The parafacial respiratory group and the control of active expiration

•The parafacial respiratory group (pFRG) has a key role in the generation of active expiration and recruitment of expiratory abdominal muscles.•Expiratory abdominal muscle activity is present in REM sleep and it is associated with reduced respiratory variability, increased tidal volume and minute ve...

Full description

Saved in:
Bibliographic Details
Published inRespiratory physiology & neurobiology Vol. 265; pp. 153 - 160
Main Authors Pisanski, Annette, Pagliardini, Silvia
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.07.2019
Subjects
Online AccessGet full text
ISSN1569-9048
1878-1519
1878-1519
DOI10.1016/j.resp.2018.06.010

Cover

Abstract •The parafacial respiratory group (pFRG) has a key role in the generation of active expiration and recruitment of expiratory abdominal muscles.•Expiratory abdominal muscle activity is present in REM sleep and it is associated with reduced respiratory variability, increased tidal volume and minute ventilation in adulthood and through post-natal rat development.•The pFRG neurons are under GABAergic and Cholinergic control and are activated in conditions of high metabolic demand (hypercapnia and hypoxia).•Mounting experimental evidence suggests that pFRG and RTN are two physiologically distinct nuclei in the parafacial region. Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented.
AbstractList Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented.
•The parafacial respiratory group (pFRG) has a key role in the generation of active expiration and recruitment of expiratory abdominal muscles.•Expiratory abdominal muscle activity is present in REM sleep and it is associated with reduced respiratory variability, increased tidal volume and minute ventilation in adulthood and through post-natal rat development.•The pFRG neurons are under GABAergic and Cholinergic control and are activated in conditions of high metabolic demand (hypercapnia and hypoxia).•Mounting experimental evidence suggests that pFRG and RTN are two physiologically distinct nuclei in the parafacial region. Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented.
Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented.Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2 expiration). Breathing during periods of increased respiratory demand, on the other hand, engages active expiration through recruitment of abdominal muscles in order to increase ventilation. It is currently hypothesized that different phases of the respiratory rhythm are driven by three coupled oscillators: the preBötzinger Complex, driving inspiration, the parafacial respiratory group (pFRG), driving active expiration and the post-inspiratory Complex, driving post-inspiration. In this paper we review advances in the understanding of the pFRG and its role in the generation of active expiration across different developmental stages and vigilance states. Recent experiments suggest that the abdominal recruitment varies across development depending on the vigilance state, possibly following the maturation of the network responsible for the generation of active expiration and neuromodulatory systems that influence its activity. The activity of the pFRG is tonically inhibited by GABAergic inputs and strongly recruited by cholinergic systems. However, the sources of these modulatory inputs and the physiological conditions under which these mechanisms are used to recruit active expiration and increase ventilation need further investigation. Some evidence suggests that active expiration during hypercapnia is evoked through disinhibition, while during hypoxia it is elicited through activation of catecholaminergic C1 neurons. Finally, a discussion of experiments indicating that the pFRG is anatomically and functionally distinct from the adjacent and partially overlapping chemosensitive neurons of the retrotrapezoid nucleus is also presented.
Author Pagliardini, Silvia
Pisanski, Annette
Author_xml – sequence: 1
  givenname: Annette
  surname: Pisanski
  fullname: Pisanski, Annette
  organization: Department of Physiology, University of Alberta, Edmonton, AB, Canada
– sequence: 2
  givenname: Silvia
  orcidid: 0000-0002-1482-9173
  surname: Pagliardini
  fullname: Pagliardini, Silvia
  email: silviap@ualberta.ca
  organization: Department of Physiology, University of Alberta, Edmonton, AB, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29933053$$D View this record in MEDLINE/PubMed
BookMark eNqFkEtv1DAQgC1URJ9_gAPKkUvCjJ2Hg7igqjykSr2UszXrjMFLNg62t-r-e7LdwqGH9jRz-L6R5jsVR1OYWIi3CBUCth_WVeQ0VxJQV9BWgPBKnKDudIkN9kfL3rR92UOtj8VpSmsA7LBTb8Sx7HuloFEn4ur2FxczRXJkPY3F_qKPlEPcFT9j2M4FTUORF8iGKccwFsEVZLO_44LvH1AfpnPx2tGY-OJxnokfX65uL7-V1zdfv19-vi5tDV0uyUlQ2GhHKPVKonUtOS2dHaRyA9b1alWzIuXaWnfWWeIaXQPYD9IxDb06E-8Pd-cY_mw5ZbPxyfI40sRhm4yERjeg265b0HeP6Ha14cHM0W8o7sy_1xdAHgAbQ0qR3X8Ewez7mrXZ1zD7vgZas_RdJP1Esj4_JMiR_Pi8-umg8hLoznM0yXqeLA8-ss1mCP55_eMT3Y5-8pbG37x7Sf4LgOWqgg
CitedBy_id crossref_primary_10_1016_j_resp_2022_103869
crossref_primary_10_1159_000517507
crossref_primary_10_1111_jsr_13539
crossref_primary_10_1016_j_neulet_2019_134388
crossref_primary_10_1016_j_tins_2019_09_002
crossref_primary_10_3389_fphar_2021_735594
crossref_primary_10_1152_jn_00165_2024
crossref_primary_10_1007_s11864_024_01274_5
crossref_primary_10_1016_j_ifacol_2024_11_093
crossref_primary_10_1093_sleep_zsab074
crossref_primary_10_1016_j_pulmoe_2024_01_005
crossref_primary_10_34014_2227_1848_2019_1_68_75
crossref_primary_10_1113_EP087784
crossref_primary_10_1113_EP089323
crossref_primary_10_3389_fnins_2020_615666
crossref_primary_10_1016_j_lfs_2021_120175
crossref_primary_10_1093_jmcb_mjaa081
crossref_primary_10_7554_eLife_94276_3
crossref_primary_10_1002_cne_24984
crossref_primary_10_1016_j_resp_2019_05_014
crossref_primary_10_7554_eLife_52572
crossref_primary_10_7554_eLife_83654
crossref_primary_10_7554_eLife_52694
crossref_primary_10_1093_sleep_zsz283
crossref_primary_10_7554_eLife_94276
crossref_primary_10_1152_jn_00478_2023
crossref_primary_10_1016_j_resp_2024_104241
crossref_primary_10_1097_MD_0000000000040683
crossref_primary_10_1152_ajplung_00314_2024
crossref_primary_10_7554_eLife_86103
crossref_primary_10_3389_fnmol_2022_1072475
crossref_primary_10_1002_wdev_366
crossref_primary_10_1016_j_autneu_2019_01_007
crossref_primary_10_1016_j_reprotox_2020_12_017
crossref_primary_10_1212_WNL_0000000000006537
crossref_primary_10_1113_EP088046
crossref_primary_10_1113_JP280492
crossref_primary_10_33549_physiolres_934396
crossref_primary_10_1523_JNEUROSCI_1006_20_2020
crossref_primary_10_1016_j_resp_2021_103657
crossref_primary_10_1113_JP279605
crossref_primary_10_1152_jn_00466_2024
Cites_doi 10.1523/JNEUROSCI.2953-14.2015
10.1126/science.aai7984
10.7554/eLife.14203
10.1523/JNEUROSCI.3280-11.2011
10.1002/cne.21409
10.1016/j.resp.2016.02.005
10.1523/JNEUROSCI.5338-10.2011
10.1016/j.neuron.2016.03.007
10.1523/JNEUROSCI.3625-08.2008
10.1016/B978-0-444-63274-6.00004-7
10.1113/jphysiol.2005.098848
10.1523/JNEUROSCI.23-04-01478.2003
10.1523/JNEUROSCI.0551-05.2005
10.1113/jphysiol.2008.167502
10.1073/pnas.1423136112
10.1113/JP270053
10.1002/cne.902950311
10.1371/journal.pone.0167861
10.1038/nn0901-927
10.1523/JNEUROSCI.3141-10.2010
10.1523/JNEUROSCI.1106-09.2009
10.1016/S0896-6273(03)00092-8
10.1016/0014-4886(88)90064-7
10.1016/S0301-0082(98)00046-X
10.1038/s41583-018-0003-6
10.1038/nn.2104
10.1038/nature16964
10.1152/japplphysiol.00420.2015
10.1038/nature18944
10.1016/0361-9230(89)90197-4
10.1155/2016/7493048
10.1002/cphy.c100083
10.1113/JP273012
10.1523/JNEUROSCI.23-29-09575.2003
10.1038/nn.2354
10.1113/jphysiol.2005.102533
10.1002/cne.21897
10.1007/978-0-387-73693-8_57
10.1007/s10827-010-0281-0
10.1093/sleep/zsx172
10.1371/journal.pone.0109894
10.1113/jphysiol.2002.023408
10.1007/s12576-009-0020-3
10.1113/JP273335
10.1016/j.resp.2016.06.006
10.1016/j.neuroscience.2017.03.031
10.1523/JNEUROSCI.2917-06.2006
10.1038/nn1357
10.1126/science.1683005
10.1016/j.resp.2007.01.004
10.1038/s41598-017-17412-z
10.1113/jphysiol.2007.138180
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright © 2018 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright © 2018 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.resp.2018.06.010
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1878-1519
EndPage 160
ExternalDocumentID 29933053
10_1016_j_resp_2018_06_010
S1569904818301009
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: CIHR
GroupedDBID ---
--K
--M
-~X
.1-
.FO
.GJ
.~1
0R~
123
1B1
1P~
1RT
1~.
1~5
29P
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABGSF
ABJNI
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGRDE
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OHT
OI-
OU.
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPCBC
SSH
SSN
SSU
SSZ
T5K
UHS
Z5R
ZGI
~02
~G-
AACTN
AADPK
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c407t-af203158fa128b21cf6af82fcd23fd144bb4e3a3f6487cfcae41f5019d2fead93
IEDL.DBID AIKHN
ISSN 1569-9048
1878-1519
IngestDate Sat Sep 27 22:57:40 EDT 2025
Thu Apr 03 06:57:45 EDT 2025
Tue Jul 01 03:30:45 EDT 2025
Thu Apr 24 23:09:48 EDT 2025
Fri Feb 23 02:19:07 EST 2024
Tue Aug 26 16:31:53 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Parafacial respiratory group (pFRG)
Expiratory abdominal muscles
Sleep
Brainstem development
Active expiration
Language English
License Copyright © 2018 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-af203158fa128b21cf6af82fcd23fd144bb4e3a3f6487cfcae41f5019d2fead93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-1482-9173
PMID 29933053
PQID 2058508677
PQPubID 23479
PageCount 8
ParticipantIDs proquest_miscellaneous_2058508677
pubmed_primary_29933053
crossref_primary_10_1016_j_resp_2018_06_010
crossref_citationtrail_10_1016_j_resp_2018_06_010
elsevier_sciencedirect_doi_10_1016_j_resp_2018_06_010
elsevier_clinicalkey_doi_10_1016_j_resp_2018_06_010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2019
2019-07-00
20190701
PublicationDateYYYYMMDD 2019-07-01
PublicationDate_xml – month: 07
  year: 2019
  text: July 2019
PublicationDecade 2010
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Respiratory physiology & neurobiology
PublicationTitleAlternate Respir Physiol Neurobiol
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Saini, Pagliardini (bib0220) 2017; 40
Sherrey, Pollard, Megirian (bib0225) 1988; 101
Janczewski, Onimaru, Homma, Feldman (bib0110) 2002; 545
Mellen, Janczewski, Bocchiaro, Feldman (bib0160) 2003; 37
Smith, Ellenberger, Ballanyi, Richter, Feldman (bib0235) 1991; 254
Jones (bib0115) 1990; 295
Janczewski, Feldman (bib0105) 2006; 570
Huckstepp, Henderson, Cardoza, Feldman (bib0080) 2016; 5
Barnett, Jenkin, Milsom, Paton, Abdala, Molkov, Zoccal (bib0030) 2017
de Britto, Moraes (bib0045) 2017; 595
Huckstepp, Llaudet, Gourine (bib0085) 2016; 11
O’Halloran (bib0180) 2017
Onimaru, Ikeda, Kawakami (bib0195) 2008; 28
Burke, Kanbar, Basting, Hodges, Viar, Stornetta, Guyenet (bib0040) 2015; 593
Silva, Tanabe, Moreira, Takakura (bib0230) 2016; 227
Pagliardini, Janczewski, Tan, Dickson, Deisseroth, Feldman (bib0210) 2011; 31
Oku, Masumiya, Okada (bib0185) 2007; 585
Pagliardini, Ren, Greer (bib0205) 2003; 23
Tan, Janczewski, Yang, Shao, Callaway, Feldman (bib0250) 2008; 11
Stornetta, Spirovski, Moreira, Takakura, West, Gwilt, Pilowsky, Guyenet (bib0245) 2009; 512
Woolf, Butcher (bib0270) 1989; 23
Deschenes, Takatoh, Kurnikova, Moore, Demers, Elbaz, Furuta, Wang, Kleinfeld (bib0060) 2016; 90
Nattie, Li (bib0175) 2012; 2
Onimaru, Homma (bib0190) 2003; 23
Del Negro, Funk, Feldman (bib0050) 2018; 19
Abbott, Stornetta, Fortuna, Depuy, West, Harris, Guyenet (bib0005) 2009; 29
Boutin, Alsahafi, Pagliardini (bib0035) 2017; 595
Mulkey, Stornetta, Weston, Simmons, Parker, Bayliss, Guyenet (bib0170) 2004; 7
Andrews, Pagliardini (bib0025) 2015; 119
Korsak, Sheikhbahaei, Machhada, Gourine, Huckstepp (bib0130) 2018; 8
Rubin, Bacak, Molkov, Shevtsova, Smith, Rybak (bib0215) 2011; 30
Abbott, Stornetta, Coates, Guyenet (bib0010) 2011; 31
Onimaru, Ikeda, Mariho, Kawakami (bib0200) 2014; 209
Stornetta, Moreira, Takakura, Kang, Chang, West, Brunet, Mulkey, Bayliss, Guyenet (bib0240) 2006; 26
Malheiros-Lima, Takakura, Moreira (bib0150) 2017; 351
Abdala, Rybak, Smith, Paton (bib0015) 2009; 587
Iizuka, Fregosi (bib0095) 2007; 157
Iscoe (bib0100) 1998; 56
Li, Janczewski, Yackle, Kam, Pagliardini, Krasnow, Feldman (bib0145) 2016; 530
Anderson, Garcia, Baertsch, Pollak, Bloom, Wei, Rai, Ramirez (bib0020) 2016; 536
Huckstepp, Cardoza, Henderson, Feldman (bib0075) 2015; 35
Krause, Nowak, Srbu, Bell (bib0135) 2016; 232
Leirao, Silva, Gargaglioni, da Silva (bib0140) 2017
Kawai, Onimaru, Homma (bib0125) 2006; 572
Marina, Abdala, Trapp, Li, Nattie, Hewinson, Smith, Paton, Gourine (bib0155) 2010; 30
Iizuka (bib0090) 2009; 59
Thoby-Brisson, Karlen, Wu, Charnay, Champagnat, Fortin (bib0260) 2009; 12
Yackle, Schwarz, Kam, Sorokin, Huguenard, Feldman, Luo, Krasnow (bib0275) 2017; 355
Kang, Chang, Mackay, West, Moreira, Takakura, Gwilt, Guyenet, Stornetta (bib0120) 2007; 503
Thoby-Brisson, Trinh, Champagnat, Fortin (bib0255) 2005; 25
Deschenes, Kurnikova, Elbaz, Kleinfeld (bib0055) 2016; 2016
Gray, Janczewski, Mellen, McCrimmon, Feldman (bib0065) 2001; 4
Van Dort, Zachs, Kenny, Zheng, Goldblum, Gelwan, Ramos, Nolan, Wang, Weng, Lin, Wilson, Brown (bib0265) 2015; 112
Molkov, Shevtsova, Park, Ben-Tal, Smith, Rubin, Rybak (bib0165) 2014; 9
Guyenet, Bayliss, Mulkey, Stornetta, Moreira, Takakura (bib0070) 2008; 605
Jones (10.1016/j.resp.2018.06.010_bib0115) 1990; 295
Krause (10.1016/j.resp.2018.06.010_bib0135) 2016; 232
Rubin (10.1016/j.resp.2018.06.010_bib0215) 2011; 30
Saini (10.1016/j.resp.2018.06.010_bib0220) 2017; 40
Iizuka (10.1016/j.resp.2018.06.010_bib0090) 2009; 59
O’Halloran (10.1016/j.resp.2018.06.010_bib0180) 2017
Huckstepp (10.1016/j.resp.2018.06.010_bib0075) 2015; 35
Nattie (10.1016/j.resp.2018.06.010_bib0175) 2012; 2
Guyenet (10.1016/j.resp.2018.06.010_bib0070) 2008; 605
Thoby-Brisson (10.1016/j.resp.2018.06.010_bib0255) 2005; 25
Yackle (10.1016/j.resp.2018.06.010_bib0275) 2017; 355
Boutin (10.1016/j.resp.2018.06.010_bib0035) 2017; 595
Janczewski (10.1016/j.resp.2018.06.010_bib0110) 2002; 545
Thoby-Brisson (10.1016/j.resp.2018.06.010_bib0260) 2009; 12
Abbott (10.1016/j.resp.2018.06.010_bib0005) 2009; 29
Sherrey (10.1016/j.resp.2018.06.010_bib0225) 1988; 101
Van Dort (10.1016/j.resp.2018.06.010_bib0265) 2015; 112
Deschenes (10.1016/j.resp.2018.06.010_bib0060) 2016; 90
Onimaru (10.1016/j.resp.2018.06.010_bib0200) 2014; 209
Marina (10.1016/j.resp.2018.06.010_bib0155) 2010; 30
Gray (10.1016/j.resp.2018.06.010_bib0065) 2001; 4
Kang (10.1016/j.resp.2018.06.010_bib0120) 2007; 503
Malheiros-Lima (10.1016/j.resp.2018.06.010_bib0150) 2017; 351
Molkov (10.1016/j.resp.2018.06.010_bib0165) 2014; 9
Abdala (10.1016/j.resp.2018.06.010_bib0015) 2009; 587
Del Negro (10.1016/j.resp.2018.06.010_bib0050) 2018; 19
Janczewski (10.1016/j.resp.2018.06.010_bib0105) 2006; 570
Burke (10.1016/j.resp.2018.06.010_bib0040) 2015; 593
Stornetta (10.1016/j.resp.2018.06.010_bib0245) 2009; 512
Woolf (10.1016/j.resp.2018.06.010_bib0270) 1989; 23
Iizuka (10.1016/j.resp.2018.06.010_bib0095) 2007; 157
Smith (10.1016/j.resp.2018.06.010_bib0235) 1991; 254
Deschenes (10.1016/j.resp.2018.06.010_bib0055) 2016; 2016
Anderson (10.1016/j.resp.2018.06.010_bib0020) 2016; 536
Oku (10.1016/j.resp.2018.06.010_bib0185) 2007; 585
Mellen (10.1016/j.resp.2018.06.010_bib0160) 2003; 37
Pagliardini (10.1016/j.resp.2018.06.010_bib0205) 2003; 23
Li (10.1016/j.resp.2018.06.010_bib0145) 2016; 530
Stornetta (10.1016/j.resp.2018.06.010_bib0240) 2006; 26
Onimaru (10.1016/j.resp.2018.06.010_bib0195) 2008; 28
Abbott (10.1016/j.resp.2018.06.010_bib0010) 2011; 31
Barnett (10.1016/j.resp.2018.06.010_bib0030) 2017
Pagliardini (10.1016/j.resp.2018.06.010_bib0210) 2011; 31
Iscoe (10.1016/j.resp.2018.06.010_bib0100) 1998; 56
Kawai (10.1016/j.resp.2018.06.010_bib0125) 2006; 572
Leirao (10.1016/j.resp.2018.06.010_bib0140) 2017
de Britto (10.1016/j.resp.2018.06.010_bib0045) 2017; 595
Mulkey (10.1016/j.resp.2018.06.010_bib0170) 2004; 7
Tan (10.1016/j.resp.2018.06.010_bib0250) 2008; 11
Huckstepp (10.1016/j.resp.2018.06.010_bib0080) 2016; 5
Huckstepp (10.1016/j.resp.2018.06.010_bib0085) 2016; 11
Onimaru (10.1016/j.resp.2018.06.010_bib0190) 2003; 23
Korsak (10.1016/j.resp.2018.06.010_bib0130) 2018; 8
Andrews (10.1016/j.resp.2018.06.010_bib0025) 2015; 119
Silva (10.1016/j.resp.2018.06.010_bib0230) 2016; 227
References_xml – volume: 595
  start-page: 1377
  year: 2017
  end-page: 1392
  ident: bib0035
  article-title: Cholinergic modulation of the parafacial respiratory group
  publication-title: J. Physiol.
– volume: 23
  start-page: 9575
  year: 2003
  end-page: 9584
  ident: bib0205
  article-title: Ontogeny of the pre-Botzinger complex in perinatal rats
  publication-title: J Neurosci.
– year: 2017
  ident: bib0030
  article-title: The kölliker-fuse orchestrates the timing of expiratory abdominal nerve bursting
  publication-title: J. Neurophysiology.
– volume: 90
  start-page: 374
  year: 2016
  end-page: 387
  ident: bib0060
  article-title: Inhibition, not excitation, drives rhythmic whisking
  publication-title: Neuron
– volume: 26
  start-page: 10305
  year: 2006
  end-page: 10314
  ident: bib0240
  article-title: Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat
  publication-title: J. Neurosci.
– volume: 595
  start-page: 2043
  year: 2017
  end-page: 2064
  ident: bib0045
  article-title: Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats
  publication-title: J. Physiol.
– volume: 4
  start-page: 927
  year: 2001
  end-page: 930
  ident: bib0065
  article-title: Normal breathing requires preBotzinger complex neurokinin-1 receptor-expressing neurons
  publication-title: Nat. Neuroscience
– volume: 295
  start-page: 485
  year: 1990
  end-page: 514
  ident: bib0115
  article-title: Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat
  publication-title: J. Compar. Neurol.
– volume: 37
  start-page: 821
  year: 2003
  end-page: 826
  ident: bib0160
  article-title: Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation
  publication-title: Neuron
– volume: 2
  start-page: 221
  year: 2012
  end-page: 254
  ident: bib0175
  article-title: Central chemoreceptors: locations and functions
  publication-title: Compr. Physiol.
– volume: 157
  start-page: 196
  year: 2007
  end-page: 205
  ident: bib0095
  article-title: Influence of hypercapnic acidosis and hypoxia on abdominal expiratory nerve activity in the rat
  publication-title: Respir. Physiol. Neurobiol.
– volume: 545
  start-page: 1017
  year: 2002
  end-page: 1026
  ident: bib0110
  article-title: Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat
  publication-title: J. Physiology
– volume: 355
  start-page: 1411
  year: 2017
  end-page: 1415
  ident: bib0275
  article-title: Breathing control center neurons that promote arousal in mice
  publication-title: Science (New. York, N.Y)
– volume: 227
  start-page: 9
  year: 2016
  end-page: 22
  ident: bib0230
  article-title: Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats
  publication-title: Respir. Physiol. Neurobiol.
– volume: 585
  start-page: 175
  year: 2007
  end-page: 186
  ident: bib0185
  article-title: Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla
  publication-title: J. Physiol.
– volume: 30
  start-page: 12466
  year: 2010
  end-page: 12473
  ident: bib0155
  article-title: Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration
  publication-title: J. Neurosci.
– volume: 587
  start-page: 3539
  year: 2009
  end-page: 3559
  ident: bib0015
  article-title: Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation
  publication-title: The J. Physiology
– volume: 8
  start-page: 400
  year: 2018
  ident: bib0130
  article-title: The Role Of Parafacial Neurons In The Control Of Breathing During Exercise
  publication-title: Sci. Rep.
– volume: 254
  start-page: 726
  year: 1991
  end-page: 729
  ident: bib0235
  article-title: Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals
  publication-title: Science (New. York, N.Y)
– volume: 572
  start-page: 525
  year: 2006
  end-page: 537
  ident: bib0125
  article-title: Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro
  publication-title: J. Physiology
– volume: 19
  start-page: 351
  year: 2018
  end-page: 367
  ident: bib0050
  article-title: Breathing matters
  publication-title: Nat. Rev.
– volume: 29
  start-page: 5806
  year: 2009
  end-page: 5819
  ident: bib0005
  article-title: Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats
  publication-title: J Neurosci.
– volume: 30
  start-page: 607
  year: 2011
  end-page: 632
  ident: bib0215
  article-title: Interacting oscillations in neural control of breathing: modeling and qualitative analysis
  publication-title: J. Comput. Neurosci.
– volume: 23
  start-page: 519
  year: 1989
  end-page: 540
  ident: bib0270
  article-title: Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum
  publication-title: Brain Res. Bull.
– volume: 40
  year: 2017
  ident: bib0220
  article-title: Breathing during sleep in the postnatal period of rats: the contribution of active expiration
  publication-title: Sleep
– volume: 11
  year: 2016
  ident: bib0085
  article-title: CO2-induced ATP-dependent release of acetylcholine on the ventral surface of the medulla oblongata
  publication-title: PLoS ONE
– year: 2017
  ident: bib0180
  article-title: Sleep awakens active expiration
  publication-title: J. Physiol.
– volume: 5
  year: 2016
  ident: bib0080
  article-title: Interactions between respiratory oscillators in adult rats
  publication-title: eLife
– volume: 59
  start-page: 157
  year: 2009
  end-page: 163
  ident: bib0090
  article-title: Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats
  publication-title: J. Physiol. Sci.: JPS
– volume: 23
  start-page: 1478
  year: 2003
  end-page: 1486
  ident: bib0190
  article-title: A novel functional neuron group for respiratory rhythm generation in the ventral medulla
  publication-title: J. Neurosci.
– volume: 351
  start-page: 1
  year: 2017
  end-page: 14
  ident: bib0150
  article-title: Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats
  publication-title: Neuroscience
– volume: 12
  start-page: 1028
  year: 2009
  end-page: 1035
  ident: bib0260
  article-title: Genetic identification of an embryonic parafacial oscillator coupling to the preBotzinger complex
  publication-title: Nat. Neurosci.
– volume: 31
  start-page: 16410
  year: 2011
  end-page: 16422
  ident: bib0010
  article-title: Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats
  publication-title: J Neurosci.
– volume: 56
  start-page: 433
  year: 1998
  end-page: 506
  ident: bib0100
  article-title: Control of abdominal muscles
  publication-title: Prog. Neurobiol.
– volume: 503
  start-page: 627
  year: 2007
  end-page: 641
  ident: bib0120
  article-title: Central nervous system distribution of the transcription factor Phox2b in the adult rat
  publication-title: J. Compar. Neurol.
– volume: 28
  start-page: 12845
  year: 2008
  end-page: 12850
  ident: bib0195
  article-title: CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat
  publication-title: J. Neurosci.
– volume: 512
  start-page: 373
  year: 2009
  end-page: 383
  ident: bib0245
  article-title: Galanin is a selective marker of the retrotrapezoid nucleus in rats
  publication-title: J. Compar. Neurol.
– volume: 593
  start-page: 2909
  year: 2015
  end-page: 2926
  ident: bib0040
  article-title: State-dependent control of breathing by the retrotrapezoid nucleus
  publication-title: J. Physiology
– volume: 530
  start-page: 293
  year: 2016
  end-page: 297
  ident: bib0145
  article-title: The peptidergic control circuit for sighing
  publication-title: Nature
– volume: 112
  start-page: 584
  year: 2015
  end-page: 589
  ident: bib0265
  article-title: Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 209
  start-page: 57
  year: 2014
  end-page: 71
  ident: bib0200
  article-title: Cytoarchitecture and CO(2) sensitivity of Phox2b-positive Parafacial neurons in the newborn rat medulla
  publication-title: Prog. Brain Res.
– volume: 605
  start-page: 327
  year: 2008
  end-page: 332
  ident: bib0070
  article-title: The retrotrapezoid nucleus and central chemoreception
  publication-title: Adv. Exp. Med. Biol.
– year: 2017
  ident: bib0140
  article-title: Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats
  publication-title: J. Physiol.
– volume: 570
  start-page: 407
  year: 2006
  end-page: 420
  ident: bib0105
  article-title: Distinct rhythm generators for inspiration and expiration in the juvenile rat
  publication-title: J. Physiol.
– volume: 7
  start-page: 1360
  year: 2004
  end-page: 1369
  ident: bib0170
  article-title: Respiratory control by ventral surface chemoreceptor neurons in rats
  publication-title: Nat. Neurosci.
– volume: 11
  start-page: 538
  year: 2008
  end-page: 540
  ident: bib0250
  article-title: Silencing preBotzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat
  publication-title: Nat. Neurosci.
– volume: 35
  start-page: 1052
  year: 2015
  end-page: 1067
  ident: bib0075
  article-title: Role of parafacial nuclei in control of breathing in adult rats
  publication-title: J Neurosci.
– volume: 9
  year: 2014
  ident: bib0165
  article-title: A closed-loop model of the respiratory system: focus on hypercapnia and active expiration
  publication-title: PLoS ONE
– volume: 101
  start-page: 50
  year: 1988
  end-page: 62
  ident: bib0225
  article-title: Proprioceptive, chemoreceptive and sleep state modulation of expiratory muscle activity in the rat
  publication-title: Exp. Neurol.
– volume: 536
  start-page: 76
  year: 2016
  end-page: 80
  ident: bib0020
  article-title: A novel excitatory network for the control of breathing
  publication-title: Nature
– volume: 2016
  year: 2016
  ident: bib0055
  article-title: Circuits in the ventral medulla that phase-lock motoneurons for coordinated sniffing and whisking
  publication-title: Neural Plast
– volume: 31
  start-page: 2895
  year: 2011
  end-page: 2905
  ident: bib0210
  article-title: Active expiration induced by excitation of ventral medulla in adult anesthetized rats
  publication-title: J. Neurosci.
– volume: 119
  start-page: 968
  year: 2015
  end-page: 974
  ident: bib0025
  article-title: Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats
  publication-title: J. Appl. Physiol.
– volume: 232
  start-page: 43
  year: 2016
  end-page: 53
  ident: bib0135
  article-title: Respiratory autoresuscitation following severe acute hypoxemia in anesthetized adult rats
  publication-title: Respir. Physiol. Neurobiol.
– volume: 25
  start-page: 4307
  year: 2005
  end-page: 4318
  ident: bib0255
  article-title: Emergence of the pre-Botzinger respiratory rhythm generator in the mouse embryo
  publication-title: J. Neurosci.
– volume: 35
  start-page: 1052
  year: 2015
  ident: 10.1016/j.resp.2018.06.010_bib0075
  article-title: Role of parafacial nuclei in control of breathing in adult rats
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.2953-14.2015
– volume: 355
  start-page: 1411
  year: 2017
  ident: 10.1016/j.resp.2018.06.010_bib0275
  article-title: Breathing control center neurons that promote arousal in mice
  publication-title: Science (New. York, N.Y)
  doi: 10.1126/science.aai7984
– volume: 5
  year: 2016
  ident: 10.1016/j.resp.2018.06.010_bib0080
  article-title: Interactions between respiratory oscillators in adult rats
  publication-title: eLife
  doi: 10.7554/eLife.14203
– volume: 31
  start-page: 16410
  year: 2011
  ident: 10.1016/j.resp.2018.06.010_bib0010
  article-title: Phox2b-expressing neurons of the parafacial region regulate breathing rate, inspiration, and expiration in conscious rats
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.3280-11.2011
– year: 2017
  ident: 10.1016/j.resp.2018.06.010_bib0180
  article-title: Sleep awakens active expiration
  publication-title: J. Physiol.
– volume: 503
  start-page: 627
  year: 2007
  ident: 10.1016/j.resp.2018.06.010_bib0120
  article-title: Central nervous system distribution of the transcription factor Phox2b in the adult rat
  publication-title: J. Compar. Neurol.
  doi: 10.1002/cne.21409
– volume: 227
  start-page: 9
  year: 2016
  ident: 10.1016/j.resp.2018.06.010_bib0230
  article-title: Neuroanatomical and physiological evidence that the retrotrapezoid nucleus/parafacial region regulates expiration in adult rats
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2016.02.005
– year: 2017
  ident: 10.1016/j.resp.2018.06.010_bib0140
  article-title: Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats
  publication-title: J. Physiol.
– volume: 31
  start-page: 2895
  year: 2011
  ident: 10.1016/j.resp.2018.06.010_bib0210
  article-title: Active expiration induced by excitation of ventral medulla in adult anesthetized rats
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5338-10.2011
– volume: 90
  start-page: 374
  year: 2016
  ident: 10.1016/j.resp.2018.06.010_bib0060
  article-title: Inhibition, not excitation, drives rhythmic whisking
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.03.007
– volume: 28
  start-page: 12845
  year: 2008
  ident: 10.1016/j.resp.2018.06.010_bib0195
  article-title: CO2-sensitive preinspiratory neurons of the parafacial respiratory group express Phox2b in the neonatal rat
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3625-08.2008
– volume: 209
  start-page: 57
  year: 2014
  ident: 10.1016/j.resp.2018.06.010_bib0200
  article-title: Cytoarchitecture and CO(2) sensitivity of Phox2b-positive Parafacial neurons in the newborn rat medulla
  publication-title: Prog. Brain Res.
  doi: 10.1016/B978-0-444-63274-6.00004-7
– volume: 570
  start-page: 407
  year: 2006
  ident: 10.1016/j.resp.2018.06.010_bib0105
  article-title: Distinct rhythm generators for inspiration and expiration in the juvenile rat
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2005.098848
– volume: 23
  start-page: 1478
  year: 2003
  ident: 10.1016/j.resp.2018.06.010_bib0190
  article-title: A novel functional neuron group for respiratory rhythm generation in the ventral medulla
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.23-04-01478.2003
– volume: 25
  start-page: 4307
  year: 2005
  ident: 10.1016/j.resp.2018.06.010_bib0255
  article-title: Emergence of the pre-Botzinger respiratory rhythm generator in the mouse embryo
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0551-05.2005
– volume: 587
  start-page: 3539
  year: 2009
  ident: 10.1016/j.resp.2018.06.010_bib0015
  article-title: Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation
  publication-title: The J. Physiology
  doi: 10.1113/jphysiol.2008.167502
– volume: 112
  start-page: 584
  year: 2015
  ident: 10.1016/j.resp.2018.06.010_bib0265
  article-title: Optogenetic activation of cholinergic neurons in the PPT or LDT induces REM sleep
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1423136112
– volume: 593
  start-page: 2909
  year: 2015
  ident: 10.1016/j.resp.2018.06.010_bib0040
  article-title: State-dependent control of breathing by the retrotrapezoid nucleus
  publication-title: J. Physiology
  doi: 10.1113/JP270053
– volume: 295
  start-page: 485
  year: 1990
  ident: 10.1016/j.resp.2018.06.010_bib0115
  article-title: Immunohistochemical study of choline acetyltransferase-immunoreactive processes and cells innervating the pontomedullary reticular formation in the rat
  publication-title: J. Compar. Neurol.
  doi: 10.1002/cne.902950311
– volume: 11
  year: 2016
  ident: 10.1016/j.resp.2018.06.010_bib0085
  article-title: CO2-induced ATP-dependent release of acetylcholine on the ventral surface of the medulla oblongata
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0167861
– volume: 4
  start-page: 927
  year: 2001
  ident: 10.1016/j.resp.2018.06.010_bib0065
  article-title: Normal breathing requires preBotzinger complex neurokinin-1 receptor-expressing neurons
  publication-title: Nat. Neuroscience
  doi: 10.1038/nn0901-927
– volume: 30
  start-page: 12466
  year: 2010
  ident: 10.1016/j.resp.2018.06.010_bib0155
  article-title: Essential role of Phox2b-expressing ventrolateral brainstem neurons in the chemosensory control of inspiration and expiration
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3141-10.2010
– volume: 29
  start-page: 5806
  year: 2009
  ident: 10.1016/j.resp.2018.06.010_bib0005
  article-title: Photostimulation of retrotrapezoid nucleus phox2b-expressing neurons in vivo produces long-lasting activation of breathing in rats
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.1106-09.2009
– volume: 37
  start-page: 821
  year: 2003
  ident: 10.1016/j.resp.2018.06.010_bib0160
  article-title: Opioid-induced quantal slowing reveals dual networks for respiratory rhythm generation
  publication-title: Neuron
  doi: 10.1016/S0896-6273(03)00092-8
– year: 2017
  ident: 10.1016/j.resp.2018.06.010_bib0030
  article-title: The kölliker-fuse orchestrates the timing of expiratory abdominal nerve bursting
  publication-title: J. Neurophysiology.
– volume: 101
  start-page: 50
  year: 1988
  ident: 10.1016/j.resp.2018.06.010_bib0225
  article-title: Proprioceptive, chemoreceptive and sleep state modulation of expiratory muscle activity in the rat
  publication-title: Exp. Neurol.
  doi: 10.1016/0014-4886(88)90064-7
– volume: 56
  start-page: 433
  year: 1998
  ident: 10.1016/j.resp.2018.06.010_bib0100
  article-title: Control of abdominal muscles
  publication-title: Prog. Neurobiol.
  doi: 10.1016/S0301-0082(98)00046-X
– volume: 19
  start-page: 351
  year: 2018
  ident: 10.1016/j.resp.2018.06.010_bib0050
  article-title: Breathing matters
  publication-title: Nat. Rev.
  doi: 10.1038/s41583-018-0003-6
– volume: 11
  start-page: 538
  year: 2008
  ident: 10.1016/j.resp.2018.06.010_bib0250
  article-title: Silencing preBotzinger complex somatostatin-expressing neurons induces persistent apnea in awake rat
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2104
– volume: 530
  start-page: 293
  year: 2016
  ident: 10.1016/j.resp.2018.06.010_bib0145
  article-title: The peptidergic control circuit for sighing
  publication-title: Nature
  doi: 10.1038/nature16964
– volume: 119
  start-page: 968
  year: 2015
  ident: 10.1016/j.resp.2018.06.010_bib0025
  article-title: Expiratory activation of abdominal muscle is associated with improved respiratory stability and an increase in minute ventilation in REM epochs of adult rats
  publication-title: J. Appl. Physiol.
  doi: 10.1152/japplphysiol.00420.2015
– volume: 536
  start-page: 76
  year: 2016
  ident: 10.1016/j.resp.2018.06.010_bib0020
  article-title: A novel excitatory network for the control of breathing
  publication-title: Nature
  doi: 10.1038/nature18944
– volume: 23
  start-page: 519
  year: 1989
  ident: 10.1016/j.resp.2018.06.010_bib0270
  article-title: Cholinergic systems in the rat brain: IV. Descending projections of the pontomesencephalic tegmentum
  publication-title: Brain Res. Bull.
  doi: 10.1016/0361-9230(89)90197-4
– volume: 2016
  year: 2016
  ident: 10.1016/j.resp.2018.06.010_bib0055
  article-title: Circuits in the ventral medulla that phase-lock motoneurons for coordinated sniffing and whisking
  publication-title: Neural Plast
  doi: 10.1155/2016/7493048
– volume: 2
  start-page: 221
  year: 2012
  ident: 10.1016/j.resp.2018.06.010_bib0175
  article-title: Central chemoreceptors: locations and functions
  publication-title: Compr. Physiol.
  doi: 10.1002/cphy.c100083
– volume: 595
  start-page: 1377
  year: 2017
  ident: 10.1016/j.resp.2018.06.010_bib0035
  article-title: Cholinergic modulation of the parafacial respiratory group
  publication-title: J. Physiol.
  doi: 10.1113/JP273012
– volume: 23
  start-page: 9575
  year: 2003
  ident: 10.1016/j.resp.2018.06.010_bib0205
  article-title: Ontogeny of the pre-Botzinger complex in perinatal rats
  publication-title: J Neurosci.
  doi: 10.1523/JNEUROSCI.23-29-09575.2003
– volume: 12
  start-page: 1028
  year: 2009
  ident: 10.1016/j.resp.2018.06.010_bib0260
  article-title: Genetic identification of an embryonic parafacial oscillator coupling to the preBotzinger complex
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2354
– volume: 572
  start-page: 525
  year: 2006
  ident: 10.1016/j.resp.2018.06.010_bib0125
  article-title: Mechanisms of CO2/H+ chemoreception by respiratory rhythm generator neurons in the medulla from newborn rats in vitro
  publication-title: J. Physiology
  doi: 10.1113/jphysiol.2005.102533
– volume: 512
  start-page: 373
  year: 2009
  ident: 10.1016/j.resp.2018.06.010_bib0245
  article-title: Galanin is a selective marker of the retrotrapezoid nucleus in rats
  publication-title: J. Compar. Neurol.
  doi: 10.1002/cne.21897
– volume: 605
  start-page: 327
  year: 2008
  ident: 10.1016/j.resp.2018.06.010_bib0070
  article-title: The retrotrapezoid nucleus and central chemoreception
  publication-title: Adv. Exp. Med. Biol.
  doi: 10.1007/978-0-387-73693-8_57
– volume: 30
  start-page: 607
  year: 2011
  ident: 10.1016/j.resp.2018.06.010_bib0215
  article-title: Interacting oscillations in neural control of breathing: modeling and qualitative analysis
  publication-title: J. Comput. Neurosci.
  doi: 10.1007/s10827-010-0281-0
– volume: 40
  year: 2017
  ident: 10.1016/j.resp.2018.06.010_bib0220
  article-title: Breathing during sleep in the postnatal period of rats: the contribution of active expiration
  publication-title: Sleep
  doi: 10.1093/sleep/zsx172
– volume: 9
  year: 2014
  ident: 10.1016/j.resp.2018.06.010_bib0165
  article-title: A closed-loop model of the respiratory system: focus on hypercapnia and active expiration
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0109894
– volume: 545
  start-page: 1017
  year: 2002
  ident: 10.1016/j.resp.2018.06.010_bib0110
  article-title: Opioid-resistant respiratory pathway from the preinspiratory neurones to abdominal muscles: in vivo and in vitro study in the newborn rat
  publication-title: J. Physiology
  doi: 10.1113/jphysiol.2002.023408
– volume: 59
  start-page: 157
  year: 2009
  ident: 10.1016/j.resp.2018.06.010_bib0090
  article-title: Abdominal expiratory muscle activity in anesthetized vagotomized neonatal rats
  publication-title: J. Physiol. Sci.: JPS
  doi: 10.1007/s12576-009-0020-3
– volume: 595
  start-page: 2043
  year: 2017
  ident: 10.1016/j.resp.2018.06.010_bib0045
  article-title: Non-chemosensitive parafacial neurons simultaneously regulate active expiration and airway patency under hypercapnia in rats
  publication-title: J. Physiol.
  doi: 10.1113/JP273335
– volume: 232
  start-page: 43
  year: 2016
  ident: 10.1016/j.resp.2018.06.010_bib0135
  article-title: Respiratory autoresuscitation following severe acute hypoxemia in anesthetized adult rats
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2016.06.006
– volume: 351
  start-page: 1
  year: 2017
  ident: 10.1016/j.resp.2018.06.010_bib0150
  article-title: Depletion of rostral ventrolateral medullary catecholaminergic neurons impairs the hypoxic ventilatory response in conscious rats
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.03.031
– volume: 26
  start-page: 10305
  year: 2006
  ident: 10.1016/j.resp.2018.06.010_bib0240
  article-title: Expression of Phox2b by brainstem neurons involved in chemosensory integration in the adult rat
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.2917-06.2006
– volume: 7
  start-page: 1360
  year: 2004
  ident: 10.1016/j.resp.2018.06.010_bib0170
  article-title: Respiratory control by ventral surface chemoreceptor neurons in rats
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn1357
– volume: 254
  start-page: 726
  year: 1991
  ident: 10.1016/j.resp.2018.06.010_bib0235
  article-title: Pre-Botzinger complex: a brainstem region that may generate respiratory rhythm in mammals
  publication-title: Science (New. York, N.Y)
  doi: 10.1126/science.1683005
– volume: 157
  start-page: 196
  year: 2007
  ident: 10.1016/j.resp.2018.06.010_bib0095
  article-title: Influence of hypercapnic acidosis and hypoxia on abdominal expiratory nerve activity in the rat
  publication-title: Respir. Physiol. Neurobiol.
  doi: 10.1016/j.resp.2007.01.004
– volume: 8
  start-page: 400
  year: 2018
  ident: 10.1016/j.resp.2018.06.010_bib0130
  article-title: The Role Of Parafacial Neurons In The Control Of Breathing During Exercise
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17412-z
– volume: 585
  start-page: 175
  year: 2007
  ident: 10.1016/j.resp.2018.06.010_bib0185
  article-title: Postnatal developmental changes in activation profiles of the respiratory neuronal network in the rat ventral medulla
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.2007.138180
SSID ssj0017173
Score 2.4397001
SecondaryResourceType review_article
Snippet •The parafacial respiratory group (pFRG) has a key role in the generation of active expiration and recruitment of expiratory abdominal muscles.•Expiratory...
Breathing at rest is typically characterized by three phases: active inspiration, post-inspiration (or stage 1 expiration), and passive expiration (or stage 2...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 153
SubjectTerms Abdominal Muscles - physiology
Active expiration
Animals
Brainstem development
Exhalation - physiology
Expiratory abdominal muscles
Fetal Development - physiology
Humans
Hypercapnia - physiopathology
Hypoxia - physiopathology
Parafacial respiratory group (pFRG)
Respiratory Center - physiology
Respiratory Center - physiopathology
Sleep
Sleep, REM - physiology
Title The parafacial respiratory group and the control of active expiration
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1569904818301009
https://dx.doi.org/10.1016/j.resp.2018.06.010
https://www.ncbi.nlm.nih.gov/pubmed/29933053
https://www.proquest.com/docview/2058508677
Volume 265
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qvXgRtT7qo6wgXiQ2zzU9ltJSX0XUQm9hN9mFiqaltqAXf7szySYiaAWPCTMk2Z18M7PzAjiJWwENJaQjMM-2fC5dSyiFYOj6WigeSq6oUPh2wPtD_2oUjCrQKWphKK3SYH-O6RlamztNs5rN6XjcfEDPA6HUR42DQpoV8a26qO3DKqy2L6_7gzKYYALNRG8Rg6mdydO80KmltpVO3saTCml_1k-_2Z-ZHuptwLoxIFk7f8dNqKh0C2rtFJ3nl3d2yrKUzuysvAZdFAJGzb21oJNxNvuKq7OsnIOJNGFoAjKTsc4mmokMAZl6y0hx27Zh2Os-dvqWmZtgxeiezS2hXZrdEGqByke6Tqy50KGr48T1dIIelJS-8oSnOXorsY6F8h0doK2XuBoFq-XtQDWdpGoPGKeGhGg1JBdC-1wJ4UgltQpDEdgabYU6OMVqRbFpKk6zLZ6jInvsKaJvi2iFI0qhc-w6nJU807ylxlJqr9iEqCgWRXiLEPGXcgUl1zdx-pPvuNjnCP8zCp6IVE0Wr0iEjpVN3f_qsJsLQPn2qNI9xE1v_59PPYA1vGrlWcCHUJ3PFuoIbZ25bMDK-YfTQInu3N_cNYxkfwIkCf93
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5Ke9CLqPVRnyuIFwnN2_RYSktqHxdb6G3ZJLtQ0bTUFvTfO5NsIoJW8JrMkGR38s3MzgvgNm55NJSQjsAc03D9yDaElAiGtquE9IPIl1QoPBr74dR9nHmzCnSKWhhKq9TYn2N6htb6SlOvZnM5nzef0PNAKHVR46CQZkV8NZeGWleh1u4PwnEZTNCBZqI3iEHXzuRpXujUUttKK2_jSYW0P-un3-zPTA_19mFPG5Csnb_jAVRkegj1dorO8-sHu2NZSmd2Vl6HLgoBo-beStDJOFt9xdVZVs7BRJowNAGZzlhnC8VEhoBMvmekuG1HMO11J53Q0HMTjBjds7UhlE2zGwIlUPlEthUrX6jAVnFiOypBDyqKXOkIR_norcQqFtK1lIe2XmIrFKyWcwzVdJHKU2A-NSREqyF5EMr1pRBWJCMlg0B4pkJboQFWsVo81k3FabbFCy-yx545fRunFeaUQmeZDbgveZZ5S42t1E6xCbwoFkV444j4W7m8kuubOP3Jd1PsM8f_jIInIpWLzRsSoWNlUve_BpzkAlC-Pap0B3HTOfvnU69hJ5yMhnzYHw_OYRfvtPKM4AuorlcbeYl2zzq60nL9CSoS_8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+parafacial+respiratory+group+and+the+control+of+active+expiration&rft.jtitle=Respiratory+physiology+%26+neurobiology&rft.au=Pisanski%2C+Annette&rft.au=Pagliardini%2C+Silvia&rft.date=2019-07-01&rft.issn=1878-1519&rft.eissn=1878-1519&rft.volume=265&rft.spage=153&rft_id=info:doi/10.1016%2Fj.resp.2018.06.010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1569-9048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1569-9048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1569-9048&client=summon