Artificial Intelligence Using Open Source BI-RADS Data Exemplifying Potential Future Use

With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist’s opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on ima...

Full description

Saved in:
Bibliographic Details
Published inJournal of the American College of Radiology Vol. 16; no. 1; pp. 64 - 72
Main Author Ghosh, Adarsh
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.01.2019
Subjects
Online AccessGet full text
ISSN1546-1440
1558-349X
1558-349X
DOI10.1016/j.jacr.2018.09.040

Cover

Abstract With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist’s opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on imaging parameters alone. Open-source BI-RADS data sets were evaluated to see whether inclusion of a radiologist’s opinion (in the form of BI-RADS classification) in addition to image parameters improved the accuracy of prediction of histology using three machine learning algorithms vis-à-vis algorithms using image parameters alone. BI-RADS data sets were obtained from the University of California, Irvine Machine Learning Repository (data set 1) and the Digital Database for Screening Mammography repository (data set 2); three machine learning algorithms were trained using 10-fold cross-validation. Two sets of models were trained: M1, using lesion shape, margin, density, and patient age for data set 1 and image texture parameters for data set 2, and M2, using the previous image parameters and the BI-RADS classification provided by radiologists. The area under the curve and the Gini coefficient for M1 and M2 were compared for the validation data set. The models using the radiologist-provided BI-RADS classification performed significantly better than the models not using them (P < .0001). AI and radiologist working together can achieve better results, helping in case-based decision making. Further evaluation of the metrics involved in predictor handling by AI algorithms will provide newer insights into imaging.
AbstractList With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist's opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on imaging parameters alone. Open-source BI-RADS data sets were evaluated to see whether inclusion of a radiologist's opinion (in the form of BI-RADS classification) in addition to image parameters improved the accuracy of prediction of histology using three machine learning algorithms vis-à-vis algorithms using image parameters alone.OBJECTIVESWith much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist's opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on imaging parameters alone. Open-source BI-RADS data sets were evaluated to see whether inclusion of a radiologist's opinion (in the form of BI-RADS classification) in addition to image parameters improved the accuracy of prediction of histology using three machine learning algorithms vis-à-vis algorithms using image parameters alone.BI-RADS data sets were obtained from the University of California, Irvine Machine Learning Repository (data set 1) and the Digital Database for Screening Mammography repository (data set 2); three machine learning algorithms were trained using 10-fold cross-validation. Two sets of models were trained: M1, using lesion shape, margin, density, and patient age for data set 1 and image texture parameters for data set 2, and M2, using the previous image parameters and the BI-RADS classification provided by radiologists. The area under the curve and the Gini coefficient for M1 and M2 were compared for the validation data set.MATERIALS AND METHODSBI-RADS data sets were obtained from the University of California, Irvine Machine Learning Repository (data set 1) and the Digital Database for Screening Mammography repository (data set 2); three machine learning algorithms were trained using 10-fold cross-validation. Two sets of models were trained: M1, using lesion shape, margin, density, and patient age for data set 1 and image texture parameters for data set 2, and M2, using the previous image parameters and the BI-RADS classification provided by radiologists. The area under the curve and the Gini coefficient for M1 and M2 were compared for the validation data set.The models using the radiologist-provided BI-RADS classification performed significantly better than the models not using them (P < .0001).RESULTSThe models using the radiologist-provided BI-RADS classification performed significantly better than the models not using them (P < .0001).AI and radiologist working together can achieve better results, helping in case-based decision making. Further evaluation of the metrics involved in predictor handling by AI algorithms will provide newer insights into imaging.CONCLUSIONAI and radiologist working together can achieve better results, helping in case-based decision making. Further evaluation of the metrics involved in predictor handling by AI algorithms will provide newer insights into imaging.
With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is that inclusion of a radiologist’s opinion into an AI algorithm would make the algorithm achieve better accuracy than an algorithm trained on imaging parameters alone. Open-source BI-RADS data sets were evaluated to see whether inclusion of a radiologist’s opinion (in the form of BI-RADS classification) in addition to image parameters improved the accuracy of prediction of histology using three machine learning algorithms vis-à-vis algorithms using image parameters alone. BI-RADS data sets were obtained from the University of California, Irvine Machine Learning Repository (data set 1) and the Digital Database for Screening Mammography repository (data set 2); three machine learning algorithms were trained using 10-fold cross-validation. Two sets of models were trained: M1, using lesion shape, margin, density, and patient age for data set 1 and image texture parameters for data set 2, and M2, using the previous image parameters and the BI-RADS classification provided by radiologists. The area under the curve and the Gini coefficient for M1 and M2 were compared for the validation data set. The models using the radiologist-provided BI-RADS classification performed significantly better than the models not using them (P < .0001). AI and radiologist working together can achieve better results, helping in case-based decision making. Further evaluation of the metrics involved in predictor handling by AI algorithms will provide newer insights into imaging.
Author Ghosh, Adarsh
Author_xml – sequence: 1
  givenname: Adarsh
  surname: Ghosh
  fullname: Ghosh, Adarsh
  email: adarsh11g11@icloud.com
  organization: Department of Radiodiagnosis and Imaging, AIIMS, New Delhi, India
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30337213$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtP3DAURq0KVB7tH2CBsuwmwa9kkqqb4T0SEqgUiZ3lONfoTjPOYDuo8-8ba2DDAla-sr7z6d5zQHbc4ICQI0YLRll1siyW2viCU1YXtCmopF_IPivLOheyedxJs6xyJiXdIwchLCnls1ldfyV7ggox40zsk8e5j2jRoO6zhYvQ9_gEzkD2ENA9ZbdrcNn9MPrp53SR_56f32fnOurs4h-s1j3aTUrdDRFcTBWXYxx9guEb2bW6D_D99T0kD5cXf86u85vbq8XZ_CY3ks5i3nHZVVa0grZMTLvLVljBWtHIkjJudC1ba-qOaSka2tqy4ryzpqo158YKKMUh-bHtXfvheYQQ1QqDme7QDoYxKM74dKqgTYoev0bHdgWdWntcab9RbzamQL0NGD-E4MEqg1FHHFz0GnvFqEri1VIl8SqJV7RRk_gJ5e_Qt_YPoV9bCCZBLwheBYPJfoceTFTdgB_jP9_hpkeHRvd_YfMZ_B8GMa52
CitedBy_id crossref_primary_10_4103_CRST_CRST_59_20
crossref_primary_10_2144_fsoa_2021_0074
crossref_primary_10_1097_CM9_0000000000001329
crossref_primary_10_1016_j_diii_2021_06_005
crossref_primary_10_1007_s10916_020_01689_1
crossref_primary_10_1016_j_artmed_2022_102285
crossref_primary_10_1038_s41746_019_0142_9
Cites_doi 10.1109/42.974917
10.2307/2531595
10.1007/s10278-013-9622-7
10.1148/radiol.2017161950
10.1109/42.819326
10.1109/42.887618
10.2214/AJR.15.15813
10.1259/bjr.72.857.10505010
10.1148/rg.2017170056
10.1148/radiol.2017171734
10.1097/RLI.0000000000000358
10.1148/radiol.2017170236
10.1118/1.2786864
10.1148/rg.2017160130
10.1148/radiol.2017162326
10.1088/1361-6560/aa82ec
ContentType Journal Article
Copyright 2018 American College of Radiology
Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2018 American College of Radiology
– notice: Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.jacr.2018.09.040
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1558-349X
EndPage 72
ExternalDocumentID 30337213
10_1016_j_jacr_2018_09_040
S154614401831202X
Genre Journal Article
GroupedDBID --K
.1-
.FO
0R~
1B1
1P~
4.4
457
53G
5GY
5VS
6PF
AAEDT
AAEDW
AALRI
AAQFI
AAQQT
AAWTL
AAXUO
AAYWO
ABJNI
ABLJU
ABMAC
ABWVN
ACGFS
ACRPL
ACVFH
ADBBV
ADCNI
ADMUD
ADNMO
ADVLN
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AIGII
AITUG
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
APXCP
BELOY
CS3
EBS
EFKBS
EJD
EO8
F5P
FDB
G-Q
HX~
HZ~
IHE
J1W
M41
NQ-
O9-
OI~
OU0
P2P
ROL
RPZ
SES
SEW
XH2
Z5R
AAIAV
ADPAM
AFCTW
AGZHU
ALXNB
RIG
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-d24d6f3b30b131554b3f31b3945012ca84bfc8d1a4390bf5622dfc68a22cf3e53
ISSN 1546-1440
1558-349X
IngestDate Sun Sep 28 10:14:55 EDT 2025
Thu Apr 03 07:02:02 EDT 2025
Wed Oct 01 04:35:04 EDT 2025
Thu Apr 24 23:11:45 EDT 2025
Fri Feb 23 02:26:00 EST 2024
Tue Oct 14 19:28:40 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords BI-RADS
machine learning
Artificial intelligence
radiologist-augmented workflow
Language English
License Copyright © 2018 American College of Radiology. Published by Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-d24d6f3b30b131554b3f31b3945012ca84bfc8d1a4390bf5622dfc68a22cf3e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 30337213
PQID 2123723095
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_2123723095
pubmed_primary_30337213
crossref_citationtrail_10_1016_j_jacr_2018_09_040
crossref_primary_10_1016_j_jacr_2018_09_040
elsevier_sciencedirect_doi_10_1016_j_jacr_2018_09_040
elsevier_clinicalkey_doi_10_1016_j_jacr_2018_09_040
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2019
2019-01-00
2019-Jan
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: January 2019
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of the American College of Radiology
PublicationTitleAlternate J Am Coll Radiol
PublicationYear 2019
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Accessed April 22, 2018.
Lakhani, Sundaram (bib6) 2017; 284
Sawyer-Lee, Gimenez, Hoogi, Rubin (bib9) 2016
Erickson, Korfiatis, Akkus, Kline (bib3) 2017; 37
August 8, 2018.
Elter, Schulz-Wendtland, Wittenberg (bib8) 2007; 34
Mudigonda, Rangayyan, Leo Desautels (bib16) 2001; 20
Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not just a black box: learning important features through propagating activation differences. ArXiv160501713 Cs. Available at
Accessed April 22, 2018.
Bruce, Adhami (bib18) 1999; 18
Groell, Lindbichler, Riepl, Gherra, Roposch, Fotter (bib15) 1999; 72
Harvey H. Why AI will not replace radiologists. Towards Data Science. Available at
Larson, Chen, Lungren, Halabi, Stence, Langlotz (bib4) 2018; 287
Frosst N, Hinton G. Distilling a neural network into a soft decision tree. ArXiv171109784 Cs Stat. Available at
Desautels, Rangayyan, Mudigonda (bib17) 2000; 19
Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier. ArXiv160204938 Cs Stat. Available at
Ueno, Forghani, Forghani, Dohan, Zeng, Chamming’s (bib12) 2017; 284
Wu, Deng, Zhang, Liu, Chen (bib5) 2016; 207
Han, Kang, Jeong, Park, Kim, Bang (bib13) 2017; 62
Hardesty L. Making computers explain themselves. MIT News. Available at
Becker, Marcon, Ghafoor, Wurnig, Frauenfelder, Boss (bib11) 2017; 52
Accessed April 20, 2018.
Zhang Q, Wu YN, Zhu S-C. Interpretable convolutional neural networks. ArXiv171000935 Cs. Available at
Lubner, Smith, Sandrasegaran, Sahani, Pickhardt (bib14) 2017; 37
04938. Accessed April 20, 2018.
01713. Accessed April 20, 2018.
Dheeru D, Karra Taniskidou E. UCI machine learning repository. Available at
Clark, Vendt, Smith, Freymann, Kirby, Koppel (bib10) 2013; 26
Kahn (bib2) 2017; 285
Accessed April 19, 2018.
DeLong, DeLong, Clarke-Pearson (bib25) 1988
Kumar D, Wong A, Clausi DA. Lung nodule classification using deep features in CT images. Available at
Bruce (10.1016/j.jacr.2018.09.040_bib18) 1999; 18
Lubner (10.1016/j.jacr.2018.09.040_bib14) 2017; 37
10.1016/j.jacr.2018.09.040_bib1
Ueno (10.1016/j.jacr.2018.09.040_bib12) 2017; 284
DeLong (10.1016/j.jacr.2018.09.040_bib25) 1988
Desautels (10.1016/j.jacr.2018.09.040_bib17) 2000; 19
Wu (10.1016/j.jacr.2018.09.040_bib5) 2016; 207
Kahn (10.1016/j.jacr.2018.09.040_bib2) 2017; 285
Clark (10.1016/j.jacr.2018.09.040_bib10) 2013; 26
10.1016/j.jacr.2018.09.040_bib7
10.1016/j.jacr.2018.09.040_bib24
10.1016/j.jacr.2018.09.040_bib23
10.1016/j.jacr.2018.09.040_bib22
10.1016/j.jacr.2018.09.040_bib21
10.1016/j.jacr.2018.09.040_bib20
Elter (10.1016/j.jacr.2018.09.040_bib8) 2007; 34
Becker (10.1016/j.jacr.2018.09.040_bib11) 2017; 52
Han (10.1016/j.jacr.2018.09.040_bib13) 2017; 62
Mudigonda (10.1016/j.jacr.2018.09.040_bib16) 2001; 20
Sawyer-Lee (10.1016/j.jacr.2018.09.040_bib9) 2016
Erickson (10.1016/j.jacr.2018.09.040_bib3) 2017; 37
10.1016/j.jacr.2018.09.040_bib19
Groell (10.1016/j.jacr.2018.09.040_bib15) 1999; 72
Larson (10.1016/j.jacr.2018.09.040_bib4) 2018; 287
Lakhani (10.1016/j.jacr.2018.09.040_bib6) 2017; 284
References_xml – volume: 52
  start-page: 434
  year: 2017
  end-page: 440
  ident: bib11
  article-title: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer
  publication-title: Invest Radiol
– volume: 26
  start-page: 1045
  year: 2013
  end-page: 1057
  ident: bib10
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
– reference: Kumar D, Wong A, Clausi DA. Lung nodule classification using deep features in CT images. Available at:
– reference: . Accessed April 22, 2018.
– year: 2016
  ident: bib9
  article-title: Curated breast imaging subset of DDSM
– volume: 284
  start-page: 748
  year: 2017
  end-page: 757
  ident: bib12
  article-title: Endometrial carcinoma: MR imaging–based texture model for preoperative risk stratification—a preliminary analysis
  publication-title: Radiology
– volume: 37
  start-page: 1483
  year: 2017
  end-page: 1503
  ident: bib14
  article-title: CT Texture analysis: definitions, applications, biologic correlates, and challenges
  publication-title: Radiographics
– reference: Harvey H. Why AI will not replace radiologists. Towards Data Science. Available at:
– reference: Frosst N, Hinton G. Distilling a neural network into a soft decision tree. ArXiv171109784 Cs Stat. Available at:
– reference: .01713. Accessed April 20, 2018.
– volume: 62
  start-page: 7714
  year: 2017
  end-page: 7728
  ident: bib13
  article-title: A deep learning framework for supporting the classification of breast lesions in ultrasound images
  publication-title: Phys Med Biol
– reference: . August 8, 2018.
– reference: . Accessed April 20, 2018.
– volume: 19
  start-page: 1032
  year: 2000
  end-page: 1043
  ident: bib17
  article-title: Gradient and texture analysis for the classification of mammographic masses
  publication-title: IEEE Trans Med Imaging
– reference: Shrikumar A, Greenside P, Shcherbina A, Kundaje A. Not just a black box: learning important features through propagating activation differences. ArXiv160501713 Cs. Available at:
– volume: 72
  start-page: 461
  year: 1999
  end-page: 464
  ident: bib15
  article-title: The reliability of bone age determination in central European children using the Greulich and Pyle method
  publication-title: Br J Radiol
– reference: Dheeru D, Karra Taniskidou E. UCI machine learning repository. Available at:
– reference: . Accessed April 22, 2018.
– start-page: 837
  year: 1988
  end-page: 845
  ident: bib25
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
– reference: Ribeiro MT, Singh S, Guestrin C. “Why should I trust you?”: explaining the predictions of any classifier. ArXiv160204938 Cs Stat. Available at:
– volume: 37
  start-page: 505
  year: 2017
  end-page: 515
  ident: bib3
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
– volume: 207
  start-page: 859
  year: 2016
  end-page: 864
  ident: bib5
  article-title: Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography
  publication-title: AJR Am J Roentgenol
– reference: . Accessed April 19, 2018.
– volume: 285
  start-page: 719
  year: 2017
  end-page: 720
  ident: bib2
  article-title: From images to actions: opportunities for artificial intelligence in radiology
  publication-title: Radiology
– volume: 20
  start-page: 1215
  year: 2001
  end-page: 1227
  ident: bib16
  article-title: Detection of breast masses in mammograms by density slicing and texture flow-field analysis
  publication-title: IEEE Trans Med Imaging
– volume: 18
  start-page: 1170
  year: 1999
  end-page: 1177
  ident: bib18
  article-title: Classifying mammographic mass shapes using the wavelet transform modulus-maxima method
  publication-title: IEEE Trans Med Imaging
– reference: Hardesty L. Making computers explain themselves. MIT News. Available at:
– volume: 284
  start-page: 574
  year: 2017
  end-page: 582
  ident: bib6
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
– volume: 287
  start-page: 313
  year: 2018
  end-page: 322
  ident: bib4
  article-title: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs
  publication-title: Radiology
– volume: 34
  start-page: 4164
  year: 2007
  end-page: 4172
  ident: bib8
  article-title: The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process: prediction of breast biopsy outcomes using CAD approaches
  publication-title: Med Phys
– reference: .04938. Accessed April 20, 2018.
– reference: Zhang Q, Wu YN, Zhu S-C. Interpretable convolutional neural networks. ArXiv171000935 Cs. Available at:
– volume: 20
  start-page: 1215
  year: 2001
  ident: 10.1016/j.jacr.2018.09.040_bib16
  article-title: Detection of breast masses in mammograms by density slicing and texture flow-field analysis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.974917
– start-page: 837
  year: 1988
  ident: 10.1016/j.jacr.2018.09.040_bib25
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– year: 2016
  ident: 10.1016/j.jacr.2018.09.040_bib9
– ident: 10.1016/j.jacr.2018.09.040_bib1
– volume: 26
  start-page: 1045
  year: 2013
  ident: 10.1016/j.jacr.2018.09.040_bib10
  article-title: The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-013-9622-7
– volume: 284
  start-page: 748
  year: 2017
  ident: 10.1016/j.jacr.2018.09.040_bib12
  article-title: Endometrial carcinoma: MR imaging–based texture model for preoperative risk stratification—a preliminary analysis
  publication-title: Radiology
  doi: 10.1148/radiol.2017161950
– volume: 18
  start-page: 1170
  year: 1999
  ident: 10.1016/j.jacr.2018.09.040_bib18
  article-title: Classifying mammographic mass shapes using the wavelet transform modulus-maxima method
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.819326
– ident: 10.1016/j.jacr.2018.09.040_bib7
– ident: 10.1016/j.jacr.2018.09.040_bib19
– ident: 10.1016/j.jacr.2018.09.040_bib21
– volume: 19
  start-page: 1032
  year: 2000
  ident: 10.1016/j.jacr.2018.09.040_bib17
  article-title: Gradient and texture analysis for the classification of mammographic masses
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.887618
– ident: 10.1016/j.jacr.2018.09.040_bib23
– volume: 207
  start-page: 859
  year: 2016
  ident: 10.1016/j.jacr.2018.09.040_bib5
  article-title: Classifier model based on machine learning algorithms: application to differential diagnosis of suspicious thyroid nodules via sonography
  publication-title: AJR Am J Roentgenol
  doi: 10.2214/AJR.15.15813
– volume: 72
  start-page: 461
  year: 1999
  ident: 10.1016/j.jacr.2018.09.040_bib15
  article-title: The reliability of bone age determination in central European children using the Greulich and Pyle method
  publication-title: Br J Radiol
  doi: 10.1259/bjr.72.857.10505010
– volume: 37
  start-page: 1483
  year: 2017
  ident: 10.1016/j.jacr.2018.09.040_bib14
  article-title: CT Texture analysis: definitions, applications, biologic correlates, and challenges
  publication-title: Radiographics
  doi: 10.1148/rg.2017170056
– volume: 285
  start-page: 719
  year: 2017
  ident: 10.1016/j.jacr.2018.09.040_bib2
  article-title: From images to actions: opportunities for artificial intelligence in radiology
  publication-title: Radiology
  doi: 10.1148/radiol.2017171734
– volume: 52
  start-page: 434
  year: 2017
  ident: 10.1016/j.jacr.2018.09.040_bib11
  article-title: Deep learning in mammography: diagnostic accuracy of a multipurpose image analysis software in the detection of breast cancer
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000358
– volume: 287
  start-page: 313
  year: 2018
  ident: 10.1016/j.jacr.2018.09.040_bib4
  article-title: Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs
  publication-title: Radiology
  doi: 10.1148/radiol.2017170236
– volume: 34
  start-page: 4164
  year: 2007
  ident: 10.1016/j.jacr.2018.09.040_bib8
  article-title: The prediction of breast cancer biopsy outcomes using two CAD approaches that both emphasize an intelligible decision process: prediction of breast biopsy outcomes using CAD approaches
  publication-title: Med Phys
  doi: 10.1118/1.2786864
– ident: 10.1016/j.jacr.2018.09.040_bib20
– volume: 37
  start-page: 505
  year: 2017
  ident: 10.1016/j.jacr.2018.09.040_bib3
  article-title: Machine learning for medical imaging
  publication-title: Radiographics
  doi: 10.1148/rg.2017160130
– volume: 284
  start-page: 574
  year: 2017
  ident: 10.1016/j.jacr.2018.09.040_bib6
  article-title: Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks
  publication-title: Radiology
  doi: 10.1148/radiol.2017162326
– ident: 10.1016/j.jacr.2018.09.040_bib22
– volume: 62
  start-page: 7714
  year: 2017
  ident: 10.1016/j.jacr.2018.09.040_bib13
  article-title: A deep learning framework for supporting the classification of breast lesions in ultrasound images
  publication-title: Phys Med Biol
  doi: 10.1088/1361-6560/aa82ec
– ident: 10.1016/j.jacr.2018.09.040_bib24
SSID ssj0027788
Score 2.2236753
Snippet With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is...
With much hype about artificial intelligence (AI) rendering radiologists redundant, a simple radiologist-augmented AI workflow is evaluated; the premise is...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 64
SubjectTerms Algorithms
Artificial Intelligence
BI-RADS
Breast Neoplasms - diagnostic imaging
Diagnosis, Computer-Assisted - methods
Female
Humans
machine learning
Predictive Value of Tests
radiologist-augmented workflow
Title Artificial Intelligence Using Open Source BI-RADS Data Exemplifying Potential Future Use
URI https://www.clinicalkey.com/#!/content/1-s2.0-S154614401831202X
https://dx.doi.org/10.1016/j.jacr.2018.09.040
https://www.ncbi.nlm.nih.gov/pubmed/30337213
https://www.proquest.com/docview/2123723095
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1558-349X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0027788
  issn: 1546-1440
  databaseCode: AKRWK
  dateStart: 20040101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEF61QUK9VC3Qkr60lXqLjGzv2vEe3RYKRVQogJrbap-CCDkVGKnqr--sd-040NDSixU5mbWd-Tz-ZjwPhD6MtXQztcHJEeM0opKqiDFDIpYzaRWLY6td7fDRt3z_jH6dZtN2xH2oLqnljvr1x7qS_9Eq7AO9uirZB2i2WxR2wGfQL2xBw7D9Jx2XV02mj--X0Wut6fMAXK7I6KQJzo8-HkST8vMJKLkWo92fxuWR-wqn43ntEoZgib2mvQgIL2cHLRhrrwql6kccJkJfLEXnv5zPr5twTanBbz7vRxZcMVMXWQjGkOaRe_m7ZC3zO6jwps83Iw8PUT-O54559pGC2c5MKNeLNSmaHrPhAEu9sG89o7rMwTYpbcbdGtytwWPGYY3HaC0Fyx4P0Fp5OPl-uHC7x8300e5qQumUz_K7fSar6Mkq96OhIafP0NOgDVx6MDxHj0y1gdaPQobEJpouMIH7mMANJrDDBPaYwAET2GEC9zGBO0xgjwkQNlvobG_39NN-FKZnRAqc9DrSKdW5JZLEMiGONUpiSSIJoxmQEiUKCjdjoRMBlDSWFnhwqq3KC5GmyhKTkRdoUM0rs42w1IxYaXPBMksTrWQsUqMLYVlhqMntECXtn8ZVaC3vJpxc8tXqGqJRJ_PDN1a599ek1QVvS4bhIccBWPdKZZ1UIJSeKP5V7n2rbg7W1r1CE5WZ31xzR_TG4LWzbIheehx0Zw9kEL5LyKsHXdlr9GRx771Bg_rqxrwFnlvLdwHIvwEg5Kdm
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Using+Open+Source+BI-RADS+Data+Exemplifying+Potential+Future+Use&rft.jtitle=Journal+of+the+American+College+of+Radiology&rft.au=Ghosh%2C+Adarsh&rft.date=2019-01-01&rft.issn=1546-1440&rft.volume=16&rft.issue=1&rft.spage=64&rft.epage=72&rft_id=info:doi/10.1016%2Fj.jacr.2018.09.040&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jacr_2018_09_040
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-1440&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-1440&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-1440&client=summon