Bootstrap for finite N lattice Yang-Mills theory

A bstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattic...

Full description

Saved in:
Bibliographic Details
Published inThe journal of high energy physics Vol. 2025; no. 3; pp. 99 - 40
Main Authors Kazakov, Vladimir, Zheng, Zechuan
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 13.03.2025
Springer Nature B.V
Springer
SpringerOpen
Subjects
Online AccessGet full text
ISSN1029-8479
1126-6708
1127-2236
1029-8479
DOI10.1007/JHEP03(2025)099

Cover

Abstract A bstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly improves the efficiency of the bootstrap approach by leveraging the problem’s convexity, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within 0 . 1% for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations.
AbstractList We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly improves the efficiency of the bootstrap approach by leveraging the problem’s convexity, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within 0 . 1% for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations.
A bstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly improves the efficiency of the bootstrap approach by leveraging the problem’s convexity, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within 0 . 1% for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations.
Abstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly improves the efficiency of the bootstrap approach by leveraging the problem’s convexity, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within 0.1% for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations.
We introduce a comprehensive framework for analyzing finite $N$ lattice Yang-Mills theory and finite $N$ matrix models. Utilizing this framework, we examine the bootstrap approach to SU(2) Lattice Yang-Mills Theory in 2,3 and 4 dimensions. The SU(2) Makeenko-Migdal loop equations on the lattice are linear and closed exclusively on single-trace Wilson loops. This inherent linearity significantly enhances the efficiency of the bootstrap approach due to the convex nature of the problem, permitting the inclusion of Wilson loops up to length 24. The exact upper and lower margins for the free energy per plaquette, derived from our bootstrap method, demonstrate good agreement with Monte Carlo data, achieving precision within $0.1\%$ for the physically relevant range of couplings in both three and four dimensions. Additionally, our bootstrap data provides estimates of the string tension, in qualitative agreement with existing Monte Carlo computations.
ArticleNumber 99
Author Kazakov, Vladimir
Zheng, Zechuan
Author_xml – sequence: 1
  givenname: Vladimir
  orcidid: 0000-0003-0670-751X
  surname: Kazakov
  fullname: Kazakov, Vladimir
  organization: Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris
– sequence: 2
  givenname: Zechuan
  orcidid: 0000-0003-1507-8700
  surname: Zheng
  fullname: Zheng, Zechuan
  email: zechuan.zheng.phy@gmail.com
  organization: Laboratoire de Physique de l’École normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Perimeter Institute for Theoretical Physics
BackLink https://hal.science/hal-04570608$$DView record in HAL
BookMark eNp1kc1v1DAQxS1UJNrCmWskLvQQOo4_Zn0sVWGLti0HOHCybMfezSrEwc4W7X-Pl1TQCnGyNfq9N8_PJ-RoiIMn5DWFdxQAzz8trz4De9tAI85AqWfkmEKj6gVHdfTo_oKc5LwFoIIqOCbwPsYpT8mMVYipCt3QTb66rXozTZ3z1TczrOubru9zNW18TPuX5HkwffavHs5T8vXD1ZfLZb26-3h9ebGqHQecaishCGYtkx4DdSKwRlrqfJCISlqvKFiOTorAW2ekxVai4lYx5hrJWs9OyfXs20az1WPqvpu019F0-vcgprU2qUTsvZbKgQCLRiHjnFJF20YgcmrLcsRF8YLZazeMZv_T9P0fQwr60J7ebvwITB_a06W9IjmbJRvTP9m-vFjpwwy4QJCwuKeFfTOzY4o_dj5Peht3aSjtaEbLcxXyRhTqfKZcijknH_7JMP_g4wwPsXMhh7VPf33_J_kF4X-aDQ
Cites_doi 10.1103/PhysRevD.111.045013
10.1016/0550-3213(80)90072-3
10.1088/1751-8113/44/3/035402
10.1103/PhysRevD.106.125021
10.1103/PhysRevD.108.125002
10.1145/3519935.3519960
10.1016/0550-3213(84)90052-X
10.1007/JHEP02(2024)054
10.1103/PhysRevD.105.085017
10.1016/0370-2693(91)91788-W
10.1016/0550-3213(81)90239-X
10.1063/5.0159108
10.1093/ptep/ptad001
10.1007/JHEP06(2023)038
10.1016/0370-2693(81)91203-X
10.1051/epjconf/201817511011
10.1088/1126-6708/2009/11/064
10.1016/j.physrep.2023.02.001
10.1007/s10773-024-05774-w
10.1016/0370-2693(81)90745-0
10.1016/0550-3213(83)90180-3
10.1103/PhysRevD.107.L051501
10.1016/0370-1573(83)90076-5
10.1016/j.physletb.2021.136785
10.1103/PhysRevE.107.L053301
10.1007/JHEP12(2021)082
10.1007/s00332-017-9421-2
10.1007/JHEP08(2024)154
10.1016/0370-2693(79)90131-X
10.1007/JHEP08(2023)052
10.1103/PhysRevD.106.116008
10.1007/BF01608557
10.1016/0550-3213(86)90221-X
10.1088/1361-6544/ab8f7b
10.1142/S0217732322500547
10.1007/JHEP06(2022)030
10.1016/j.nuclphysb.2017.06.009
10.1016/0003-4916(78)90039-8
10.1007/978-1-4684-9458-7
10.1088/1751-8121/ac3c82
10.1103/RevModPhys.96.045006
10.1103/RevModPhys.96.045004
10.1088/1751-8121/ac5216
10.1007/JHEP06(2020)090
10.1007/978-1-4614-0769-0_9
10.1007/JHEP11(2023)047
10.1103/PhysRevD.109.025013
10.1007/JHEP09(2024)143
10.1103/RevModPhys.91.015002
10.1103/PhysRevLett.45.313
10.1007/JHEP02(2017)015
10.1088/1572-9494/ac679a
10.1016/j.physleta.2017.12.023
10.1007/JHEP01(2025)190
10.1088/1751-8121/ac7118
10.1007/JHEP08(2024)009
10.1103/PhysRevD.109.045012
10.1103/PhysRevD.78.054503
10.1103/PhysRevD.21.2308
10.1007/JHEP12(2018)063
10.1103/PhysRevD.21.446
10.1103/PhysRevLett.125.041601
10.1137/20M1318183
10.1007/BF01645738
10.1007/JHEP05(2020)145
10.1016/0550-3213(84)90215-3
10.1016/j.physletb.2022.137305
10.1103/PhysRevLett.131.031603
10.1088/1126-6708/2008/12/031
10.1038/s41467-024-51592-3
10.1103/PhysRevD.106.045029
10.3390/fractalfract7100754
10.1017/9781009402095
10.1007/BF01608978
10.1007/JHEP11(2018)093
10.1016/j.physletb.2022.137445
10.1007/JHEP04(2023)107
10.1007/JHEP01(2022)168
10.1007/JHEP09(2023)042
10.1103/PhysRevLett.69.2863
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. Mar 2025
Attribution
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. Mar 2025
– notice: Attribution
DBID C6C
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
1XC
VOOES
ADTOC
UNPAY
DOA
DOI 10.1007/JHEP03(2025)099
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (NC Live)
Technology Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef


Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1029-8479
EndPage 40
ExternalDocumentID oai_doaj_org_article_69c050b7a973441191d257741b6e7778
10.1007/jhep03(2025)099
oai:HAL:hal-04570608v1
10_1007_JHEP03_2025_099
GroupedDBID 0R~
0VY
199
1N0
30V
4.4
408
40D
5GY
5VS
8FE
8FG
8TC
8UJ
95.
AAFWJ
AAKKN
ABEEZ
ACACY
ACGFS
ACHIP
ACREN
ACULB
ADBBV
AEGXH
AENEX
AFGXO
AFKRA
AFPKN
AFWTZ
AHBYD
AHYZX
AIBLX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
ASPBG
ATQHT
AVWKF
AZFZN
BCNDV
BENPR
BGLVJ
C24
C6C
CCPQU
CS3
CSCUP
DU5
EBS
ER.
FEDTE
GROUPED_DOAJ
HCIFZ
HF~
HLICF
HMJXF
HVGLF
HZ~
IHE
KOV
LAP
N5L
N9A
NB0
O93
OK1
P62
P9T
PHGZT
PIMPY
PROAC
R9I
RO9
S1Z
S27
S3B
SOJ
SPH
T13
TUS
U2A
VC2
VSI
WK8
XPP
Z45
ZMT
AAYXX
AMVHM
CITATION
PHGZM
PQGLB
PUEGO
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
02O
1JI
1WK
1XC
2VQ
5ZI
AAGCD
AAGCF
AAIAL
AAJIO
AALHV
AARHV
AATNI
ABFSG
ACAFW
ACARI
ACBXY
ACSTC
ADKPE
ADRFC
AEFHF
AEJGL
AERVB
AETNG
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHSEE
AHWEU
AIXLP
AIYBF
AKPSB
AOAED
ARNYC
BAPOH
BBWZM
BGNMA
CAG
CJUJL
COF
CRLBU
EDWGO
EJD
EMSAF
EPQRW
EQZZN
H13
IJHAN
IOP
IZVLO
JCGBZ
KOT
M45
M4Y
NT-
NT.
NU0
O9-
PJBAE
Q02
R4D
RIN
RKQ
RNS
ROL
RPA
S3P
SY9
T37
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c407t-b60f53bb36e7f1c5f326b1cef67796be910b47c65f4dca6b7d6794b933c263de3
IEDL.DBID UNPAY
ISSN 1029-8479
1126-6708
1127-2236
IngestDate Fri Oct 03 12:51:42 EDT 2025
Sun Oct 26 03:49:49 EDT 2025
Tue Oct 14 20:17:38 EDT 2025
Sat Oct 18 22:43:31 EDT 2025
Wed Oct 01 06:34:15 EDT 2025
Sat Apr 12 01:21:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Algorithms and Theoretical Developments
Wilson, ’t Hooft and Polyakov loops
Field Theories in Higher Dimensions
Nonperturbative Effects
efficiency
SU
matrix model
bootstrap
Wilson loop
4
free energy
Monte Carlo
string tension
lattice
Yang-Mills
loop equation
gauge field theory
dimension
Language English
License Attribution: http://creativecommons.org/licenses/by
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-b60f53bb36e7f1c5f326b1cef67796be910b47c65f4dca6b7d6794b933c263de3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0670-751X
0000-0003-1507-8700
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1007/jhep03(2025)099
PQID 3177997425
PQPubID 2034718
PageCount 40
ParticipantIDs doaj_primary_oai_doaj_org_article_69c050b7a973441191d257741b6e7778
unpaywall_primary_10_1007_jhep03_2025_099
hal_primary_oai_HAL_hal_04570608v1
proquest_journals_3177997425
crossref_primary_10_1007_JHEP03_2025_099
springer_journals_10_1007_JHEP03_2025_099
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-03-13
PublicationDateYYYYMMDD 2025-03-13
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-13
  day: 13
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle The journal of high energy physics
PublicationTitleAbbrev J. High Energ. Phys
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Springer
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: Springer
– name: SpringerOpen
References W Li (25755_CR38) 2023; 131
25755_CR26
HW Lin (25755_CR5) 2020; 06
D Berenstein (25755_CR20) 2022; 55
D Goluskin (25755_CR52) 2017; 28
Y Aikawa (25755_CR17) 2022; 833
N Xu (25755_CR89) 2021; 43
B-N Du (25755_CR27) 2022; 74
25755_CR18
25755_CR19
HW Lin (25755_CR14) 2023; 06
25755_CR4
25755_CR32
25755_CR31
25755_CR2
25755_CR34
R Rattazzi (25755_CR78) 2008; 12
Y Guo (25755_CR39) 2023; 108
W Fan (25755_CR46) 2024; 63
W Li (25755_CR51) 2025; 111
25755_CR1
25755_CR30
S Khan (25755_CR35) 2022; 834
25755_CR28
A Athenodorou (25755_CR3) 2021; 12
V Kazakov (25755_CR8) 2023; 107
25755_CR87
25755_CR88
25755_CR81
25755_CR82
D Berenstein (25755_CR21) 2023; 107
J Bhattacharya (25755_CR24) 2021; 823
Y He (25755_CR84) 2018; 11
CO Nancarrow (25755_CR42) 2023; 08
D Goluskin (25755_CR53) 2020; 33
A Denbleyker (25755_CR58) 2008; 78
A Tavakoli (25755_CR43) 2024; 96
RM Koch (25755_CR13) 2022; 01
25755_CR10
25755_CR98
25755_CR97
25755_CR12
Y Aikawa (25755_CR16) 2022; 105
25755_CR11
25755_CR99
H Hessam (25755_CR33) 2022; 55
H Fawzi (25755_CR50) 2024; 15
25755_CR90
25755_CR92
25755_CR94
25755_CR93
25755_CR96
K Mathaba (25755_CR15) 2024; 02
A Athenodorou (25755_CR59) 2017; 02
25755_CR65
MF Paulos (25755_CR86) 2020; 05
R Dempsey (25755_CR63) 2023; 04
25755_CR67
X Han (25755_CR6) 2020; 125
25755_CR66
25755_CR69
25755_CR68
I Tobasco (25755_CR54) 2018; 382
25755_CR61
25755_CR62
L Córdova (25755_CR85) 2018; 12
S Tchoumakov (25755_CR44) 2022; 55
MJ Blacker (25755_CR25) 2022; 106
25755_CR76
25755_CR75
25755_CR77
R Rattazzi (25755_CR83) 2011; 44
25755_CR70
W Li (25755_CR48) 2024; 109
HW Lin (25755_CR91) 2025; 01
25755_CR71
D Berenstein (25755_CR23) 2024; 109
M Cho (25755_CR74) 2023; 11
H Fawzi (25755_CR29) 2024; 65
Y Nakayama (25755_CR41) 2022; 37
S Rychkov (25755_CR80) 2024; 96
25755_CR45
A Migdal (25755_CR72) 2023; 1011
25755_CR47
25755_CR40
A Migdal (25755_CR73) 2023; 7
K Ghosh (25755_CR95) 2024; 09
I Kull (25755_CR36) 2024; 14
R Dempsey (25755_CR64) 2024; 08
25755_CR56
25755_CR55
Z Li (25755_CR60) 2024; 08
25755_CR57
V Kazakov (25755_CR7) 2022; 06
D Poland (25755_CR79) 2019; 91
W Li (25755_CR37) 2022; 106
D Berenstein (25755_CR22) 2022; 106
M Zeng (25755_CR49) 2023; 09
PD Anderson (25755_CR9) 2017; 921
References_xml – ident: 25755_CR45
– volume: 111
  year: 2025
  ident: 25755_CR51
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.111.045013
– ident: 25755_CR69
  doi: 10.1016/0550-3213(80)90072-3
– volume: 44
  year: 2011
  ident: 25755_CR83
  publication-title: J. Phys. A
  doi: 10.1088/1751-8113/44/3/035402
– volume: 106
  year: 2022
  ident: 25755_CR37
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.125021
– volume: 108
  year: 2023
  ident: 25755_CR39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.108.125002
– ident: 25755_CR31
  doi: 10.1145/3519935.3519960
– ident: 25755_CR97
– ident: 25755_CR77
  doi: 10.1016/0550-3213(84)90052-X
– volume: 02
  start-page: 054
  year: 2024
  ident: 25755_CR15
  publication-title: JHEP
  doi: 10.1007/JHEP02(2024)054
– volume: 105
  year: 2022
  ident: 25755_CR16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.105.085017
– ident: 25755_CR57
  doi: 10.1016/0370-2693(91)91788-W
– ident: 25755_CR68
  doi: 10.1016/0550-3213(81)90239-X
– volume: 65
  year: 2024
  ident: 25755_CR29
  publication-title: J. Math. Phys.
  doi: 10.1063/5.0159108
– ident: 25755_CR94
– ident: 25755_CR19
– ident: 25755_CR40
  doi: 10.1093/ptep/ptad001
– volume: 06
  start-page: 038
  year: 2023
  ident: 25755_CR14
  publication-title: JHEP
  doi: 10.1007/JHEP06(2023)038
– ident: 25755_CR70
  doi: 10.1016/0370-2693(81)91203-X
– ident: 25755_CR4
  doi: 10.1051/epjconf/201817511011
– ident: 25755_CR92
  doi: 10.1088/1126-6708/2009/11/064
– volume: 1011
  start-page: 1
  year: 2023
  ident: 25755_CR72
  publication-title: Phys. Rept.
  doi: 10.1016/j.physrep.2023.02.001
– volume: 63
  start-page: 266
  year: 2024
  ident: 25755_CR46
  publication-title: Int. J. Theor. Phys.
  doi: 10.1007/s10773-024-05774-w
– ident: 25755_CR98
  doi: 10.1016/0370-2693(81)90745-0
– ident: 25755_CR11
  doi: 10.1016/0550-3213(83)90180-3
– volume: 107
  start-page: L051501
  year: 2023
  ident: 25755_CR8
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.107.L051501
– ident: 25755_CR61
  doi: 10.1016/0370-1573(83)90076-5
– ident: 25755_CR88
– volume: 823
  year: 2021
  ident: 25755_CR24
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2021.136785
– volume: 107
  start-page: L053301
  year: 2023
  ident: 25755_CR21
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.107.L053301
– ident: 25755_CR99
– volume: 12
  start-page: 082
  year: 2021
  ident: 25755_CR3
  publication-title: JHEP
  doi: 10.1007/JHEP12(2021)082
– volume: 28
  start-page: 621
  year: 2017
  ident: 25755_CR52
  publication-title: Journal of Nonlinear Science
  doi: 10.1007/s00332-017-9421-2
– volume: 08
  start-page: 154
  year: 2024
  ident: 25755_CR60
  publication-title: JHEP
  doi: 10.1007/JHEP08(2024)154
– ident: 25755_CR56
  doi: 10.1016/0370-2693(79)90131-X
– volume: 08
  start-page: 052
  year: 2023
  ident: 25755_CR42
  publication-title: JHEP
  doi: 10.1007/JHEP08(2023)052
– volume: 106
  year: 2022
  ident: 25755_CR25
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.116008
– ident: 25755_CR81
  doi: 10.1007/BF01608557
– ident: 25755_CR28
– ident: 25755_CR62
  doi: 10.1016/0550-3213(86)90221-X
– volume: 33
  start-page: 4878
  year: 2020
  ident: 25755_CR53
  publication-title: Nonlinearity
  doi: 10.1088/1361-6544/ab8f7b
– volume: 37
  start-page: 2250054
  year: 2022
  ident: 25755_CR41
  publication-title: Mod. Phys. Lett. A
  doi: 10.1142/S0217732322500547
– volume: 06
  start-page: 030
  year: 2022
  ident: 25755_CR7
  publication-title: JHEP
  doi: 10.1007/JHEP06(2022)030
– volume: 921
  start-page: 702
  year: 2017
  ident: 25755_CR9
  publication-title: Nucl. Phys. B
  doi: 10.1016/j.nuclphysb.2017.06.009
– ident: 25755_CR82
  doi: 10.1016/0003-4916(78)90039-8
– ident: 25755_CR90
  doi: 10.1007/978-1-4684-9458-7
– ident: 25755_CR96
– ident: 25755_CR34
– volume: 14
  year: 2024
  ident: 25755_CR36
  publication-title: Phys. Rev. X
– volume: 55
  year: 2022
  ident: 25755_CR44
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ac3c82
– volume: 96
  year: 2024
  ident: 25755_CR43
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.96.045006
– ident: 25755_CR65
– volume: 96
  year: 2024
  ident: 25755_CR80
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.96.045004
– volume: 55
  year: 2022
  ident: 25755_CR33
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ac5216
– volume: 06
  start-page: 090
  year: 2020
  ident: 25755_CR5
  publication-title: JHEP
  doi: 10.1007/JHEP06(2020)090
– ident: 25755_CR87
  doi: 10.1007/978-1-4614-0769-0_9
– volume: 11
  start-page: 047
  year: 2023
  ident: 25755_CR74
  publication-title: JHEP
  doi: 10.1007/JHEP11(2023)047
– volume: 109
  year: 2024
  ident: 25755_CR23
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.025013
– volume: 09
  start-page: 143
  year: 2024
  ident: 25755_CR95
  publication-title: JHEP
  doi: 10.1007/JHEP09(2024)143
– volume: 91
  year: 2019
  ident: 25755_CR79
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.015002
– ident: 25755_CR2
  doi: 10.1103/PhysRevLett.45.313
– volume: 02
  start-page: 015
  year: 2017
  ident: 25755_CR59
  publication-title: JHEP
  doi: 10.1007/JHEP02(2017)015
– volume: 74
  year: 2022
  ident: 25755_CR27
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ac679a
– volume: 382
  start-page: 382
  year: 2018
  ident: 25755_CR54
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2017.12.023
– ident: 25755_CR26
– volume: 01
  start-page: 190
  year: 2025
  ident: 25755_CR91
  publication-title: Part I, JHEP
  doi: 10.1007/JHEP01(2025)190
– volume: 55
  year: 2022
  ident: 25755_CR20
  publication-title: J. Phys. A
  doi: 10.1088/1751-8121/ac7118
– volume: 08
  start-page: 009
  year: 2024
  ident: 25755_CR64
  publication-title: JHEP
  doi: 10.1007/JHEP08(2024)009
– volume: 109
  year: 2024
  ident: 25755_CR48
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.109.045012
– volume: 78
  year: 2008
  ident: 25755_CR58
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.054503
– ident: 25755_CR1
  doi: 10.1103/PhysRevD.21.2308
– volume: 12
  start-page: 063
  year: 2018
  ident: 25755_CR85
  publication-title: JHEP
  doi: 10.1007/JHEP12(2018)063
– ident: 25755_CR66
  doi: 10.1103/PhysRevD.21.446
– volume: 125
  year: 2020
  ident: 25755_CR6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.041601
– ident: 25755_CR32
– ident: 25755_CR67
– volume: 43
  start-page: A3657
  year: 2021
  ident: 25755_CR89
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/20M1318183
– ident: 25755_CR75
  doi: 10.1007/BF01645738
– ident: 25755_CR47
– ident: 25755_CR18
– volume: 05
  start-page: 145
  year: 2020
  ident: 25755_CR86
  publication-title: JHEP
  doi: 10.1007/JHEP05(2020)145
– ident: 25755_CR10
– ident: 25755_CR12
  doi: 10.1016/0550-3213(84)90215-3
– volume: 833
  year: 2022
  ident: 25755_CR17
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137305
– volume: 131
  year: 2023
  ident: 25755_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.131.031603
– volume: 12
  start-page: 031
  year: 2008
  ident: 25755_CR78
  publication-title: JHEP
  doi: 10.1088/1126-6708/2008/12/031
– volume: 15
  start-page: 7394
  year: 2024
  ident: 25755_CR50
  publication-title: Nature Commun.
  doi: 10.1038/s41467-024-51592-3
– volume: 106
  year: 2022
  ident: 25755_CR22
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.106.045029
– volume: 7
  start-page: 754
  year: 2023
  ident: 25755_CR73
  publication-title: Fractal Fract.
  doi: 10.3390/fractalfract7100754
– ident: 25755_CR71
  doi: 10.1017/9781009402095
– ident: 25755_CR76
  doi: 10.1007/BF01608978
– volume: 11
  start-page: 093
  year: 2018
  ident: 25755_CR84
  publication-title: JHEP
  doi: 10.1007/JHEP11(2018)093
– volume: 834
  year: 2022
  ident: 25755_CR35
  publication-title: Phys. Lett. B
  doi: 10.1016/j.physletb.2022.137445
– volume: 04
  start-page: 107
  year: 2023
  ident: 25755_CR63
  publication-title: JHEP
  doi: 10.1007/JHEP04(2023)107
– ident: 25755_CR55
– volume: 01
  start-page: 168
  year: 2022
  ident: 25755_CR13
  publication-title: JHEP
  doi: 10.1007/JHEP01(2022)168
– volume: 09
  start-page: 042
  year: 2023
  ident: 25755_CR49
  publication-title: JHEP
  doi: 10.1007/JHEP09(2023)042
– ident: 25755_CR30
– ident: 25755_CR93
  doi: 10.1103/PhysRevLett.69.2863
SSID ssj0015190
Score 2.490572
Snippet A bstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we...
We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we examine the...
We introduce a comprehensive framework for analyzing finite $N$ lattice Yang-Mills theory and finite $N$ matrix models. Utilizing this framework, we examine...
Abstract We introduce a comprehensive framework for analyzing finite N lattice Yang-Mills theory and finite N matrix models. Utilizing this framework, we...
SourceID doaj
unpaywall
hal
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 99
SubjectTerms Algorithms
Algorithms and Theoretical Developments
Classical and Quantum Gravitation
Convexity
Couplings
Elementary Particles
Field Theories in Higher Dimensions
Free energy
High energy physics
High Energy Physics - Lattice
High Energy Physics - Theory
Linearity
Nonperturbative Effects
Physics
Physics and Astronomy
Qualitative analysis
Quantum Field Theories
Quantum Field Theory
Quantum Physics
Regular Article - Theoretical Physics
Relativity Theory
Statistical methods
String Theory
Variables
Wilson, ’t Hooft and Polyakov loops
Yang-Mills theory
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS-QwFH-IsOgeRF2XrV8U8eAciqlpkuboLCODqHhYQU8hSRM_GDqDUxX_e1_6MY7I4sVTIQ0heS_p7_eal18A9pkzguRWJhL5QJJljiS6SLPEUYSz3Gsta53t8ws-vMpOr9n13FVfISeskQduDHfIpSWMGKGloAjdGF4UOMsQBw13Qoj6mC_JZRdMtfsHyEtIJ-RDxOHpcHBJ6AEG-qxHapnXdwyqpfoRWe5CIuQcy5xtjP6Epadyol9f9Gg0hz0nq7DSksb4uOnsGiy4ch1-1MmbdvoLSH88rsIvi0mMFDT294FHxhfxSFchtS2-0eVtEg79TeP63OLrBlydDP79HSbtTQiJxYCrSgwnnlFjKI7Zp5Z5JF0mtc5zISQ3DjHfZMJy5rPCam5EwXGdGUmpPeK0cPQ3LJbj0v2B2DIkdZYKS7TPLPcyty7zBB95gZ9HG8FBZxs1aQQvVCdt3JhRBTMqNGME_WC7WbWgVF0XoP9U6z_1lf8i2EPLf2hjeHymQhmyzaDtkz-nEWx3jlHtGpsqZD5CYjh0xCLodc56f_3fTvdm3vw0wIc7N5mru_kdA9yC5dBeyFtL6TYsVo9PbgeJTGV26zn7BpPR5-U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central (NC Live)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-6lLH2oeyr1F1XzNhD8yAqR7ZkP4zSjJRQtlDGCt2TkGSpHwTbbdyW_vc9OXaSMdYngyxk6066-0k6_Q7ga2K1oKnJSIZ4gMSxpUTlUUwsQ3eWOqWyhmf754SPz-PTi-RiDSbdXRgfVtnZxMZQ56Xxe-SH6OdEhuB3kBxVt8RnjfKnq10KDdWmVsi_NRRjr2B94JmxerA-HE3Ofi3OFRCv0I7gh4rD0_HojLKDATr-Pm3oX5e-qaHwR49z5QMkV9Dn4sB0E97cF5V6elTT6YpPOnkLWy2YDI_n2n8Ha7Z4D6-boE4z-wB0WJa138qoQoSmobv2-DKchFNV-5C38I8qLom_DDgLm_uMTx_h_GT0-_uYtBkSiMGFWE00py5hWjNuhYtM4hCM6chYx1FYXFvEAjoWhicuzo3iWuQc55_OGDMDznLLtqFXlIXdgdAkCPYME4YqFxvustTY2FF8pDmaTRPAQScbWc2JMGRHeTwXo_RilCjGAIZedotqnsG6KSjvLmU7ISTPDE2oFioTDCEZLhtztB6IbzT2RYg0gC8o-b_aGB__kL4MUajn_EkfogD2OsXIdu7N5HKkBNDvlLV8_d-f7i-0-U8Hb65stVJ39-XPfoINX9NHqkVsD3r13b39jNCl1vvteHwGjr3oCg
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLINK
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH5iRWjjgIANLYOhCHGgh0hOHdvxsSCqCg20wyrBybIdmx-q0ooGEP_9ntOktKp22CmR41jxe7bf9-L3PgOcMmcEya1MJOKBJMscSXSRZomjaM5yr7Wsebavb_hwlF3dstsNSNtcmDravd2SrFfqNtntanj5m9AzdNZZF2HNJ9hE8NELpzVchASHZuMAy0jL4LP-0orxqTn60aQ8hAjIJXi52BHdhs8v5VS_v-nxeMnoDHZhp0GLcX-u3j3YcOU-bNVRm3b2Fcj5ZFKFfxXTGLFn7B8DgIxv4rGuQkxbfKfL-yRk-83iOmHx_RuMBpd_LoZJcwRCYtHTqhLDiWfUGMqd8KllHtGWSa3zXAjJjUNjbzJhOfNZYTU3ouA4wYyk1PY4LRw9gE45Kd13iC1DNGepsET7zHIvc-syT_CSF7gu2gjOWtmo6ZzpQrWcxnMxqiBGhWKM4DzIblEtUFTXBZPne9WMeMWlJYwYoaWgiLnQLyxweUAAY7AvQuQRnKDkV9oY9n-pUIYwM5D65K9pBEetYlQzuWYKIY-Q6Af1WATdVlkfj__50d2FNtc6-PTgpkt1f_xHu4fwJdyGuLSUHkGnen5xPxGoVOa4Hpp_AZKa3OY
  priority: 102
  providerName: Springer Nature
Title Bootstrap for finite N lattice Yang-Mills theory
URI https://link.springer.com/article/10.1007/JHEP03(2025)099
https://www.proquest.com/docview/3177997425
https://hal.science/hal-04570608
https://doi.org/10.1007/jhep03(2025)099
https://doaj.org/article/69c050b7a973441191d257741b6e7778
UnpaywallVersion publishedVersion
Volume 2025
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: AMVHM
  dateStart: 20160301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: 8FG
  dateStart: 20121201
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature Open Access Journals
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C6C
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: C24
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1029-8479
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015190
  issn: 1126-6708
  databaseCode: U2A
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwEB6xrRBw4I0ILFWEOGwPXpI4tuNjW7VEK6gqRKXdU2Q7DgtUaUVT0PLrGedR9iEkuDiJY1m2x_Z8Y48_A7xhVosgMZJIxAMkjm1AVB7GxFJUZ0mhlKx5tj_MebqMT07ZaUuS5M7CXNu_f_v13G4CeoQmOhsimDmAPmcIunvQX84Xo7N6LzOSBOdYWV-jEnHCRX0PHb4LgsqPd4Q-N3O7ootqyn7UMOfOIfIS2txvkN6DO7tyoy5-qtXqkg6aPYC0K33jevLteFfpY_PrGrHjP1TvIdxvcag_ajrOI7hly8dwu_YHNdsnEIzX68qtgmx8RLV-8cVBU3_ur1TlvOX8M1V-Ju4c4davj0JePIXlbPppkpL2cgVi0IariOZBwajWlFtRhIYViON0aGzBhZBcW4QROhaGsyLOjeJa5ByHrpaUmojT3NJn0CvXpX0OvmGIEw0VJlBFbHghE2PjIsBHkuOMazw46po52zQcGlnHlnySThcBzVwDZNgAHoydGPbJHPl1HYGNlrVjKePSBCzQQklBEc2hxZnjxIPQSGNdhEg8eI1CvJJHOnqfuTgEsI4uKPkRenDYyThrh-02QzAlJFpYEfNg2Mn9z--_Fnq47xg3KthIeJ_2xX-kfQl33avzeAvpIfSq7zv7CiFQpQdwkMzeDaA_ns4XH_FrEsUu5JNBvaiA4TLCsBkkvwEM6_yj
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTWjwgPgUgQERAml9iObEjp08TGiFTtnWVRPapPEUbMfeQFUS1o6p_xx_G-c0aYsQvO0pkuPY8Z3t-519HwDvYqMESXQapIgHAsYMCWQRssBQFGeJlTJt4mwfj3h2xg7P4_M1-NX5wjizym5PbDbqotLujHwH5ZxIEfxG8Yf6R-CyRrnb1S6FhmxTKxS7TYix1rHjyMxuUIWb7B58Qn6_j6L9wenHLGizDAQalZlpoDixMVWKciNsqGOLgEaF2liOHXJlUJ4qJjSPLSu05EoUHOewSinVEaeFodjuHdhglKWo_G30B6OTz4t7DMRHpAsoRMTOYTY4IXQ7QqDRI0242aUsbFIGoIS7dAaZK2h3cUF7Hzavy1rObuR4vCID9x_Cgxa8-nvz2fYI1kz5GO42RqR68gRIv6qm7uik9hEK-_abw7P-yB_LqTOx87_I8iJwzocTv_GfnD2Fs1uh1TNYL6vSPAdfxwguNRWaSMs0t2miDbMEH0mB27T2YLujTV7PA2_kXYjlORlzR8YcyehB39FuUc1FzG4KqquLvF2AOU81iYkSMhUUISCqqQXuVoinFI5FiMSDt0j5P9rI9oa5K0PU62IMJT9DD7Y6xuTtWp_ky5npQa9j1vL1P3-6t-DmXwP8fmnqlbov_t_tG9jMTo-H-fBgdPQS7rmvnJVcSLdgfXp1bV4hbJqq1-3c9OHrbS-H392TJbc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIh49IJ4iUCBCIHUP0TpxYieHCrW0y_bBqgcqtSdjO3YLWiWhm1LtX-uv6zib7C5CcOspkuPY8Tw8n-2ZMcCHxChOUp0FGeKBII4NCWQexoGhaM5SK2XW5Nn-OmLD43j_JDlZgesuFsa5VXZzYjNR56V2e-R9tHM8Q_AbJX3bukUc7Qw-Vb8Cd4OUO2ntrtOYiciBmV7h8m2yubeDvP4YRYPdb5-HQXvDQKBxIVMHihGbUKUoM9yGOrEIZlSojWXYGVMGbamKuWaJjXMtmeI5Q_lVGaU6YjQ3FNu9A3e5y-LuotQHX-YnGIiMSJdKiPD-_nD3iNCNCCFGjzSJZhdWsLksAG3buXPFXMK586PZNXhwWVRyeiXH4yXrN3gMj1rY6m_N5OwJrJjiKdxr3Ef15BmQ7bKs3aZJ5SMI9u0Ph2T9kT-WtXOu809lcRa4sMOJ30ROTp_D8a1Q6gWsFmVhXoKvE4SVmnJNpI01s1mqTWwJPtIcJ2jtwUZHG1HNUm6ILrnyjIzCkVEgGT3YdrSbV3O5spuC8uJMtKonWKZJQhSXGacI_nCBmuM8hUhK4Vg4Tz14j5T_o43h1qFwZYh3XXah9HfowXrHGNFq-UQsZNKDXsesxet__nRvzs2_Bvjz3FRLdV_9v9t3cB-VQBzujQ5ew0P3kXOPC-k6rNYXl-YN4qVavW0E04fvt60JN8XYI1E
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH-CTgg48D0RGChCHNaDh1PHdnzs0KZogmoHKm0ny3bsDValFU1B46_nOU3KPoQEp1iOZdnv2X6_Zz__DPCeeytp4RRRiAdInntKTJXlxDM0Z0UwRrU8258nopzmRyf8pCNJindhbpzff_h27heU7aKLzocIZu7CluAIugewNZ0cj0_bs8yRIrjGqvYZlZEgQrbv0GFaEjR-oif0uV3bNVvUUvajhTmPAZFX0ObmgPQh3F_VC3P508xmV2zQ4WMo-9avQ08u9laN3XO_bhA7_kP3nsCjDoem4_XAeQp3fP0M7rXxoG75HOj-fN7EXZBFiqg2DV8jNE0n6cw0MVouPTX1GYn3CJdpexXy8gVMDw--fCxJ97gCcejDNcQKGjizlgkvQ-Z4QBxnM-eDkFIJ6xFG2Fw6wUNeOSOsrAROXasYcyPBKs-2YVDPa_8SUscRJzomHTUhdyKowvk8UPwUFa64LoHdXsx6sebQ0D1b8lF5cEyZjgLQKIAE9qMaNsUi-XWbgULT3VzSQjnKqZVGSYZoDj3OChcehEYW-yJlkcA7VOK1OsrxJx3zEMBGuqDiR5bATq9j3U3bpUYwJRV6WCOewLDX-5_ff230cDMwbnVwreFN2Vf_UfY1PIjJGPGWsR0YNN9X_g1CoMa-7Yb_bw0b9p4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bootstrap+for+finite+N+lattice+Yang-Mills+theory&rft.jtitle=The+journal+of+high+energy+physics&rft.au=Vladimir+Kazakov&rft.au=Zechuan+Zheng&rft.date=2025-03-13&rft.pub=SpringerOpen&rft.eissn=1029-8479&rft.volume=2025&rft.issue=3&rft.spage=1&rft.epage=40&rft_id=info:doi/10.1007%2FJHEP03%282025%29099&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_69c050b7a973441191d257741b6e7778
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1029-8479&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1029-8479&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1029-8479&client=summon