A review on distance based time series classification
Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The particularity of the data makes it a challenging task and different approaches have been taken, including the distance based approach. 1-NN h...
        Saved in:
      
    
          | Published in | Data mining and knowledge discovery Vol. 33; no. 2; pp. 378 - 412 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.03.2019
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1384-5810 1573-756X 1573-756X  | 
| DOI | 10.1007/s10618-018-0596-4 | 
Cover
| Abstract | Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The particularity of the data makes it a challenging task and different approaches have been taken, including the distance based approach. 1-NN has been a widely used method within distance based time series classification due to its simplicity but still good performance. However, its supremacy may be attributed to being able to use specific distances for time series within the classification process and not to the classifier itself. With the aim of exploiting these distances within more complex classifiers, new approaches have arisen in the past few years that are competitive or which outperform the 1-NN based approaches. In some cases, these new methods use the distance measure to transform the series into feature vectors, bridging the gap between time series and traditional classifiers. In other cases, the distances are employed to obtain a time series kernel and enable the use of kernel methods for time series classification. One of the main challenges is that a kernel function must be positive semi-definite, a matter that is also addressed within this review. The presented review includes a taxonomy of all those methods that aim to classify time series using a distance based approach, as well as a discussion of the strengths and weaknesses of each method. | 
    
|---|---|
| AbstractList | Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The particularity of the data makes it a challenging task and different approaches have been taken, including the distance based approach. 1-NN has been a widely used method within distance based time series classification due to its simplicity but still good performance. However, its supremacy may be attributed to being able to use specific distances for time series within the classification process and not to the classifier itself. With the aim of exploiting these distances within more complex classifiers, new approaches have arisen in the past few years that are competitive or which outperform the 1-NN based approaches. In some cases, these new methods use the distance measure to transform the series into feature vectors, bridging the gap between time series and traditional classifiers. In other cases, the distances are employed to obtain a time series kernel and enable the use of kernel methods for time series classification. One of the main challenges is that a kernel function must be positive semi-definite, a matter that is also addressed within this review. The presented review includes a taxonomy of all those methods that aim to classify time series using a distance based approach, as well as a discussion of the strengths and weaknesses of each method. | 
    
| Author | Mori, Usue Lozano, Jose A. Abanda, Amaia  | 
    
| Author_xml | – sequence: 1 givenname: Amaia orcidid: 0000-0001-8520-4456 surname: Abanda fullname: Abanda, Amaia email: aabanda@bcamath.org organization: Basque Center for Applied Mathematics (BCAM), Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU – sequence: 2 givenname: Usue surname: Mori fullname: Mori, Usue organization: Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU, Department of Applied Mathematics, Statistics and Operational Research, University of the Basque Country UPV/EHU – sequence: 3 givenname: Jose A. surname: Lozano fullname: Lozano, Jose A. organization: Basque Center for Applied Mathematics (BCAM), Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU  | 
    
| BookMark | eNqNj0tLAzEUhYNUsK3-AHcDrkdvHjPJLEvxBQU3Cu5CJpNIyjRTk6ml_96MUxAExcXl3sU5555vhia-8wahSwzXGIDfRAwlFjkMU1Rlzk7QFBec5rwoXyfppoLlhcBwhmYxrgGgIBSmqFhkwXw4s886nzUu9sprk9Uqmibr3cZk0QRnYqZbFaOzTqvedf4cnVrVRnNx3HP0cnf7vHzIV0_3j8vFKtcMeJ8rrC2mNr3WgjScU0EMCFM3VlS2FIrVpa1pVWKuCVNAm6QhDW4YLyvAxNI5ImPuzm_VYa_aVm6D26hwkBjkAC5HcAnDJHDJkulqNG1D974zsZfrbhd86ikJJlwwKqoiqfio0qGLMRgrteu_4PqgXPtnPv7h_E-nI0hMWv9mwnen302fdG2JbA | 
    
| CitedBy_id | crossref_primary_10_1016_j_ins_2023_119921 crossref_primary_10_1016_j_inffus_2018_10_005 crossref_primary_10_1016_j_jprocont_2023_103127 crossref_primary_10_1016_j_knosys_2022_108459 crossref_primary_10_1007_s10472_019_09682_2 crossref_primary_10_1016_j_iatssr_2022_06_001 crossref_primary_10_1109_ACCESS_2019_2943474 crossref_primary_10_1109_JSEN_2023_3297438 crossref_primary_10_1007_s00521_021_06827_5 crossref_primary_10_1016_j_eswa_2021_115147 crossref_primary_10_1155_2020_1978310 crossref_primary_10_1016_j_patcog_2020_107525 crossref_primary_10_1093_jssam_smae037 crossref_primary_10_1109_ACCESS_2025_3525952 crossref_primary_10_1016_j_bdr_2023_100407 crossref_primary_10_1016_j_neucom_2023_127214 crossref_primary_10_1155_2024_5593966 crossref_primary_10_1016_j_jksuci_2023_101783 crossref_primary_10_1007_s00521_019_04270_1 crossref_primary_10_1016_j_neunet_2024_106896 crossref_primary_10_1007_s41060_022_00360_x crossref_primary_10_1016_j_ifacol_2022_04_250 crossref_primary_10_1016_j_eswa_2024_125109 crossref_primary_10_1007_s11227_022_04792_x crossref_primary_10_1007_s10489_021_03013_x crossref_primary_10_1007_s10115_021_01621_0 crossref_primary_10_1016_j_ijar_2022_09_014 crossref_primary_10_1109_ACCESS_2022_3164409 crossref_primary_10_1016_j_eswa_2023_120914 crossref_primary_10_1186_s12859_024_05636_6 crossref_primary_10_1007_s10489_021_03009_7 crossref_primary_10_1111_insr_12540 crossref_primary_10_1016_j_asoc_2025_112903 crossref_primary_10_1016_j_eswa_2023_121201 crossref_primary_10_3390_s24041113 crossref_primary_10_1016_j_knosys_2024_112057 crossref_primary_10_1109_ACCESS_2020_3029140 crossref_primary_10_1016_j_engappai_2023_107716 crossref_primary_10_1016_j_knosys_2022_109644 crossref_primary_10_3390_app112210957 crossref_primary_10_1007_s00521_022_07358_3 crossref_primary_10_1109_ACCESS_2024_3433615 crossref_primary_10_1109_ACCESS_2020_2993538 crossref_primary_10_1109_TAES_2024_3404360 crossref_primary_10_1016_j_actaastro_2024_10_066 crossref_primary_10_1016_j_neucom_2024_127908 crossref_primary_10_1109_TMECH_2022_3227960 crossref_primary_10_3934_math_20241315 crossref_primary_10_1109_TPAMI_2024_3372455 crossref_primary_10_1109_TPAMI_2024_3387317 crossref_primary_10_17341_gazimmfd_1089173 crossref_primary_10_1016_j_ipm_2022_102867 crossref_primary_10_1109_TFUZZ_2024_3364585 crossref_primary_10_3390_cancers15030843 crossref_primary_10_1016_j_asoc_2022_109859 crossref_primary_10_1016_j_cie_2024_110067 crossref_primary_10_1016_j_eswa_2024_123869 crossref_primary_10_1109_ACCESS_2023_3346058 crossref_primary_10_1016_j_asoc_2024_112398 crossref_primary_10_1016_j_asoc_2024_112431 crossref_primary_10_1016_j_jocs_2024_102235 crossref_primary_10_3390_app13042371 crossref_primary_10_1109_TNNLS_2023_3256464 crossref_primary_10_3390_bios12060375 crossref_primary_10_1016_j_buildenv_2024_111358 crossref_primary_10_1016_j_eswa_2023_120736 crossref_primary_10_1007_s00170_024_14225_z crossref_primary_10_1016_j_ifacol_2021_10_053 crossref_primary_10_1109_TNNLS_2023_3273503 crossref_primary_10_1007_s42979_023_02159_4 crossref_primary_10_1109_ACCESS_2024_3521537 crossref_primary_10_1007_s10618_020_00689_6 crossref_primary_10_3934_DSFE_2022012 crossref_primary_10_3389_fradi_2024_1495181 crossref_primary_10_1002_for_3024 crossref_primary_10_3390_a14120353 crossref_primary_10_1007_s11277_024_11027_0 crossref_primary_10_1016_j_eswa_2020_114374 crossref_primary_10_1016_j_istruc_2024_106766 crossref_primary_10_1016_j_asoc_2022_109494 crossref_primary_10_1016_j_bspc_2024_106808 crossref_primary_10_1002_sam_11455 crossref_primary_10_1007_s00778_024_00865_w crossref_primary_10_1016_j_asoc_2025_112778 crossref_primary_10_1177_09544054241229495 crossref_primary_10_1109_ACCESS_2022_3211518 crossref_primary_10_1007_s41403_021_00230_1 crossref_primary_10_1007_s10115_023_01952_0 crossref_primary_10_1016_j_neucom_2024_128100 crossref_primary_10_1109_ACCESS_2022_3207765 crossref_primary_10_1016_j_ins_2025_122109 crossref_primary_10_1088_1741_2552_ad5ec0 crossref_primary_10_1162_netn_a_00353 crossref_primary_10_7232_JKIIE_2023_49_1_015 crossref_primary_10_1109_TIM_2023_3325519 crossref_primary_10_1007_s11280_023_01207_6 crossref_primary_10_1016_j_patcog_2020_107699 crossref_primary_10_1145_3633804 crossref_primary_10_1155_2022_8374696 crossref_primary_10_1007_s43762_024_00151_z crossref_primary_10_1007_s10898_023_01294_9 crossref_primary_10_1016_j_ins_2022_09_009 crossref_primary_10_1007_s11071_024_10244_3 crossref_primary_10_1016_j_cie_2024_110812 crossref_primary_10_3389_fams_2021_784855 crossref_primary_10_3389_fnins_2023_1229371 crossref_primary_10_1016_j_eswa_2024_124889 crossref_primary_10_1007_s42452_020_2506_9 crossref_primary_10_1109_TSMC_2022_3150398 crossref_primary_10_3390_rs16132488 crossref_primary_10_3390_a13110284 crossref_primary_10_1016_j_neucom_2024_128368 crossref_primary_10_35234_fumbd_1425635 crossref_primary_10_1007_s10618_024_01022_1 crossref_primary_10_1007_s11538_023_01175_y crossref_primary_10_1016_j_hcc_2023_100135 crossref_primary_10_1115_1_4063694 crossref_primary_10_3233_JIFS_223338 crossref_primary_10_1016_j_engappai_2021_104214 crossref_primary_10_3390_vehicles5020023 crossref_primary_10_1007_s10618_020_00695_8 crossref_primary_10_1371_journal_pone_0239425 crossref_primary_10_3390_futuretransp4010004 crossref_primary_10_7717_peerj_cs_982 crossref_primary_10_3390_smartcities5030048 crossref_primary_10_1016_j_neunet_2020_04_030 crossref_primary_10_3390_s21041059 crossref_primary_10_1016_j_neucom_2025_129884 crossref_primary_10_1016_j_engappai_2025_110339 crossref_primary_10_1007_s10489_022_04422_2 crossref_primary_10_1016_j_ins_2022_10_048 crossref_primary_10_1016_j_knosys_2024_112231  | 
    
| Cites_doi | 10.1109/34.862197 10.1007/s10618-012-0250-5 10.1109/IWFHR.2002.1030883 10.1137/1.9781611972832.74 10.1007/s10618-016-0462-1 10.1016/B978-012088469-8.50070-X 10.1016/j.csda.2007.06.001 10.1145/2379776.2379788 10.1109/TASSP.1978.1163055 10.1016/j.ins.2014.08.066 10.1145/191843.191925 10.1006/jcss.1997.1504 10.1002/scj.20486 10.1109/TPAMI.2005.78 10.1109/ICDE.2002.994711 10.1162/neco.2006.18.6.1472 10.1007/BF02530507 10.1016/j.knosys.2014.04.035 10.1016/j.engappai.2010.09.007 10.1145/2020408.2020587 10.1007/978-3-319-68765-0_17 10.1109/ICMLA.2016.0010 10.1007/s10115-004-0154-9 10.1142/9789812703170 10.1007/978-1-4684-9446-4 10.1007/978-3-540-28649-3_27 10.1145/1143844.1143974 10.1145/775047.775062 10.1109/TIT.1967.1053964 10.1109/ICPR.2010.16 10.1109/ICMLA.2012.44 10.1007/s00357-013-9135-6 10.1007/978-1-4757-2711-1 10.1109/TPAMI.2008.76 10.1007/s10618-010-0179-5 10.1109/TASSP.1987.1165065 10.14778/1454159.1454226 10.1145/1015330.1015443 10.7551/mitpress/4175.001.0001 10.1016/j.patrec.2008.01.016 10.1145/2623330.2623613 10.1016/j.patcog.2016.11.013 10.1109/TIT.2004.838101 10.1145/2339530.2339579 10.1007/978-3-642-04174-7_32 10.1016/j.ins.2014.05.025 10.1007/978-3-662-44845-8_37 10.1016/j.knosys.2014.12.003 10.1145/1390156.1390235 10.1007/11510888_35 10.1016/j.neucom.2014.08.099 10.1007/s10618-013-0322-1 10.1145/2487575.2487633 10.1016/j.is.2015.02.005 10.1007/s10618-014-0361-2 10.1109/TIT.2016.2598574 10.1016/j.patcog.2010.09.022 10.1007/s10618-015-0418-x 10.1023/B:MACH.0000008084.60811.49 10.1007/978-3-662-49381-6_59 10.1145/1557019.1557122 10.1016/j.ins.2012.12.012 10.1137/1.9781611975321.28 10.1007/s10618-016-0483-9 10.1109/TSP.2011.2179539 10.1109/TPAMI.2014.2316836 10.1023/A:1012454411458 10.1017/CBO9780511809682 10.5244/C.25.63 10.1016/j.neucom.2012.07.006 10.1007/978-3-319-70139-4_46 10.1109/TKDE.2012.131 10.1145/1882471.1882478 10.1109/IJCNN.2008.4634188 10.1016/j.patcog.2005.06.012 10.1145/1101149.1101239 10.1109/TNN.2006.875973 10.1109/SITIS.2007.112 10.1007/s10618-007-0064-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Author(s) 2018 Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| Copyright_xml | – notice: The Author(s) 2018 – notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8AO 8FD 8FE 8FG 8FK 8FL 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ GUQSH HCIFZ JQ2 K60 K6~ K7- L.- L7M L~C L~D M0C M0N M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI Q9U ADTOC UNPAY  | 
    
| DOI | 10.1007/s10618-018-0596-4 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection (ProQuest Business Suite) (LAB) ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One Community College ProQuest Central Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database (Proquest) ABI/INFORM Professional Advanced Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef ABI/INFORM Global (Corporate) ProQuest Business Collection (Alumni Edition) ProQuest One Business Research Library Prep Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Pharma Collection ABI/INFORM Complete ProQuest Central ABI/INFORM Professional Advanced ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest Business Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Business (Alumni) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) Business Premium Collection (Alumni)  | 
    
| DatabaseTitleList | ABI/INFORM Global (Corporate) | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Physics Computer Science  | 
    
| EISSN | 1573-756X | 
    
| EndPage | 412 | 
    
| ExternalDocumentID | oai:dnet:bird________::7072b6c54fe3c0829626ff860d383e59 10_1007_s10618_018_0596_4  | 
    
| GrantInformation_xml | – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España grantid: TIN2016-78365-R; BES-2016-076890 funderid: http://dx.doi.org/10.13039/501100010198 – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España grantid: SEV-2013-0323; TIN2017-82626-R funderid: http://dx.doi.org/10.13039/501100010198 – fundername: Eusko Jaurlaritza grantid: BERC 2018-2021 funderid: http://dx.doi.org/10.13039/501100003086 – fundername: Eusko Jaurlaritza grantid: IT-609-13 funderid: http://dx.doi.org/10.13039/501100003086  | 
    
| GroupedDBID | -59 -5G -BR -EM -~C .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29F 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 7WY 8AO 8FE 8FG 8FL 8G5 8TC 8UJ 95- 95. 95~ 96X AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CCPQU CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GUQSH GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X J-C J0Z J9A JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV LAK LLZTM M0C M0N M2O M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9J OAM P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PT4 PT5 Q2X QOS R89 R9I RNS ROL RPX RSV S16 S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7W Z7X Z7Y Z7Z Z81 Z83 Z88 ZMTXR -Y2 1SB 2P1 2VQ AAPKM AARHV AAYXX ABBRH ABDBE ABFSG ABQSL ABRTQ ABULA ACBXY ACSTC ADHKG ADKFA AEBTG AEKMD AEZWR AFDZB AFGCZ AFHIU AFOHR AGGDS AGQPQ AHPBZ AHSBF AHWEU AIXLP AJBLW AMVHM ATHPR AYFIA CAG CITATION COF H13 N2Q O9- OVD PHGZM PHGZT PQGLB PUEGO RNI RZC RZE RZK S1Z TEORI 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D MBDVC PKEHL PQEST PQUKI Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c407t-a1cf13f384c82d77382e08ebdf89f68a4b6fb39617c24a03dd772d1d4769012f3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1384-5810 1573-756X  | 
    
| IngestDate | Tue Aug 19 20:09:57 EDT 2025 Sat Aug 16 15:11:58 EDT 2025 Wed Oct 01 01:07:28 EDT 2025 Thu Apr 24 23:06:41 EDT 2025 Fri Feb 21 02:33:29 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | Distance based Definiteness Kernel Time series Classification  | 
    
| Language | English | 
    
| License | cc-by-nc-sa | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c407t-a1cf13f384c82d77382e08ebdf89f68a4b6fb39617c24a03dd772d1d4769012f3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-8520-4456 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/20.500.11824/888 | 
    
| PQID | 2127843895 | 
    
| PQPubID | 43030 | 
    
| PageCount | 35 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10618_018_0596_4 proquest_journals_2127843895 crossref_citationtrail_10_1007_s10618_018_0596_4 crossref_primary_10_1007_s10618_018_0596_4 springer_journals_10_1007_s10618_018_0596_4  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2019-03-01 | 
    
| PublicationDateYYYYMMDD | 2019-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York | 
    
| PublicationTitle | Data mining and knowledge discovery | 
    
| PublicationTitleAbbrev | Data Min Knowl Disc | 
    
| PublicationYear | 2019 | 
    
| Publisher | Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer Nature B.V  | 
    
| References | Rüping S (2001) SVM kernels for time series analysis. Technical report MizuharaYHayashiASuematsuNEmbedding of time series data by using dynamic time warping distancesSyst Comput Jpn20063731910.1002/scj.20486 DecosteDSchölkopfBTraining invariant support vector machines using selective samplingMach Learn2002461611900998.6810210.1023/A:1012454411458 Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. In: ACM SIGMOD international conference on management of data, pp 419–429 ChenZZuoWHuQLinLKernel sparse representation for time series classificationInf Sci2015292152632670471404.6809510.1016/j.ins.2014.08.066 ZhangLChangPLiuJYanZWangTLiFKernel sparse representation-based classifierIEEE Trans Signal Process20126041684169529341891393.9473310.1109/TSP.2011.2179539 MarteauPFTime warp edit distance with stiffness adjustment for time series matchingIEEE Trans Pattern Anal Mach Intell200931230631810.1109/TPAMI.2008.76 YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discovery2011221–214918227645551235.6821310.1007/s10618-010-0179-5 JeongYJeongMKOmitaomuOAWeighted dynamic time warping for time series classificationPattern Recognit20114492231224010.1016/j.patcog.2010.09.022 Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd ICML international conference on machine learning, pp 1033–1040 KayaHGündüz-ÖüdücüSSAGA: a novel signal alignment method based on genetic algorithmInf Sci2013228113130301870710.1016/j.ins.2012.12.012 WangXMueenADingHTrajcevskiGScheuermannPKeoghEExperimental comparison of representation methods and distance measures for time series dataData Min Knowl Discovery2013262275309301773910.1007/s10618-012-0250-5 CoverTHartPNearest neighbor pattern classificationIEEE Trans Inf Theory196713121270154.4450510.1109/TIT.1967.1053964 BelkinMNiyogiPLaplacian Eigenmaps and spectral techniques for embedding and clusteringAdv Neural Inf Process Syst200214585591 Chen L, Ng R (2004) On the marriage of Lp-norms and edit distance. In: International conference on very large data bases, pp 792–803 MarteauPFBonnelNMénierGDiscrete elastic inner vector spaces with application in time series and sequence miningIEEE Trans Knowl Data Eng20122592024203510.1109/TKDE.2012.131 Wu G, Chang EY, Zhang Z (2005a) An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines. In: Proceedings of the 22th ICML international conference on machine learning, p 8 Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1154–1162 Sivaramakrishnan KR, Bhattacharyya C (2004) Time series classification for online tamil handwritten character recognition a kernel based approach. In: International conference on neural information processing, pp 800–805 ChenYGarciaEGuptaMSimilarity-based classification: concepts and algorithmsJ Mach Learn Res20091020674777624917571235.68138 GreubWHLinear algebra1975BerlinSpringer0317.1500210.1007/978-1-4684-9446-4 SmythPClustering sequences with hidden Markov modelsAdv Neural Inf Process Syst19979648654 Bahlmann C, Haasdonk B, Burkhardt H (2002) Online handwriting recognition with support vector machines: a kernel approach. In: Proceedings of international workshop on frontiers in handwriting recognition, IWFHR, pp 49–54 SerràJArcosJLAn empirical evaluation of similarity measures for time series classificationKnowl Based Syst20146730531410.1016/j.knosys.2014.04.035 Jain B, Spiegel S (2015) Dimension reduction in dissimilarity spaces for time series classification. In: International workshop on advanced analytics and learning on temporal data, pp 31–46 Schölkopf B (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Discovery201529356559233343151405.6829510.1007/s10618-014-0361-2 Ong CS, Mary X, Canu S, Smola AJ (2004) Learning with non-positive kernels. In: Proceedings of the 21th ICML international conference on machine learning, p 81 LiMChenXLiXMaBVitányiPMBThe similarity metricIEEE Trans Inf Theory200450123250326421034951316.6805210.1109/TIT.2004.838101 Li X, Lin J (2018) Evolving separating references for time series classification. In: Proceedings of the 2018 SIAM international conference on data mining, pp 243–251 SakoeHChibaSDynamic programming algorithm optimization for spoken word recognitionIEEE Trans Acoustics Speech Signal Process197826143490371.6803510.1109/TASSP.1978.1163055 KayaHGündüz-ÖüdücüSA distance based time series classification frameworkInf Syst201551274210.1016/j.is.2015.02.005 Gaidon A, Harchoui Z, Schmid C (2011) A time series kernel for action recognition. In: Procedings of the British machine vision conference, pp 63.1–63.11 Lei H, Sun B (2007) A study on the dynamic time warping in kernel machines. In: Proceedings of the 3rd SITIS international IEEE conference on signal-image technologies and internet-based system, pp 839–845 Weston J, Schölkopf B, Eskin E, Leslie C, Noble WS (2003) Dealing with large diagonals in kernel matrices. In: Annals of the institute of statistical mathematics, vol 55, pp 391–408 Cuturi M (2011) Fast global alignment kernels. In: Proceedings of the 28th ICML international conference on machine learning, pp 929–936 FuTCA review on time series data miningEng Appl Artif Intell201124116418110.1016/j.engappai.2010.09.007 HochreiterSObermayerKSupport vector machines for dyadic dataNeural Comput200615101472151022188401101.6876210.1162/neco.2006.18.6.1472 Wu L, Yen IEH, Xu F, Ravikuma P, Witbrock M (2018a) D2KE: from distance to kernel and embedding, pp 1–18. arXiv:1802.04956 BorgIGroenenPModern multidimensional scaling: theory and applications1997BerlinSpringer0862.6205210.1007/978-1-4757-2711-1 Lichman M (2013) UCI machine learning repository CasacubertaFVidalERulotHOn the metric properties of dynamic time warpingIEEE Trans Acoustics Speech Signal Process198735111631163310.1109/TASSP.1987.1165065 He Q, Zhi D, Zhuang F, Shang T, Shi Z (2012) Fast time series classification based on infrequent shapelets. In: Proceedings of the 11th ICMLA international conference on machine learning and applications vol 1, pp 215–219 Lu Z, Leen KT, Huang Y, Erdogmus D (2008) A reproducing kernel hilbert space framework for pairwise time series distances. In: Proceedings of the 25th ICML international conference on machine learning, vol 56, pp 624–631 Lei Q, Yi J, Vaculin R, Wu L, Dhillon IS (2017) Similarity preserving representation learning for time series analysis. arXiv: 1702.03584 [cs] GraepelTHerbrichRBollmann-SdorraPObermayerKClassification on pairwise proximity dataAdv Neural Inf Process Syst199911438444 VapnikVStatistical learning theory1998New YorkWiley0935.62007 Leslie C, Eskin E, Noble WS (2002) The spectrum kernel: a string kernel for SVM protein classification. In: Proceedings of the pacific symposium on biocomputing, pp 564–575 WilsonRCHancockERPȩkalskaEDuinRPWSpherical and hyperbolic embeddings of dataIEEE Trans Pattern Anal Mach Intell201436112255226910.1109/TPAMI.2014.2316836 CorduasMPiccoloDTime series clustering and classification by the autoregressive metricComput Stat Data Anal20085241860187224184760556460710.1016/j.csda.2007.06.001 CortesCHaffnerPMohriMRational kernels: theory and algorithmsJ Mach Learn Res200451035106222480081222.68175 KateRJUsing dynamic time warping distances as features for improved time series classificationData Min Knowl Discovery201530228331234581960705050610.1007/s10618-015-0418-x TroncosoAAriasMRiquelmeJCA multi-scale smoothing kernel for measuring time-series similarityNeurocomputing201516781710.1016/j.neucom.2014.08.099 Guyon I, Schomaker L, Planiondon R, Liberman M, Janet S, Montreal Ecole Polytechnique De, Consortium Linguistic Data (1994) UNIPEN project of on-line data exchange, pp 29–33 FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingComput Syst Sci199713911913914730550880.6810310.1006/jcss.1997.1504 Popivanov I, Miller RJ (2002) Similarity search over time-series data using wavelets. In: Proceedings 18th international conference on data engineering (ICDE), pp 212–221 EslingPAgonCTime-series data miningACM Comput Surv20124511341293.6810410.1145/2379776.2379788 Wu G, Chang EY, Zhang Z (2005b) Learning with non-metric proximity matrices. In: Proceedings of the 13th ACM international conference on multimedia, p 411 BagnallALinesJBostromALargeJKeoghEThe great time series classification bake off: a review and experimental evaluation of recent algorithmic advancesData Min Knowl Discov2017313606660364065910.1007/s10618-016-0483-9 Gudmundsson S, Runarsson TP, Sigurdsson S (2008) Support vector machines and dynamic time warping for time series. In: Joint conference on neural networks (IEEE world congress on computational intelligence), pp 2772–2776 MarteauPFGibetSOn recursive edit distance kernels with application to time series classificationIEEE Trans Neural Netw Learn Syst20142661153454837 Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, p 947 ChenPFanRLinCA study on SMO-type decomposition methods for support vector machinesIEEE Trans Neural Netw Learn Syst200617489390810.1109/TNN.2006.875973 JacobsDWWeinshallDGdalyahuYClassification with nonmetric distances: image retrieval and class representationIEEE Trans Pattern Anal Mach Intell200022658360010.1109/34.862197 RasmussenCWilliamsCGaussian processes for machine learning2006BerlinSpringer1177.68165 DingHTrajcevskiGScheuermannPWangXKeoghEQuerying and mining of time series data: experimental comparison of representations and distance meas H Kaya (596_CR50) 2013; 228 T Cover (596_CR20) 1967; 13 R Sun (596_CR93) 2016; 62 596_CR110 RJ Kate (596_CR49) 2015; 30 596_CR112 M Li (596_CR59) 2004; 50 A Bostrom (596_CR8) 2014; 8800 RC Wilson (596_CR102) 2014; 36 B Haasdonk (596_CR36) 2005; 27 X Wang (596_CR99) 2013; 26 YS Jeong (596_CR47) 2015; 75 596_CR61 596_CR60 596_CR62 U Mori (596_CR73) 2017; 31 596_CR65 P Smyth (596_CR92) 1997; 9 P Esling (596_CR25) 2012; 45 596_CR67 596_CR66 596_CR69 C Cortes (596_CR18) 1995; 297 PF Marteau (596_CR70) 2014; 26 J Hills (596_CR40) 2014; 28 H Shimodaira (596_CR90) 2002; 2 J Lines (596_CR64) 2015; 29 PF Marteau (596_CR71) 2012; 25 DMJ Tax (596_CR95) 2004; 54 CC Adams (596_CR1) 2004 H Sakoe (596_CR85) 1978; 26 D Decoste (596_CR23) 2002; 46 596_CR52 596_CR54 596_CR56 596_CR58 596_CR57 596_CR38 596_CR37 596_CR39 WH Greub (596_CR33) 1975 E Pȩkalska (596_CR77) 2001; 2 P Chen (596_CR12) 2006; 17 L Zhang (596_CR113) 2012; 60 596_CR44 596_CR46 596_CR26 A Bagnall (596_CR2) 2014; 31 596_CR29 596_CR100 596_CR101 596_CR104 596_CR103 H Ding (596_CR24) 2008; 1 596_CR105 596_CR107 596_CR109 M Corduas (596_CR17) 2008; 52 596_CR30 I Borg (596_CR7) 1997 596_CR31 596_CR34 Y Mizuhara (596_CR72) 2006; 37 596_CR35 H Kaya (596_CR51) 2015; 51 596_CR15 C Rasmussen (596_CR83) 2006 F Casacuberta (596_CR10) 1987; 35 K Kumara (596_CR55) 2008; 29 TC Fu (596_CR28) 2011; 24 L Ye (596_CR111) 2011; 22 596_CR21 E Keogh (596_CR53) 2005; 7 H Pree (596_CR80) 2014; 281 L Wu (596_CR106) 2018; 84 Z Xing (596_CR108) 2010; 12 E Pȩkalska (596_CR78) 2006; 39 S Hochreiter (596_CR41) 2006; 1510 A Bagnall (596_CR3) 2017; 31 Y Chen (596_CR14) 2009; 10 T Graepel (596_CR32) 1999; 11 596_CR91 M Belkin (596_CR5) 2002; 14 A Troncoso (596_CR96) 2015; 167 596_CR98 596_CR11 DW Jacobs (596_CR43) 2000; 22 596_CR13 BK Iwana (596_CR42) 2017; 64 V Vapnik (596_CR97) 1998 Z Chen (596_CR16) 2015; 292 PN Tan (596_CR94) 2005 J Serrà (596_CR88) 2014; 67 Y Freund (596_CR27) 1997; 139 A Jalalian (596_CR45) 2013; 99 J Shawe-Taylor (596_CR89) 2004 596_CR81 596_CR82 C Cortes (596_CR19) 2004; 5 596_CR84 596_CR87 596_CR86 D Berndt (596_CR6) 1994; 398 596_CR4 Y Jeong (596_CR48) 2011; 44 596_CR9 M Cuturi (596_CR22) 2007; 1 J Lin (596_CR63) 2007; 15 596_CR74 PF Marteau (596_CR68) 2009; 31 596_CR76 596_CR75 596_CR79  | 
    
| References_xml | – reference: Schölkopf B (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond – reference: XingZPeiJKeoghEA brief survey on sequence classificationACM SIGKDD Explor Newsl20101214010.1145/1882471.1882478 – reference: BelkinMNiyogiPLaplacian Eigenmaps and spectral techniques for embedding and clusteringAdv Neural Inf Process Syst200214585591 – reference: Gudmundsson S, Runarsson TP, Sigurdsson S (2008) Support vector machines and dynamic time warping for time series. In: Joint conference on neural networks (IEEE world congress on computational intelligence), pp 2772–2776 – reference: Keogh E, Kasetty S (2002) On the need for time series data mining benchmarks. In: Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining, pp 102 – reference: Gaidon A, Harchoui Z, Schmid C (2011) A time series kernel for action recognition. In: Procedings of the British machine vision conference, pp 63.1–63.11 – reference: HillsJLinesJBaranauskasEMappJBagnallAClassification of time series by shapelet transformationData Min Knowl Discovery201428485188131769261298.6209810.1007/s10618-013-0322-1 – reference: CortesCHaffnerPMohriMRational kernels: theory and algorithmsJ Mach Learn Res200451035106222480081222.68175 – reference: Cuturi M (2011) Fast global alignment kernels. In: Proceedings of the 28th ICML international conference on machine learning, pp 929–936 – reference: JacobsDWWeinshallDGdalyahuYClassification with nonmetric distances: image retrieval and class representationIEEE Trans Pattern Anal Mach Intell200022658360010.1109/34.862197 – reference: Lichman M (2013) UCI machine learning repository – reference: Wang X, Lin J, Senin P, Alamos L, Oates T, Gandhi S, Boedihardjo AP, Chen C, Frankenstein S (2016) RPM: representative pattern mining for efficient time series classification. In: Proceedings of the 19th international conference on extending database technology, pp 185–196 – reference: MarteauPFTime warp edit distance with stiffness adjustment for time series matchingIEEE Trans Pattern Anal Mach Intell200931230631810.1109/TPAMI.2008.76 – reference: Ong CS, Mary X, Canu S, Smola AJ (2004) Learning with non-positive kernels. In: Proceedings of the 21th ICML international conference on machine learning, p 81 – reference: KayaHGündüz-ÖüdücüSA distance based time series classification frameworkInf Syst201551274210.1016/j.is.2015.02.005 – reference: Giusti R, Silva DF, Batista GEAPA (2016) Improved time series classification with representation diversity and SVM. In: International conference on machine learning and applications, pp 1–6 – reference: Guyon I, Schomaker L, Planiondon R, Liberman M, Janet S, Montreal Ecole Polytechnique De, Consortium Linguistic Data (1994) UNIPEN project of on-line data exchange, pp 29–33 – reference: IwanaBKFrinkenVRiesenKUchidaSEfficient temporal pattern recognition by means of dissimilarity space embedding with discriminative prototypesPattern Recognit20176426827610.1016/j.patcog.2016.11.013 – reference: Shawe-TaylorJCristianiniNKernel methods for pattern analysis2004CambridgeCambridge University Press0994.6807410.1017/CBO9780511809682 – reference: Senin P, Lin J, Wang X, Oates T, Gandhi S, Boedihardjo AP, Chen C, Frankenstein S, Lerner M (2014) GrammarViz 2.0: a tool for grammar-based pattern discovery in time series. In: Joint European conference on machine learning and knowledge discovery in databases, pp 468–472 – reference: KeoghERatanamahatanaCAExact indexing of dynamic time warpingKnowl Inf Syst2005735838610.1007/s10115-004-0154-9 – reference: LinJKeoghEWeiLLonardiSExperiencing SAX: a novel symbolic representation of time seriesData Min Knowl Discovery2007152107144240978310.1007/s10618-007-0064-z – reference: Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1154–1162 – reference: ShimodairaHNomaKINakaiMSagayamaSDynamic time-alignment kernel in support vector machineAdv Neural Inf Process Syst200221921928 – reference: TanPNSteinbachMKumarVIntroduction to data mining2005BostonAddison Wesley – reference: HochreiterSObermayerKSupport vector machines for dyadic dataNeural Comput200615101472151022188401101.6876210.1162/neco.2006.18.6.1472 – reference: YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discovery2011221–214918227645551235.6821310.1007/s10618-010-0179-5 – reference: FuTCA review on time series data miningEng Appl Artif Intell201124116418110.1016/j.engappai.2010.09.007 – reference: Pȩkalska E, Duin RPW (2005) The dissimilarity representation for pattern recognition: foundations and applications – reference: SerràJArcosJLAn empirical evaluation of similarity measures for time series classificationKnowl Based Syst20146730531410.1016/j.knosys.2014.04.035 – reference: VapnikVStatistical learning theory1998New YorkWiley0935.62007 – reference: TaxDMJDuinRPWSupport vector data descriptionMach Learn20045445661078.6872810.1023/B:MACH.0000008084.60811.49 – reference: Zhang D, Zuo W, Zhang D, Zhang H (2010) Time series classification using support vector machine with Gaussian elastic metric kernel. In: Proceedings of international conference on pattern recognition, pp 29–32 – reference: Chen Y, Hu B, Keogh E, Batista GEAPA (2013) DTW-D: time series semi-supervised learning from a single example. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, p 383 – reference: CortesCVapnikVSupport-vector networksMach Learn19952972732970831.68098 – reference: Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 392–401 – reference: Bahlmann C, Haasdonk B, Burkhardt H (2002) Online handwriting recognition with support vector machines: a kernel approach. In: Proceedings of international workshop on frontiers in handwriting recognition, IWFHR, pp 49–54 – reference: JeongYJeongMKOmitaomuOAWeighted dynamic time warping for time series classificationPattern Recognit20114492231224010.1016/j.patcog.2010.09.022 – reference: Rahimi A, Recht B (2008) Random features for large-scale kernel machines. In: Advances in neural information processing systems – reference: TroncosoAAriasMRiquelmeJCA multi-scale smoothing kernel for measuring time-series similarityNeurocomputing201516781710.1016/j.neucom.2014.08.099 – reference: Popivanov I, Miller RJ (2002) Similarity search over time-series data using wavelets. In: Proceedings 18th international conference on data engineering (ICDE), pp 212–221 – reference: LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Discovery201529356559233343151405.6829510.1007/s10618-014-0361-2 – reference: Sivaramakrishnan KR, Bhattacharyya C (2004) Time series classification for online tamil handwritten character recognition a kernel based approach. In: International conference on neural information processing, pp 800–805 – reference: GreubWHLinear algebra1975BerlinSpringer0317.1500210.1007/978-1-4684-9446-4 – reference: Wu G, Chang EY, Zhang Z (2005b) Learning with non-metric proximity matrices. In: Proceedings of the 13th ACM international conference on multimedia, p 411 – reference: Rüping S (2001) SVM kernels for time series analysis. Technical report – reference: KateRJUsing dynamic time warping distances as features for improved time series classificationData Min Knowl Discovery201530228331234581960705050610.1007/s10618-015-0418-x – reference: EslingPAgonCTime-series data miningACM Comput Surv20124511341293.6810410.1145/2379776.2379788 – reference: Rakthanmanon T, Keogh E (2013) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 13th ICDM international conference on data mining, pp 668–676 – reference: ChenZZuoWHuQLinLKernel sparse representation for time series classificationInf Sci2015292152632670471404.6809510.1016/j.ins.2014.08.066 – reference: He Q, Zhi D, Zhuang F, Shang T, Shi Z (2012) Fast time series classification based on infrequent shapelets. In: Proceedings of the 11th ICMLA international conference on machine learning and applications vol 1, pp 215–219 – reference: SunRLuoZQGuaranteed matrix completion via non-convex factorizationIEEE Trans Inf Theory201662116535657935651311359.9417910.1109/TIT.2016.2598574 – reference: AdamsCCThe knot book: an elementary introduction to the mathematical theory of knots2004ProvidenceAmerican Mathematical Society1065.57003 – reference: Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista GEAPA (2015a) The UCR time series classification archive – reference: Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. In: ACM SIGMOD international conference on management of data, pp 419–429 – reference: Lines J, Davis LM, Hills J, Bagnall A (2012) A shapelet transform for time series classification. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 289 – reference: Wachman G, Khardon R, Protopapas P, Charles RA (2009) Kernels for periodic time series arising in astronomy. In: European conference on machine learning and knowledge discovery in databases – reference: KayaHGündüz-ÖüdücüSSAGA: a novel signal alignment method based on genetic algorithmInf Sci2013228113130301870710.1016/j.ins.2012.12.012 – reference: BorgIGroenenPModern multidimensional scaling: theory and applications1997BerlinSpringer0862.6205210.1007/978-1-4757-2711-1 – reference: Wu L, Yen IEH, Xu F, Ravikuma P, Witbrock M (2018a) D2KE: from distance to kernel and embedding, pp 1–18. arXiv:1802.04956 – reference: RasmussenCWilliamsCGaussian processes for machine learning2006BerlinSpringer1177.68165 – reference: Weston J, Schölkopf B, Eskin E, Leslie C, Noble WS (2003) Dealing with large diagonals in kernel matrices. In: Annals of the institute of statistical mathematics, vol 55, pp 391–408 – reference: ZhangLChangPLiuJYanZWangTLiFKernel sparse representation-based classifierIEEE Trans Signal Process20126041684169529341891393.9473310.1109/TSP.2011.2179539 – reference: Lei Q, Yi J, Vaculin R, Wu L, Dhillon IS (2017) Similarity preserving representation learning for time series analysis. arXiv: 1702.03584 [cs] – reference: MarteauPFBonnelNMénierGDiscrete elastic inner vector spaces with application in time series and sequence miningIEEE Trans Knowl Data Eng20122592024203510.1109/TKDE.2012.131 – reference: JalalianAChalupSKGDTW-P-SVMs: variable-length time series analysis using support vector machinesNeurocomputing20139927028210.1016/j.neucom.2012.07.006 – reference: Jain B, Spiegel S (2015) Dimension reduction in dissimilarity spaces for time series classification. In: International workshop on advanced analytics and learning on temporal data, pp 31–46 – reference: BostromABagnallABinary shapelet transform for multiclass time series classificationTrans Large Scale Data Knowl Centered Syst201488002446 – reference: CasacubertaFVidalERulotHOn the metric properties of dynamic time warpingIEEE Trans Acoustics Speech Signal Process198735111631163310.1109/TASSP.1987.1165065 – reference: CorduasMPiccoloDTime series clustering and classification by the autoregressive metricComput Stat Data Anal20085241860187224184760556460710.1016/j.csda.2007.06.001 – reference: WilsonRCHancockERPȩkalskaEDuinRPWSpherical and hyperbolic embeddings of dataIEEE Trans Pattern Anal Mach Intell201436112255226910.1109/TPAMI.2014.2316836 – reference: BerndtDCliffordJUsing dynamic time warping to find patterns in time seriesWorkshop Knowl Discovery Databases1994398359370 – reference: Hayashi A, Mizuhara Y, Suematsu N (2005) Embedding time series data for classification. In: International workshop on machine learning and data mining in pattern recognition, pp 356–365 – reference: Leslie C, Eskin E, Noble WS (2002) The spectrum kernel: a string kernel for SVM protein classification. In: Proceedings of the pacific symposium on biocomputing, pp 564–575 – reference: PȩkalskaEDuinRPWPaclíkPPrototype selection for dissimilarity-based classifiersPattern Recognit20063921892081080.6864610.1016/j.patcog.2005.06.012 – reference: CuturiMVertJA kernel for time series based on global alignmentsIEEE Trans Acoustics Speech Signal Process20071413416 – reference: Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, p 947 – reference: ChenPFanRLinCA study on SMO-type decomposition methods for support vector machinesIEEE Trans Neural Netw Learn Syst200617489390810.1109/TNN.2006.875973 – reference: Chen L, Ng R (2004) On the marriage of Lp-norms and edit distance. In: International conference on very large data bases, pp 792–803 – reference: SakoeHChibaSDynamic programming algorithm optimization for spoken word recognitionIEEE Trans Acoustics Speech Signal Process197826143490371.6803510.1109/TASSP.1978.1163055 – reference: Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd ICML international conference on machine learning, pp 1033–1040 – reference: Lei H, Sun B (2007) A study on the dynamic time warping in kernel machines. In: Proceedings of the 3rd SITIS international IEEE conference on signal-image technologies and internet-based system, pp 839–845 – reference: Liberman M (1993) TI46 speech corpus. In: Linguistic data consortium – reference: JeongYSJayaramanRSupport vector-based algorithms with weighted dynamic time warping kernel function for time series classificationKnowl Based Syst201575June18419110.1016/j.knosys.2014.12.003 – reference: BagnallAJanacekGA run length transformation for discriminating between autoregressive time seriesJ Classif20143122742951360.6244810.1007/s00357-013-9135-6 – reference: Bostrom A, Bagnall A, Lines J (2016) Evaluating improvements to the shapelet transform. www-bcf.usc.edu. Accessed 21 Nov 2017 – reference: BagnallALinesJBostromALargeJKeoghEThe great time series classification bake off: a review and experimental evaluation of recent algorithmic advancesData Min Knowl Discov2017313606660364065910.1007/s10618-016-0483-9 – reference: Lods A, Malinowski S, Tavenard R, Amsaleg L (2017) Learning DTW-preserving shapelets. In: International symposium on intelligent data analysis. Springer, Cham, pp 198–209 – reference: Haasdonk B, Bahlmann C (2004) Learning with distance substitution kernels. In: Joint pattern recognition symposium, pp 220–227 – reference: KumaraKAgrawalRBhattacharyyaCA large margin approach for writer independent online handwriting classificationPattern Recognit Lett200829793393710.1016/j.patrec.2008.01.016 – reference: DecosteDSchölkopfBTraining invariant support vector machines using selective samplingMach Learn2002461611900998.6810210.1023/A:1012454411458 – reference: PȩkalskaEPaclíkPDuinRPWA generalized kernel approach to dissimilarity-based classificationJ Mach Learn Res2001217521119047581037.68127 – reference: MoriUMendiburuAKeoghELozanoJAReliable early classification of time series based on discriminating the classes over timeData Min Knowl Discovery2017311233263359682210.1007/s10618-016-0462-1 – reference: HaasdonkBFeature space interpretation of SVMs with indefinite kernelsIEEE Trans Pattern Anal Mach Intell200527448249210.1109/TPAMI.2005.78 – reference: PreeHHerwigBGruberTSickBDavidKLukowiczPOn general purpose time series similarity measures and their use as kernel functions in support vector machinesInf Sci201428147849510.1016/j.ins.2014.05.025 – reference: Xue Y, Zhang L, Tao Z, Wang B, Li F (2017) An altered kernel transformation for time series classification. In: International conference on neural information processing, pp 455–465 – reference: Korn F, Jagaciish HV, Faloutsos C (1997) Efficiently supporting ad hoc queries sequences in large datasets of time for systems. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, pp 289–300 – reference: CoverTHartPNearest neighbor pattern classificationIEEE Trans Inf Theory196713121270154.4450510.1109/TIT.1967.1053964 – reference: LiMChenXLiXMaBVitányiPMBThe similarity metricIEEE Trans Inf Theory200450123250326421034951316.6805210.1109/TIT.2004.838101 – reference: GraepelTHerbrichRBollmann-SdorraPObermayerKClassification on pairwise proximity dataAdv Neural Inf Process Syst199911438444 – reference: ChenYGarciaEGuptaMSimilarity-based classification: concepts and algorithmsJ Mach Learn Res20091020674777624917571235.68138 – reference: MizuharaYHayashiASuematsuNEmbedding of time series data by using dynamic time warping distancesSyst Comput Jpn20063731910.1002/scj.20486 – reference: FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingComput Syst Sci199713911913914730550880.6810310.1006/jcss.1997.1504 – reference: MarteauPFGibetSOn recursive edit distance kernels with application to time series classificationIEEE Trans Neural Netw Learn Syst20142661153454837 – reference: WuLYenIE-HYiJXuFLeiQWitbrockMRandom warping series: a random features method for time-series embeddingProc Twenty-First Int Conf Artif Intell Stat201884793802 – reference: WangXMueenADingHTrajcevskiGScheuermannPKeoghEExperimental comparison of representation methods and distance measures for time series dataData Min Knowl Discovery2013262275309301773910.1007/s10618-012-0250-5 – reference: Wu G, Chang EY, Zhang Z (2005a) An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines. In: Proceedings of the 22th ICML international conference on machine learning, p 8 – reference: Li X, Lin J (2018) Evolving separating references for time series classification. In: Proceedings of the 2018 SIAM international conference on data mining, pp 243–251 – reference: DingHTrajcevskiGScheuermannPWangXKeoghEQuerying and mining of time series data: experimental comparison of representations and distance measuresProc VLDB Very Large Database Endow2008121542155210.14778/1454159.1454226 – reference: Marteau PF, Gibet S (2010) Constructing positive definite elastic kernels with application to time series classification. In: CoRR, pp 1–18 – reference: Lu Z, Leen KT, Huang Y, Erdogmus D (2008) A reproducing kernel hilbert space framework for pairwise time series distances. In: Proceedings of the 25th ICML international conference on machine learning, vol 56, pp 624–631 – reference: SmythPClustering sequences with hidden Markov modelsAdv Neural Inf Process Syst19979648654 – reference: Janyalikit T, Sathianwiriyakhun P, Sivaraks H, Ratanamahatana CA (2016) An enhanced support vector machine for faster time series classification. In: Asian conference on intelligent information and database systems, pp 616–625 – volume: 22 start-page: 583 issue: 6 year: 2000 ident: 596_CR43 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.862197 – volume: 26 start-page: 275 issue: 2 year: 2013 ident: 596_CR99 publication-title: Data Min Knowl Discovery doi: 10.1007/s10618-012-0250-5 – ident: 596_CR4 doi: 10.1109/IWFHR.2002.1030883 – ident: 596_CR82 doi: 10.1137/1.9781611972832.74 – volume-title: Gaussian processes for machine learning year: 2006 ident: 596_CR83 – volume: 31 start-page: 233 issue: 1 year: 2017 ident: 596_CR73 publication-title: Data Min Knowl Discovery doi: 10.1007/s10618-016-0462-1 – ident: 596_CR11 doi: 10.1016/B978-012088469-8.50070-X – volume: 52 start-page: 1860 issue: 4 year: 2008 ident: 596_CR17 publication-title: Comput Stat Data Anal doi: 10.1016/j.csda.2007.06.001 – ident: 596_CR62 – volume-title: Statistical learning theory year: 1998 ident: 596_CR97 – volume: 45 start-page: 1 issue: 1 year: 2012 ident: 596_CR25 publication-title: ACM Comput Surv doi: 10.1145/2379776.2379788 – volume: 10 start-page: 747 issue: 206 year: 2009 ident: 596_CR14 publication-title: J Mach Learn Res – volume: 26 start-page: 43 issue: 1 year: 1978 ident: 596_CR85 publication-title: IEEE Trans Acoustics Speech Signal Process doi: 10.1109/TASSP.1978.1163055 – volume: 292 start-page: 15 year: 2015 ident: 596_CR16 publication-title: Inf Sci doi: 10.1016/j.ins.2014.08.066 – ident: 596_CR26 doi: 10.1145/191843.191925 – volume: 139 start-page: 119 year: 1997 ident: 596_CR27 publication-title: Comput Syst Sci doi: 10.1006/jcss.1997.1504 – volume: 37 start-page: 1 issue: 3 year: 2006 ident: 596_CR72 publication-title: Syst Comput Jpn doi: 10.1002/scj.20486 – volume: 27 start-page: 482 issue: 4 year: 2005 ident: 596_CR36 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2005.78 – ident: 596_CR79 doi: 10.1109/ICDE.2002.994711 – volume: 8800 start-page: 24 year: 2014 ident: 596_CR8 publication-title: Trans Large Scale Data Knowl Centered Syst – volume: 1510 start-page: 1472 year: 2006 ident: 596_CR41 publication-title: Neural Comput doi: 10.1162/neco.2006.18.6.1472 – ident: 596_CR101 doi: 10.1007/BF02530507 – volume: 67 start-page: 305 year: 2014 ident: 596_CR88 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2014.04.035 – volume: 24 start-page: 164 issue: 1 year: 2011 ident: 596_CR28 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2010.09.007 – ident: 596_CR74 doi: 10.1145/2020408.2020587 – ident: 596_CR15 – ident: 596_CR66 doi: 10.1007/978-3-319-68765-0_17 – ident: 596_CR91 – ident: 596_CR30 doi: 10.1109/ICMLA.2016.0010 – volume: 7 start-page: 358 year: 2005 ident: 596_CR53 publication-title: Knowl Inf Syst doi: 10.1007/s10115-004-0154-9 – ident: 596_CR76 doi: 10.1142/9789812703170 – volume-title: Linear algebra year: 1975 ident: 596_CR33 doi: 10.1007/978-1-4684-9446-4 – ident: 596_CR37 doi: 10.1007/978-3-540-28649-3_27 – ident: 596_CR107 doi: 10.1145/1143844.1143974 – volume: 84 start-page: 793 year: 2018 ident: 596_CR106 publication-title: Proc Twenty-First Int Conf Artif Intell Stat – ident: 596_CR52 doi: 10.1145/775047.775062 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 596_CR20 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.1967.1053964 – volume: 5 start-page: 1035 year: 2004 ident: 596_CR19 publication-title: J Mach Learn Res – ident: 596_CR112 doi: 10.1109/ICPR.2010.16 – ident: 596_CR39 doi: 10.1109/ICMLA.2012.44 – volume: 2 start-page: 175 year: 2001 ident: 596_CR77 publication-title: J Mach Learn Res – ident: 596_CR105 – volume: 31 start-page: 274 issue: 2 year: 2014 ident: 596_CR2 publication-title: J Classif doi: 10.1007/s00357-013-9135-6 – ident: 596_CR54 – volume-title: Modern multidimensional scaling: theory and applications year: 1997 ident: 596_CR7 doi: 10.1007/978-1-4757-2711-1 – ident: 596_CR9 – volume: 31 start-page: 306 issue: 2 year: 2009 ident: 596_CR68 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2008.76 – volume: 22 start-page: 149 issue: 1–2 year: 2011 ident: 596_CR111 publication-title: Data Min Knowl Discovery doi: 10.1007/s10618-010-0179-5 – volume-title: Introduction to data mining year: 2005 ident: 596_CR94 – volume: 398 start-page: 359 year: 1994 ident: 596_CR6 publication-title: Workshop Knowl Discovery Databases – volume: 35 start-page: 1631 issue: 11 year: 1987 ident: 596_CR10 publication-title: IEEE Trans Acoustics Speech Signal Process doi: 10.1109/TASSP.1987.1165065 – volume: 1 start-page: 1542 issue: 2 year: 2008 ident: 596_CR24 publication-title: Proc VLDB Very Large Database Endow doi: 10.14778/1454159.1454226 – ident: 596_CR75 doi: 10.1145/1015330.1015443 – ident: 596_CR86 doi: 10.7551/mitpress/4175.001.0001 – volume: 29 start-page: 933 issue: 7 year: 2008 ident: 596_CR55 publication-title: Pattern Recognit Lett doi: 10.1016/j.patrec.2008.01.016 – ident: 596_CR31 doi: 10.1145/2623330.2623613 – volume: 64 start-page: 268 year: 2017 ident: 596_CR42 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2016.11.013 – volume: 50 start-page: 3250 issue: 12 year: 2004 ident: 596_CR59 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2004.838101 – volume: 1 start-page: 413 year: 2007 ident: 596_CR22 publication-title: IEEE Trans Acoustics Speech Signal Process – ident: 596_CR65 doi: 10.1145/2339530.2339579 – ident: 596_CR100 – ident: 596_CR98 doi: 10.1007/978-3-642-04174-7_32 – volume: 281 start-page: 478 year: 2014 ident: 596_CR80 publication-title: Inf Sci doi: 10.1016/j.ins.2014.05.025 – ident: 596_CR81 – ident: 596_CR87 doi: 10.1007/978-3-662-44845-8_37 – volume: 75 start-page: 184 issue: June year: 2015 ident: 596_CR47 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2014.12.003 – ident: 596_CR67 doi: 10.1145/1390156.1390235 – ident: 596_CR38 doi: 10.1007/11510888_35 – volume: 167 start-page: 8 year: 2015 ident: 596_CR96 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.08.099 – volume: 28 start-page: 851 issue: 4 year: 2014 ident: 596_CR40 publication-title: Data Min Knowl Discovery doi: 10.1007/s10618-013-0322-1 – volume: 26 start-page: 1 issue: 6 year: 2014 ident: 596_CR70 publication-title: IEEE Trans Neural Netw Learn Syst – ident: 596_CR13 doi: 10.1145/2487575.2487633 – volume: 11 start-page: 438 year: 1999 ident: 596_CR32 publication-title: Adv Neural Inf Process Syst – ident: 596_CR103 – volume: 51 start-page: 27 year: 2015 ident: 596_CR51 publication-title: Inf Syst doi: 10.1016/j.is.2015.02.005 – volume: 29 start-page: 565 issue: 3 year: 2015 ident: 596_CR64 publication-title: Data Min Knowl Discovery doi: 10.1007/s10618-014-0361-2 – volume: 62 start-page: 6535 issue: 11 year: 2016 ident: 596_CR93 publication-title: IEEE Trans Inf Theory doi: 10.1109/TIT.2016.2598574 – volume: 44 start-page: 2231 issue: 9 year: 2011 ident: 596_CR48 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2010.09.022 – volume: 30 start-page: 283 issue: 2 year: 2015 ident: 596_CR49 publication-title: Data Min Knowl Discovery doi: 10.1007/s10618-015-0418-x – volume: 54 start-page: 45 year: 2004 ident: 596_CR95 publication-title: Mach Learn doi: 10.1023/B:MACH.0000008084.60811.49 – ident: 596_CR46 doi: 10.1007/978-3-662-49381-6_59 – ident: 596_CR84 – ident: 596_CR110 doi: 10.1145/1557019.1557122 – volume: 228 start-page: 113 year: 2013 ident: 596_CR50 publication-title: Inf Sci doi: 10.1016/j.ins.2012.12.012 – ident: 596_CR60 doi: 10.1137/1.9781611975321.28 – volume: 31 start-page: 606 issue: 3 year: 2017 ident: 596_CR3 publication-title: Data Min Knowl Discov doi: 10.1007/s10618-016-0483-9 – volume: 60 start-page: 1684 issue: 4 year: 2012 ident: 596_CR113 publication-title: IEEE Trans Signal Process doi: 10.1109/TSP.2011.2179539 – volume: 36 start-page: 2255 issue: 11 year: 2014 ident: 596_CR102 publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2014.2316836 – volume: 46 start-page: 161 year: 2002 ident: 596_CR23 publication-title: Mach Learn doi: 10.1023/A:1012454411458 – ident: 596_CR57 – volume-title: Kernel methods for pattern analysis year: 2004 ident: 596_CR89 doi: 10.1017/CBO9780511809682 – ident: 596_CR29 doi: 10.5244/C.25.63 – volume: 99 start-page: 270 year: 2013 ident: 596_CR45 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.07.006 – ident: 596_CR109 doi: 10.1007/978-3-319-70139-4_46 – volume: 25 start-page: 2024 issue: 9 year: 2012 ident: 596_CR71 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2012.131 – ident: 596_CR21 – ident: 596_CR44 – volume: 12 start-page: 40 issue: 1 year: 2010 ident: 596_CR108 publication-title: ACM SIGKDD Explor Newsl doi: 10.1145/1882471.1882478 – volume: 14 start-page: 585 year: 2002 ident: 596_CR5 publication-title: Adv Neural Inf Process Syst – ident: 596_CR34 doi: 10.1109/IJCNN.2008.4634188 – ident: 596_CR35 – volume: 2 start-page: 921 issue: 1 year: 2002 ident: 596_CR90 publication-title: Adv Neural Inf Process Syst – ident: 596_CR58 – volume: 39 start-page: 189 issue: 2 year: 2006 ident: 596_CR78 publication-title: Pattern Recognit doi: 10.1016/j.patcog.2005.06.012 – ident: 596_CR104 doi: 10.1145/1101149.1101239 – volume: 9 start-page: 648 year: 1997 ident: 596_CR92 publication-title: Adv Neural Inf Process Syst – ident: 596_CR61 – ident: 596_CR69 – volume: 17 start-page: 893 issue: 4 year: 2006 ident: 596_CR12 publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNN.2006.875973 – ident: 596_CR56 doi: 10.1109/SITIS.2007.112 – volume: 297 start-page: 273 year: 1995 ident: 596_CR18 publication-title: Mach Learn – volume: 15 start-page: 107 issue: 2 year: 2007 ident: 596_CR63 publication-title: Data Min Knowl Discovery doi: 10.1007/s10618-007-0064-z – volume-title: The knot book: an elementary introduction to the mathematical theory of knots year: 2004 ident: 596_CR1  | 
    
| SSID | ssj0005230 | 
    
| Score | 2.6379113 | 
    
| Snippet | Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The... | 
    
| SourceID | unpaywall proquest crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 378 | 
    
| SubjectTerms | Academic Surveys and Tutorials Artificial Intelligence Chemistry and Earth Sciences Classification Classifiers Computer Science Data Mining and Knowledge Discovery Distance measurement Information Storage and Retrieval Kernel functions Measurement methods Physics Statistics for Engineering Taxonomy Time series  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTwIxEJ4gHNSDbyOKpgdPksZ9dF8HY9BAiInEGEm4bbqd9kQWFIjx39thdwEveOhlt91mZ9rO13ZmPoDbADFzRKS5TLTDBWrkickkR6kjZeGuigydQ74Owv5QvIyCUQ0GVSwMuVVWa-JyocaJojPye8pEHhNVd_A4_eTEGkW3qxWFhiypFfBhmWJsBxoeZcaqQ-OpO3h733D68Iu44VjwIHZX95xFMF3okmOXLUEScvHXUq3h5-rGdB92F_lU_nzL8XjDKPWO4KBEk6xTqP8Yajo_gcOKqYGVE_cUgg4rYlTYJGdIkNE-ZmTBkBG7PKOBqGdMEZYm56Glvs5g2Ot-PPd5SZjAld2Xzbl0lXF9Y39OxR5GkR972ol1hiZOTBhLkYUm8xMLWpQnpOOjreOhiyIiWirP-OdQzye5vgCGGHpKhAI9o2wza7OiKEQlEyVU5iq_CU4lnFSV2cSJ1GKcrvMgkzxTh4qVZyqacLdqMi1SaWyr3Koknpazapaux0AT2pUW1q-3fKy9UtT_XV9u7_oK9ixoSgo_tBbU518LfW2ByTy7KUfbL3Ve3Pw priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60IurBR1WsVsnBkyWwj2ySPRaxFEFPFnpbspnkVLZiW8R_b7KvVpCKh5x2MsvOTHa-3XkB3CeIecCEoSo1AWVokKY2VxSVEdrBXS2s_w_58srHE_Y8TaZ1HfeiyXZvQpLlm3qj2I2HPvHKrSTllO3CXuK7eTkjnkTDjbyOuCoNlowmMmxDmb-x-OmM1gizDYoewcGqeFdfn2o22_A7o1M4rgEjGVYaPoMdU3ThpBnGQOqz2YX9MpdTL84hGZKqIIXMC4IeHzoC4t0VEj9KnnirMwuiPXD2mUKlci5gMnp6exzTejoC1e4jbElVqG0YW_eYWkYoRCwjE0iTo5Wp5VKxnNs8Th1C0RFTQYyOJsIQmfAzqCIbX0KnmBfmCggijzTjDCOr3TbnoITgqFWqmc5DHfcgaMSU6bp1uJ9gMcvWTY-9ZLPALyfZjPXgod3yXvXN2Ebcb2Sf1UdokfnW89LPZk96MGj0sb68hdmgVdnft77-F-8bOHSAKa1y0PrQWX6szK0DJcv8rjTCbyDT1fU priority: 102 providerName: Springer Nature  | 
    
| Title | A review on distance based time series classification | 
    
| URI | https://link.springer.com/article/10.1007/s10618-018-0596-4 https://www.proquest.com/docview/2127843895 http://hdl.handle.net/20.500.11824/888  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 33 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 1573-756X dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: AMVHM dateStart: 20081001 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-756X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-756X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-756X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-756X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005230 issn: 1384-5810 databaseCode: U2A dateStart: 19970301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB4a-9Dk0PSRErep2UNPDetKq33pqBbboSEmlBqck1jt41KjhMQmJL--s5Fk9wEJPSyC1ayEdnaZb7Qz3wB8FM5VCVeemtwnlDvvaB4qQ53xyiLctSrE_5BnM3ky598WYrENkP2LXoAlI5HEba0Z_4y-2g70pUDM3YP-fHZeXDx4U5pToRvaAaEyqoRcdMeXTY6cTGO8FjYcSvmfBmiLKjcHoXvwfF1fmbtbs1z-Zmsm-zDtMnaaEJOfo_WqGtn7fwkcn_iMl_CihZukaNbHK3jm69ew35VyIO3OfgOiIE0SC7msiYuYErtJNHGOxPLzJK5Uf0NsBNsxuuhBoQcwn4x_fD2hbUUFatFxW1GT2pBmAafMauaUyjTzifaVCzoPUhteyVBlOaIay7hJMocyzKWOq1i3ioXsLfTqy9ofAnFOMssldyxYHIZGTSnprMktt1VqswEk3TSXtqUbj1UvluWWKDlqpkxiQ82UfACfNkOuGq6Nx4SPOt2V7ba7KSNdvY713MUAjjt9bm8_8rDjjcqffvW7_5J-D7sIsvImbu0Ieqvrtf-AQGZVDWFHT6ZD6BfTi9MxXr-MZ-ffsXfOimG7wn8BK6Dsjg | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAegD5QlwL1ob0UWU1sJ3EOqwooaCmwqiqQuKWOxz6tsgu7CO2f47fh2SS79LI9cfAl8UMajz2f7Zn5AL4kiGWkMsdN7iKu0CHPfWk4GpfZAHdt5uke8rKf9q7Vr5vkZgUe21gYcqts98TZRo1DS3fk3ykTuSaq7uTH6JYTaxS9rrYUGqahVsDuLMVYE9hx7qYP4Qg37p79DPP9VYjTk6vjHm9YBrgNh5kJN7H1sfRSK6sFZpnUwkXaleh17lNtVJn6UubB0luhTCQx1BEYo8qIy0l4Gfp9BWtKqjwc_taOTvq__zxzMpF1nLJWPNHx_F21Dt5LY3IkCyXJU67-tYwLuDt_oX0D6_fVyEwfzGDwzAiebsFGg17ZYa1ub2HFVe9gs2WGYM1G8R6SQ1bHxLBhxZAgavjMyGIiIzZ7RorvxswSdidnpZl-fIDrFxHdNqxWw8p9BIaYCqtShcLb0CzYyCxL0ZrcKlvGVnYgaoVT2CZ7OZFoDIpF3mWSZxFRCfIsVAe-zZuM6tQdyyrvthIvmlU8LhY614GDdhYWv5d0djCfqP8PvbN86M-w3ru6vCguzvrnn-B1AGx57QO3C6uTu3u3F0DRpNxvNI_B35dW9ieJ4xmD | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkPo48Ebd8vKBXkAWiePEzgEhBCzPoh6KxC04Hvu0ym67ixB_rb-unk2ySy_LiYMviR_S-LNnbM_MB7CXIpaRVI6b3EVcokOe-9JwNE7ZYO5a5eke8sdddnkvrx_Shzn428bCkFtluyeON2rsW7ojP6RM5JqoutND37hF_DzrHg9-c2KQopfWlk6jhsiNe3kOx7fh0dVZmOvvQnTPf51e8oZhgNtwkBlxE1sfJz7R0mqBSiVauEi7Er3OfaaNLDNfJnnQ8lZIEyUY6giMUSricRI-Cf1-gAVFWdwpSr178cq9JKkjlLXkqY4nL6p12F4WkwtZKGmecfm_TpwaupO32S_w6akamJdn0-u9Un_dZVhs7FZ2UgNtBeZctQpLLScEa7aINUhPWB0Nw_oVQzJOw2dGuhIZ8dgzgrwbMktWO7kpjZGxDvfvIrgNmK_6lfsKDDETVmYShbehWdCOSmVoTW6lLWObdCBqhVPYJm850Wf0imnGZZJnEVEJ8ixkB_YnTQZ10o5ZlbdaiRfN-h0WU7R14KCdhenvGZ0dTCbq7aG_zR56Fz4GiBe3V3c3m_A5WGp57fy2BfOjP09uO1hDo3JnDDsGj--N83-6nRcd | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCB8hSFgjwwgVwSx6-MFQIqJBADlcoUOX4sVGkFrRD8emyStDwkKgYvyV2i-M66z_HddwAnzJg8osJildoIU2MNTl2usFFWaA93tXDhP-TtHe_16c2ADeYJsj_oBUjUYVFY1pLQc79XW4YVzjzmbsBK_-6--_i5m5IUM1nSDjCRYMH4oD6-LGvkeBzytfzwqph-D0BzVDk7CF2H1WkxVm-vajj8EmuumnBdV-yUKSZPnekk7-j33wSOCz5jEzYquIm6pX9swZIttqFZt3JA1creAdZFZRELGhXIBEzpL6MQ4gwK7edR8FT7gnQA2yG76NOgu9C_uny46OGqowLWfuM2wSrWLk6cnzItiREikcRG0ubGydRxqWjOXZ6kHtVoQlWUGC9DTGyoCH2riEv2oFGMCrsPyBhONOXUEKe9mg9qQnCjVaqpzmOdtCCqpznTFd146HoxzOZEycEyWRSGt0xGW3A6UxmXXBt_Cbdr22XVsnvJAl29DP3cWQvOanvOb__xsLOZyRe_-uBf0oew5kFWWuattaExeZ7aIw9kJvlx5cUfmuLnkQ | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+distance+based+time+series+classification&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Abanda%2C+Amaia&rft.au=Mori%2C+Usue&rft.au=Lozano%2C+Jose+A.&rft.date=2019-03-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=33&rft.issue=2&rft.spage=378&rft.epage=412&rft_id=info:doi/10.1007%2Fs10618-018-0596-4&rft.externalDocID=10_1007_s10618_018_0596_4 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon |