A novel IRBF-RVM model for diagnosis of atrial fibrillation

•A novel IRBF-RVM model is proposed for the diagnosis of atrial fibrillation (AF).•The kernel parameter of IRBF-RVM has a much larger selectable region than RBF-RVM.•IRBF-RVM performs better than SVM in terms of rapid modeling and sparseness.•IRBF-RVM outperforms k-NN, Naive Bayes, FFNN, AdaBoost an...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 177; pp. 183 - 192
Main Authors Kong, Dongdong, Zhu, Junjiang, Wu, Shangshi, Duan, Chaoqun, Lu, Lixin, Chen, Dongxing
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 01.08.2019
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2019.05.028

Cover

Abstract •A novel IRBF-RVM model is proposed for the diagnosis of atrial fibrillation (AF).•The kernel parameter of IRBF-RVM has a much larger selectable region than RBF-RVM.•IRBF-RVM performs better than SVM in terms of rapid modeling and sparseness.•IRBF-RVM outperforms k-NN, Naive Bayes, FFNN, AdaBoost and RF, in terms of prediction accuracy.•The generalization performance of IRBF-RVM is not inferior to other powerful machine learning methods. Atrial fibrillation (AF) is one of the common cardiovascular diseases, and electrocardiography (ECG) is a key indicator for the detection and diagnosis of AF and other heart diseases. In this study, an improved machine learning method is proposed for rapid modeling and accurate diagnosis of AF. This paper presents a novel IRBF-RVM model that combines the integrated radial basis function (IRBF) and relevance vector machine (RVM), which is utilized for the diagnosis of AF. The synchronous 12-lead ECG signals are collected from the human body surface so as to fully reflect the electrical activity of the whole heart. RR intervals of the QRS-waves in ECG signals are obtained by means of the classical Pan–Tompkins algorithm. The RR-features extracted from RR intervals are adopted as the diagnostic features for AF patients. In addition, the conventional RBF-RVM model, support vector machine (SVM) and other machine learning methods are also investigated for the diagnosis of AF so as to reflect the advantage of the proposed IRBF-RVM model. The open MIT-BIH arrhythmia database (MITDB) is also used to evaluate the predictive performance of these state-of-the-art methods. Altogether 1056 AF patients and 904 healthy people are participated in this study and validate the effectiveness of each channel of the 12-lead ECG signals. Experimental results show that the classification rate of IRBF-RVM can reach up to 98.16% by recurring to Channel II of the 12-lead ECG signals. IRBF-RVM absorbs the advantages of IRBF, which makes the kernel parameter of IRBF-RVM have a much larger selectable region than RBF-RVM. In addition, RVM has faster modeling and recognition speed in comparison with SVM. This work lays the foundation for the application of RVM to accurate diagnosis of AF.
AbstractList •A novel IRBF-RVM model is proposed for the diagnosis of atrial fibrillation (AF).•The kernel parameter of IRBF-RVM has a much larger selectable region than RBF-RVM.•IRBF-RVM performs better than SVM in terms of rapid modeling and sparseness.•IRBF-RVM outperforms k-NN, Naive Bayes, FFNN, AdaBoost and RF, in terms of prediction accuracy.•The generalization performance of IRBF-RVM is not inferior to other powerful machine learning methods. Atrial fibrillation (AF) is one of the common cardiovascular diseases, and electrocardiography (ECG) is a key indicator for the detection and diagnosis of AF and other heart diseases. In this study, an improved machine learning method is proposed for rapid modeling and accurate diagnosis of AF. This paper presents a novel IRBF-RVM model that combines the integrated radial basis function (IRBF) and relevance vector machine (RVM), which is utilized for the diagnosis of AF. The synchronous 12-lead ECG signals are collected from the human body surface so as to fully reflect the electrical activity of the whole heart. RR intervals of the QRS-waves in ECG signals are obtained by means of the classical Pan–Tompkins algorithm. The RR-features extracted from RR intervals are adopted as the diagnostic features for AF patients. In addition, the conventional RBF-RVM model, support vector machine (SVM) and other machine learning methods are also investigated for the diagnosis of AF so as to reflect the advantage of the proposed IRBF-RVM model. The open MIT-BIH arrhythmia database (MITDB) is also used to evaluate the predictive performance of these state-of-the-art methods. Altogether 1056 AF patients and 904 healthy people are participated in this study and validate the effectiveness of each channel of the 12-lead ECG signals. Experimental results show that the classification rate of IRBF-RVM can reach up to 98.16% by recurring to Channel II of the 12-lead ECG signals. IRBF-RVM absorbs the advantages of IRBF, which makes the kernel parameter of IRBF-RVM have a much larger selectable region than RBF-RVM. In addition, RVM has faster modeling and recognition speed in comparison with SVM. This work lays the foundation for the application of RVM to accurate diagnosis of AF.
Atrial fibrillation (AF) is one of the common cardiovascular diseases, and electrocardiography (ECG) is a key indicator for the detection and diagnosis of AF and other heart diseases. In this study, an improved machine learning method is proposed for rapid modeling and accurate diagnosis of AF.BACKGROUND AND OBJECTIVEAtrial fibrillation (AF) is one of the common cardiovascular diseases, and electrocardiography (ECG) is a key indicator for the detection and diagnosis of AF and other heart diseases. In this study, an improved machine learning method is proposed for rapid modeling and accurate diagnosis of AF.This paper presents a novel IRBF-RVM model that combines the integrated radial basis function (IRBF) and relevance vector machine (RVM), which is utilized for the diagnosis of AF. The synchronous 12-lead ECG signals are collected from the human body surface so as to fully reflect the electrical activity of the whole heart. RR intervals of the QRS-waves in ECG signals are obtained by means of the classical Pan-Tompkins algorithm. The RR-features extracted from RR intervals are adopted as the diagnostic features for AF patients. In addition, the conventional RBF-RVM model, support vector machine (SVM) and other machine learning methods are also investigated for the diagnosis of AF so as to reflect the advantage of the proposed IRBF-RVM model. The open MIT-BIH arrhythmia database (MITDB) is also used to evaluate the predictive performance of these state-of-the-art methods.METHODSThis paper presents a novel IRBF-RVM model that combines the integrated radial basis function (IRBF) and relevance vector machine (RVM), which is utilized for the diagnosis of AF. The synchronous 12-lead ECG signals are collected from the human body surface so as to fully reflect the electrical activity of the whole heart. RR intervals of the QRS-waves in ECG signals are obtained by means of the classical Pan-Tompkins algorithm. The RR-features extracted from RR intervals are adopted as the diagnostic features for AF patients. In addition, the conventional RBF-RVM model, support vector machine (SVM) and other machine learning methods are also investigated for the diagnosis of AF so as to reflect the advantage of the proposed IRBF-RVM model. The open MIT-BIH arrhythmia database (MITDB) is also used to evaluate the predictive performance of these state-of-the-art methods.Altogether 1056 AF patients and 904 healthy people are participated in this study and validate the effectiveness of each channel of the 12-lead ECG signals. Experimental results show that the classification rate of IRBF-RVM can reach up to 98.16% by recurring to Channel II of the 12-lead ECG signals.RESULTSAltogether 1056 AF patients and 904 healthy people are participated in this study and validate the effectiveness of each channel of the 12-lead ECG signals. Experimental results show that the classification rate of IRBF-RVM can reach up to 98.16% by recurring to Channel II of the 12-lead ECG signals.IRBF-RVM absorbs the advantages of IRBF, which makes the kernel parameter of IRBF-RVM have a much larger selectable region than RBF-RVM. In addition, RVM has faster modeling and recognition speed in comparison with SVM. This work lays the foundation for the application of RVM to accurate diagnosis of AF.CONCLUSIONSIRBF-RVM absorbs the advantages of IRBF, which makes the kernel parameter of IRBF-RVM have a much larger selectable region than RBF-RVM. In addition, RVM has faster modeling and recognition speed in comparison with SVM. This work lays the foundation for the application of RVM to accurate diagnosis of AF.
Atrial fibrillation (AF) is one of the common cardiovascular diseases, and electrocardiography (ECG) is a key indicator for the detection and diagnosis of AF and other heart diseases. In this study, an improved machine learning method is proposed for rapid modeling and accurate diagnosis of AF. This paper presents a novel IRBF-RVM model that combines the integrated radial basis function (IRBF) and relevance vector machine (RVM), which is utilized for the diagnosis of AF. The synchronous 12-lead ECG signals are collected from the human body surface so as to fully reflect the electrical activity of the whole heart. RR intervals of the QRS-waves in ECG signals are obtained by means of the classical Pan-Tompkins algorithm. The RR-features extracted from RR intervals are adopted as the diagnostic features for AF patients. In addition, the conventional RBF-RVM model, support vector machine (SVM) and other machine learning methods are also investigated for the diagnosis of AF so as to reflect the advantage of the proposed IRBF-RVM model. The open MIT-BIH arrhythmia database (MITDB) is also used to evaluate the predictive performance of these state-of-the-art methods. Altogether 1056 AF patients and 904 healthy people are participated in this study and validate the effectiveness of each channel of the 12-lead ECG signals. Experimental results show that the classification rate of IRBF-RVM can reach up to 98.16% by recurring to Channel II of the 12-lead ECG signals. IRBF-RVM absorbs the advantages of IRBF, which makes the kernel parameter of IRBF-RVM have a much larger selectable region than RBF-RVM. In addition, RVM has faster modeling and recognition speed in comparison with SVM. This work lays the foundation for the application of RVM to accurate diagnosis of AF.
Author Wu, Shangshi
Zhu, Junjiang
Kong, Dongdong
Lu, Lixin
Chen, Dongxing
Duan, Chaoqun
Author_xml – sequence: 1
  givenname: Dongdong
  surname: Kong
  fullname: Kong, Dongdong
  email: kodon007@163.com
  organization: School of Mechatronic Engineering and Automation, Shanghai University, 99 Shanghai Road, Shanghai, China
– sequence: 2
  givenname: Junjiang
  surname: Zhu
  fullname: Zhu, Junjiang
  email: zjj602@yeah.net
  organization: College of Mechanical and Electrical Engineering, China Jiliang University, Hangzhou, China
– sequence: 3
  givenname: Shangshi
  surname: Wu
  fullname: Wu, Shangshi
  email: shangshishanghai@163.com
  organization: Department of Cardiovascular Medicine, Shanghai Tenth People's Hospital, Shanghai, China
– sequence: 4
  givenname: Chaoqun
  surname: Duan
  fullname: Duan, Chaoqun
  email: duancq@mie.utoronto.ca
  organization: School of Mechatronic Engineering and Automation, Shanghai University, 99 Shanghai Road, Shanghai, China
– sequence: 5
  givenname: Lixin
  surname: Lu
  fullname: Lu, Lixin
  email: lulixin@shu.edu.cn
  organization: School of Mechatronic Engineering and Automation, Shanghai University, 99 Shanghai Road, Shanghai, China
– sequence: 6
  givenname: Dongxing
  surname: Chen
  fullname: Chen, Dongxing
  email: cdx617@sina.com
  organization: School of Mechatronic Engineering and Automation, Shanghai University, 99 Shanghai Road, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31319947$$D View this record in MEDLINE/PubMed
BookMark eNqFkMFO3DAQhq2Kqiy0L9ADypFLUtuJ7aRwWVZsi0RVCRWuljOeIG-TeLGzK_H2eLvLhQM9jTz6vpH__4QcjX5EQr4yWjDK5LdVAcO6LThlTUFFQXn9gcxYrXiuhBRHZJagJueSqmNyEuOKUsqFkJ_IcclK1jSVmpGLeTb6LfbZzd3VMr97-JUN3qZn50NmnXkcfXQx811mpuBM2rs2uL43k_PjZ_KxM33EL4d5Su6X138WP_Pb3z9uFvPbHCqqprxl1MoShACQXEgqwSAwrDurmKpboaxtuso0pa1Kq0C0rSwtco5toxiTUJ6S8_3ddfBPG4yTHlwETL8Y0W-i5lwyXqVATULPDuimHdDqdXCDCc_6NXAC6j0AwccYsNPgpn9ppmBcrxnVu271Su-61btuNRU6dZtU_kZ9vf6udLmXMBW0dRh0BIcjoHUBYdLWu_f172906N3owPR_8fl_8gtgsKR9
CitedBy_id crossref_primary_10_3390_asi6050095
crossref_primary_10_1016_j_oceaneng_2022_113143
crossref_primary_10_1016_j_knosys_2019_105446
crossref_primary_10_4103_jmss_jmss_4_22
crossref_primary_10_1016_j_compbiomed_2022_105407
crossref_primary_10_1515_bmt_2022_0430
crossref_primary_10_1016_j_irbm_2019_10_001
crossref_primary_10_1016_j_neucom_2022_09_079
crossref_primary_10_1002_widm_1530
crossref_primary_10_1093_cvr_cvab169
crossref_primary_10_1016_j_ins_2021_05_035
crossref_primary_10_1016_j_heliyon_2023_e13601
crossref_primary_10_2139_ssrn_4098697
crossref_primary_10_1007_s11277_024_11113_3
crossref_primary_10_1016_j_measurement_2021_109806
crossref_primary_10_3390_e25111549
crossref_primary_10_1007_s12170_024_00747_4
crossref_primary_10_1016_j_bspc_2024_107295
crossref_primary_10_1016_j_compbiomed_2024_108235
crossref_primary_10_1016_j_ymssp_2020_106770
crossref_primary_10_1016_j_procs_2022_09_436
crossref_primary_10_1016_j_bspc_2023_105750
crossref_primary_10_31590_ejosat_951988
crossref_primary_10_1016_j_cmpb_2021_106284
crossref_primary_10_1007_s10495_024_01960_7
crossref_primary_10_1016_j_bspc_2021_102778
crossref_primary_10_3390_pr10112348
Cites_doi 10.1016/j.jelectrocard.2018.08.011
10.1007/s10439-009-9740-z
10.1109/TBME.2012.2208112
10.1016/j.bspc.2015.01.007
10.14336/AD.2016.0211
10.1016/j.materresbull.2017.03.045
10.1109/TBME.1985.325532
10.1161/01.CIR.88.4.1634
10.1016/j.compbiomed.2018.07.001
10.1016/j.compbiomed.2015.03.005
10.1007/s10439-016-1641-3
10.1016/j.rser.2013.07.026
10.1016/j.eswa.2018.08.011
10.1007/BF02459568
10.1109/JBHI.2016.2625338
10.2147/CLEP.S47385
10.1136/heartjnl-2016-309910
10.1016/j.patcog.2007.02.014
10.1145/1961189.1961199
10.1016/j.knosys.2013.09.016
10.1016/j.cmpb.2013.12.002
10.1109/51.932724
10.1109/TSMC.2017.2705582
10.1016/j.ijcard.2016.07.196
10.1098/rsif.2016.0968
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright © 2019 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright © 2019 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2019.05.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 192
ExternalDocumentID 31319947
10_1016_j_cmpb_2019_05_028
S0169260719301415
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
RIG
AAYXX
CITATION
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-b10d63c55cc625606caec1e8fd7178b57dd9f4a93d43d7c5bb63de22eb97116c3
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Thu Oct 02 11:12:15 EDT 2025
Wed Feb 19 02:31:08 EST 2025
Thu Apr 24 23:09:24 EDT 2025
Wed Oct 01 03:21:15 EDT 2025
Fri Feb 23 02:26:01 EST 2024
Tue Oct 14 19:32:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Pan–Tompkins algorithm
Atrial fibrillation
Integrated radial basis function
Relevance vector machine
Language English
License Copyright © 2019 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-b10d63c55cc625606caec1e8fd7178b57dd9f4a93d43d7c5bb63de22eb97116c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31319947
PQID 2261241999
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2261241999
pubmed_primary_31319947
crossref_citationtrail_10_1016_j_cmpb_2019_05_028
crossref_primary_10_1016_j_cmpb_2019_05_028
elsevier_sciencedirect_doi_10_1016_j_cmpb_2019_05_028
elsevier_clinicalkey_doi_10_1016_j_cmpb_2019_05_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2019
2019-08-00
2019-Aug
20190801
PublicationDateYYYYMMDD 2019-08-01
PublicationDate_xml – month: 08
  year: 2019
  text: August 2019
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Noble, Noble (bib0007) 1984; 222
Moody, Mark (bib0033) 2001; 20
Allan, Banerjee, Shah, Patel, Denaxas, Casas, Hemingway (bib0003) 2017; 103
Vaes, Stalpaert, Tavernier, Thaels, Lapeire, Mullens, Degryse (bib0005) 2014; 15
Pourbabaee, Roshtkhari, Khorasani (bib0022) 2016
Zhou, Ding, Ung, Pickwell-MacPherson, Zhang (bib0019) 2014; 13
Abdul-Kadir, Safri, Othman (bib0012) 2016; 222
Tanaka, Imai, Kudo, Miyakoshi (bib0028) 2007; 40
Chang, Lin (bib0031) 2011; 2
Bernard, Heutte, Adam (bib0032) 2008
Roonizi, Sassi (bib0001) 2017; 21
Dash, Chon, Lu, Raeder (bib0020) 2009; 37
Pourbabaee, Roshtkhari, Khorasani (bib0023) 2018; 48
Yan, Liu, Han, Qiu (bib0029) 2013; 27
Hodgkin, Huxley (bib0006) 1990; 52
Lee, Xu, Liu, Farrehi, Borjigin (bib0013) 2018; 51
Peimankar, Puthusserypady (bib0016) 2018
Zoni-Berisso, Lercari, Carazza, Domenicucci (bib0002) 2014; 6
Kumar, Kumaraswamy (bib0018) 2012; 37
Tipping, Faul (bib0034) January 2003
Daqrouq, Alkhateeb, Ajour, Morfeq (bib0011) 2014; 113
Lee, Reyes, McManus, Maitas, Chon (bib0014) 2013; 60
Asgari, Mehrnia, Moussavi (bib0015) 2015; 60
Zhang, Zhai, Xiong, Kou, Ji, Lu (bib0030) 2017; 93
Alcaraz, Hornero, Rieta (bib0004) 2016; 44
Pan, Tompkins (bib0026) 1985; 32
Liu, Zeng, Delmar, Jalife (bib0008) 1993; 88
Czick, Shapter, Silverman (bib0010) 2016; 7
Ladavich, Ghoraani (bib0021) 2015; 18
Tipping (bib0027) 2001; 1
Lin, Chang, Eatock, Galla, Clayton (bib0009) 2017; 14
Martis, Acharya, Prasad, Chua, Lim (bib0017) 2013; 54
Faust, Shenfield, Kareem, San, Fujita, Acharyad (bib0024) 2018; 102
Andersen, Peimankar, Puthusserypady (bib0025) 2019; 115
Tipping (10.1016/j.cmpb.2019.05.028_bib0027) 2001; 1
Pourbabaee (10.1016/j.cmpb.2019.05.028_bib0023) 2018; 48
Tanaka (10.1016/j.cmpb.2019.05.028_bib0028) 2007; 40
Lin (10.1016/j.cmpb.2019.05.028_bib0009) 2017; 14
Czick (10.1016/j.cmpb.2019.05.028_bib0010) 2016; 7
Martis (10.1016/j.cmpb.2019.05.028_bib0017) 2013; 54
Tipping (10.1016/j.cmpb.2019.05.028_bib0034) 2003
Vaes (10.1016/j.cmpb.2019.05.028_bib0005) 2014; 15
Andersen (10.1016/j.cmpb.2019.05.028_bib0025) 2019; 115
Hodgkin (10.1016/j.cmpb.2019.05.028_bib0006) 1990; 52
Noble (10.1016/j.cmpb.2019.05.028_bib0007) 1984; 222
Pourbabaee (10.1016/j.cmpb.2019.05.028_bib0022) 2016
Pan (10.1016/j.cmpb.2019.05.028_bib0026) 1985; 32
Chang (10.1016/j.cmpb.2019.05.028_bib0031) 2011; 2
Moody (10.1016/j.cmpb.2019.05.028_bib0033) 2001; 20
Faust (10.1016/j.cmpb.2019.05.028_bib0024) 2018; 102
Peimankar (10.1016/j.cmpb.2019.05.028_bib0016) 2018
Allan (10.1016/j.cmpb.2019.05.028_bib0003) 2017; 103
Lee (10.1016/j.cmpb.2019.05.028_bib0013) 2018; 51
Liu (10.1016/j.cmpb.2019.05.028_bib0008) 1993; 88
Ladavich (10.1016/j.cmpb.2019.05.028_bib0021) 2015; 18
Zhang (10.1016/j.cmpb.2019.05.028_bib0030) 2017; 93
Abdul-Kadir (10.1016/j.cmpb.2019.05.028_bib0012) 2016; 222
Daqrouq (10.1016/j.cmpb.2019.05.028_bib0011) 2014; 113
Kumar (10.1016/j.cmpb.2019.05.028_bib0018) 2012; 37
Zoni-Berisso (10.1016/j.cmpb.2019.05.028_bib0002) 2014; 6
Dash (10.1016/j.cmpb.2019.05.028_bib0020) 2009; 37
Yan (10.1016/j.cmpb.2019.05.028_bib0029) 2013; 27
Asgari (10.1016/j.cmpb.2019.05.028_bib0015) 2015; 60
Lee (10.1016/j.cmpb.2019.05.028_bib0014) 2013; 60
Roonizi (10.1016/j.cmpb.2019.05.028_bib0001) 2017; 21
Zhou (10.1016/j.cmpb.2019.05.028_bib0019) 2014; 13
Alcaraz (10.1016/j.cmpb.2019.05.028_bib0004) 2016; 44
Bernard (10.1016/j.cmpb.2019.05.028_bib0032) 2008
References_xml – start-page: 5057
  year: 2016
  end-page: 5064
  ident: bib0022
  article-title: Feature leaning with deep convolutional neural networks for screening patients with paroxysmal atrial fibrillation
  publication-title: International Joint Conference on Neural Networks (IJCNN)
– volume: 44
  start-page: 3307
  year: 2016
  end-page: 3318
  ident: bib0004
  article-title: Electrocardiographic spectral features for long-term outcome prognosis of atrial fibrillation catheter ablation
  publication-title: Ann. Biomed. Eng.
– volume: 15
  year: 2014
  ident: bib0005
  article-title: The diagnostic accuracy of the MyDiagnostick to detect atrial fibrillation in primary care
  publication-title: BMC Family Pract.
– volume: 52
  start-page: 25
  year: 1990
  end-page: 71
  ident: bib0006
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: Bull. Math. Biol.
– start-page: 66
  year: 2018
  end-page: 70
  ident: bib0016
  article-title: Ensemble learning for detection of short episodes of atrial fibrillation
  publication-title: 26th European Signal Processing Conference (EUSIPCO)
– volume: 1
  start-page: 211
  year: 2001
  end-page: 244
  ident: bib0027
  article-title: Sparse bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 121
  year: 2018
  end-page: 125
  ident: bib0013
  article-title: Accurate detection of atrial fibrillation and atrial flutter using the electrocardiomatrix technique
  publication-title: J. Electrocardiol.
– volume: 222
  start-page: 295
  year: 1984
  end-page: 304
  ident: bib0007
  article-title: A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations
  publication-title: Proceedings of the Royal Society of London
– volume: 14
  year: 2017
  ident: bib0009
  article-title: Mechanisms of stochastic onset and termination of atrial fibrillation studied with a cellular automaton model
  publication-title: J. R. Soc. Interface
– volume: 54
  start-page: 269
  year: 2013
  end-page: 275
  ident: bib0017
  article-title: Automated detection of atrial fibrillation using Bayesian paradigm
  publication-title: Knowl.-Based Syst.
– volume: 40
  start-page: 2930
  year: 2007
  end-page: 2938
  ident: bib0028
  article-title: Integrated kernels and their properties
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 274
  year: 2015
  end-page: 281
  ident: bib0021
  article-title: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity
  publication-title: Biomed. Signal Process. Control
– volume: 21
  start-page: 1573
  year: 2017
  end-page: 1580
  ident: bib0001
  article-title: An extended bayesian framework for atrial and ventricular activity separation in atrial fibrillation
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 48
  start-page: 2095
  year: 2018
  end-page: 2104
  ident: bib0023
  article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Trans. Syst. Man Cybern.
– start-page: 430
  year: 2008
  end-page: 437
  ident: bib0032
  article-title: Forest-RK: a new random forest induction method
  publication-title: 4th International Conference on Intelligent Computing (ICIC)
– volume: 222
  start-page: 504
  year: 2016
  end-page: 508
  ident: bib0012
  article-title: Atrial fibrillation classification and association between the natural frequency and the autonomic nervous system
  publication-title: Int. J. Cardiol.
– volume: 88
  start-page: 1634
  year: 1993
  end-page: 1646
  ident: bib0008
  article-title: Ionic mechanisms of electrotonic inhibition and concealed conduction in rabbit atrioventricular nodal myocytes
  publication-title: Circulation
– volume: 103
  start-page: 210
  year: 2017
  end-page: 218
  ident: bib0003
  article-title: Net clinical benefit of warfarin in individuals with atrial fibrillation across stroke risk and across primary and secondary care
  publication-title: Heart
– volume: 60
  start-page: 203
  year: 2013
  end-page: 206
  ident: bib0014
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 27
  start-page: 613
  year: 2013
  end-page: 621
  ident: bib0029
  article-title: Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine
  publication-title: Renewable Sustainable Energy Rev.
– volume: 93
  start-page: 123
  year: 2017
  end-page: 129
  ident: bib0030
  article-title: Prediction and synthesis of novel layered double hydroxide with desired basal spacing based on relevance vector machine
  publication-title: Mater. Res. Bull.
– volume: 7
  start-page: 635
  year: 2016
  end-page: 656
  ident: bib0010
  article-title: Atrial fibrillation: the science behind its defiance
  publication-title: Aging Dis.
– volume: 13
  year: 2014
  ident: bib0019
  article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
  publication-title: BioMed. Eng. OnLine
– volume: 113
  start-page: 919
  year: 2014
  end-page: 926
  ident: bib0011
  article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification
  publication-title: Comput. Methods Prog. Biomed.
– volume: 2
  year: 2011
  ident: bib0031
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
– start-page: 3
  year: January 2003
  end-page: 6
  ident: bib0034
  article-title: Fast Marginal likelihood maximisation for sparse bayesian models
  publication-title: Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics, Key West
– volume: 102
  start-page: 327
  year: 2018
  end-page: 335
  ident: bib0024
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
– volume: 115
  start-page: 465
  year: 2019
  end-page: 473
  ident: bib0025
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
– volume: 37
  start-page: 1701
  year: 2009
  end-page: 1709
  ident: bib0020
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Ann. Biomed. Eng.
– volume: 60
  start-page: 132
  year: 2015
  end-page: 142
  ident: bib0015
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Comput. Biol. Med.
– volume: 37
  start-page: 31
  year: 2012
  end-page: 34
  ident: bib0018
  article-title: Investigating cardiac arrhythmia in ECG using random forest classification
  publication-title: Int. J. Comput. Appl.
– volume: 20
  start-page: 45
  year: 2001
  end-page: 50
  ident: bib0033
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
– volume: 6
  start-page: 213
  year: 2014
  end-page: 220
  ident: bib0002
  article-title: Epidemiology of atrial fbrillation: european perspective
  publication-title: Clin. Epidemiol.
– volume: 32
  start-page: 230
  year: 1985
  end-page: 236
  ident: bib0026
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 222
  start-page: 295
  year: 1984
  ident: 10.1016/j.cmpb.2019.05.028_bib0007
  article-title: A model of sino-atrial node electrical activity based on a modification of the DiFrancesco-Noble (1984) equations
– volume: 51
  start-page: 121
  issue: 6
  year: 2018
  ident: 10.1016/j.cmpb.2019.05.028_bib0013
  article-title: Accurate detection of atrial fibrillation and atrial flutter using the electrocardiomatrix technique
  publication-title: J. Electrocardiol.
  doi: 10.1016/j.jelectrocard.2018.08.011
– volume: 37
  start-page: 1701
  issue: 9
  year: 2009
  ident: 10.1016/j.cmpb.2019.05.028_bib0020
  article-title: Automatic real time detection of atrial fibrillation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-009-9740-z
– volume: 60
  start-page: 203
  issue: 1
  year: 2013
  ident: 10.1016/j.cmpb.2019.05.028_bib0014
  article-title: Atrial fibrillation detection using an iPhone 4S
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2012.2208112
– volume: 18
  start-page: 274
  year: 2015
  ident: 10.1016/j.cmpb.2019.05.028_bib0021
  article-title: Rate-independent detection of atrial fibrillation by statistical modeling of atrial activity
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.01.007
– start-page: 3
  year: 2003
  ident: 10.1016/j.cmpb.2019.05.028_bib0034
  article-title: Fast Marginal likelihood maximisation for sparse bayesian models
– volume: 7
  start-page: 635
  issue: 5
  year: 2016
  ident: 10.1016/j.cmpb.2019.05.028_bib0010
  article-title: Atrial fibrillation: the science behind its defiance
  publication-title: Aging Dis.
  doi: 10.14336/AD.2016.0211
– start-page: 66
  year: 2018
  ident: 10.1016/j.cmpb.2019.05.028_bib0016
  article-title: Ensemble learning for detection of short episodes of atrial fibrillation
– volume: 13
  issue: 18
  year: 2014
  ident: 10.1016/j.cmpb.2019.05.028_bib0019
  article-title: Automatic online detection of atrial fibrillation based on symbolic dynamics and Shannon entropy
  publication-title: BioMed. Eng. OnLine
– volume: 93
  start-page: 123
  year: 2017
  ident: 10.1016/j.cmpb.2019.05.028_bib0030
  article-title: Prediction and synthesis of novel layered double hydroxide with desired basal spacing based on relevance vector machine
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2017.03.045
– volume: 37
  start-page: 31
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2019.05.028_bib0018
  article-title: Investigating cardiac arrhythmia in ECG using random forest classification
  publication-title: Int. J. Comput. Appl.
– volume: 32
  start-page: 230
  issue: 3
  year: 1985
  ident: 10.1016/j.cmpb.2019.05.028_bib0026
  article-title: A real-time QRS detection algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 88
  start-page: 1634
  issue: 4
  year: 1993
  ident: 10.1016/j.cmpb.2019.05.028_bib0008
  article-title: Ionic mechanisms of electrotonic inhibition and concealed conduction in rabbit atrioventricular nodal myocytes
  publication-title: Circulation
  doi: 10.1161/01.CIR.88.4.1634
– volume: 102
  start-page: 327
  year: 2018
  ident: 10.1016/j.cmpb.2019.05.028_bib0024
  article-title: Automated detection of atrial fibrillation using long short-term memory network with RR interval signals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.001
– volume: 60
  start-page: 132
  year: 2015
  ident: 10.1016/j.cmpb.2019.05.028_bib0015
  article-title: Automatic detection of atrial fibrillation using stationary wavelet transform and support vector machine
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2015.03.005
– volume: 44
  start-page: 3307
  issue: 11
  year: 2016
  ident: 10.1016/j.cmpb.2019.05.028_bib0004
  article-title: Electrocardiographic spectral features for long-term outcome prognosis of atrial fibrillation catheter ablation
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-016-1641-3
– volume: 27
  start-page: 613
  year: 2013
  ident: 10.1016/j.cmpb.2019.05.028_bib0029
  article-title: Wind power grouping forecasts and its uncertainty analysis using optimized relevance vector machine
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2013.07.026
– volume: 115
  start-page: 465
  year: 2019
  ident: 10.1016/j.cmpb.2019.05.028_bib0025
  article-title: A deep learning approach for real-time detection of atrial fibrillation
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.011
– volume: 52
  start-page: 25
  issue: 1–2
  year: 1990
  ident: 10.1016/j.cmpb.2019.05.028_bib0006
  article-title: A quantitative description of membrane current and its application to conduction and excitation in nerve
  publication-title: Bull. Math. Biol.
  doi: 10.1007/BF02459568
– volume: 21
  start-page: 1573
  issue: 6
  year: 2017
  ident: 10.1016/j.cmpb.2019.05.028_bib0001
  article-title: An extended bayesian framework for atrial and ventricular activity separation in atrial fibrillation
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2016.2625338
– volume: 6
  start-page: 213
  year: 2014
  ident: 10.1016/j.cmpb.2019.05.028_bib0002
  article-title: Epidemiology of atrial fbrillation: european perspective
  publication-title: Clin. Epidemiol.
  doi: 10.2147/CLEP.S47385
– volume: 103
  start-page: 210
  issue: 3
  year: 2017
  ident: 10.1016/j.cmpb.2019.05.028_bib0003
  article-title: Net clinical benefit of warfarin in individuals with atrial fibrillation across stroke risk and across primary and secondary care
  publication-title: Heart
  doi: 10.1136/heartjnl-2016-309910
– start-page: 5057
  year: 2016
  ident: 10.1016/j.cmpb.2019.05.028_bib0022
  article-title: Feature leaning with deep convolutional neural networks for screening patients with paroxysmal atrial fibrillation
– volume: 1
  start-page: 211
  year: 2001
  ident: 10.1016/j.cmpb.2019.05.028_bib0027
  article-title: Sparse bayesian learning and the relevance vector machine
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 2930
  issue: 11
  year: 2007
  ident: 10.1016/j.cmpb.2019.05.028_bib0028
  article-title: Integrated kernels and their properties
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2007.02.014
– volume: 2
  issue: 3
  year: 2011
  ident: 10.1016/j.cmpb.2019.05.028_bib0031
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans. Intell. Syst. Technol.
  doi: 10.1145/1961189.1961199
– volume: 54
  start-page: 269
  year: 2013
  ident: 10.1016/j.cmpb.2019.05.028_bib0017
  article-title: Automated detection of atrial fibrillation using Bayesian paradigm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.09.016
– volume: 113
  start-page: 919
  issue: 3
  year: 2014
  ident: 10.1016/j.cmpb.2019.05.028_bib0011
  article-title: Neural network and wavelet average framing percentage energy for atrial fibrillation classification
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2013.12.002
– volume: 20
  start-page: 45
  issue: 3
  year: 2001
  ident: 10.1016/j.cmpb.2019.05.028_bib0033
  article-title: The impact of the MIT-BIH arrhythmia database
  publication-title: IEEE Eng. Med. Biol. Mag.
  doi: 10.1109/51.932724
– volume: 48
  start-page: 2095
  issue: 12
  year: 2018
  ident: 10.1016/j.cmpb.2019.05.028_bib0023
  article-title: Deep convolutional neural networks and learning ECG features for screening paroxysmal atrial fibrillation patients
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2017.2705582
– volume: 222
  start-page: 504
  year: 2016
  ident: 10.1016/j.cmpb.2019.05.028_bib0012
  article-title: Atrial fibrillation classification and association between the natural frequency and the autonomic nervous system
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2016.07.196
– volume: 14
  issue: 128
  year: 2017
  ident: 10.1016/j.cmpb.2019.05.028_bib0009
  article-title: Mechanisms of stochastic onset and termination of atrial fibrillation studied with a cellular automaton model
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2016.0968
– start-page: 430
  year: 2008
  ident: 10.1016/j.cmpb.2019.05.028_bib0032
  article-title: Forest-RK: a new random forest induction method
– volume: 15
  issue: 113
  year: 2014
  ident: 10.1016/j.cmpb.2019.05.028_bib0005
  article-title: The diagnostic accuracy of the MyDiagnostick to detect atrial fibrillation in primary care
  publication-title: BMC Family Pract.
SSID ssj0002556
Score 2.370515
Snippet •A novel IRBF-RVM model is proposed for the diagnosis of atrial fibrillation (AF).•The kernel parameter of IRBF-RVM has a much larger selectable region than...
Atrial fibrillation (AF) is one of the common cardiovascular diseases, and electrocardiography (ECG) is a key indicator for the detection and diagnosis of AF...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 183
SubjectTerms Atrial fibrillation
Atrial Fibrillation - diagnostic imaging
Bayes Theorem
Data Collection
Databases, Factual
Diagnosis, Computer-Assisted
Electrocardiography
Heart Diseases
Humans
Integrated radial basis function
Models, Statistical
Normal Distribution
Pan–Tompkins algorithm
Probability
Relevance vector machine
Reproducibility of Results
Signal Processing, Computer-Assisted
Support Vector Machine
Title A novel IRBF-RVM model for diagnosis of atrial fibrillation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260719301415
https://dx.doi.org/10.1016/j.cmpb.2019.05.028
https://www.ncbi.nlm.nih.gov/pubmed/31319947
https://www.proquest.com/docview/2261241999
Volume 177
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA4yQXwR784bEXyTuqVJ2gWf5nBMZT5MJ3sLzaUwmd1wm4_-dnOadiLoBF8KLTltOElPvpDvfAehcxWmWsCBO9OhchfGAxUTFsDzmDPtMDMkOHcfok6f3Q34YAW1ylwYoFUWsd_H9DxaF09qhTdrk-Gw9gg6IiHIownYFuSJ5ozFUMXg8uOL5gESW17fWwTQukic8Rwv_TpRQO8SuXonVGT_eXH6DXzmi1B7E20U6BE3fQe30IrNttFatzgf30FXTZyN3-0I3_au20HvuYvzSjfYIVNsPKluOMXjFCd5tQ6cAuF_5Olwu6jfvnlqdYKiPEKg3S5sFihSNxHVnGsdAXCJdGI1sY3UuC1aQ_HYGJGyRFDDqIk1VyqixoahVSImJNJ0D1WycWYPEHagxPAk0Y0wVowLoShJonri3hBqYUlaRaT0i9SFdjiUsBjJkiT2IsGXEnwp61w6X1bRxcJm4pUzlrampbtlmRPqoph0gX2pFV9YfZs1f9qdlSMq3e8EZyRJZsfzqQxBUo2BNkMV7fuhXvSeEgpKyvHhP796hNbhztMHj1Fl9ja3Jw7SzNRpPmdP0Wrz9r7z8AkHU_Kr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FQb2Ib-szgjdZ27x2GzxVsdRHPfjCW9g8Fip1W7R69Leb2exWBB_gZQ_ZzG6YJJMZ8s03CO1rmhkJF-7cUO0fXEQ6ITyC9kRw431mSHDuXcXdO37-IB5q6KTKhQFYZWn7g00vrHXZ0ii12Rj1-40b4BGhQI8mISyARPNpLmgCEdjh-yfOAzi2AsG3jKB7mTkTQF7maaQB3yUL-k4oyf796fST91mcQp0FNF-6j7gdRriIai5fQjO98oJ8GR21cT58cwN8dn3cia7ve7godYO9a4ptQNX1X_Aww2lRrgNngPgfBDzcCrrrnN6edKOyPkJkfBg2jjRp2pgZIYyJwXOJTeoMca3M-hitpUVircx4KpnlzCZGaB0z6yh1WiaExIatoql8mLt1hL1XYkWamhZNNBdSakbSuJn6L1AjHcnqiFR6UaYkD4caFgNVocQeFehSgS5VUyivyzo6mMiMAnXGr71ZpW5VJYV6M6a8Zf9VSkykviybP-X2qhlVfj_BJUmau-Hri6LAqcaBnKGO1sJUT0bPCAMq5WTjn3_dRbPd296lujy7uthEc_AmYAm30NT4-dVte_9mrHeK9fsBqZv0QA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+IRBF-RVM+model+for+diagnosis+of+atrial+fibrillation&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Kong%2C+Dongdong&rft.au=Zhu%2C+Junjiang&rft.au=Wu%2C+Shangshi&rft.au=Duan%2C+Chaoqun&rft.date=2019-08-01&rft.issn=1872-7565&rft.eissn=1872-7565&rft.volume=177&rft.spage=183&rft_id=info:doi/10.1016%2Fj.cmpb.2019.05.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon