 article-title: Gradient and texture analysis for the classification of mammographic masses publication-title: IEEE Trans Med Imaging – reference: Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not just a black box: learning important features through propagating activation differences. ArXiv160501713 Cs. Available at: – volume: 72 start-page: 461 year: 1999 end-page: 464 ident: bib15 article-title: The reliability of bone age determination in central European children using the Greulich and Pyle method publication-title: Br J Radiol – reference: Dheeru D, Karra Taniskidou E. UCI machine learning repository. Available at: – reference: . Accessed April 22, 2018. – start-page: 837 year: 1988 end-page: 845 ident: bib25 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics – reference: Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier. ArXiv160204938 Cs Stat. Available at: – volume: 37 start-page: 505 year: 2017 end-page: 515 ident: bib3 article-title: Machine learning for medical imaging publication-title: Radiographics – volume: 207 start-page: 859 year: 2016 end-page: 864 ident: bib5 article-title: Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography publication-title: AJR Am J Roentgenol – reference: . Accessed April 19, 2018. – volume: 285 start-page: 719 year: 2017 end-page: 720 ident: bib2 article-title: From images to actions: opportunities for artificial intelligence in radiology publication-title: Radiology – volume: 20 start-page: 1215 year: 2001 end-page: 1227 ident: bib16 article-title: Detection of breast masses in mammograms by density slicing and texture flow-field analysis publication-title: IEEE Trans Med Imaging – volume: 18 start-page: 1170 year: 1999 end-page: 1177 ident: bib18 article-title: Classifying mammographic mass shapes using the wavelet transform modulus-maxima method publication-title: IEEE Trans Med Imaging – reference: Hardesty L. Making computers explain themselves. MIT News. Available at: – volume: 284 start-page: 574 year: 2017 end-page: 582 ident: bib6 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology – volume: 287 start-page: 313 year: 2018 end-page: 322 ident: bib4 article-title: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs publication-title: Radiology – volume: 34 start-page: 4164 year: 2007 end-page: 4172 ident: bib8 article-title: The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process: prediction of breast biopsy outcomes using CAD approaches publication-title: Med Phys – reference: .04938. Accessed April 20, 2018. – reference: Zhang Q, Wu YN, Zhu S-C. Interpretable convolutional neural networks. ArXiv171000935 Cs. Available at: – volume: 20 start-page: 1215 year: 2001 ident: 10.1016/j.jacr.2018.09.040_bib16 article-title: Detection of breast masses in mammograms by density slicing and texture flow-field analysis publication-title: IEEE Trans Med Imaging doi: 10.1109/42.974917 – start-page: 837 year: 1988 ident: 10.1016/j.jacr.2018.09.040_bib25 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – year: 2016 ident: 10.1016/j.jacr.2018.09.040_bib9 – ident: 10.1016/j.jacr.2018.09.040_bib1 – volume: 26 start-page: 1045 year: 2013 ident: 10.1016/j.jacr.2018.09.040_bib10 article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository publication-title: J Digit Imaging doi: 10.1007/s10278-013-9622-7 – volume: 284 start-page: 748 year: 2017 ident: 10.1016/j.jacr.2018.09.040_bib12 article-title: Endometrial carcinoma: MR imaging–based texture model for preoperative risk stratification—a preliminary analysis publication-title: Radiology doi: 10.1148/radiol.2017161950 – volume: 18 start-page: 1170 year: 1999 ident: 10.1016/j.jacr.2018.09.040_bib18 article-title: Classifying mammographic mass shapes using the wavelet transform modulus-maxima method publication-title: IEEE Trans Med Imaging doi: 10.1109/42.819326 – ident: 10.1016/j.jacr.2018.09.040_bib7 – ident: 10.1016/j.jacr.2018.09.040_bib19 – ident: 10.1016/j.jacr.2018.09.040_bib21 – volume: 19 start-page: 1032 year: 2000 ident: 10.1016/j.jacr.2018.09.040_bib17 article-title: Gradient and texture analysis for the classification of mammographic masses publication-title: IEEE Trans Med Imaging doi: 10.1109/42.887618 – ident: 10.1016/j.jacr.2018.09.040_bib23 – volume: 207 start-page: 859 year: 2016 ident: 10.1016/j.jacr.2018.09.040_bib5 article-title: Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography publication-title: AJR Am J Roentgenol doi: 10.2214/AJR.15.15813 – volume: 72 start-page: 461 year: 1999 ident: 10.1016/j.jacr.2018.09.040_bib15 article-title: The reliability of bone age determination in central European children using the Greulich and Pyle method publication-title: Br J Radiol doi: 10.1259/bjr.72.857.10505010 – volume: 37 start-page: 1483 year: 2017 ident: 10.1016/j.jacr.2018.09.040_bib14 article-title: CT Texture analysis: definitions, applications, biologic correlates, and challenges publication-title: Radiographics doi: 10.1148/rg.2017170056 – volume: 285 start-page: 719 year: 2017 ident: 10.1016/j.jacr.2018.09.040_bib2 article-title: From images to actions: opportunities for artificial intelligence in radiology publication-title: Radiology doi: 10.1148/radiol.2017171734 – volume: 52 start-page: 434 year: 2017 ident: 10.1016/j.jacr.2018.09.040_bib11 article-title: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000358 – volume: 287 start-page: 313 year: 2018 ident: 10.1016/j.jacr.2018.09.040_bib4 article-title: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs publication-title: Radiology doi: 10.1148/radiol.2017170236 – volume: 34 start-page: 4164 year: 2007 ident: 10.1016/j.jacr.2018.09.040_bib8 article-title: The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process: prediction of breast biopsy outcomes using CAD approaches publication-title: Med Phys doi: 10.1118/1.2786864 – ident: 10.1016/j.jacr.2018.09.040_bib20 – volume: 37 start-page: 505 year: 2017 ident: 10.1016/j.jacr.2018.09.040_bib3 article-title: Machine learning for medical imaging publication-title: Radiographics doi: 10.1148/rg.2017160130 – volume: 284 start-page: 574 year: 2017 ident: 10.1016/j.jacr.2018.09.040_bib6 article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks publication-title: Radiology doi: 10.1148/radiol.2017162326 – ident: 10.1016/j.jacr.2018.09.040_bib22 – volume: 62 start-page: 7714 year: 2017 ident: 10.1016/j.jacr.2018.09.040_bib13 article-title: A deep learning framework for supporting the classification of breast lesions in ultrasound images publication-title: Phys Med Biol doi: 10.1088/1361-6560/aa82ec – ident: 10.1016/j.jacr.2018.09.040_bib24 |
| SSID | ssj0027788 |
| Score | 2.2236753 |
| Snippet | With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is... With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 64 |
| SubjectTerms | Algorithms Artificial Intelligence BI-RADS Breast Neoplasms - diagnostic imaging Diagnosis, Computer-Assisted - methods Female Humans machine learning Predictive Value of Tests radiologist-augmented workflow |
| Title | Artificial Intelligence Using Open Source BI-RADS Data Exemplifying Potential Future Use |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S154614401831202X https://dx.doi.org/10.1016/j.jacr.2018.09.040 https://www.ncbi.nlm.nih.gov/pubmed/30337213 https://www.proquest.com/docview/2123723095 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1558-349X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0027788 issn: 1546-1440 databaseCode: AKRWK dateStart: 20040101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF61QUK9VC3Qkr60lXqLjGzv2vEe3RYKRVQogJrbap-CCDkVGKnqr--sd-040NDSixU5mbWd-Tz-ZjwPhD6MtXQztcHJEeM0opKqiDFDIpYzaRWLY6td7fDRt3z_jH6dZtN2xH2oLqnljvr1x7qS_9Eq7AO9uirZB2i2WxR2wGfQL2xBw7D9Jx2XV02mj--X0Wut6fMAXK7I6KQJzo8-HkST8vMJKLkWo92fxuWR-wqn43ntEoZgib2mvQgIL2cHLRhrrwql6kccJkJfLEXnv5zPr5twTanBbz7vRxZcMVMXWQjGkOaRe_m7ZC3zO6jwps83Iw8PUT-O54559pGC2c5MKNeLNSmaHrPhAEu9sG89o7rMwTYpbcbdGtytwWPGYY3HaC0Fyx4P0Fp5OPl-uHC7x8300e5qQumUz_K7fSar6Mkq96OhIafP0NOgDVx6MDxHj0y1gdaPQobEJpouMIH7mMANJrDDBPaYwAET2GEC9zGBO0xgjwkQNlvobG_39NN-FKZnRAqc9DrSKdW5JZLEMiGONUpiSSIJoxmQEiUKCjdjoRMBlDSWFnhwqq3KC5GmyhKTkRdoUM0rs42w1IxYaXPBMksTrWQsUqMLYVlhqMntECXtn8ZVaC3vJpxc8tXqGqJRJ_PDN1a599ek1QVvS4bhIccBWPdKZZ1UIJSeKP5V7n2rbg7W1r1CE5WZ31xzR_TG4LWzbIheehx0Zw9kEL5LyKsHXdlr9GRx771Bg_rqxrwFnlvLdwHIvwEg5Kdm |
| linkProvider | Library Specific Holdings |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Using+Open+Source+BI-RADS+Data+Exemplifying+Potential+Future+Use&rft.jtitle=Journal+of+the+American+College+of+Radiology&rft.au=Ghosh%2C+Adarsh&rft.date=2019-01-01&rft.issn=1546-1440&rft.volume=16&rft.issue=1&rft.spage=64&rft.epage=72&rft_id=info:doi/10.1016%2Fj.jacr.2018.09.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jacr_2018_09_040 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-1440&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-1440&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-1440&client=summon |