Edge–Region Collaborative Segmentation of Potato Leaf Disease Images Using Beluga Whale Optimization Algorithm with Danger Sensing Mechanism
Precise detection of potato diseases is critical for food security, yet traditional image segmentation methods struggle with challenges including uneven illumination, background noise, and the gradual color transitions of lesions under complex field conditions. Therefore, a collaborative segmentatio...
Saved in:
| Published in | Agriculture (Basel) Vol. 15; no. 11; p. 1123 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.06.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2077-0472 2077-0472 |
| DOI | 10.3390/agriculture15111123 |
Cover
| Abstract | Precise detection of potato diseases is critical for food security, yet traditional image segmentation methods struggle with challenges including uneven illumination, background noise, and the gradual color transitions of lesions under complex field conditions. Therefore, a collaborative segmentation framework of Otsu and Sobel edge detection based on the beluga whale optimization algorithm with a danger sensing mechanism (DSBWO) is proposed. The method introduces an S-shaped control parameter, a danger sensing mechanism, a dynamic foraging strategy, and an improved whale fall model to enhance global search ability, prevent premature convergence, and improve solution quality. DSBWO demonstrates superior optimization performance on the CEC2017 benchmark, with faster convergence and higher accuracy than other algorithms. Experiments on the Berkeley Segmentation Dataset and potato early/late blight images show that DSBWO achieves excellent segmentation performance across multiple evaluation metrics. Specifically, it reaches a maximum IoU of 0.8797, outperforming JSBWO (0.8482) and PSOSHO (0.8503), while maintaining competitive PSNR and SSIM values. Even under different Gaussian noise levels, DSBWO maintains stable segmentation accuracy and low CPU time, confirming its robustness. These findings suggest that DSBWO provides a reliable and efficient solution for automatic crop disease monitoring and can be extended to other smart agriculture applications. |
|---|---|
| AbstractList | Precise detection of potato diseases is critical for food security, yet traditional image segmentation methods struggle with challenges including uneven illumination, background noise, and the gradual color transitions of lesions under complex field conditions. Therefore, a collaborative segmentation framework of Otsu and Sobel edge detection based on the beluga whale optimization algorithm with a danger sensing mechanism (DSBWO) is proposed. The method introduces an S-shaped control parameter, a danger sensing mechanism, a dynamic foraging strategy, and an improved whale fall model to enhance global search ability, prevent premature convergence, and improve solution quality. DSBWO demonstrates superior optimization performance on the CEC2017 benchmark, with faster convergence and higher accuracy than other algorithms. Experiments on the Berkeley Segmentation Dataset and potato early/late blight images show that DSBWO achieves excellent segmentation performance across multiple evaluation metrics. Specifically, it reaches a maximum IoU of 0.8797, outperforming JSBWO (0.8482) and PSOSHO (0.8503), while maintaining competitive PSNR and SSIM values. Even under different Gaussian noise levels, DSBWO maintains stable segmentation accuracy and low CPU time, confirming its robustness. These findings suggest that DSBWO provides a reliable and efficient solution for automatic crop disease monitoring and can be extended to other smart agriculture applications. |
| Audience | Academic |
| Author | Wang, Ji-Quan Bei, Jin-Ling |
| Author_xml | – sequence: 1 givenname: Jin-Ling surname: Bei fullname: Bei, Jin-Ling – sequence: 2 givenname: Ji-Quan orcidid: 0000-0002-1498-2602 surname: Wang fullname: Wang, Ji-Quan |
| BookMark | eNqNUktuFDEQbaEgEUJOwMYS6wl2uz_Ty2GSwEiDgoCIpVW2qz0eue3B7iYKK07AhhtyEkwa8ZGyoCzZ5ap6z_Xx4-LIB49F8ZTRM847-hxMtGpy4xSR1SxLyR8UxyVt2wWt2vLoL_1RcZrSnmbpGF_S5rj4eqENfv_y7S0aGzxZB-dAhgij_YTkHZoB_Zgv2RV68iZkPZAtQk_ObUJISDYDGEzkOllvyAt0kwHyYQcOydVhtIP9PKNXzoRox91AbvJOzsEbjPkBf4d7jWoH3qbhSfGwB5fw9Nd5UlxfXrxfv1psr15u1qvtQlW0HReSarnkiraVkrLSrJESNO9qrRqmGUhoedtz1nSKcskUylwu72um-rJExZCfFJuZVwfYi0O0A8RbEcCKO0OIRkAcrXIoOoW6BOiowi63UC01YlcyRWXTVaypMlc1c03-ALc34NxvQkbFzxGJe0aUYc9m2CGGjxOmUezDFH2uWvCStU1T1135J8rklgrr-zBGUINNSqyWVU3bZc4hR53dE5WXxsGq_F16m-3_APgMUDGkFLH_r5R_AMYexjw |
| Cites_doi | 10.3390/agronomy13102532 10.1007/s00521-025-11016-9 10.1214/aoms/1177731944 10.1016/j.eswa.2020.113201 10.3390/s24041126 10.1117/1.JRS.17.026504 10.1016/j.eswa.2024.124624 10.1109/TASE.2024.3382731 10.1038/s41598-023-38778-3 10.1016/j.engappai.2022.105088 10.1049/el:20080522 10.1109/TPDS.2022.3151853 10.1111/rssb.12481 10.1016/j.ins.2024.120338 10.1016/j.epsr.2023.110051 10.1016/j.asoc.2023.110091 10.1063/5.0204349 10.3390/rs11030224 10.1016/j.asoc.2023.110130 10.1007/s11263-023-01881-z 10.1016/j.eng.2019.10.015 10.3390/insects15110827 10.1109/TSMC.1979.4310076 10.1016/j.compag.2022.107089 10.3390/agriculture15020180 10.1088/2631-8695/ada72d 10.1109/TIP.2003.819861 10.1038/nature10158 10.1046/j.1365-3059.2003.00793.x 10.1016/j.asoc.2025.112947 10.1016/j.compag.2022.107488 10.1016/j.compbiomed.2024.108498 10.1016/j.compag.2018.08.023 10.1016/j.energy.2023.129583 10.1016/j.compbiomed.2016.12.014 10.1016/j.asoc.2021.107574 10.1016/j.knosys.2022.109215 10.1007/s12524-011-0094-2 10.2174/2666255813666191218112436 10.1007/s10489-021-03048-0 10.1016/j.eswa.2021.114633 10.1117/1.1631315 10.18280/ts.370307 10.1094/PDIS-03-15-0340-FE 10.1016/j.knosys.2021.107348 10.1109/ICCIAS.2006.294156 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SS 7ST 7T7 7X2 8FD 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU COVID DWQXO FR3 HCIFZ M0K P64 PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS SOI ADTOC UNPAY DOA |
| DOI | 10.3390/agriculture15111123 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Entomology Abstracts (Full archive) Environment Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Agricultural Science Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Engineering Research Database SciTech Premium Collection Agriculture Science Database Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environment Abstracts Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest One Academic Eastern Edition Agricultural Science Collection Coronavirus Research Database ProQuest SciTech Collection Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Agricultural Science Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Agriculture |
| EISSN | 2077-0472 |
| ExternalDocumentID | oai_doaj_org_article_9ced2aa90ce9472c8dee921c0b694164 10.3390/agriculture15111123 A845078416 10_3390_agriculture15111123 |
| GroupedDBID | 2XV 5VS 7X2 8FE 8FH AAFWJ AAHBH AAYXX ADBBV AEUYN AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAG IAO ITC KQ8 M0K MODMG M~E OK1 OZF PHGZM PHGZT PIMPY PROAC 3V. 7SS 7ST 7T7 8FD 8FK ABUWG AZQEC C1K COVID DWQXO FR3 P64 PKEHL PQEST PQQKQ PQUKI PRINS SOI ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c407t-b0db83c074cbb4d16bbad395dc61d1aba737f3169c03b1ceb9133f51cf22ec1e3 |
| IEDL.DBID | UNPAY |
| ISSN | 2077-0472 |
| IngestDate | Fri Oct 03 12:42:31 EDT 2025 Wed Oct 01 15:09:03 EDT 2025 Mon Jun 30 07:59:36 EDT 2025 Wed Jun 25 16:51:33 EDT 2025 Tue Jul 01 05:43:26 EDT 2025 Thu Oct 16 04:29:23 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c407t-b0db83c074cbb4d16bbad395dc61d1aba737f3169c03b1ceb9133f51cf22ec1e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1498-2602 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2077-0472/15/11/1123/pdf?version=1747996860 |
| PQID | 3217665592 |
| PQPubID | 2032441 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_9ced2aa90ce9472c8dee921c0b694164 unpaywall_primary_10_3390_agriculture15111123 proquest_journals_3217665592 gale_infotracmisc_A845078416 gale_infotracacademiconefile_A845078416 crossref_primary_10_3390_agriculture15111123 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Agriculture (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Dehkordi (ref_41) 2021; 109 Wang (ref_47) 2004; 13 Houssein (ref_20) 2021; 229 (ref_13) 2016; 100 Yuan (ref_30) 2023; 10 ref_11 Kumar (ref_18) 2022; 203 Serbet (ref_21) 2025; 37 Wang (ref_40) 2023; 137 Kadhim (ref_15) 2025; 7 Xu (ref_2) 2011; 475 Ghanbari (ref_46) 2008; 44 Friedman (ref_49) 1940; 11 ref_23 Hasanien (ref_44) 2024; 286 Yadav (ref_38) 2024; 2853 Qadri (ref_27) 2024; 22 Rahaman (ref_24) 2021; 174 Ingle (ref_45) 2024; 153 Kaitlin (ref_4) 2020; 2 Lees (ref_6) 2003; 52 Yang (ref_9) 2020; 6 Feng (ref_32) 2022; 84 Song (ref_39) 2022; 52 Fan (ref_37) 2021; 14 ref_34 Kong (ref_25) 2023; 14 Goulart (ref_16) 2017; 81 Zhong (ref_29) 2022; 251 Shen (ref_31) 2023; 228 Liu (ref_1) 2022; 198 Moussa (ref_35) 2020; 37 Ding (ref_10) 2024; 665 Yang (ref_33) 2025; 174 Odiathevar (ref_22) 2022; 33 Wang (ref_42) 2022; 114 Chen (ref_17) 2023; 132 ref_43 Ewees (ref_26) 2020; 146 Sankur (ref_19) 2004; 13 Song (ref_12) 2024; 255 Otsu (ref_14) 1979; 9 ref_48 ref_8 Li (ref_36) 2023; 17 Kim (ref_28) 2018; 154 ref_5 Ray (ref_3) 2011; 39 ref_7 |
| References_xml | – ident: ref_7 doi: 10.3390/agronomy13102532 – volume: 37 start-page: 8371 year: 2025 ident: ref_21 article-title: New comparative approach to multi-level thresholding: Chaotically initialized adaptive meta-heuristic optimization methods publication-title: Neural Comput. Appl. doi: 10.1007/s00521-025-11016-9 – volume: 11 start-page: 86 year: 1940 ident: ref_49 article-title: A Comparison of Alternative Tests of Significance for the Problem of $m$ Rankings publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731944 – volume: 146 start-page: 113201 year: 2020 ident: ref_26 article-title: Hyper-heuristic method for multilevel thresholding image segmentation publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113201 – ident: ref_34 doi: 10.3390/s24041126 – volume: 17 start-page: 026504 year: 2023 ident: ref_36 article-title: Optimized image registration algorithm at subpixel level for Geostationary Operational Environmental Satellite-R Advanced Baseline Imager navigation and registration performance assessment publication-title: J. Appl. Remote Sens. doi: 10.1117/1.JRS.17.026504 – volume: 255 start-page: 124624 year: 2024 ident: ref_12 article-title: Modified snake optimizer based multi-level thresholding for color image segmentation of agricultural diseases publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124624 – volume: 22 start-page: 2639 year: 2024 ident: ref_27 article-title: Advances and Challenges in Computer Vision for Image-Based Plant Disease Detection: A Comprehensive Survey of Machine and Deep Learning Approaches publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2024.3382731 – ident: ref_43 doi: 10.1038/s41598-023-38778-3 – volume: 114 start-page: 105088 year: 2022 ident: ref_42 article-title: An adaptively balanced grey wolf optimization algorithm for feature selection on high-dimensional classification publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2022.105088 – volume: 44 start-page: 800 year: 2008 ident: ref_46 article-title: Scope of validity of PSNR in image/video quality assessment publication-title: Electron. Lett. doi: 10.1049/el:20080522 – volume: 33 start-page: 3306 year: 2022 ident: ref_22 article-title: A Bayesian Approach To Distributed Anomaly Detection In Edge AI Networks publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2022.3151853 – volume: 14 start-page: 557 year: 2023 ident: ref_25 article-title: Sobel Edge Detection Algorithm with Adaptive Threshold based on Improved Genetic Algorithm for Image Processing publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 84 start-page: 1324 year: 2022 ident: ref_32 article-title: Nonparametric, Tuning-Free Estimation of S-Shaped Functions publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol. doi: 10.1111/rssb.12481 – volume: 665 start-page: 120338 year: 2024 ident: ref_10 article-title: Next generation of computer vision for plant disease monitoring in precision agriculture: A contemporary survey, taxonomy, experiments, and future direction publication-title: Inf. Sci. doi: 10.1016/j.ins.2024.120338 – volume: 228 start-page: 110051 year: 2023 ident: ref_31 article-title: A modified adaptive beluga whale optimization based on spiral search and elitist strategy for short-term hydrothermal scheduling publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2023.110051 – volume: 153 start-page: 110091 year: 2024 ident: ref_45 article-title: Non-linear channel equalization using modified grasshopper optimization algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110091 – volume: 2853 start-page: 020221 year: 2024 ident: ref_38 article-title: Detection of fire in forest area using chromatic measurements by Sobel edge detection algorithm compared with Prewitt gradient edge detector publication-title: AIP Conf. Proc. doi: 10.1063/5.0204349 – ident: ref_8 – ident: ref_5 doi: 10.3390/rs11030224 – volume: 137 start-page: 110130 year: 2023 ident: ref_40 article-title: A whale optimization algorithm with combined mutation and removing similarity for global optimization and multilevel thresholding image segmentation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110130 – volume: 132 start-page: 349 year: 2023 ident: ref_17 article-title: A Region-Based Randers Geodesic Approach for Image Segmentation publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-023-01881-z – volume: 6 start-page: 528 year: 2020 ident: ref_9 article-title: Remote Sensing and Precision Agriculture Technologies for Crop Disease Detection and Management with a Practical Application Example publication-title: Engineering doi: 10.1016/j.eng.2019.10.015 – ident: ref_11 doi: 10.3390/insects15110827 – volume: 9 start-page: 62 year: 1979 ident: ref_14 article-title: A Threshold Selection Method from Gray-Level Histograms publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.1979.4310076 – volume: 198 start-page: 107089 year: 2022 ident: ref_1 article-title: Remote-sensing estimation of potato above-ground biomass based on spectral and spatial features extracted from high-definition digital camera images publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107089 – ident: ref_48 doi: 10.3390/agriculture15020180 – volume: 7 start-page: 015228 year: 2025 ident: ref_15 article-title: Enhanced dynamic hand gesture recognition for finger disabilities using deep learning and an optimized Otsu threshold method publication-title: Eng. Res. Express doi: 10.1088/2631-8695/ada72d – volume: 13 start-page: 600 year: 2004 ident: ref_47 article-title: Image quality assessment: From error visibility to structural similarity publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2003.819861 – volume: 475 start-page: 189 year: 2011 ident: ref_2 article-title: Genome sequence and analysis of the tuber crop potato publication-title: Nature doi: 10.1038/nature10158 – volume: 52 start-page: 3 year: 2003 ident: ref_6 article-title: Black dot (Colletotrichum coccodes): An increasingly important disease of potato publication-title: Plant Pathol. doi: 10.1046/j.1365-3059.2003.00793.x – volume: 174 start-page: 112947 year: 2025 ident: ref_33 article-title: Grey prediction evolution algorithm with a dominator guidance strategy for solving multi-level image thresholding publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2025.112947 – volume: 203 start-page: 107488 year: 2022 ident: ref_18 article-title: Multilevel thresholding for crop image segmentation based on recursive minimum cross entropy using a swarm-based technique publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2022.107488 – ident: ref_23 doi: 10.1016/j.compbiomed.2024.108498 – volume: 154 start-page: 256 year: 2018 ident: ref_28 article-title: START: A data preparation tool for crop simulation models using web-based soil databases publication-title: Comput. Electron. Agric. doi: 10.1016/j.compag.2018.08.023 – volume: 286 start-page: 129583 year: 2024 ident: ref_44 article-title: Hybrid particle swarm and sea horse optimization algorithm-based optimal reactive power dispatch of power systems comprising electric vehicles publication-title: Energy doi: 10.1016/j.energy.2023.129583 – volume: 81 start-page: 106 year: 2017 ident: ref_16 article-title: Application based on the Canny edge detection algorithm for recording contractions of isolated cardiac myocytes publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.12.014 – volume: 2 start-page: 286 year: 2020 ident: ref_4 article-title: Hyperspectral Measurements Enable Pre-Symptomatic Detection and Differentiation of Contrasting Physiological Effects of Late Blight and Early Blight in Potato publication-title: Remote Sens. – volume: 109 start-page: 107574 year: 2021 ident: ref_41 article-title: Nonlinear-based Chaotic Harris Hawks Optimizer: Algorithm and Internet of Vehicles application publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107574 – volume: 251 start-page: 109215 year: 2022 ident: ref_29 article-title: Beluga whale optimization: A novel nature-inspired metaheuristic algorithm publication-title: Knowl. Based Syst. doi: 10.1016/j.knosys.2022.109215 – volume: 39 start-page: 161 year: 2011 ident: ref_3 article-title: Utility of Hyperspectral Data for Potato Late Blight Disease Detection publication-title: J. Indian Soc. Remote Sens. doi: 10.1007/s12524-011-0094-2 – volume: 14 start-page: 1903 year: 2021 ident: ref_37 article-title: Research on Edge Detection of Agricultural Pest and Disease Leaf Image Based on LVQ Neural Network publication-title: Recent Adv. Comput. Sci. Commun. doi: 10.2174/2666255813666191218112436 – volume: 52 start-page: 17410 year: 2022 ident: ref_39 article-title: Improvement and application of hybrid real-coded genetic algorithm publication-title: Appl. Intell. doi: 10.1007/s10489-021-03048-0 – volume: 174 start-page: 114633 year: 2021 ident: ref_24 article-title: An efficient multilevel thresholding based satellite image segmentation approach using a new adaptive cuckoo search algorithm publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114633 – volume: 13 start-page: 146 year: 2004 ident: ref_19 article-title: Survey over image thresholding techniques and quantitative performance evaluation publication-title: J. Electron. Imaging doi: 10.1117/1.1631315 – volume: 37 start-page: 405 year: 2020 ident: ref_35 article-title: A Novel Metaheuristic Algorithm for Edge Detection Based on Artificial Bee Colony Technique publication-title: Trait. Du Signal doi: 10.18280/ts.370307 – volume: 100 start-page: 241 year: 2016 ident: ref_13 article-title: Plant Disease Detection by Imaging Sensors–Parallels and Specific Demands for Precision Agriculture and Plant Phenotyping publication-title: Plant Dis. doi: 10.1094/PDIS-03-15-0340-FE – volume: 229 start-page: 107348 year: 2021 ident: ref_20 article-title: An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107348 – ident: ref_50 doi: 10.1109/ICCIAS.2006.294156 – volume: 10 start-page: 1615 year: 2023 ident: ref_30 article-title: HBWO-JS: Jellyfish search boosted hybrid beluga whale optimization algorithm for engineering applications publication-title: J. Comput. Des. Eng. |
| SSID | ssj0000913806 |
| Score | 2.2955458 |
| Snippet | Precise detection of potato diseases is critical for food security, yet traditional image segmentation methods struggle with challenges including uneven... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1123 |
| SubjectTerms | Accuracy Agriculture Algorithms Background noise beluga whale optimization Cetacea Collaboration Convergence Crop diseases Digital agriculture Disease Diseases Edge detection Efficiency Embedded systems Exploitation Food security Food supply Foraging behavior Image processing Image segmentation Late blight Mathematical optimization Medical imaging Methods multilevel thresholding Noise levels Optimization Optimization algorithms Otsu method Performance evaluation Plant diseases potato disease image Potatoes Random noise Sobel edge detection Whales & whaling |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL9ADojxESot8qMSFqHGcOPZx-1KpKCCgorfIj0laaZNUu1kQN34BF_4hv4Sxk7a7AgkOJJcoLz_m4Rnb8w0hO2gj5EIZFqsid7EPhYzRypdxAVqCAjThQy6C0zfi-Cw7Oc_Pl1J9-T1hAzzw0HG7yoJLtVaJBZUVqZUOQKXMJsaHYIqABJpIteRMBR2sGJeJGGCGOPr1u7qejWAWgIMcHilfGYoCYv_venmd3F20V_rrFz2dLg08Rw_I_dFipJOhphvkDrQPyfrktqBH5Puhq-Hntx_vwe8upvu3tP0M9APUzRhg1NKuou86vO7oa9AVPRiWZ-irBtXKnIb9A3QPpota008XWEf6FlVKM8Zq0sm07maX_UVD_fQtPQgxw1hAG747BR9FfDlvHpOzo8OP-8fxmGghtujP9bFJnJHcojVhjckcE8Zox1XurGCOaaMLXlScCWUTbpgFg73Lq5zZKk3BMuBPyFrbtfCUUGnQAEjAVQJMVkmJv04snqLKJAimI_Lyus_LqwFPo0Q_xJOo_AOJIrLn6XLzqgfDDjeQRcqRRcq_sUhEXniqll5k-5m2eow8wBp78KtyIjO0iv36a0S2Vt5EUbOrj6_5ohxFfV7y1GNsomOWRiS-4ZV_adzm_2jcM3Iv9SmJw8TQFlnrZwvYRjupN8-DSPwCf-EU5w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gA9IJ4iUJAPSFyIGseJkxwQ2m23KoguVaGit8iPSYq0SZbdLIgbv4AL_5Bfwjjr7LICIZJLlIfteOzx57HnG0KeIkaIRaaYnyWx8a0rpI8oP_UTkClkgBC-i0VwOhEnF9Hry_hyh0x6Xxi7rbLXiZ2iNo22NvIDHloqQ8S_4cvZJ99GjbKrq30IDelCK5gXHcXYNbIbWmasAdkdjSdn52uri2XBTAOxoh_iON8_kOXckVwADn54hHxriOqY_P_U13vk-rKeya9f5HT624B0fIvcdEiSDleiv012oL5D9oabjO6S72NTws9vP87B7jqmhxuZfwb6DsrKOR7VtCnoWYPXDX0DsqBHq2Ub-qpCdbOg3b4COoLpspT0wxWWkb5FVVM5H046nJZYVe1VRa1Zlx51vsSYQd19dwrWu_jjorpHLo7H7w9PfBeAwdc4z2t9FRiVco0oQysVGSaUkoZnsdGCGSaVTHhScCYyHXDFNCisXV7ETBdhCJoBv08GdVPDA0JThcAgAFMIUFGRpph0oPEURZSCYNIjz_s6z2crno0c5ydWRPlfROSRkZXL-lVLkt3daOZl7vpcnmkwoZRZoCGLklCnBiALmQ6U9d4VkUeeWanmtiu3c6ml80jAEltSrHyYRoiW7bqsR_a33sQuqLcf9-0idypgkW8arEf8dVv5n597-O_kHpEboQ1C3JmC9smgnS_hMSKjVj1xzf0XNCsSbA priority: 102 providerName: ProQuest |
| Title | Edge–Region Collaborative Segmentation of Potato Leaf Disease Images Using Beluga Whale Optimization Algorithm with Danger Sensing Mechanism |
| URI | https://www.proquest.com/docview/3217665592 https://www.mdpi.com/2077-0472/15/11/1123/pdf?version=1747996860 https://doaj.org/article/9ced2aa90ce9472c8dee921c0b694164 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2077-0472 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913806 issn: 2077-0472 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwELZQe4A98EYElsoHJC5kG-fhJCeU7na1ILZUCxXLKfJjkq1okypNF8GJX8CFf8gvYZymu1vgAELJIUocx47H429szzeEPEWMEPBYMjsOA20bV0gbUX5khyAiiAEhfBOL4HjEjyb-q9Pg9IoXv9lWiab4tFHSrhOGtqEz7LOgzxiertdf6OzFeTuXhHA6RMAecTTauzxANN4h3clonHwwMeU2b6_Jhjy07vsir1pKC8ChjpkMtwakhrf_d-28Q66vioX4_EnMZleGn8NbRGwKvt518nFvVcs99eUXTsf_qdltcrPFpjRZC9Mdcg2Ku2QnuazMPfJtqHP48fX7CZh9zHT_UorOgb6FfN66MhW0zOi4xOuSvgaR0YP1QhB9OUcFtqTNTgU6gNkqF_T9Gf4H-gaV17z1CqXJLC-raX02p2aimB403sn4gaJ57xiMv_J0Ob9PJofDd_tHdhvSwVZoOda2dLSMPIW4RUnpa8alFNqLA60400xIEXph5jEeK8eTTIGM0YbOAqYy1wXFwHtAOkVZwENCI4lQwwGdcZB-FkWYtaPw4JkfAWfCIs837Zou1swdKVo8RgzSP4iBRQam7S-SGtrt5kZZ5Wnbi9NYgXaFiB0FMTaeijRA7DLlSOMPzH2LPDOSkxrlUFdCidbHAUtsaLbSJPIRf5uVXovsbqXETq22H29kL22VyjL1XMPmiSagaxH7Qh7_pnKP_jH9Y3LDNXGOm9mmXdKpqxU8QfBVyx7pDoaj8Umvmbzotb3tJ29pMDM |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6V9lB6QDxFoMAeQFywau86jvdQoaRJldAkVKUVvbn7GLtIiR3yoOqNX8CF_8OP4Zcw62wSIhDiUvti2evdtWd2Hrv7zRDyEm2EaiRU4Ila1XgWCumhlR97NZAxCEATvsxF0OtH7bPw3Xn1fIP8WGBh7LbKhUwsBbUptJ0j3-PMhjJE-5e9HX32bNYou7q6SKEhXWoFs1-GGHPAjiO4vkIXbrLfaSK9XzF22Do9aHsuy4Cn0ZmZeso3KuYaValWKjRBpJQ0XFSNjgITSCVrvJbyIBLa5yrQoAS6dWk10CljoAPgWO8tshXyUKDzt9Vo9Y9PlrM8Nupm7EfzcEecC39PZmMXVANQ2eLB-JpKLDMH_Kkfdsj2LB_J6ys5GPymAA_vkjvOcqX1OavdIxuQ3yc79VVDD8i3lsng59fvJ2B3OdODFY99AfoBsqEDOuW0SOlxgdcF7YJMaXO-TEQ7QxRvE1ruY6ANGMwyST9eYh_pexRtQ4cZpfVBhqSZXg6pnUamzRK7jA3k5Xs9sGjmT5PhQ3J2I6R4RDbzIofHhMYKDREfTBqBCtM4xqp9jWeUhjFEgayQN4t_nozmcT0S9IcsiZK_kKhCGpYuy6I2KHd5oxhniRvjidBgmJTC1yDCGtOxARAs0L6yaOEorJDXlqqJFR3TsdTSISCwxzYIV1KPQ7TO7TpwheyulcQhr9cfL_gicSJnkqwGSIV4S175n4978u_qXpDt9mmvm3Q7_aOn5DazCZDLaahdsjkdz-AZWmVT9dyxPiUXNz3afgGXX1EW |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9NAFB6VVgJ6QKwipcAcQFywYo-XeA4VSppEDW1DVKjozczy7FZK7JCFqjd-ARf-FT-DX8IbZ5wQgRCX2hfLHs-M_dZZvvcIeYE-Qhhx6Tm8EWrHQCEd9PJjpwEiBg7owpe5CI770cFp8PYsPNsgPyosjNlWWenEUlHrQpk58rrPTChD9H9ZPbXbIgbt7pvxZ8dkkDIrrVU6DWHTLOi9MtyYBXkcwtUlDueme7020v4lY93Oh_0Dx2YccBQObGaOdLWMfYVmVUkZaC-SUmifh1pFnvaEFA2_kfpexJXrS0-B5DjES0NPpYyB8sDHem-QLbP4hUpiq9XpD06WMz4mAmfsRovQR77P3brIJjbABqDhxYP5a-axzCLwp63YJrfm-VhcXYrh8Ddj2L1L7lgvljYXbHePbEB-n2w3Vw09IN86OoOfX7-fgNnxTPdX_PYF6HvIRhb0lNMipYMCrwt6BCKl7cWSEe2NUNVNabmngbZgOM8E_XiOfaTvUM2NLH6UNocZkmZ2PqJmSpm2SxwzNpCX7x2DQTZfTEcPyem1kOIR2cyLHB4TGkt0SlzQaQQySOMYq3YVnlEaxBB5okZeV_88GS9ifCQ4NjIkSv5CohppGbosi5oA3eWNYpIlVt4TrkAzIbirgAcNpmINwJmnXGmQw1FQI68MVROjRmYToYRFQ2CPTUCupBkH6KmbNeEa2V0rieKv1h9XfJFY9TNNVsJSI86SV_7n43b-Xd1zchOlLjnq9Q-fkNvM5EIuZ6R2yeZsMoen6KDN5DPL-ZR8um5h-wXJT1VF |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELbQ9gA9UJ4itCAfkLiQbpyHk5zQ9qWCaKmAFeUU-TFJV2ySVTZbBCd-ARf-Ib-EceJtu8ABhJJDlDiOHY_H39iebwh5ghgh4qlkbhpH2jWukC6i_MSNQSSQAkL4LhbB0TE_HIcvT6PTK178ZlslmuKTTkn7Xhy7hs5wyKIhY3j6wXCm8-fndi4J4XSMgD3haLSv8QjR-ICsjY9PRh9MTLnl2z3ZUIDW_VAUjaW0ABzqmMlwZUDqePt_187r5PqimonPn8R0emX4OdggYlnwftfJx-1FK7fVl184Hf-nZrfITYtN6agXptvkGlR3yProsjJ3ybd9XcCPr9_fgNnHTHcvpegc6FsoSuvKVNE6pyc1Xtf0FYic7vULQfRFiQpsTrudCnQHpotC0Pdn-B_oa1RepfUKpaNpUTeT9qykZqKY7nXeyfiBqnvvCIy_8mRe3iPjg_13u4euDengKrQcW1d6WiaBQtyipAw141IKHaSRVpxpJqSIgzgPGE-VF0imQKZoQ-cRU7nvg2IQ3CeDqq7gAaGJRKjhgc45yDBPEszaU3jwPEyAM-GQZ8t2zWY9c0eGFo8Rg-wPYuCQHdP2F0kN7XZ3o26KzPbiLFWgfSFST0GKjacSDZD6THnS-APz0CFPjeRkRjm0jVDC-jhgiQ3NVjZKQsTfZqXXIVsrKbFTq9XHS9nLrFKZZ4Fv2DzRBPQd4l7I499U7uE_pt8kN3wT57ibbdoig7ZZwCMEX618bPvXT-IdLaQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Edge%E2%80%93Region+Collaborative+Segmentation+of+Potato+Leaf+Disease+Images+Using+Beluga+Whale+Optimization+Algorithm+with+Danger+Sensing+Mechanism&rft.jtitle=Agriculture+%28Basel%29&rft.au=Jin-Ling%2C+Bei&rft.au=Ji-Quan%2C+Wang&rft.date=2025-06-01&rft.pub=MDPI+AG&rft.eissn=2077-0472&rft.volume=15&rft.issue=11&rft.spage=1123&rft_id=info:doi/10.3390%2Fagriculture15111123&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-0472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-0472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-0472&client=summon |