Bootstrap for finite N lattice Yang-Mills theory
A bstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattic...
Saved in:
| Published in | The journal of high energy physics Vol. 2025; no. 3; pp. 99 - 40 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
13.03.2025
Springer Nature B.V Springer SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1029-8479 1126-6708 1127-2236 1029-8479 |
| DOI | 10.1007/JHEP03(2025)099 |
Cover
| Abstract | A
bstract
We introduce a comprehensive framework for analyzing finite
N
lattice Yang-Mills theory and finite
N
matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly improves the efficiency of the bootstrap approach by leveraging the problem’s convexity, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within 0
.
1% for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations. |
|---|---|
| AbstractList | We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly improves the efficiency of the bootstrap approach by leveraging the problem’s convexity, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within 0 . 1% for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations. A bstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly improves the efficiency of the bootstrap approach by leveraging the problem’s convexity, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within 0 . 1% for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations. Abstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly improves the efficiency of the bootstrap approach by leveraging the problem’s convexity, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within 0.1% for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations. We introduce a comprehensive framework for analyzing finite $N$ lattice Yang-Mills theory and finite $N$ matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly enhances the efficiency of the bootstrap approach due to the convex nature of the problem, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within $0.1\%$ for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations. |
| ArticleNumber | 99 |
| Author | Kazakov, Vladimir Zheng, Zechuan |
| Author_xml | – sequence: 1 givenname: Vladimir orcidid: 0000-0003-0670-751X surname: Kazakov fullname: Kazakov, Vladimir organization: Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris – sequence: 2 givenname: Zechuan orcidid: 0000-0003-1507-8700 surname: Zheng fullname: Zheng, Zechuan email: zechuan.zheng.phy@gmail.com organization: Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Perimeter Institute for Theoretical Physics |
| BackLink | https://hal.science/hal-04570608$$DView record in HAL |
| BookMark | eNp1kc1v1DAQxS1UJNrCmWskLvQQOo4_Zn0sVWGLti0HOHCybMfezSrEwc4W7X-Pl1TQCnGyNfq9N8_PJ-RoiIMn5DWFdxQAzz8trz4De9tAI85AqWfkmEKj6gVHdfTo_oKc5LwFoIIqOCbwPsYpT8mMVYipCt3QTb66rXozTZ3z1TczrOubru9zNW18TPuX5HkwffavHs5T8vXD1ZfLZb26-3h9ebGqHQecaishCGYtkx4DdSKwRlrqfJCISlqvKFiOTorAW2ekxVai4lYx5hrJWs9OyfXs20az1WPqvpu019F0-vcgprU2qUTsvZbKgQCLRiHjnFJF20YgcmrLcsRF8YLZazeMZv_T9P0fQwr60J7ebvwITB_a06W9IjmbJRvTP9m-vFjpwwy4QJCwuKeFfTOzY4o_dj5Peht3aSjtaEbLcxXyRhTqfKZcijknH_7JMP_g4wwPsXMhh7VPf33_J_kF4X-aDQ |
| Cites_doi | 10.1103/PhysRevD.111.045013 10.1016/0550-3213(80)90072-3 10.1088/1751-8113/44/3/035402 10.1103/PhysRevD.106.125021 10.1103/PhysRevD.108.125002 10.1145/3519935.3519960 10.1016/0550-3213(84)90052-X 10.1007/JHEP02(2024)054 10.1103/PhysRevD.105.085017 10.1016/0370-2693(91)91788-W 10.1016/0550-3213(81)90239-X 10.1063/5.0159108 10.1093/ptep/ptad001 10.1007/JHEP06(2023)038 10.1016/0370-2693(81)91203-X 10.1051/epjconf/201817511011 10.1088/1126-6708/2009/11/064 10.1016/j.physrep.2023.02.001 10.1007/s10773-024-05774-w 10.1016/0370-2693(81)90745-0 10.1016/0550-3213(83)90180-3 10.1103/PhysRevD.107.L051501 10.1016/0370-1573(83)90076-5 10.1016/j.physletb.2021.136785 10.1103/PhysRevE.107.L053301 10.1007/JHEP12(2021)082 10.1007/s00332-017-9421-2 10.1007/JHEP08(2024)154 10.1016/0370-2693(79)90131-X 10.1007/JHEP08(2023)052 10.1103/PhysRevD.106.116008 10.1007/BF01608557 10.1016/0550-3213(86)90221-X 10.1088/1361-6544/ab8f7b 10.1142/S0217732322500547 10.1007/JHEP06(2022)030 10.1016/j.nuclphysb.2017.06.009 10.1016/0003-4916(78)90039-8 10.1007/978-1-4684-9458-7 10.1088/1751-8121/ac3c82 10.1103/RevModPhys.96.045006 10.1103/RevModPhys.96.045004 10.1088/1751-8121/ac5216 10.1007/JHEP06(2020)090 10.1007/978-1-4614-0769-0_9 10.1007/JHEP11(2023)047 10.1103/PhysRevD.109.025013 10.1007/JHEP09(2024)143 10.1103/RevModPhys.91.015002 10.1103/PhysRevLett.45.313 10.1007/JHEP02(2017)015 10.1088/1572-9494/ac679a 10.1016/j.physleta.2017.12.023 10.1007/JHEP01(2025)190 10.1088/1751-8121/ac7118 10.1007/JHEP08(2024)009 10.1103/PhysRevD.109.045012 10.1103/PhysRevD.78.054503 10.1103/PhysRevD.21.2308 10.1007/JHEP12(2018)063 10.1103/PhysRevD.21.446 10.1103/PhysRevLett.125.041601 10.1137/20M1318183 10.1007/BF01645738 10.1007/JHEP05(2020)145 10.1016/0550-3213(84)90215-3 10.1016/j.physletb.2022.137305 10.1103/PhysRevLett.131.031603 10.1088/1126-6708/2008/12/031 10.1038/s41467-024-51592-3 10.1103/PhysRevD.106.045029 10.3390/fractalfract7100754 10.1017/9781009402095 10.1007/BF01608978 10.1007/JHEP11(2018)093 10.1016/j.physletb.2022.137445 10.1007/JHEP04(2023)107 10.1007/JHEP01(2022)168 10.1007/JHEP09(2023)042 10.1103/PhysRevLett.69.2863 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 Copyright Springer Nature B.V. Mar 2025 Attribution |
| Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. Mar 2025 – notice: Attribution |
| DBID | C6C AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 1XC VOOES ADTOC UNPAY DOA |
| DOI | 10.1007/JHEP03(2025)099 |
| DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (NC Live) Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature Open Access Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1029-8479 |
| EndPage | 40 |
| ExternalDocumentID | oai_doaj_org_article_69c050b7a973441191d257741b6e7778 10.1007/jhep03(2025)099 oai:HAL:hal-04570608v1 10_1007_JHEP03_2025_099 |
| GroupedDBID | 0R~ 0VY 199 1N0 30V 4.4 408 40D 5GY 5VS 8FE 8FG 8TC 8UJ 95. AAFWJ AAKKN ABEEZ ACACY ACGFS ACHIP ACREN ACULB ADBBV AEGXH AENEX AFGXO AFKRA AFPKN AFWTZ AHBYD AHYZX AIBLX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS ASPBG ATQHT AVWKF AZFZN BCNDV BENPR BGLVJ C24 C6C CCPQU CS3 CSCUP DU5 EBS ER. FEDTE GROUPED_DOAJ HCIFZ HF~ HLICF HMJXF HVGLF HZ~ IHE KOV LAP N5L N9A NB0 O93 OK1 P62 P9T PHGZT PIMPY PROAC R9I RO9 S1Z S27 S3B SOJ SPH T13 TUS U2A VC2 VSI WK8 XPP Z45 ZMT AAYXX AMVHM CITATION PHGZM PQGLB PUEGO ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS 02O 1JI 1WK 1XC 2VQ 5ZI AAGCD AAGCF AAIAL AAJIO AALHV AARHV AATNI ABFSG ACAFW ACARI ACBXY ACSTC ADKPE ADRFC AEFHF AEJGL AERVB AETNG AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHSEE AHWEU AIXLP AIYBF AKPSB AOAED ARNYC BAPOH BBWZM BGNMA CAG CJUJL COF CRLBU EDWGO EJD EMSAF EPQRW EQZZN H13 IJHAN IOP IZVLO JCGBZ KOT M45 M4Y NT- NT. NU0 O9- PJBAE Q02 R4D RIN RKQ RNS ROL RPA S3P SY9 T37 VOOES ADTOC UNPAY |
| ID | FETCH-LOGICAL-c407t-b60f53bb36e7f1c5f326b1cef67796be910b47c65f4dca6b7d6794b933c263de3 |
| IEDL.DBID | UNPAY |
| ISSN | 1029-8479 1126-6708 1127-2236 |
| IngestDate | Fri Oct 03 12:51:42 EDT 2025 Sun Oct 26 03:49:49 EDT 2025 Tue Oct 14 20:17:38 EDT 2025 Sat Oct 18 22:43:31 EDT 2025 Wed Oct 01 06:34:15 EDT 2025 Sat Apr 12 01:21:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Algorithms and Theoretical Developments Wilson, ’t Hooft and Polyakov loops Field Theories in Higher Dimensions Nonperturbative Effects efficiency SU matrix model bootstrap Wilson loop 4 free energy Monte Carlo string tension lattice Yang-Mills loop equation gauge field theory dimension |
| Language | English |
| License | Attribution: http://creativecommons.org/licenses/by cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-b60f53bb36e7f1c5f326b1cef67796be910b47c65f4dca6b7d6794b933c263de3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0670-751X 0000-0003-1507-8700 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/jhep03(2025)099 |
| PQID | 3177997425 |
| PQPubID | 2034718 |
| PageCount | 40 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_69c050b7a973441191d257741b6e7778 unpaywall_primary_10_1007_jhep03_2025_099 hal_primary_oai_HAL_hal_04570608v1 proquest_journals_3177997425 crossref_primary_10_1007_JHEP03_2025_099 springer_journals_10_1007_JHEP03_2025_099 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-13 |
| PublicationDateYYYYMMDD | 2025-03-13 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-13 day: 13 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | The journal of high energy physics |
| PublicationTitleAbbrev | J. High Energ. Phys |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V Springer SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: Springer – name: SpringerOpen |
| References | W Li (25755_CR38) 2023; 131 25755_CR26 HW Lin (25755_CR5) 2020; 06 D Berenstein (25755_CR20) 2022; 55 D Goluskin (25755_CR52) 2017; 28 Y Aikawa (25755_CR17) 2022; 833 N Xu (25755_CR89) 2021; 43 B-N Du (25755_CR27) 2022; 74 25755_CR18 25755_CR19 HW Lin (25755_CR14) 2023; 06 25755_CR4 25755_CR32 25755_CR31 25755_CR2 25755_CR34 R Rattazzi (25755_CR78) 2008; 12 Y Guo (25755_CR39) 2023; 108 W Fan (25755_CR46) 2024; 63 W Li (25755_CR51) 2025; 111 25755_CR1 25755_CR30 S Khan (25755_CR35) 2022; 834 25755_CR28 A Athenodorou (25755_CR3) 2021; 12 V Kazakov (25755_CR8) 2023; 107 25755_CR87 25755_CR88 25755_CR81 25755_CR82 D Berenstein (25755_CR21) 2023; 107 J Bhattacharya (25755_CR24) 2021; 823 Y He (25755_CR84) 2018; 11 CO Nancarrow (25755_CR42) 2023; 08 D Goluskin (25755_CR53) 2020; 33 A Denbleyker (25755_CR58) 2008; 78 A Tavakoli (25755_CR43) 2024; 96 RM Koch (25755_CR13) 2022; 01 25755_CR10 25755_CR98 25755_CR97 25755_CR12 Y Aikawa (25755_CR16) 2022; 105 25755_CR11 25755_CR99 H Hessam (25755_CR33) 2022; 55 H Fawzi (25755_CR50) 2024; 15 25755_CR90 25755_CR92 25755_CR94 25755_CR93 25755_CR96 K Mathaba (25755_CR15) 2024; 02 A Athenodorou (25755_CR59) 2017; 02 25755_CR65 MF Paulos (25755_CR86) 2020; 05 R Dempsey (25755_CR63) 2023; 04 25755_CR67 X Han (25755_CR6) 2020; 125 25755_CR66 25755_CR69 25755_CR68 I Tobasco (25755_CR54) 2018; 382 25755_CR61 25755_CR62 L Córdova (25755_CR85) 2018; 12 S Tchoumakov (25755_CR44) 2022; 55 MJ Blacker (25755_CR25) 2022; 106 25755_CR76 25755_CR75 25755_CR77 R Rattazzi (25755_CR83) 2011; 44 25755_CR70 W Li (25755_CR48) 2024; 109 HW Lin (25755_CR91) 2025; 01 25755_CR71 D Berenstein (25755_CR23) 2024; 109 M Cho (25755_CR74) 2023; 11 H Fawzi (25755_CR29) 2024; 65 Y Nakayama (25755_CR41) 2022; 37 S Rychkov (25755_CR80) 2024; 96 25755_CR45 A Migdal (25755_CR72) 2023; 1011 25755_CR47 25755_CR40 A Migdal (25755_CR73) 2023; 7 K Ghosh (25755_CR95) 2024; 09 I Kull (25755_CR36) 2024; 14 R Dempsey (25755_CR64) 2024; 08 25755_CR56 25755_CR55 Z Li (25755_CR60) 2024; 08 25755_CR57 V Kazakov (25755_CR7) 2022; 06 D Poland (25755_CR79) 2019; 91 W Li (25755_CR37) 2022; 106 D Berenstein (25755_CR22) 2022; 106 M Zeng (25755_CR49) 2023; 09 PD Anderson (25755_CR9) 2017; 921 |
| References_xml | – ident: 25755_CR45 – volume: 111 year: 2025 ident: 25755_CR51 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.111.045013 – ident: 25755_CR69 doi: 10.1016/0550-3213(80)90072-3 – volume: 44 year: 2011 ident: 25755_CR83 publication-title: J. Phys. A doi: 10.1088/1751-8113/44/3/035402 – volume: 106 year: 2022 ident: 25755_CR37 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.125021 – volume: 108 year: 2023 ident: 25755_CR39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.108.125002 – ident: 25755_CR31 doi: 10.1145/3519935.3519960 – ident: 25755_CR97 – ident: 25755_CR77 doi: 10.1016/0550-3213(84)90052-X – volume: 02 start-page: 054 year: 2024 ident: 25755_CR15 publication-title: JHEP doi: 10.1007/JHEP02(2024)054 – volume: 105 year: 2022 ident: 25755_CR16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.105.085017 – ident: 25755_CR57 doi: 10.1016/0370-2693(91)91788-W – ident: 25755_CR68 doi: 10.1016/0550-3213(81)90239-X – volume: 65 year: 2024 ident: 25755_CR29 publication-title: J. Math. Phys. doi: 10.1063/5.0159108 – ident: 25755_CR94 – ident: 25755_CR19 – ident: 25755_CR40 doi: 10.1093/ptep/ptad001 – volume: 06 start-page: 038 year: 2023 ident: 25755_CR14 publication-title: JHEP doi: 10.1007/JHEP06(2023)038 – ident: 25755_CR70 doi: 10.1016/0370-2693(81)91203-X – ident: 25755_CR4 doi: 10.1051/epjconf/201817511011 – ident: 25755_CR92 doi: 10.1088/1126-6708/2009/11/064 – volume: 1011 start-page: 1 year: 2023 ident: 25755_CR72 publication-title: Phys. Rept. doi: 10.1016/j.physrep.2023.02.001 – volume: 63 start-page: 266 year: 2024 ident: 25755_CR46 publication-title: Int. J. Theor. Phys. doi: 10.1007/s10773-024-05774-w – ident: 25755_CR98 doi: 10.1016/0370-2693(81)90745-0 – ident: 25755_CR11 doi: 10.1016/0550-3213(83)90180-3 – volume: 107 start-page: L051501 year: 2023 ident: 25755_CR8 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.107.L051501 – ident: 25755_CR61 doi: 10.1016/0370-1573(83)90076-5 – ident: 25755_CR88 – volume: 823 year: 2021 ident: 25755_CR24 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2021.136785 – volume: 107 start-page: L053301 year: 2023 ident: 25755_CR21 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.107.L053301 – ident: 25755_CR99 – volume: 12 start-page: 082 year: 2021 ident: 25755_CR3 publication-title: JHEP doi: 10.1007/JHEP12(2021)082 – volume: 28 start-page: 621 year: 2017 ident: 25755_CR52 publication-title: Journal of Nonlinear Science doi: 10.1007/s00332-017-9421-2 – volume: 08 start-page: 154 year: 2024 ident: 25755_CR60 publication-title: JHEP doi: 10.1007/JHEP08(2024)154 – ident: 25755_CR56 doi: 10.1016/0370-2693(79)90131-X – volume: 08 start-page: 052 year: 2023 ident: 25755_CR42 publication-title: JHEP doi: 10.1007/JHEP08(2023)052 – volume: 106 year: 2022 ident: 25755_CR25 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.116008 – ident: 25755_CR81 doi: 10.1007/BF01608557 – ident: 25755_CR28 – ident: 25755_CR62 doi: 10.1016/0550-3213(86)90221-X – volume: 33 start-page: 4878 year: 2020 ident: 25755_CR53 publication-title: Nonlinearity doi: 10.1088/1361-6544/ab8f7b – volume: 37 start-page: 2250054 year: 2022 ident: 25755_CR41 publication-title: Mod. Phys. Lett. A doi: 10.1142/S0217732322500547 – volume: 06 start-page: 030 year: 2022 ident: 25755_CR7 publication-title: JHEP doi: 10.1007/JHEP06(2022)030 – volume: 921 start-page: 702 year: 2017 ident: 25755_CR9 publication-title: Nucl. Phys. B doi: 10.1016/j.nuclphysb.2017.06.009 – ident: 25755_CR82 doi: 10.1016/0003-4916(78)90039-8 – ident: 25755_CR90 doi: 10.1007/978-1-4684-9458-7 – ident: 25755_CR96 – ident: 25755_CR34 – volume: 14 year: 2024 ident: 25755_CR36 publication-title: Phys. Rev. X – volume: 55 year: 2022 ident: 25755_CR44 publication-title: J. Phys. A doi: 10.1088/1751-8121/ac3c82 – volume: 96 year: 2024 ident: 25755_CR43 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.96.045006 – ident: 25755_CR65 – volume: 96 year: 2024 ident: 25755_CR80 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.96.045004 – volume: 55 year: 2022 ident: 25755_CR33 publication-title: J. Phys. A doi: 10.1088/1751-8121/ac5216 – volume: 06 start-page: 090 year: 2020 ident: 25755_CR5 publication-title: JHEP doi: 10.1007/JHEP06(2020)090 – ident: 25755_CR87 doi: 10.1007/978-1-4614-0769-0_9 – volume: 11 start-page: 047 year: 2023 ident: 25755_CR74 publication-title: JHEP doi: 10.1007/JHEP11(2023)047 – volume: 109 year: 2024 ident: 25755_CR23 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.025013 – volume: 09 start-page: 143 year: 2024 ident: 25755_CR95 publication-title: JHEP doi: 10.1007/JHEP09(2024)143 – volume: 91 year: 2019 ident: 25755_CR79 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.015002 – ident: 25755_CR2 doi: 10.1103/PhysRevLett.45.313 – volume: 02 start-page: 015 year: 2017 ident: 25755_CR59 publication-title: JHEP doi: 10.1007/JHEP02(2017)015 – volume: 74 year: 2022 ident: 25755_CR27 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ac679a – volume: 382 start-page: 382 year: 2018 ident: 25755_CR54 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2017.12.023 – ident: 25755_CR26 – volume: 01 start-page: 190 year: 2025 ident: 25755_CR91 publication-title: Part I, JHEP doi: 10.1007/JHEP01(2025)190 – volume: 55 year: 2022 ident: 25755_CR20 publication-title: J. Phys. A doi: 10.1088/1751-8121/ac7118 – volume: 08 start-page: 009 year: 2024 ident: 25755_CR64 publication-title: JHEP doi: 10.1007/JHEP08(2024)009 – volume: 109 year: 2024 ident: 25755_CR48 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.109.045012 – volume: 78 year: 2008 ident: 25755_CR58 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.054503 – ident: 25755_CR1 doi: 10.1103/PhysRevD.21.2308 – volume: 12 start-page: 063 year: 2018 ident: 25755_CR85 publication-title: JHEP doi: 10.1007/JHEP12(2018)063 – ident: 25755_CR66 doi: 10.1103/PhysRevD.21.446 – volume: 125 year: 2020 ident: 25755_CR6 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.041601 – ident: 25755_CR32 – ident: 25755_CR67 – volume: 43 start-page: A3657 year: 2021 ident: 25755_CR89 publication-title: SIAM J. Sci. Comput. doi: 10.1137/20M1318183 – ident: 25755_CR75 doi: 10.1007/BF01645738 – ident: 25755_CR47 – ident: 25755_CR18 – volume: 05 start-page: 145 year: 2020 ident: 25755_CR86 publication-title: JHEP doi: 10.1007/JHEP05(2020)145 – ident: 25755_CR10 – ident: 25755_CR12 doi: 10.1016/0550-3213(84)90215-3 – volume: 833 year: 2022 ident: 25755_CR17 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137305 – volume: 131 year: 2023 ident: 25755_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.131.031603 – volume: 12 start-page: 031 year: 2008 ident: 25755_CR78 publication-title: JHEP doi: 10.1088/1126-6708/2008/12/031 – volume: 15 start-page: 7394 year: 2024 ident: 25755_CR50 publication-title: Nature Commun. doi: 10.1038/s41467-024-51592-3 – volume: 106 year: 2022 ident: 25755_CR22 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.106.045029 – volume: 7 start-page: 754 year: 2023 ident: 25755_CR73 publication-title: Fractal Fract. doi: 10.3390/fractalfract7100754 – ident: 25755_CR71 doi: 10.1017/9781009402095 – ident: 25755_CR76 doi: 10.1007/BF01608978 – volume: 11 start-page: 093 year: 2018 ident: 25755_CR84 publication-title: JHEP doi: 10.1007/JHEP11(2018)093 – volume: 834 year: 2022 ident: 25755_CR35 publication-title: Phys. Lett. B doi: 10.1016/j.physletb.2022.137445 – volume: 04 start-page: 107 year: 2023 ident: 25755_CR63 publication-title: JHEP doi: 10.1007/JHEP04(2023)107 – ident: 25755_CR55 – volume: 01 start-page: 168 year: 2022 ident: 25755_CR13 publication-title: JHEP doi: 10.1007/JHEP01(2022)168 – volume: 09 start-page: 042 year: 2023 ident: 25755_CR49 publication-title: JHEP doi: 10.1007/JHEP09(2023)042 – ident: 25755_CR30 – ident: 25755_CR93 doi: 10.1103/PhysRevLett.69.2863 |
| SSID | ssj0015190 |
| Score | 2.490572 |
| Snippet | A
bstract
We introduce a comprehensive framework for analyzing finite
N
lattice Yang-Mills theory and finite
N
matrix models. Utilizing this framework, we... We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the... We introduce a comprehensive framework for analyzing finite $N$ lattice Yang-Mills theory and finite $N$ matrix models. Utilizing this framework, we examine... Abstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we... |
| SourceID | doaj unpaywall hal proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
| StartPage | 99 |
| SubjectTerms | Algorithms Algorithms and Theoretical Developments Classical and Quantum Gravitation Convexity Couplings Elementary Particles Field Theories in Higher Dimensions Free energy High energy physics High Energy Physics - Lattice High Energy Physics - Theory Linearity Nonperturbative Effects Physics Physics and Astronomy Qualitative analysis Quantum Field Theories Quantum Field Theory Quantum Physics Regular Article - Theoretical Physics Relativity Theory Statistical methods String Theory Variables Wilson, ’t Hooft and Polyakov loops Yang-Mills theory |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFH-IsOgeRF2XrV8U8eAciqlpkuboLCODqHhYQU8hSRM_GDqDUxX_e1_6MY7I4sVTIQ0heS_p7_eal18A9pkzguRWJhL5QJJljiS6SLPEUYSz3Gsta53t8ws-vMpOr9n13FVfISeskQduDHfIpSWMGKGloAjdGF4UOMsQBw13Qoj6mC_JZRdMtfsHyEtIJ-RDxOHpcHBJ6AEG-qxHapnXdwyqpfoRWe5CIuQcy5xtjP6Epadyol9f9Gg0hz0nq7DSksb4uOnsGiy4ch1-1MmbdvoLSH88rsIvi0mMFDT294FHxhfxSFchtS2-0eVtEg79TeP63OLrBlydDP79HSbtTQiJxYCrSgwnnlFjKI7Zp5Z5JF0mtc5zISQ3DjHfZMJy5rPCam5EwXGdGUmpPeK0cPQ3LJbj0v2B2DIkdZYKS7TPLPcyty7zBB95gZ9HG8FBZxs1aQQvVCdt3JhRBTMqNGME_WC7WbWgVF0XoP9U6z_1lf8i2EPLf2hjeHymQhmyzaDtkz-nEWx3jlHtGpsqZD5CYjh0xCLodc56f_3fTvdm3vw0wIc7N5mru_kdA9yC5dBeyFtL6TYsVo9PbgeJTGV26zn7BpPR5-U priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central (NC Live) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6lLH2oeyr1F1XzNhD8yAqR7ZkP4zSjJRQtlDGCt2TkGSpHwTbbdyW_vc9OXaSMdYngyxk6066-0k6_Q7ga2K1oKnJSIZ4gMSxpUTlUUwsQ3eWOqWyhmf754SPz-PTi-RiDSbdXRgfVtnZxMZQ56Xxe-SH6OdEhuB3kBxVt8RnjfKnq10KDdWmVsi_NRRjr2B94JmxerA-HE3Ofi3OFRCv0I7gh4rD0_HojLKDATr-Pm3oX5e-qaHwR49z5QMkV9Dn4sB0E97cF5V6elTT6YpPOnkLWy2YDI_n2n8Ha7Z4D6-boE4z-wB0WJa138qoQoSmobv2-DKchFNV-5C38I8qLom_DDgLm_uMTx_h_GT0-_uYtBkSiMGFWE00py5hWjNuhYtM4hCM6chYx1FYXFvEAjoWhicuzo3iWuQc55_OGDMDznLLtqFXlIXdgdAkCPYME4YqFxvustTY2FF8pDmaTRPAQScbWc2JMGRHeTwXo_RilCjGAIZedotqnsG6KSjvLmU7ISTPDE2oFioTDCEZLhtztB6IbzT2RYg0gC8o-b_aGB__kL4MUajn_EkfogD2OsXIdu7N5HKkBNDvlLV8_d-f7i-0-U8Hb65stVJ39-XPfoINX9NHqkVsD3r13b39jNCl1vvteHwGjr3oCg priority: 102 providerName: ProQuest – databaseName: SpringerLINK dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5iRWjjgIANLYOhCHGgh0hOHdvxsSCqCg20wyrBybIdmx-q0ooGEP_9ntOktKp22CmR41jxe7bf9-L3PgOcMmcEya1MJOKBJMscSXSRZomjaM5yr7Wsebavb_hwlF3dstsNSNtcmDravd2SrFfqNtntanj5m9AzdNZZF2HNJ9hE8NELpzVchASHZuMAy0jL4LP-0orxqTn60aQ8hAjIJXi52BHdhs8v5VS_v-nxeMnoDHZhp0GLcX-u3j3YcOU-bNVRm3b2Fcj5ZFKFfxXTGLFn7B8DgIxv4rGuQkxbfKfL-yRk-83iOmHx_RuMBpd_LoZJcwRCYtHTqhLDiWfUGMqd8KllHtGWSa3zXAjJjUNjbzJhOfNZYTU3ouA4wYyk1PY4LRw9gE45Kd13iC1DNGepsET7zHIvc-syT_CSF7gu2gjOWtmo6ZzpQrWcxnMxqiBGhWKM4DzIblEtUFTXBZPne9WMeMWlJYwYoaWgiLnQLyxweUAAY7AvQuQRnKDkV9oY9n-pUIYwM5D65K9pBEetYlQzuWYKIY-Q6Af1WATdVlkfj__50d2FNtc6-PTgpkt1f_xHu4fwJdyGuLSUHkGnen5xPxGoVOa4Hpp_AZKa3OY priority: 102 providerName: Springer Nature |
| Title | Bootstrap for finite N lattice Yang-Mills theory |
| URI | https://link.springer.com/article/10.1007/JHEP03(2025)099 https://www.proquest.com/docview/3177997425 https://hal.science/hal-04570608 https://doi.org/10.1007/jhep03(2025)099 https://doaj.org/article/69c050b7a973441191d257741b6e7778 |
| UnpaywallVersion | publishedVersion |
| Volume | 2025 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: AMVHM dateStart: 20160301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: 8FG dateStart: 20121201 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature Open Access Journals customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C6C dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: C24 dateStart: 20100101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1029-8479 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015190 issn: 1126-6708 databaseCode: U2A dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xrRBw4I0ILFWEOGwPXpI4tuNjW7VEK6gqRKXdU2Q7DgtUaUVT0PLrGedR9iEkuDiJY1m2x_Z8Y48_A7xhVosgMZJIxAMkjm1AVB7GxFJUZ0mhlKx5tj_MebqMT07ZaUuS5M7CXNu_f_v13G4CeoQmOhsimDmAPmcIunvQX84Xo7N6LzOSBOdYWV-jEnHCRX0PHb4LgsqPd4Q-N3O7ootqyn7UMOfOIfIS2txvkN6DO7tyoy5-qtXqkg6aPYC0K33jevLteFfpY_PrGrHjP1TvIdxvcag_ajrOI7hly8dwu_YHNdsnEIzX68qtgmx8RLV-8cVBU3_ur1TlvOX8M1V-Ju4c4davj0JePIXlbPppkpL2cgVi0IariOZBwajWlFtRhIYViON0aGzBhZBcW4QROhaGsyLOjeJa5ByHrpaUmojT3NJn0CvXpX0OvmGIEw0VJlBFbHghE2PjIsBHkuOMazw46po52zQcGlnHlnySThcBzVwDZNgAHoydGPbJHPl1HYGNlrVjKePSBCzQQklBEc2hxZnjxIPQSGNdhEg8eI1CvJJHOnqfuTgEsI4uKPkRenDYyThrh-02QzAlJFpYEfNg2Mn9z--_Fnq47xg3KthIeJ_2xX-kfQl33avzeAvpIfSq7zv7CiFQpQdwkMzeDaA_ns4XH_FrEsUu5JNBvaiA4TLCsBkkvwEM6_yj |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWjwgPgUgQERAml9iObEjp08TGiFTtnWVRPapPEUbMfeQFUS1o6p_xx_G-c0aYsQvO0pkuPY8Z3t-519HwDvYqMESXQapIgHAsYMCWQRssBQFGeJlTJt4mwfj3h2xg7P4_M1-NX5wjizym5PbDbqotLujHwH5ZxIEfxG8Yf6R-CyRrnb1S6FhmxTKxS7TYix1rHjyMxuUIWb7B58Qn6_j6L9wenHLGizDAQalZlpoDixMVWKciNsqGOLgEaF2liOHXJlUJ4qJjSPLSu05EoUHOewSinVEaeFodjuHdhglKWo_G30B6OTz4t7DMRHpAsoRMTOYTY4IXQ7QqDRI0242aUsbFIGoIS7dAaZK2h3cUF7Hzavy1rObuR4vCID9x_Cgxa8-nvz2fYI1kz5GO42RqR68gRIv6qm7uik9hEK-_abw7P-yB_LqTOx87_I8iJwzocTv_GfnD2Fs1uh1TNYL6vSPAdfxwguNRWaSMs0t2miDbMEH0mB27T2YLujTV7PA2_kXYjlORlzR8YcyehB39FuUc1FzG4KqquLvF2AOU81iYkSMhUUISCqqQXuVoinFI5FiMSDt0j5P9rI9oa5K0PU62IMJT9DD7Y6xuTtWp_ky5npQa9j1vL1P3-6t-DmXwP8fmnqlbov_t_tG9jMTo-H-fBgdPQS7rmvnJVcSLdgfXp1bV4hbJqq1-3c9OHrbS-H392TJbc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh49IJ4iUCBCIHUP0TpxYieHCrW0y_bBqgcqtSdjO3YLWiWhm1LtX-uv6zib7C5CcOspkuPY8Tw8n-2ZMcCHxChOUp0FGeKBII4NCWQexoGhaM5SK2XW5Nn-OmLD43j_JDlZgesuFsa5VXZzYjNR56V2e-R9tHM8Q_AbJX3bukUc7Qw-Vb8Cd4OUO2ntrtOYiciBmV7h8m2yubeDvP4YRYPdb5-HQXvDQKBxIVMHihGbUKUoM9yGOrEIZlSojWXYGVMGbamKuWaJjXMtmeI5Q_lVGaU6YjQ3FNu9A3e5y-LuotQHX-YnGIiMSJdKiPD-_nD3iNCNCCFGjzSJZhdWsLksAG3buXPFXMK586PZNXhwWVRyeiXH4yXrN3gMj1rY6m_N5OwJrJjiKdxr3Ef15BmQ7bKs3aZJ5SMI9u0Ph2T9kT-WtXOu809lcRa4sMOJ30ROTp_D8a1Q6gWsFmVhXoKvE4SVmnJNpI01s1mqTWwJPtIcJ2jtwUZHG1HNUm6ILrnyjIzCkVEgGT3YdrSbV3O5spuC8uJMtKonWKZJQhSXGacI_nCBmuM8hUhK4Vg4Tz14j5T_o43h1qFwZYh3XXah9HfowXrHGNFq-UQsZNKDXsesxet__nRvzs2_Bvjz3FRLdV_9v9t3cB-VQBzujQ5ew0P3kXOPC-k6rNYXl-YN4qVavW0E04fvt60JN8XYI1E |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-CTgg48D0RGChCHNaDh1PHdnzs0KZogmoHKm0ny3bsDValFU1B46_nOU3KPoQEp1iOZdnv2X6_Zz__DPCeeytp4RRRiAdInntKTJXlxDM0Z0UwRrU8258nopzmRyf8pCNJindhbpzff_h27heU7aKLzocIZu7CluAIugewNZ0cj0_bs8yRIrjGqvYZlZEgQrbv0GFaEjR-oif0uV3bNVvUUvajhTmPAZFX0ObmgPQh3F_VC3P508xmV2zQ4WMo-9avQ08u9laN3XO_bhA7_kP3nsCjDoem4_XAeQp3fP0M7rXxoG75HOj-fN7EXZBFiqg2DV8jNE0n6cw0MVouPTX1GYn3CJdpexXy8gVMDw--fCxJ97gCcejDNcQKGjizlgkvQ-Z4QBxnM-eDkFIJ6xFG2Fw6wUNeOSOsrAROXasYcyPBKs-2YVDPa_8SUscRJzomHTUhdyKowvk8UPwUFa64LoHdXsx6sebQ0D1b8lF5cEyZjgLQKIAE9qMaNsUi-XWbgULT3VzSQjnKqZVGSYZoDj3OChcehEYW-yJlkcA7VOK1OsrxJx3zEMBGuqDiR5bATq9j3U3bpUYwJRV6WCOewLDX-5_ff230cDMwbnVwreFN2Vf_UfY1PIjJGPGWsR0YNN9X_g1CoMa-7Yb_bw0b9p4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bootstrap+for+finite+N+lattice+Yang-Mills+theory&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Vladimir+Kazakov&rft.au=Zechuan+Zheng&rft.date=2025-03-13&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2025&rft.issue=3&rft.spage=1&rft.epage=40&rft_id=info:doi/10.1007%2FJHEP03%282025%29099&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69c050b7a973441191d257741b6e7778 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon |