The parafacial respiratory group and the control of active expiration
•The parafacial respiratory group (pFRG) has a key role in the generation of active expiration and recruitment of expiratory abdominal muscles.•Expiratory abdominal muscle activity is present in REM sleep and it is associated with reduced respiratory variability, increased tidal volume and minute ve...
Saved in:
Published in | Respiratory physiology & neurobiology Vol. 265; pp. 153 - 160 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier B.V
01.07.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1569-9048 1878-1519 1878-1519 |
DOI | 10.1016/j.resp.2018.06.010 |
Cover
Abstract | •The parafacial respiratory group (pFRG) has a key role in the generation of active expiration and recruitment of expiratory abdominal muscles.•Expiratory abdominal muscle activity is present in REM sleep and it is associated with reduced respiratory variability, increased tidal volume and minute ventilation in adulthood and through post-natal rat development.•The pFRG neurons are under GABAergic and Cholinergic control and are activated in conditions of high metabolic demand (hypercapnia and hypoxia).•Mounting experimental evidence suggests that pFRG and RTN are two physiologically distinct nuclei in the parafacial region.
Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented. |
---|---|
AbstractList | Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented. •The parafacial respiratory group (pFRG) has a key role in the generation of active expiration and recruitment of expiratory abdominal muscles.•Expiratory abdominal muscle activity is present in REM sleep and it is associated with reduced respiratory variability, increased tidal volume and minute ventilation in adulthood and through post-natal rat development.•The pFRG neurons are under GABAergic and Cholinergic control and are activated in conditions of high metabolic demand (hypercapnia and hypoxia).•Mounting experimental evidence suggests that pFRG and RTN are two physiologically distinct nuclei in the parafacial region. Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented. Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented.Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented. |
Author | Pagliardini, Silvia Pisanski, Annette |
Author_xml | – sequence: 1 givenname: Annette surname: Pisanski fullname: Pisanski, Annette organization: Department of Physiology, University of Alberta, Edmonton, AB, Canada – sequence: 2 givenname: Silvia orcidid: 0000-0002-1482-9173 surname: Pagliardini fullname: Pagliardini, Silvia email: silviap@ualberta.ca organization: Department of Physiology, University of Alberta, Edmonton, AB, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29933053$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEtv1DAQgC1URJ9_gAPKkUvCjJ2Hg7igqjykSr2UszXrjMFLNg62t-r-e7LdwqGH9jRz-L6R5jsVR1OYWIi3CBUCth_WVeQ0VxJQV9BWgPBKnKDudIkN9kfL3rR92UOtj8VpSmsA7LBTb8Sx7HuloFEn4ur2FxczRXJkPY3F_qKPlEPcFT9j2M4FTUORF8iGKccwFsEVZLO_44LvH1AfpnPx2tGY-OJxnokfX65uL7-V1zdfv19-vi5tDV0uyUlQ2GhHKPVKonUtOS2dHaRyA9b1alWzIuXaWnfWWeIaXQPYD9IxDb06E-8Pd-cY_mw5ZbPxyfI40sRhm4yERjeg265b0HeP6Ha14cHM0W8o7sy_1xdAHgAbQ0qR3X8Ewez7mrXZ1zD7vgZas_RdJP1Esj4_JMiR_Pi8-umg8hLoznM0yXqeLA8-ss1mCP55_eMT3Y5-8pbG37x7Sf4LgOWqgg |
CitedBy_id | crossref_primary_10_1016_j_resp_2022_103869 crossref_primary_10_1159_000517507 crossref_primary_10_1111_jsr_13539 crossref_primary_10_1016_j_neulet_2019_134388 crossref_primary_10_1016_j_tins_2019_09_002 crossref_primary_10_3389_fphar_2021_735594 crossref_primary_10_1152_jn_00165_2024 crossref_primary_10_1007_s11864_024_01274_5 crossref_primary_10_1016_j_ifacol_2024_11_093 crossref_primary_10_1093_sleep_zsab074 crossref_primary_10_1016_j_pulmoe_2024_01_005 crossref_primary_10_34014_2227_1848_2019_1_68_75 crossref_primary_10_1113_EP087784 crossref_primary_10_1113_EP089323 crossref_primary_10_3389_fnins_2020_615666 crossref_primary_10_1016_j_lfs_2021_120175 crossref_primary_10_1093_jmcb_mjaa081 crossref_primary_10_7554_eLife_94276_3 crossref_primary_10_1002_cne_24984 crossref_primary_10_1016_j_resp_2019_05_014 crossref_primary_10_7554_eLife_52572 crossref_primary_10_7554_eLife_83654 crossref_primary_10_7554_eLife_52694 crossref_primary_10_1093_sleep_zsz283 crossref_primary_10_7554_eLife_94276 crossref_primary_10_1152_jn_00478_2023 crossref_primary_10_1016_j_resp_2024_104241 crossref_primary_10_1097_MD_0000000000040683 crossref_primary_10_1152_ajplung_00314_2024 crossref_primary_10_7554_eLife_86103 crossref_primary_10_3389_fnmol_2022_1072475 crossref_primary_10_1002_wdev_366 crossref_primary_10_1016_j_autneu_2019_01_007 crossref_primary_10_1016_j_reprotox_2020_12_017 crossref_primary_10_1212_WNL_0000000000006537 crossref_primary_10_1113_EP088046 crossref_primary_10_1113_JP280492 crossref_primary_10_33549_physiolres_934396 crossref_primary_10_1523_JNEUROSCI_1006_20_2020 crossref_primary_10_1016_j_resp_2021_103657 crossref_primary_10_1113_JP279605 crossref_primary_10_1152_jn_00466_2024 |
Cites_doi | 10.1523/JNEUROSCI.2953-14.2015 10.1126/science.aai7984 10.7554/eLife.14203 10.1523/JNEUROSCI.3280-11.2011 10.1002/cne.21409 10.1016/j.resp.2016.02.005 10.1523/JNEUROSCI.5338-10.2011 10.1016/j.neuron.2016.03.007 10.1523/JNEUROSCI.3625-08.2008 10.1016/B978-0-444-63274-6.00004-7 10.1113/jphysiol.2005.098848 10.1523/JNEUROSCI.23-04-01478.2003 10.1523/JNEUROSCI.0551-05.2005 10.1113/jphysiol.2008.167502 10.1073/pnas.1423136112 10.1113/JP270053 10.1002/cne.902950311 10.1371/journal.pone.0167861 10.1038/nn0901-927 10.1523/JNEUROSCI.3141-10.2010 10.1523/JNEUROSCI.1106-09.2009 10.1016/S0896-6273(03)00092-8 10.1016/0014-4886(88)90064-7 10.1016/S0301-0082(98)00046-X 10.1038/s41583-018-0003-6 10.1038/nn.2104 10.1038/nature16964 10.1152/japplphysiol.00420.2015 10.1038/nature18944 10.1016/0361-9230(89)90197-4 10.1155/2016/7493048 10.1002/cphy.c100083 10.1113/JP273012 10.1523/JNEUROSCI.23-29-09575.2003 10.1038/nn.2354 10.1113/jphysiol.2005.102533 10.1002/cne.21897 10.1007/978-0-387-73693-8_57 10.1007/s10827-010-0281-0 10.1093/sleep/zsx172 10.1371/journal.pone.0109894 10.1113/jphysiol.2002.023408 10.1007/s12576-009-0020-3 10.1113/JP273335 10.1016/j.resp.2016.06.006 10.1016/j.neuroscience.2017.03.031 10.1523/JNEUROSCI.2917-06.2006 10.1038/nn1357 10.1126/science.1683005 10.1016/j.resp.2007.01.004 10.1038/s41598-017-17412-z 10.1113/jphysiol.2007.138180 |
ContentType | Journal Article |
Copyright | 2018 Elsevier B.V. Copyright © 2018 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright © 2018 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.resp.2018.06.010 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1878-1519 |
EndPage | 160 |
ExternalDocumentID | 29933053 10_1016_j_resp_2018_06_010 S1569904818301009 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: CIHR |
GroupedDBID | --- --K --M -~X .1- .FO .GJ .~1 0R~ 123 1B1 1P~ 1RT 1~. 1~5 29P 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABGSF ABJNI ABMAC ABMZM ABUDA ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEHWI AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGRDE AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OHT OI- OU. OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPCBC SSH SSN SSU SSZ T5K UHS Z5R ZGI ~02 ~G- AACTN AADPK AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW DOVZS EFLBG LCYCR RIG ZA5 AAYXX AGRNS CITATION CGR CUY CVF ECM EIF NPM 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c407t-af203158fa128b21cf6af82fcd23fd144bb4e3a3f6487cfcae41f5019d2fead93 |
IEDL.DBID | AIKHN |
ISSN | 1569-9048 1878-1519 |
IngestDate | Sat Sep 27 22:57:40 EDT 2025 Thu Apr 03 06:57:45 EDT 2025 Tue Jul 01 03:30:45 EDT 2025 Thu Apr 24 23:09:48 EDT 2025 Fri Feb 23 02:19:07 EST 2024 Tue Aug 26 16:31:53 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Parafacial respiratory group (pFRG) Expiratory abdominal muscles Sleep Brainstem development Active expiration |
Language | English |
License | Copyright © 2018 Elsevier B.V. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-af203158fa128b21cf6af82fcd23fd144bb4e3a3f6487cfcae41f5019d2fead93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-1482-9173 |
PMID | 29933053 |
PQID | 2058508677 |
PQPubID | 23479 |
PageCount | 8 |
ParticipantIDs | proquest_miscellaneous_2058508677 pubmed_primary_29933053 crossref_primary_10_1016_j_resp_2018_06_010 crossref_citationtrail_10_1016_j_resp_2018_06_010 elsevier_sciencedirect_doi_10_1016_j_resp_2018_06_010 elsevier_clinicalkey_doi_10_1016_j_resp_2018_06_010 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2019 2019-07-00 20190701 |
PublicationDateYYYYMMDD | 2019-07-01 |
PublicationDate_xml | – month: 07 year: 2019 text: July 2019 |
PublicationDecade | 2010 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands |
PublicationTitle | Respiratory physiology & neurobiology |
PublicationTitleAlternate | Respir Physiol Neurobiol |
PublicationYear | 2019 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Saini, Pagliardini (bib0220) 2017; 40 Sherrey, Pollard, Megirian (bib0225) 1988; 101 Janczewski, Onimaru, Homma, Feldman (bib0110) 2002; 545 Mellen, Janczewski, Bocchiaro, Feldman (bib0160) 2003; 37 Smith, Ellenberger, Ballanyi, Richter, Feldman (bib0235) 1991; 254 Jones (bib0115) 1990; 295 Janczewski, Feldman (bib0105) 2006; 570 Huckstepp, Henderson, Cardoza, Feldman (bib0080) 2016; 5 Barnett, Jenkin, Milsom, Paton, Abdala, Molkov, Zoccal (bib0030) 2017 de Britto, Moraes (bib0045) 2017; 595 Huckstepp, Llaudet, Gourine (bib0085) 2016; 11 O’Halloran (bib0180) 2017 Onimaru, Ikeda, Kawakami (bib0195) 2008; 28 Burke, Kanbar, Basting, Hodges, Viar, Stornetta, Guyenet (bib0040) 2015; 593 Silva, Tanabe, Moreira, Takakura (bib0230) 2016; 227 Pagliardini, Janczewski, Tan, Dickson, Deisseroth, Feldman (bib0210) 2011; 31 Oku, Masumiya, Okada (bib0185) 2007; 585 Pagliardini, Ren, Greer (bib0205) 2003; 23 Tan, Janczewski, Yang, Shao, Callaway, Feldman (bib0250) 2008; 11 Stornetta, Spirovski, Moreira, Takakura, West, Gwilt, Pilowsky, Guyenet (bib0245) 2009; 512 Woolf, Butcher (bib0270) 1989; 23 Deschenes, Takatoh, Kurnikova, Moore, Demers, Elbaz, Furuta, Wang, Kleinfeld (bib0060) 2016; 90 Nattie, Li (bib0175) 2012; 2 Onimaru, Homma (bib0190) 2003; 23 Del Negro, Funk, Feldman (bib0050) 2018; 19 Abbott, Stornetta, Fortuna, Depuy, West, Harris, Guyenet (bib0005) 2009; 29 Boutin, Alsahafi, Pagliardini (bib0035) 2017; 595 Mulkey, Stornetta, Weston, Simmons, Parker, Bayliss, Guyenet (bib0170) 2004; 7 Andrews, Pagliardini (bib0025) 2015; 119 Korsak, Sheikhbahaei, Machhada, Gourine, Huckstepp (bib0130) 2018; 8 Rubin, Bacak, Molkov, Shevtsova, Smith, Rybak (bib0215) 2011; 30 Abbott, Stornetta, Coates, Guyenet (bib0010) 2011; 31 Onimaru, Ikeda, Mariho, Kawakami (bib0200) 2014; 209 Stornetta, Moreira, Takakura, Kang, Chang, West, Brunet, Mulkey, Bayliss, Guyenet (bib0240) 2006; 26 Malheiros-Lima, Takakura, Moreira (bib0150) 2017; 351 Abdala, Rybak, Smith, Paton (bib0015) 2009; 587 Iizuka, Fregosi (bib0095) 2007; 157 Iscoe (bib0100) 1998; 56 Li, Janczewski, Yackle, Kam, Pagliardini, Krasnow, Feldman (bib0145) 2016; 530 Anderson, Garcia, Baertsch, Pollak, Bloom, Wei, Rai, Ramirez (bib0020) 2016; 536 Huckstepp, Cardoza, Henderson, Feldman (bib0075) 2015; 35 Krause, Nowak, Srbu, Bell (bib0135) 2016; 232 Leirao, Silva, Gargaglioni, da Silva (bib0140) 2017 Kawai, Onimaru, Homma (bib0125) 2006; 572 Marina, Abdala, Trapp, Li, Nattie, Hewinson, Smith, Paton, Gourine (bib0155) 2010; 30 Iizuka (bib0090) 2009; 59 Thoby-Brisson, Karlen, Wu, Charnay, Champagnat, Fortin (bib0260) 2009; 12 Yackle, Schwarz, Kam, Sorokin, Huguenard, Feldman, Luo, Krasnow (bib0275) 2017; 355 Kang, Chang, Mackay, West, Moreira, Takakura, Gwilt, Guyenet, Stornetta (bib0120) 2007; 503 Thoby-Brisson, Trinh, Champagnat, Fortin (bib0255) 2005; 25 Deschenes, Kurnikova, Elbaz, Kleinfeld (bib0055) 2016; 2016 Gray, Janczewski, Mellen, McCrimmon, Feldman (bib0065) 2001; 4 Van Dort, Zachs, Kenny, Zheng, Goldblum, Gelwan, Ramos, Nolan, Wang, Weng, Lin, Wilson, Brown (bib0265) 2015; 112 Molkov, Shevtsova, Park, Ben-Tal, Smith, Rubin, Rybak (bib0165) 2014; 9 Guyenet, Bayliss, Mulkey, Stornetta, Moreira, Takakura (bib0070) 2008; 605 Jones (10.1016/j.resp.2018.06.010_bib0115) 1990; 295 Krause (10.1016/j.resp.2018.06.010_bib0135) 2016; 232 Rubin (10.1016/j.resp.2018.06.010_bib0215) 2011; 30 Saini (10.1016/j.resp.2018.06.010_bib0220) 2017; 40 Iizuka (10.1016/j.resp.2018.06.010_bib0090) 2009; 59 O’Halloran (10.1016/j.resp.2018.06.010_bib0180) 2017 Huckstepp (10.1016/j.resp.2018.06.010_bib0075) 2015; 35 Nattie (10.1016/j.resp.2018.06.010_bib0175) 2012; 2 Guyenet (10.1016/j.resp.2018.06.010_bib0070) 2008; 605 Thoby-Brisson (10.1016/j.resp.2018.06.010_bib0255) 2005; 25 Yackle (10.1016/j.resp.2018.06.010_bib0275) 2017; 355 Boutin (10.1016/j.resp.2018.06.010_bib0035) 2017; 595 Janczewski (10.1016/j.resp.2018.06.010_bib0110) 2002; 545 Thoby-Brisson (10.1016/j.resp.2018.06.010_bib0260) 2009; 12 Abbott (10.1016/j.resp.2018.06.010_bib0005) 2009; 29 Sherrey (10.1016/j.resp.2018.06.010_bib0225) 1988; 101 Van Dort (10.1016/j.resp.2018.06.010_bib0265) 2015; 112 Deschenes (10.1016/j.resp.2018.06.010_bib0060) 2016; 90 Onimaru (10.1016/j.resp.2018.06.010_bib0200) 2014; 209 Marina (10.1016/j.resp.2018.06.010_bib0155) 2010; 30 Gray (10.1016/j.resp.2018.06.010_bib0065) 2001; 4 Kang (10.1016/j.resp.2018.06.010_bib0120) 2007; 503 Malheiros-Lima (10.1016/j.resp.2018.06.010_bib0150) 2017; 351 Molkov (10.1016/j.resp.2018.06.010_bib0165) 2014; 9 Abdala (10.1016/j.resp.2018.06.010_bib0015) 2009; 587 Del Negro (10.1016/j.resp.2018.06.010_bib0050) 2018; 19 Janczewski (10.1016/j.resp.2018.06.010_bib0105) 2006; 570 Burke (10.1016/j.resp.2018.06.010_bib0040) 2015; 593 Stornetta (10.1016/j.resp.2018.06.010_bib0245) 2009; 512 Woolf (10.1016/j.resp.2018.06.010_bib0270) 1989; 23 Iizuka (10.1016/j.resp.2018.06.010_bib0095) 2007; 157 Smith (10.1016/j.resp.2018.06.010_bib0235) 1991; 254 Deschenes (10.1016/j.resp.2018.06.010_bib0055) 2016; 2016 Anderson (10.1016/j.resp.2018.06.010_bib0020) 2016; 536 Oku (10.1016/j.resp.2018.06.010_bib0185) 2007; 585 Mellen (10.1016/j.resp.2018.06.010_bib0160) 2003; 37 Pagliardini (10.1016/j.resp.2018.06.010_bib0205) 2003; 23 Li (10.1016/j.resp.2018.06.010_bib0145) 2016; 530 Stornetta (10.1016/j.resp.2018.06.010_bib0240) 2006; 26 Onimaru (10.1016/j.resp.2018.06.010_bib0195) 2008; 28 Abbott (10.1016/j.resp.2018.06.010_bib0010) 2011; 31 Barnett (10.1016/j.resp.2018.06.010_bib0030) 2017 Pagliardini (10.1016/j.resp.2018.06.010_bib0210) 2011; 31 Iscoe (10.1016/j.resp.2018.06.010_bib0100) 1998; 56 Kawai (10.1016/j.resp.2018.06.010_bib0125) 2006; 572 Leirao (10.1016/j.resp.2018.06.010_bib0140) 2017 de Britto (10.1016/j.resp.2018.06.010_bib0045) 2017; 595 Mulkey (10.1016/j.resp.2018.06.010_bib0170) 2004; 7 Tan (10.1016/j.resp.2018.06.010_bib0250) 2008; 11 Huckstepp (10.1016/j.resp.2018.06.010_bib0080) 2016; 5 Huckstepp (10.1016/j.resp.2018.06.010_bib0085) 2016; 11 Onimaru (10.1016/j.resp.2018.06.010_bib0190) 2003; 23 Korsak (10.1016/j.resp.2018.06.010_bib0130) 2018; 8 Andrews (10.1016/j.resp.2018.06.010_bib0025) 2015; 119 Silva (10.1016/j.resp.2018.06.010_bib0230) 2016; 227 |
References_xml | – volume: 595 start-page: 1377 year: 2017 end-page: 1392 ident: bib0035 article-title: Cholinergic modulation of the parafacial respiratory group publication-title: J. Physiol. – volume: 23 start-page: 9575 year: 2003 end-page: 9584 ident: bib0205 article-title: Ontogeny of the pre-Botzinger complex in perinatal rats publication-title: J Neurosci. – year: 2017 ident: bib0030 article-title: The kölliker-fuse orchestrates the timing of expiratory abdominal nerve bursting publication-title: J. Neurophysiology. – volume: 90 start-page: 374 year: 2016 end-page: 387 ident: bib0060 article-title: Inhibition, not excitation, drives rhythmic whisking publication-title: Neuron – volume: 26 start-page: 10305 year: 2006 end-page: 10314 ident: bib0240 article-title: Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat publication-title: J. Neurosci. – volume: 595 start-page: 2043 year: 2017 end-page: 2064 ident: bib0045 article-title: Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats publication-title: J. Physiol. – volume: 4 start-page: 927 year: 2001 end-page: 930 ident: bib0065 article-title: Normal breathing requires preBotzinger complex neurokinin-1 receptor-expressing neurons publication-title: Nat. Neuroscience – volume: 295 start-page: 485 year: 1990 end-page: 514 ident: bib0115 article-title: Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat publication-title: J. Compar. Neurol. – volume: 37 start-page: 821 year: 2003 end-page: 826 ident: bib0160 article-title: Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation publication-title: Neuron – volume: 2 start-page: 221 year: 2012 end-page: 254 ident: bib0175 article-title: Central chemoreceptors: locations and functions publication-title: Compr. Physiol. – volume: 157 start-page: 196 year: 2007 end-page: 205 ident: bib0095 article-title: Influence of hypercapnic acidosis and hypoxia on abdominal expiratory nerve activity in the rat publication-title: Respir. Physiol. Neurobiol. – volume: 545 start-page: 1017 year: 2002 end-page: 1026 ident: bib0110 article-title: Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat publication-title: J. Physiology – volume: 355 start-page: 1411 year: 2017 end-page: 1415 ident: bib0275 article-title: Breathing control center neurons that promote arousal in mice publication-title: Science (New. York, N.Y) – volume: 227 start-page: 9 year: 2016 end-page: 22 ident: bib0230 article-title: Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats publication-title: Respir. Physiol. Neurobiol. – volume: 585 start-page: 175 year: 2007 end-page: 186 ident: bib0185 article-title: Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla publication-title: J. Physiol. – volume: 30 start-page: 12466 year: 2010 end-page: 12473 ident: bib0155 article-title: Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration publication-title: J. Neurosci. – volume: 587 start-page: 3539 year: 2009 end-page: 3559 ident: bib0015 article-title: Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation publication-title: The J. Physiology – volume: 8 start-page: 400 year: 2018 ident: bib0130 article-title: The Role Of Parafacial Neurons In The Control Of Breathing During Exercise publication-title: Sci. Rep. – volume: 254 start-page: 726 year: 1991 end-page: 729 ident: bib0235 article-title: Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals publication-title: Science (New. York, N.Y) – volume: 572 start-page: 525 year: 2006 end-page: 537 ident: bib0125 article-title: Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro publication-title: J. Physiology – volume: 19 start-page: 351 year: 2018 end-page: 367 ident: bib0050 article-title: Breathing matters publication-title: Nat. Rev. – volume: 29 start-page: 5806 year: 2009 end-page: 5819 ident: bib0005 article-title: Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats publication-title: J Neurosci. – volume: 30 start-page: 607 year: 2011 end-page: 632 ident: bib0215 article-title: Interacting oscillations in neural control of breathing: modeling and qualitative analysis publication-title: J. Comput. Neurosci. – volume: 23 start-page: 519 year: 1989 end-page: 540 ident: bib0270 article-title: Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum publication-title: Brain Res. Bull. – volume: 40 year: 2017 ident: bib0220 article-title: Breathing during sleep in the postnatal period of rats: the contribution of active expiration publication-title: Sleep – volume: 11 year: 2016 ident: bib0085 article-title: CO2-induced ATP-dependent release of acetylcholine on the ventral surface of the medulla oblongata publication-title: PLoS ONE – year: 2017 ident: bib0180 article-title: Sleep awakens active expiration publication-title: J. Physiol. – volume: 5 year: 2016 ident: bib0080 article-title: Interactions between respiratory oscillators in adult rats publication-title: eLife – volume: 59 start-page: 157 year: 2009 end-page: 163 ident: bib0090 article-title: Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats publication-title: J. Physiol. Sci.: JPS – volume: 23 start-page: 1478 year: 2003 end-page: 1486 ident: bib0190 article-title: A novel functional neuron group for respiratory rhythm generation in the ventral medulla publication-title: J. Neurosci. – volume: 351 start-page: 1 year: 2017 end-page: 14 ident: bib0150 article-title: Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats publication-title: Neuroscience – volume: 12 start-page: 1028 year: 2009 end-page: 1035 ident: bib0260 article-title: Genetic identification of an embryonic parafacial oscillator coupling to the preBotzinger complex publication-title: Nat. Neurosci. – volume: 31 start-page: 16410 year: 2011 end-page: 16422 ident: bib0010 article-title: Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats publication-title: J Neurosci. – volume: 56 start-page: 433 year: 1998 end-page: 506 ident: bib0100 article-title: Control of abdominal muscles publication-title: Prog. Neurobiol. – volume: 503 start-page: 627 year: 2007 end-page: 641 ident: bib0120 article-title: Central nervous system distribution of the transcription factor Phox2b in the adult rat publication-title: J. Compar. Neurol. – volume: 28 start-page: 12845 year: 2008 end-page: 12850 ident: bib0195 article-title: CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat publication-title: J. Neurosci. – volume: 512 start-page: 373 year: 2009 end-page: 383 ident: bib0245 article-title: Galanin is a selective marker of the retrotrapezoid nucleus in rats publication-title: J. Compar. Neurol. – volume: 593 start-page: 2909 year: 2015 end-page: 2926 ident: bib0040 article-title: State-dependent control of breathing by the retrotrapezoid nucleus publication-title: J. Physiology – volume: 530 start-page: 293 year: 2016 end-page: 297 ident: bib0145 article-title: The peptidergic control circuit for sighing publication-title: Nature – volume: 112 start-page: 584 year: 2015 end-page: 589 ident: bib0265 article-title: Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 209 start-page: 57 year: 2014 end-page: 71 ident: bib0200 article-title: Cytoarchitecture and CO(2) sensitivity of Phox2b-positive Parafacial neurons in the newborn rat medulla publication-title: Prog. Brain Res. – volume: 605 start-page: 327 year: 2008 end-page: 332 ident: bib0070 article-title: The retrotrapezoid nucleus and central chemoreception publication-title: Adv. Exp. Med. Biol. – year: 2017 ident: bib0140 article-title: Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats publication-title: J. Physiol. – volume: 570 start-page: 407 year: 2006 end-page: 420 ident: bib0105 article-title: Distinct rhythm generators for inspiration and expiration in the juvenile rat publication-title: J. Physiol. – volume: 7 start-page: 1360 year: 2004 end-page: 1369 ident: bib0170 article-title: Respiratory control by ventral surface chemoreceptor neurons in rats publication-title: Nat. Neurosci. – volume: 11 start-page: 538 year: 2008 end-page: 540 ident: bib0250 article-title: Silencing preBotzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat publication-title: Nat. Neurosci. – volume: 35 start-page: 1052 year: 2015 end-page: 1067 ident: bib0075 article-title: Role of parafacial nuclei in control of breathing in adult rats publication-title: J Neurosci. – volume: 9 year: 2014 ident: bib0165 article-title: A closed-loop model of the respiratory system: focus on hypercapnia and active expiration publication-title: PLoS ONE – volume: 101 start-page: 50 year: 1988 end-page: 62 ident: bib0225 article-title: Proprioceptive, chemoreceptive and sleep state modulation of expiratory muscle activity in the rat publication-title: Exp. Neurol. – volume: 536 start-page: 76 year: 2016 end-page: 80 ident: bib0020 article-title: A novel excitatory network for the control of breathing publication-title: Nature – volume: 2016 year: 2016 ident: bib0055 article-title: Circuits in the ventral medulla that phase-lock motoneurons for coordinated sniffing and whisking publication-title: Neural Plast – volume: 31 start-page: 2895 year: 2011 end-page: 2905 ident: bib0210 article-title: Active expiration induced by excitation of ventral medulla in adult anesthetized rats publication-title: J. Neurosci. – volume: 119 start-page: 968 year: 2015 end-page: 974 ident: bib0025 article-title: Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats publication-title: J. Appl. Physiol. – volume: 232 start-page: 43 year: 2016 end-page: 53 ident: bib0135 article-title: Respiratory autoresuscitation following severe acute hypoxemia in anesthetized adult rats publication-title: Respir. Physiol. Neurobiol. – volume: 25 start-page: 4307 year: 2005 end-page: 4318 ident: bib0255 article-title: Emergence of the pre-Botzinger respiratory rhythm generator in the mouse embryo publication-title: J. Neurosci. – volume: 35 start-page: 1052 year: 2015 ident: 10.1016/j.resp.2018.06.010_bib0075 article-title: Role of parafacial nuclei in control of breathing in adult rats publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.2953-14.2015 – volume: 355 start-page: 1411 year: 2017 ident: 10.1016/j.resp.2018.06.010_bib0275 article-title: Breathing control center neurons that promote arousal in mice publication-title: Science (New. York, N.Y) doi: 10.1126/science.aai7984 – volume: 5 year: 2016 ident: 10.1016/j.resp.2018.06.010_bib0080 article-title: Interactions between respiratory oscillators in adult rats publication-title: eLife doi: 10.7554/eLife.14203 – volume: 31 start-page: 16410 year: 2011 ident: 10.1016/j.resp.2018.06.010_bib0010 article-title: Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.3280-11.2011 – year: 2017 ident: 10.1016/j.resp.2018.06.010_bib0180 article-title: Sleep awakens active expiration publication-title: J. Physiol. – volume: 503 start-page: 627 year: 2007 ident: 10.1016/j.resp.2018.06.010_bib0120 article-title: Central nervous system distribution of the transcription factor Phox2b in the adult rat publication-title: J. Compar. Neurol. doi: 10.1002/cne.21409 – volume: 227 start-page: 9 year: 2016 ident: 10.1016/j.resp.2018.06.010_bib0230 article-title: Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2016.02.005 – year: 2017 ident: 10.1016/j.resp.2018.06.010_bib0140 article-title: Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats publication-title: J. Physiol. – volume: 31 start-page: 2895 year: 2011 ident: 10.1016/j.resp.2018.06.010_bib0210 article-title: Active expiration induced by excitation of ventral medulla in adult anesthetized rats publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.5338-10.2011 – volume: 90 start-page: 374 year: 2016 ident: 10.1016/j.resp.2018.06.010_bib0060 article-title: Inhibition, not excitation, drives rhythmic whisking publication-title: Neuron doi: 10.1016/j.neuron.2016.03.007 – volume: 28 start-page: 12845 year: 2008 ident: 10.1016/j.resp.2018.06.010_bib0195 article-title: CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3625-08.2008 – volume: 209 start-page: 57 year: 2014 ident: 10.1016/j.resp.2018.06.010_bib0200 article-title: Cytoarchitecture and CO(2) sensitivity of Phox2b-positive Parafacial neurons in the newborn rat medulla publication-title: Prog. Brain Res. doi: 10.1016/B978-0-444-63274-6.00004-7 – volume: 570 start-page: 407 year: 2006 ident: 10.1016/j.resp.2018.06.010_bib0105 article-title: Distinct rhythm generators for inspiration and expiration in the juvenile rat publication-title: J. Physiol. doi: 10.1113/jphysiol.2005.098848 – volume: 23 start-page: 1478 year: 2003 ident: 10.1016/j.resp.2018.06.010_bib0190 article-title: A novel functional neuron group for respiratory rhythm generation in the ventral medulla publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-04-01478.2003 – volume: 25 start-page: 4307 year: 2005 ident: 10.1016/j.resp.2018.06.010_bib0255 article-title: Emergence of the pre-Botzinger respiratory rhythm generator in the mouse embryo publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0551-05.2005 – volume: 587 start-page: 3539 year: 2009 ident: 10.1016/j.resp.2018.06.010_bib0015 article-title: Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation publication-title: The J. Physiology doi: 10.1113/jphysiol.2008.167502 – volume: 112 start-page: 584 year: 2015 ident: 10.1016/j.resp.2018.06.010_bib0265 article-title: Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1423136112 – volume: 593 start-page: 2909 year: 2015 ident: 10.1016/j.resp.2018.06.010_bib0040 article-title: State-dependent control of breathing by the retrotrapezoid nucleus publication-title: J. Physiology doi: 10.1113/JP270053 – volume: 295 start-page: 485 year: 1990 ident: 10.1016/j.resp.2018.06.010_bib0115 article-title: Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat publication-title: J. Compar. Neurol. doi: 10.1002/cne.902950311 – volume: 11 year: 2016 ident: 10.1016/j.resp.2018.06.010_bib0085 article-title: CO2-induced ATP-dependent release of acetylcholine on the ventral surface of the medulla oblongata publication-title: PLoS ONE doi: 10.1371/journal.pone.0167861 – volume: 4 start-page: 927 year: 2001 ident: 10.1016/j.resp.2018.06.010_bib0065 article-title: Normal breathing requires preBotzinger complex neurokinin-1 receptor-expressing neurons publication-title: Nat. Neuroscience doi: 10.1038/nn0901-927 – volume: 30 start-page: 12466 year: 2010 ident: 10.1016/j.resp.2018.06.010_bib0155 article-title: Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3141-10.2010 – volume: 29 start-page: 5806 year: 2009 ident: 10.1016/j.resp.2018.06.010_bib0005 article-title: Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.1106-09.2009 – volume: 37 start-page: 821 year: 2003 ident: 10.1016/j.resp.2018.06.010_bib0160 article-title: Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation publication-title: Neuron doi: 10.1016/S0896-6273(03)00092-8 – year: 2017 ident: 10.1016/j.resp.2018.06.010_bib0030 article-title: The kölliker-fuse orchestrates the timing of expiratory abdominal nerve bursting publication-title: J. Neurophysiology. – volume: 101 start-page: 50 year: 1988 ident: 10.1016/j.resp.2018.06.010_bib0225 article-title: Proprioceptive, chemoreceptive and sleep state modulation of expiratory muscle activity in the rat publication-title: Exp. Neurol. doi: 10.1016/0014-4886(88)90064-7 – volume: 56 start-page: 433 year: 1998 ident: 10.1016/j.resp.2018.06.010_bib0100 article-title: Control of abdominal muscles publication-title: Prog. Neurobiol. doi: 10.1016/S0301-0082(98)00046-X – volume: 19 start-page: 351 year: 2018 ident: 10.1016/j.resp.2018.06.010_bib0050 article-title: Breathing matters publication-title: Nat. Rev. doi: 10.1038/s41583-018-0003-6 – volume: 11 start-page: 538 year: 2008 ident: 10.1016/j.resp.2018.06.010_bib0250 article-title: Silencing preBotzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat publication-title: Nat. Neurosci. doi: 10.1038/nn.2104 – volume: 530 start-page: 293 year: 2016 ident: 10.1016/j.resp.2018.06.010_bib0145 article-title: The peptidergic control circuit for sighing publication-title: Nature doi: 10.1038/nature16964 – volume: 119 start-page: 968 year: 2015 ident: 10.1016/j.resp.2018.06.010_bib0025 article-title: Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats publication-title: J. Appl. Physiol. doi: 10.1152/japplphysiol.00420.2015 – volume: 536 start-page: 76 year: 2016 ident: 10.1016/j.resp.2018.06.010_bib0020 article-title: A novel excitatory network for the control of breathing publication-title: Nature doi: 10.1038/nature18944 – volume: 23 start-page: 519 year: 1989 ident: 10.1016/j.resp.2018.06.010_bib0270 article-title: Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum publication-title: Brain Res. Bull. doi: 10.1016/0361-9230(89)90197-4 – volume: 2016 year: 2016 ident: 10.1016/j.resp.2018.06.010_bib0055 article-title: Circuits in the ventral medulla that phase-lock motoneurons for coordinated sniffing and whisking publication-title: Neural Plast doi: 10.1155/2016/7493048 – volume: 2 start-page: 221 year: 2012 ident: 10.1016/j.resp.2018.06.010_bib0175 article-title: Central chemoreceptors: locations and functions publication-title: Compr. Physiol. doi: 10.1002/cphy.c100083 – volume: 595 start-page: 1377 year: 2017 ident: 10.1016/j.resp.2018.06.010_bib0035 article-title: Cholinergic modulation of the parafacial respiratory group publication-title: J. Physiol. doi: 10.1113/JP273012 – volume: 23 start-page: 9575 year: 2003 ident: 10.1016/j.resp.2018.06.010_bib0205 article-title: Ontogeny of the pre-Botzinger complex in perinatal rats publication-title: J Neurosci. doi: 10.1523/JNEUROSCI.23-29-09575.2003 – volume: 12 start-page: 1028 year: 2009 ident: 10.1016/j.resp.2018.06.010_bib0260 article-title: Genetic identification of an embryonic parafacial oscillator coupling to the preBotzinger complex publication-title: Nat. Neurosci. doi: 10.1038/nn.2354 – volume: 572 start-page: 525 year: 2006 ident: 10.1016/j.resp.2018.06.010_bib0125 article-title: Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro publication-title: J. Physiology doi: 10.1113/jphysiol.2005.102533 – volume: 512 start-page: 373 year: 2009 ident: 10.1016/j.resp.2018.06.010_bib0245 article-title: Galanin is a selective marker of the retrotrapezoid nucleus in rats publication-title: J. Compar. Neurol. doi: 10.1002/cne.21897 – volume: 605 start-page: 327 year: 2008 ident: 10.1016/j.resp.2018.06.010_bib0070 article-title: The retrotrapezoid nucleus and central chemoreception publication-title: Adv. Exp. Med. Biol. doi: 10.1007/978-0-387-73693-8_57 – volume: 30 start-page: 607 year: 2011 ident: 10.1016/j.resp.2018.06.010_bib0215 article-title: Interacting oscillations in neural control of breathing: modeling and qualitative analysis publication-title: J. Comput. Neurosci. doi: 10.1007/s10827-010-0281-0 – volume: 40 year: 2017 ident: 10.1016/j.resp.2018.06.010_bib0220 article-title: Breathing during sleep in the postnatal period of rats: the contribution of active expiration publication-title: Sleep doi: 10.1093/sleep/zsx172 – volume: 9 year: 2014 ident: 10.1016/j.resp.2018.06.010_bib0165 article-title: A closed-loop model of the respiratory system: focus on hypercapnia and active expiration publication-title: PLoS ONE doi: 10.1371/journal.pone.0109894 – volume: 545 start-page: 1017 year: 2002 ident: 10.1016/j.resp.2018.06.010_bib0110 article-title: Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat publication-title: J. Physiology doi: 10.1113/jphysiol.2002.023408 – volume: 59 start-page: 157 year: 2009 ident: 10.1016/j.resp.2018.06.010_bib0090 article-title: Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats publication-title: J. Physiol. Sci.: JPS doi: 10.1007/s12576-009-0020-3 – volume: 595 start-page: 2043 year: 2017 ident: 10.1016/j.resp.2018.06.010_bib0045 article-title: Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats publication-title: J. Physiol. doi: 10.1113/JP273335 – volume: 232 start-page: 43 year: 2016 ident: 10.1016/j.resp.2018.06.010_bib0135 article-title: Respiratory autoresuscitation following severe acute hypoxemia in anesthetized adult rats publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2016.06.006 – volume: 351 start-page: 1 year: 2017 ident: 10.1016/j.resp.2018.06.010_bib0150 article-title: Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats publication-title: Neuroscience doi: 10.1016/j.neuroscience.2017.03.031 – volume: 26 start-page: 10305 year: 2006 ident: 10.1016/j.resp.2018.06.010_bib0240 article-title: Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2917-06.2006 – volume: 7 start-page: 1360 year: 2004 ident: 10.1016/j.resp.2018.06.010_bib0170 article-title: Respiratory control by ventral surface chemoreceptor neurons in rats publication-title: Nat. Neurosci. doi: 10.1038/nn1357 – volume: 254 start-page: 726 year: 1991 ident: 10.1016/j.resp.2018.06.010_bib0235 article-title: Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals publication-title: Science (New. York, N.Y) doi: 10.1126/science.1683005 – volume: 157 start-page: 196 year: 2007 ident: 10.1016/j.resp.2018.06.010_bib0095 article-title: Influence of hypercapnic acidosis and hypoxia on abdominal expiratory nerve activity in the rat publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2007.01.004 – volume: 8 start-page: 400 year: 2018 ident: 10.1016/j.resp.2018.06.010_bib0130 article-title: The Role Of Parafacial Neurons In The Control Of Breathing During Exercise publication-title: Sci. Rep. doi: 10.1038/s41598-017-17412-z – volume: 585 start-page: 175 year: 2007 ident: 10.1016/j.resp.2018.06.010_bib0185 article-title: Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla publication-title: J. Physiol. doi: 10.1113/jphysiol.2007.138180 |
SSID | ssj0017173 |
Score | 2.4397001 |
SecondaryResourceType | review_article |
Snippet | •The parafacial respiratory group (pFRG) has a key role in the generation of active expiration and recruitment of expiratory abdominal muscles.•Expiratory... Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 153 |
SubjectTerms | Abdominal Muscles - physiology Active expiration Animals Brainstem development Exhalation - physiology Expiratory abdominal muscles Fetal Development - physiology Humans Hypercapnia - physiopathology Hypoxia - physiopathology Parafacial respiratory group (pFRG) Respiratory Center - physiology Respiratory Center - physiopathology Sleep Sleep, REM - physiology |
Title | The parafacial respiratory group and the control of active expiration |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1569904818301009 https://dx.doi.org/10.1016/j.resp.2018.06.010 https://www.ncbi.nlm.nih.gov/pubmed/29933053 https://www.proquest.com/docview/2058508677 |
Volume | 265 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qvXgRtT7qo6wgXiQ2zzU9ltJSX0XUQm9hN9mFiqaltqAXf7szySYiaAWPCTMk2Z18M7PzAjiJWwENJaQjMM-2fC5dSyiFYOj6WigeSq6oUPh2wPtD_2oUjCrQKWphKK3SYH-O6RlamztNs5rN6XjcfEDPA6HUR42DQpoV8a26qO3DKqy2L6_7gzKYYALNRG8Rg6mdydO80KmltpVO3saTCml_1k-_2Z-ZHuptwLoxIFk7f8dNqKh0C2rtFJ3nl3d2yrKUzuysvAZdFAJGzb21oJNxNvuKq7OsnIOJNGFoAjKTsc4mmokMAZl6y0hx27Zh2Os-dvqWmZtgxeiezS2hXZrdEGqByke6Tqy50KGr48T1dIIelJS-8oSnOXorsY6F8h0doK2XuBoFq-XtQDWdpGoPGKeGhGg1JBdC-1wJ4UgltQpDEdgabYU6OMVqRbFpKk6zLZ6jInvsKaJvi2iFI0qhc-w6nJU807ylxlJqr9iEqCgWRXiLEPGXcgUl1zdx-pPvuNjnCP8zCp6IVE0Wr0iEjpVN3f_qsJsLQPn2qNI9xE1v_59PPYA1vGrlWcCHUJ3PFuoIbZ25bMDK-YfTQInu3N_cNYxkfwIkCf93 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke9CLqPVRnyuIFwnN2_RYSktqHxdb6G3ZJLtQ0bTUFvTfO5NsIoJW8JrMkGR38s3MzgvgNm55NJSQjsAc03D9yDaElAiGtquE9IPIl1QoPBr74dR9nHmzCnSKWhhKq9TYn2N6htb6SlOvZnM5nzef0PNAKHVR46CQZkV8NZeGWleh1u4PwnEZTNCBZqI3iEHXzuRpXujUUttKK2_jSYW0P-un3-zPTA_19mFPG5Csnb_jAVRkegj1dorO8-sHu2NZSmd2Vl6HLgoBo-beStDJOFt9xdVZVs7BRJowNAGZzlhnC8VEhoBMvmekuG1HMO11J53Q0HMTjBjds7UhlE2zGwIlUPlEthUrX6jAVnFiOypBDyqKXOkIR_norcQqFtK1lIe2XmIrFKyWcwzVdJHKU2A-NSREqyF5EMr1pRBWJCMlg0B4pkJboQFWsVo81k3FabbFCy-yx545fRunFeaUQmeZDbgveZZ5S42t1E6xCbwoFkV444j4W7m8kuubOP3Jd1PsM8f_jIInIpWLzRsSoWNlUve_BpzkAlC-Pap0B3HTOfvnU69hJ5yMhnzYHw_OYRfvtPKM4AuorlcbeYl2zzq60nL9CSoS_8g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+parafacial+respiratory+group+and+the+control+of+active+expiration&rft.jtitle=Respiratory+physiology+%26+neurobiology&rft.au=Pisanski%2C+Annette&rft.au=Pagliardini%2C+Silvia&rft.date=2019-07-01&rft.issn=1878-1519&rft.eissn=1878-1519&rft.volume=265&rft.spage=153&rft_id=info:doi/10.1016%2Fj.resp.2018.06.010&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-9048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-9048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-9048&client=summon |