A review on distance based time series classification

Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The particularity of the data makes it a challenging task and different approaches have been taken, including the distance based approach. 1-NN h...

Full description

Saved in:
Bibliographic Details
Published inData mining and knowledge discovery Vol. 33; no. 2; pp. 378 - 412
Main Authors Abanda, Amaia, Mori, Usue, Lozano, Jose A.
Format Journal Article
LanguageEnglish
Published New York Springer US 01.03.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-5810
1573-756X
1573-756X
DOI10.1007/s10618-018-0596-4

Cover

Abstract Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The particularity of the data makes it a challenging task and different approaches have been taken, including the distance based approach. 1-NN has been a widely used method within distance based time series classification due to its simplicity but still good performance. However, its supremacy may be attributed to being able to use specific distances for time series within the classification process and not to the classifier itself. With the aim of exploiting these distances within more complex classifiers, new approaches have arisen in the past few years that are competitive or which outperform the 1-NN based approaches. In some cases, these new methods use the distance measure to transform the series into feature vectors, bridging the gap between time series and traditional classifiers. In other cases, the distances are employed to obtain a time series kernel and enable the use of kernel methods for time series classification. One of the main challenges is that a kernel function must be positive semi-definite, a matter that is also addressed within this review. The presented review includes a taxonomy of all those methods that aim to classify time series using a distance based approach, as well as a discussion of the strengths and weaknesses of each method.
AbstractList Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The particularity of the data makes it a challenging task and different approaches have been taken, including the distance based approach. 1-NN has been a widely used method within distance based time series classification due to its simplicity but still good performance. However, its supremacy may be attributed to being able to use specific distances for time series within the classification process and not to the classifier itself. With the aim of exploiting these distances within more complex classifiers, new approaches have arisen in the past few years that are competitive or which outperform the 1-NN based approaches. In some cases, these new methods use the distance measure to transform the series into feature vectors, bridging the gap between time series and traditional classifiers. In other cases, the distances are employed to obtain a time series kernel and enable the use of kernel methods for time series classification. One of the main challenges is that a kernel function must be positive semi-definite, a matter that is also addressed within this review. The presented review includes a taxonomy of all those methods that aim to classify time series using a distance based approach, as well as a discussion of the strengths and weaknesses of each method.
Author Mori, Usue
Lozano, Jose A.
Abanda, Amaia
Author_xml – sequence: 1
  givenname: Amaia
  orcidid: 0000-0001-8520-4456
  surname: Abanda
  fullname: Abanda, Amaia
  email: aabanda@bcamath.org
  organization: Basque Center for Applied Mathematics (BCAM), Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU
– sequence: 2
  givenname: Usue
  surname: Mori
  fullname: Mori, Usue
  organization: Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU, Department of Applied Mathematics, Statistics and Operational Research, University of the Basque Country UPV/EHU
– sequence: 3
  givenname: Jose A.
  surname: Lozano
  fullname: Lozano, Jose A.
  organization: Basque Center for Applied Mathematics (BCAM), Intelligent Systems Group (ISG), Department of Computer Science and Artificial Intelligence, University of the Basque Country UPV/EHU
BookMark eNqNj0tLAzEUhYNUsK3-AHcDrkdvHjPJLEvxBQU3Cu5CJpNIyjRTk6ml_96MUxAExcXl3sU5555vhia-8wahSwzXGIDfRAwlFjkMU1Rlzk7QFBec5rwoXyfppoLlhcBwhmYxrgGgIBSmqFhkwXw4s886nzUu9sprk9Uqmibr3cZk0QRnYqZbFaOzTqvedf4cnVrVRnNx3HP0cnf7vHzIV0_3j8vFKtcMeJ8rrC2mNr3WgjScU0EMCFM3VlS2FIrVpa1pVWKuCVNAm6QhDW4YLyvAxNI5ImPuzm_VYa_aVm6D26hwkBjkAC5HcAnDJHDJkulqNG1D974zsZfrbhd86ikJJlwwKqoiqfio0qGLMRgrteu_4PqgXPtnPv7h_E-nI0hMWv9mwnen302fdG2JbA
CitedBy_id crossref_primary_10_1016_j_ins_2023_119921
crossref_primary_10_1016_j_inffus_2018_10_005
crossref_primary_10_1016_j_jprocont_2023_103127
crossref_primary_10_1016_j_knosys_2022_108459
crossref_primary_10_1007_s10472_019_09682_2
crossref_primary_10_1016_j_iatssr_2022_06_001
crossref_primary_10_1109_ACCESS_2019_2943474
crossref_primary_10_1109_JSEN_2023_3297438
crossref_primary_10_1007_s00521_021_06827_5
crossref_primary_10_1016_j_eswa_2021_115147
crossref_primary_10_1155_2020_1978310
crossref_primary_10_1016_j_patcog_2020_107525
crossref_primary_10_1093_jssam_smae037
crossref_primary_10_1109_ACCESS_2025_3525952
crossref_primary_10_1016_j_bdr_2023_100407
crossref_primary_10_1016_j_neucom_2023_127214
crossref_primary_10_1155_2024_5593966
crossref_primary_10_1016_j_jksuci_2023_101783
crossref_primary_10_1007_s00521_019_04270_1
crossref_primary_10_1016_j_neunet_2024_106896
crossref_primary_10_1007_s41060_022_00360_x
crossref_primary_10_1016_j_ifacol_2022_04_250
crossref_primary_10_1016_j_eswa_2024_125109
crossref_primary_10_1007_s11227_022_04792_x
crossref_primary_10_1007_s10489_021_03013_x
crossref_primary_10_1007_s10115_021_01621_0
crossref_primary_10_1016_j_ijar_2022_09_014
crossref_primary_10_1109_ACCESS_2022_3164409
crossref_primary_10_1016_j_eswa_2023_120914
crossref_primary_10_1186_s12859_024_05636_6
crossref_primary_10_1007_s10489_021_03009_7
crossref_primary_10_1111_insr_12540
crossref_primary_10_1016_j_asoc_2025_112903
crossref_primary_10_1016_j_eswa_2023_121201
crossref_primary_10_3390_s24041113
crossref_primary_10_1016_j_knosys_2024_112057
crossref_primary_10_1109_ACCESS_2020_3029140
crossref_primary_10_1016_j_engappai_2023_107716
crossref_primary_10_1016_j_knosys_2022_109644
crossref_primary_10_3390_app112210957
crossref_primary_10_1007_s00521_022_07358_3
crossref_primary_10_1109_ACCESS_2024_3433615
crossref_primary_10_1109_ACCESS_2020_2993538
crossref_primary_10_1109_TAES_2024_3404360
crossref_primary_10_1016_j_actaastro_2024_10_066
crossref_primary_10_1016_j_neucom_2024_127908
crossref_primary_10_1109_TMECH_2022_3227960
crossref_primary_10_3934_math_20241315
crossref_primary_10_1109_TPAMI_2024_3372455
crossref_primary_10_1109_TPAMI_2024_3387317
crossref_primary_10_17341_gazimmfd_1089173
crossref_primary_10_1016_j_ipm_2022_102867
crossref_primary_10_1109_TFUZZ_2024_3364585
crossref_primary_10_3390_cancers15030843
crossref_primary_10_1016_j_asoc_2022_109859
crossref_primary_10_1016_j_cie_2024_110067
crossref_primary_10_1016_j_eswa_2024_123869
crossref_primary_10_1109_ACCESS_2023_3346058
crossref_primary_10_1016_j_asoc_2024_112398
crossref_primary_10_1016_j_asoc_2024_112431
crossref_primary_10_1016_j_jocs_2024_102235
crossref_primary_10_3390_app13042371
crossref_primary_10_1109_TNNLS_2023_3256464
crossref_primary_10_3390_bios12060375
crossref_primary_10_1016_j_buildenv_2024_111358
crossref_primary_10_1016_j_eswa_2023_120736
crossref_primary_10_1007_s00170_024_14225_z
crossref_primary_10_1016_j_ifacol_2021_10_053
crossref_primary_10_1109_TNNLS_2023_3273503
crossref_primary_10_1007_s42979_023_02159_4
crossref_primary_10_1109_ACCESS_2024_3521537
crossref_primary_10_1007_s10618_020_00689_6
crossref_primary_10_3934_DSFE_2022012
crossref_primary_10_3389_fradi_2024_1495181
crossref_primary_10_1002_for_3024
crossref_primary_10_3390_a14120353
crossref_primary_10_1007_s11277_024_11027_0
crossref_primary_10_1016_j_eswa_2020_114374
crossref_primary_10_1016_j_istruc_2024_106766
crossref_primary_10_1016_j_asoc_2022_109494
crossref_primary_10_1016_j_bspc_2024_106808
crossref_primary_10_1002_sam_11455
crossref_primary_10_1007_s00778_024_00865_w
crossref_primary_10_1016_j_asoc_2025_112778
crossref_primary_10_1177_09544054241229495
crossref_primary_10_1109_ACCESS_2022_3211518
crossref_primary_10_1007_s41403_021_00230_1
crossref_primary_10_1007_s10115_023_01952_0
crossref_primary_10_1016_j_neucom_2024_128100
crossref_primary_10_1109_ACCESS_2022_3207765
crossref_primary_10_1016_j_ins_2025_122109
crossref_primary_10_1088_1741_2552_ad5ec0
crossref_primary_10_1162_netn_a_00353
crossref_primary_10_7232_JKIIE_2023_49_1_015
crossref_primary_10_1109_TIM_2023_3325519
crossref_primary_10_1007_s11280_023_01207_6
crossref_primary_10_1016_j_patcog_2020_107699
crossref_primary_10_1145_3633804
crossref_primary_10_1155_2022_8374696
crossref_primary_10_1007_s43762_024_00151_z
crossref_primary_10_1007_s10898_023_01294_9
crossref_primary_10_1016_j_ins_2022_09_009
crossref_primary_10_1007_s11071_024_10244_3
crossref_primary_10_1016_j_cie_2024_110812
crossref_primary_10_3389_fams_2021_784855
crossref_primary_10_3389_fnins_2023_1229371
crossref_primary_10_1016_j_eswa_2024_124889
crossref_primary_10_1007_s42452_020_2506_9
crossref_primary_10_1109_TSMC_2022_3150398
crossref_primary_10_3390_rs16132488
crossref_primary_10_3390_a13110284
crossref_primary_10_1016_j_neucom_2024_128368
crossref_primary_10_35234_fumbd_1425635
crossref_primary_10_1007_s10618_024_01022_1
crossref_primary_10_1007_s11538_023_01175_y
crossref_primary_10_1016_j_hcc_2023_100135
crossref_primary_10_1115_1_4063694
crossref_primary_10_3233_JIFS_223338
crossref_primary_10_1016_j_engappai_2021_104214
crossref_primary_10_3390_vehicles5020023
crossref_primary_10_1007_s10618_020_00695_8
crossref_primary_10_1371_journal_pone_0239425
crossref_primary_10_3390_futuretransp4010004
crossref_primary_10_7717_peerj_cs_982
crossref_primary_10_3390_smartcities5030048
crossref_primary_10_1016_j_neunet_2020_04_030
crossref_primary_10_3390_s21041059
crossref_primary_10_1016_j_neucom_2025_129884
crossref_primary_10_1016_j_engappai_2025_110339
crossref_primary_10_1007_s10489_022_04422_2
crossref_primary_10_1016_j_ins_2022_10_048
crossref_primary_10_1016_j_knosys_2024_112231
Cites_doi 10.1109/34.862197
10.1007/s10618-012-0250-5
10.1109/IWFHR.2002.1030883
10.1137/1.9781611972832.74
10.1007/s10618-016-0462-1
10.1016/B978-012088469-8.50070-X
10.1016/j.csda.2007.06.001
10.1145/2379776.2379788
10.1109/TASSP.1978.1163055
10.1016/j.ins.2014.08.066
10.1145/191843.191925
10.1006/jcss.1997.1504
10.1002/scj.20486
10.1109/TPAMI.2005.78
10.1109/ICDE.2002.994711
10.1162/neco.2006.18.6.1472
10.1007/BF02530507
10.1016/j.knosys.2014.04.035
10.1016/j.engappai.2010.09.007
10.1145/2020408.2020587
10.1007/978-3-319-68765-0_17
10.1109/ICMLA.2016.0010
10.1007/s10115-004-0154-9
10.1142/9789812703170
10.1007/978-1-4684-9446-4
10.1007/978-3-540-28649-3_27
10.1145/1143844.1143974
10.1145/775047.775062
10.1109/TIT.1967.1053964
10.1109/ICPR.2010.16
10.1109/ICMLA.2012.44
10.1007/s00357-013-9135-6
10.1007/978-1-4757-2711-1
10.1109/TPAMI.2008.76
10.1007/s10618-010-0179-5
10.1109/TASSP.1987.1165065
10.14778/1454159.1454226
10.1145/1015330.1015443
10.7551/mitpress/4175.001.0001
10.1016/j.patrec.2008.01.016
10.1145/2623330.2623613
10.1016/j.patcog.2016.11.013
10.1109/TIT.2004.838101
10.1145/2339530.2339579
10.1007/978-3-642-04174-7_32
10.1016/j.ins.2014.05.025
10.1007/978-3-662-44845-8_37
10.1016/j.knosys.2014.12.003
10.1145/1390156.1390235
10.1007/11510888_35
10.1016/j.neucom.2014.08.099
10.1007/s10618-013-0322-1
10.1145/2487575.2487633
10.1016/j.is.2015.02.005
10.1007/s10618-014-0361-2
10.1109/TIT.2016.2598574
10.1016/j.patcog.2010.09.022
10.1007/s10618-015-0418-x
10.1023/B:MACH.0000008084.60811.49
10.1007/978-3-662-49381-6_59
10.1145/1557019.1557122
10.1016/j.ins.2012.12.012
10.1137/1.9781611975321.28
10.1007/s10618-016-0483-9
10.1109/TSP.2011.2179539
10.1109/TPAMI.2014.2316836
10.1023/A:1012454411458
10.1017/CBO9780511809682
10.5244/C.25.63
10.1016/j.neucom.2012.07.006
10.1007/978-3-319-70139-4_46
10.1109/TKDE.2012.131
10.1145/1882471.1882478
10.1109/IJCNN.2008.4634188
10.1016/j.patcog.2005.06.012
10.1145/1101149.1101239
10.1109/TNN.2006.875973
10.1109/SITIS.2007.112
10.1007/s10618-007-0064-z
ContentType Journal Article
Copyright The Author(s) 2018
Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved.
Copyright_xml – notice: The Author(s) 2018
– notice: Data Mining and Knowledge Discovery is a copyright of Springer, (2018). All Rights Reserved.
DBID AAYXX
CITATION
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8AO
8FD
8FE
8FG
8FK
8FL
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
GUQSH
HCIFZ
JQ2
K60
K6~
K7-
L.-
L7M
L~C
L~D
M0C
M0N
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
ADTOC
UNPAY
DOI 10.1007/s10618-018-0596-4
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection (ProQuest Business Suite) (LAB)
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Research Library
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database (Proquest)
ABI/INFORM Professional Advanced
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
ABI/INFORM Global (Corporate)
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Pharma Collection
ABI/INFORM Complete
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Business Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Business (Alumni)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList ABI/INFORM Global (Corporate)

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
Computer Science
EISSN 1573-756X
EndPage 412
ExternalDocumentID oai:dnet:bird________::7072b6c54fe3c0829626ff860d383e59
10_1007_s10618_018_0596_4
GrantInformation_xml – fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España
  grantid: TIN2016-78365-R; BES-2016-076890
  funderid: http://dx.doi.org/10.13039/501100010198
– fundername: Ministerio de Economía, Industria y Competitividad, Gobierno de España
  grantid: SEV-2013-0323; TIN2017-82626-R
  funderid: http://dx.doi.org/10.13039/501100010198
– fundername: Eusko Jaurlaritza
  grantid: BERC 2018-2021
  funderid: http://dx.doi.org/10.13039/501100003086
– fundername: Eusko Jaurlaritza
  grantid: IT-609-13
  funderid: http://dx.doi.org/10.13039/501100003086
GroupedDBID -59
-5G
-BR
-EM
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29F
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8AO
8FE
8FG
8FL
8G5
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CCPQU
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GUQSH
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
LAK
LLZTM
M0C
M0N
M2O
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
Q2X
QOS
R89
R9I
RNS
ROL
RPX
RSV
S16
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z88
ZMTXR
-Y2
1SB
2P1
2VQ
AAPKM
AARHV
AAYXX
ABBRH
ABDBE
ABFSG
ABQSL
ABRTQ
ABULA
ACBXY
ACSTC
ADHKG
ADKFA
AEBTG
AEKMD
AEZWR
AFDZB
AFGCZ
AFHIU
AFOHR
AGGDS
AGQPQ
AHPBZ
AHSBF
AHWEU
AIXLP
AJBLW
AMVHM
ATHPR
AYFIA
CAG
CITATION
COF
H13
N2Q
O9-
OVD
PHGZM
PHGZT
PQGLB
PUEGO
RNI
RZC
RZE
RZK
S1Z
TEORI
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
MBDVC
PKEHL
PQEST
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c407t-a1cf13f384c82d77382e08ebdf89f68a4b6fb39617c24a03dd772d1d4769012f3
IEDL.DBID UNPAY
ISSN 1384-5810
1573-756X
IngestDate Tue Aug 19 20:09:57 EDT 2025
Sat Aug 16 15:11:58 EDT 2025
Wed Oct 01 01:07:28 EDT 2025
Thu Apr 24 23:06:41 EDT 2025
Fri Feb 21 02:33:29 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Distance based
Definiteness
Kernel
Time series
Classification
Language English
License cc-by-nc-sa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-a1cf13f384c82d77382e08ebdf89f68a4b6fb39617c24a03dd772d1d4769012f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8520-4456
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/20.500.11824/888
PQID 2127843895
PQPubID 43030
PageCount 35
ParticipantIDs unpaywall_primary_10_1007_s10618_018_0596_4
proquest_journals_2127843895
crossref_citationtrail_10_1007_s10618_018_0596_4
crossref_primary_10_1007_s10618_018_0596_4
springer_journals_10_1007_s10618_018_0596_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-03-01
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Data mining and knowledge discovery
PublicationTitleAbbrev Data Min Knowl Disc
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References Rüping S (2001) SVM kernels for time series analysis. Technical report
MizuharaYHayashiASuematsuNEmbedding of time series data by using dynamic time warping distancesSyst Comput Jpn20063731910.1002/scj.20486
DecosteDSchölkopfBTraining invariant support vector machines using selective samplingMach Learn2002461611900998.6810210.1023/A:1012454411458
Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. In: ACM SIGMOD international conference on management of data, pp 419–429
ChenZZuoWHuQLinLKernel sparse representation for time series classificationInf Sci2015292152632670471404.6809510.1016/j.ins.2014.08.066
ZhangLChangPLiuJYanZWangTLiFKernel sparse representation-based classifierIEEE Trans Signal Process20126041684169529341891393.9473310.1109/TSP.2011.2179539
MarteauPFTime warp edit distance with stiffness adjustment for time series matchingIEEE Trans Pattern Anal Mach Intell200931230631810.1109/TPAMI.2008.76
YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discovery2011221–214918227645551235.6821310.1007/s10618-010-0179-5
JeongYJeongMKOmitaomuOAWeighted dynamic time warping for time series classificationPattern Recognit20114492231224010.1016/j.patcog.2010.09.022
Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd ICML international conference on machine learning, pp 1033–1040
KayaHGündüz-ÖüdücüSSAGA: a novel signal alignment method based on genetic algorithmInf Sci2013228113130301870710.1016/j.ins.2012.12.012
WangXMueenADingHTrajcevskiGScheuermannPKeoghEExperimental comparison of representation methods and distance measures for time series dataData Min Knowl Discovery2013262275309301773910.1007/s10618-012-0250-5
CoverTHartPNearest neighbor pattern classificationIEEE Trans Inf Theory196713121270154.4450510.1109/TIT.1967.1053964
BelkinMNiyogiPLaplacian Eigenmaps and spectral techniques for embedding and clusteringAdv Neural Inf Process Syst200214585591
Chen L, Ng R (2004) On the marriage of Lp-norms and edit distance. In: International conference on very large data bases, pp 792–803
MarteauPFBonnelNMénierGDiscrete elastic inner vector spaces with application in time series and sequence miningIEEE Trans Knowl Data Eng20122592024203510.1109/TKDE.2012.131
Wu G, Chang EY, Zhang Z (2005a) An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines. In: Proceedings of the 22th ICML international conference on machine learning, p 8
Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1154–1162
Sivaramakrishnan KR, Bhattacharyya C (2004) Time series classification for online tamil handwritten character recognition a kernel based approach. In: International conference on neural information processing, pp 800–805
ChenYGarciaEGuptaMSimilarity-based classification: concepts and algorithmsJ Mach Learn Res20091020674777624917571235.68138
GreubWHLinear algebra1975BerlinSpringer0317.1500210.1007/978-1-4684-9446-4
SmythPClustering sequences with hidden Markov modelsAdv Neural Inf Process Syst19979648654
Bahlmann C, Haasdonk B, Burkhardt H (2002) Online handwriting recognition with support vector machines: a kernel approach. In: Proceedings of international workshop on frontiers in handwriting recognition, IWFHR, pp 49–54
SerràJArcosJLAn empirical evaluation of similarity measures for time series classificationKnowl Based Syst20146730531410.1016/j.knosys.2014.04.035
Jain B, Spiegel S (2015) Dimension reduction in dissimilarity spaces for time series classification. In: International workshop on advanced analytics and learning on temporal data, pp 31–46
Schölkopf B (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond
LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Discovery201529356559233343151405.6829510.1007/s10618-014-0361-2
Ong CS, Mary X, Canu S, Smola AJ (2004) Learning with non-positive kernels. In: Proceedings of the 21th ICML international conference on machine learning, p 81
LiMChenXLiXMaBVitányiPMBThe similarity metricIEEE Trans Inf Theory200450123250326421034951316.6805210.1109/TIT.2004.838101
Li X, Lin J (2018) Evolving separating references for time series classification. In: Proceedings of the 2018 SIAM international conference on data mining, pp 243–251
SakoeHChibaSDynamic programming algorithm optimization for spoken word recognitionIEEE Trans Acoustics Speech Signal Process197826143490371.6803510.1109/TASSP.1978.1163055
KayaHGündüz-ÖüdücüSA distance based time series classification frameworkInf Syst201551274210.1016/j.is.2015.02.005
Gaidon A, Harchoui Z, Schmid C (2011) A time series kernel for action recognition. In: Procedings of the British machine vision conference, pp 63.1–63.11
Lei H, Sun B (2007) A study on the dynamic time warping in kernel machines. In: Proceedings of the 3rd SITIS international IEEE conference on signal-image technologies and internet-based system, pp 839–845
Weston J, Schölkopf B, Eskin E, Leslie C, Noble WS (2003) Dealing with large diagonals in kernel matrices. In: Annals of the institute of statistical mathematics, vol 55, pp 391–408
Cuturi M (2011) Fast global alignment kernels. In: Proceedings of the 28th ICML international conference on machine learning, pp 929–936
FuTCA review on time series data miningEng Appl Artif Intell201124116418110.1016/j.engappai.2010.09.007
HochreiterSObermayerKSupport vector machines for dyadic dataNeural Comput200615101472151022188401101.6876210.1162/neco.2006.18.6.1472
Wu L, Yen IEH, Xu F, Ravikuma P, Witbrock M (2018a) D2KE: from distance to kernel and embedding, pp 1–18. arXiv:1802.04956
BorgIGroenenPModern multidimensional scaling: theory and applications1997BerlinSpringer0862.6205210.1007/978-1-4757-2711-1
Lichman M (2013) UCI machine learning repository
CasacubertaFVidalERulotHOn the metric properties of dynamic time warpingIEEE Trans Acoustics Speech Signal Process198735111631163310.1109/TASSP.1987.1165065
He Q, Zhi D, Zhuang F, Shang T, Shi Z (2012) Fast time series classification based on infrequent shapelets. In: Proceedings of the 11th ICMLA international conference on machine learning and applications vol 1, pp 215–219
Lu Z, Leen KT, Huang Y, Erdogmus D (2008) A reproducing kernel hilbert space framework for pairwise time series distances. In: Proceedings of the 25th ICML international conference on machine learning, vol 56, pp 624–631
Lei Q, Yi J, Vaculin R, Wu L, Dhillon IS (2017) Similarity preserving representation learning for time series analysis. arXiv: 1702.03584 [cs]
GraepelTHerbrichRBollmann-SdorraPObermayerKClassification on pairwise proximity dataAdv Neural Inf Process Syst199911438444
VapnikVStatistical learning theory1998New YorkWiley0935.62007
Leslie C, Eskin E, Noble WS (2002) The spectrum kernel: a string kernel for SVM protein classification. In: Proceedings of the pacific symposium on biocomputing, pp 564–575
WilsonRCHancockERPȩkalskaEDuinRPWSpherical and hyperbolic embeddings of dataIEEE Trans Pattern Anal Mach Intell201436112255226910.1109/TPAMI.2014.2316836
CorduasMPiccoloDTime series clustering and classification by the autoregressive metricComput Stat Data Anal20085241860187224184760556460710.1016/j.csda.2007.06.001
CortesCHaffnerPMohriMRational kernels: theory and algorithmsJ Mach Learn Res200451035106222480081222.68175
KateRJUsing dynamic time warping distances as features for improved time series classificationData Min Knowl Discovery201530228331234581960705050610.1007/s10618-015-0418-x
TroncosoAAriasMRiquelmeJCA multi-scale smoothing kernel for measuring time-series similarityNeurocomputing201516781710.1016/j.neucom.2014.08.099
Guyon I, Schomaker L, Planiondon R, Liberman M, Janet S, Montreal Ecole Polytechnique De, Consortium Linguistic Data (1994) UNIPEN project of on-line data exchange, pp 29–33
FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingComput Syst Sci199713911913914730550880.6810310.1006/jcss.1997.1504
Popivanov I, Miller RJ (2002) Similarity search over time-series data using wavelets. In: Proceedings 18th international conference on data engineering (ICDE), pp 212–221
EslingPAgonCTime-series data miningACM Comput Surv20124511341293.6810410.1145/2379776.2379788
Wu G, Chang EY, Zhang Z (2005b) Learning with non-metric proximity matrices. In: Proceedings of the 13th ACM international conference on multimedia, p 411
BagnallALinesJBostromALargeJKeoghEThe great time series classification bake off: a review and experimental evaluation of recent algorithmic advancesData Min Knowl Discov2017313606660364065910.1007/s10618-016-0483-9
Gudmundsson S, Runarsson TP, Sigurdsson S (2008) Support vector machines and dynamic time warping for time series. In: Joint conference on neural networks (IEEE world congress on computational intelligence), pp 2772–2776
MarteauPFGibetSOn recursive edit distance kernels with application to time series classificationIEEE Trans Neural Netw Learn Syst20142661153454837
Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, p 947
ChenPFanRLinCA study on SMO-type decomposition methods for support vector machinesIEEE Trans Neural Netw Learn Syst200617489390810.1109/TNN.2006.875973
JacobsDWWeinshallDGdalyahuYClassification with nonmetric distances: image retrieval and class representationIEEE Trans Pattern Anal Mach Intell200022658360010.1109/34.862197
RasmussenCWilliamsCGaussian processes for machine learning2006BerlinSpringer1177.68165
DingHTrajcevskiGScheuermannPWangXKeoghEQuerying and mining of time series data: experimental comparison of representations and distance meas
H Kaya (596_CR50) 2013; 228
T Cover (596_CR20) 1967; 13
R Sun (596_CR93) 2016; 62
596_CR110
RJ Kate (596_CR49) 2015; 30
596_CR112
M Li (596_CR59) 2004; 50
A Bostrom (596_CR8) 2014; 8800
RC Wilson (596_CR102) 2014; 36
B Haasdonk (596_CR36) 2005; 27
X Wang (596_CR99) 2013; 26
YS Jeong (596_CR47) 2015; 75
596_CR61
596_CR60
596_CR62
U Mori (596_CR73) 2017; 31
596_CR65
P Smyth (596_CR92) 1997; 9
P Esling (596_CR25) 2012; 45
596_CR67
596_CR66
596_CR69
C Cortes (596_CR18) 1995; 297
PF Marteau (596_CR70) 2014; 26
J Hills (596_CR40) 2014; 28
H Shimodaira (596_CR90) 2002; 2
J Lines (596_CR64) 2015; 29
PF Marteau (596_CR71) 2012; 25
DMJ Tax (596_CR95) 2004; 54
CC Adams (596_CR1) 2004
H Sakoe (596_CR85) 1978; 26
D Decoste (596_CR23) 2002; 46
596_CR52
596_CR54
596_CR56
596_CR58
596_CR57
596_CR38
596_CR37
596_CR39
WH Greub (596_CR33) 1975
E Pȩkalska (596_CR77) 2001; 2
P Chen (596_CR12) 2006; 17
L Zhang (596_CR113) 2012; 60
596_CR44
596_CR46
596_CR26
A Bagnall (596_CR2) 2014; 31
596_CR29
596_CR100
596_CR101
596_CR104
596_CR103
H Ding (596_CR24) 2008; 1
596_CR105
596_CR107
596_CR109
M Corduas (596_CR17) 2008; 52
596_CR30
I Borg (596_CR7) 1997
596_CR31
596_CR34
Y Mizuhara (596_CR72) 2006; 37
596_CR35
H Kaya (596_CR51) 2015; 51
596_CR15
C Rasmussen (596_CR83) 2006
F Casacuberta (596_CR10) 1987; 35
K Kumara (596_CR55) 2008; 29
TC Fu (596_CR28) 2011; 24
L Ye (596_CR111) 2011; 22
596_CR21
E Keogh (596_CR53) 2005; 7
H Pree (596_CR80) 2014; 281
L Wu (596_CR106) 2018; 84
Z Xing (596_CR108) 2010; 12
E Pȩkalska (596_CR78) 2006; 39
S Hochreiter (596_CR41) 2006; 1510
A Bagnall (596_CR3) 2017; 31
Y Chen (596_CR14) 2009; 10
T Graepel (596_CR32) 1999; 11
596_CR91
M Belkin (596_CR5) 2002; 14
A Troncoso (596_CR96) 2015; 167
596_CR98
596_CR11
DW Jacobs (596_CR43) 2000; 22
596_CR13
BK Iwana (596_CR42) 2017; 64
V Vapnik (596_CR97) 1998
Z Chen (596_CR16) 2015; 292
PN Tan (596_CR94) 2005
J Serrà (596_CR88) 2014; 67
Y Freund (596_CR27) 1997; 139
A Jalalian (596_CR45) 2013; 99
J Shawe-Taylor (596_CR89) 2004
596_CR81
596_CR82
C Cortes (596_CR19) 2004; 5
596_CR84
596_CR87
596_CR86
D Berndt (596_CR6) 1994; 398
596_CR4
Y Jeong (596_CR48) 2011; 44
596_CR9
M Cuturi (596_CR22) 2007; 1
J Lin (596_CR63) 2007; 15
596_CR74
PF Marteau (596_CR68) 2009; 31
596_CR76
596_CR75
596_CR79
References_xml – reference: Schölkopf B (2001) Learning with kernels: support vector machines, regularization, optimization, and beyond
– reference: XingZPeiJKeoghEA brief survey on sequence classificationACM SIGKDD Explor Newsl20101214010.1145/1882471.1882478
– reference: BelkinMNiyogiPLaplacian Eigenmaps and spectral techniques for embedding and clusteringAdv Neural Inf Process Syst200214585591
– reference: Gudmundsson S, Runarsson TP, Sigurdsson S (2008) Support vector machines and dynamic time warping for time series. In: Joint conference on neural networks (IEEE world congress on computational intelligence), pp 2772–2776
– reference: Keogh E, Kasetty S (2002) On the need for time series data mining benchmarks. In: Proceedings of the 8th ACM SIGKDD international conference on knowledge discovery and data mining, pp 102
– reference: Gaidon A, Harchoui Z, Schmid C (2011) A time series kernel for action recognition. In: Procedings of the British machine vision conference, pp 63.1–63.11
– reference: HillsJLinesJBaranauskasEMappJBagnallAClassification of time series by shapelet transformationData Min Knowl Discovery201428485188131769261298.6209810.1007/s10618-013-0322-1
– reference: CortesCHaffnerPMohriMRational kernels: theory and algorithmsJ Mach Learn Res200451035106222480081222.68175
– reference: Cuturi M (2011) Fast global alignment kernels. In: Proceedings of the 28th ICML international conference on machine learning, pp 929–936
– reference: JacobsDWWeinshallDGdalyahuYClassification with nonmetric distances: image retrieval and class representationIEEE Trans Pattern Anal Mach Intell200022658360010.1109/34.862197
– reference: Lichman M (2013) UCI machine learning repository
– reference: Wang X, Lin J, Senin P, Alamos L, Oates T, Gandhi S, Boedihardjo AP, Chen C, Frankenstein S (2016) RPM: representative pattern mining for efficient time series classification. In: Proceedings of the 19th international conference on extending database technology, pp 185–196
– reference: MarteauPFTime warp edit distance with stiffness adjustment for time series matchingIEEE Trans Pattern Anal Mach Intell200931230631810.1109/TPAMI.2008.76
– reference: Ong CS, Mary X, Canu S, Smola AJ (2004) Learning with non-positive kernels. In: Proceedings of the 21th ICML international conference on machine learning, p 81
– reference: KayaHGündüz-ÖüdücüSA distance based time series classification frameworkInf Syst201551274210.1016/j.is.2015.02.005
– reference: Giusti R, Silva DF, Batista GEAPA (2016) Improved time series classification with representation diversity and SVM. In: International conference on machine learning and applications, pp 1–6
– reference: Guyon I, Schomaker L, Planiondon R, Liberman M, Janet S, Montreal Ecole Polytechnique De, Consortium Linguistic Data (1994) UNIPEN project of on-line data exchange, pp 29–33
– reference: IwanaBKFrinkenVRiesenKUchidaSEfficient temporal pattern recognition by means of dissimilarity space embedding with discriminative prototypesPattern Recognit20176426827610.1016/j.patcog.2016.11.013
– reference: Shawe-TaylorJCristianiniNKernel methods for pattern analysis2004CambridgeCambridge University Press0994.6807410.1017/CBO9780511809682
– reference: Senin P, Lin J, Wang X, Oates T, Gandhi S, Boedihardjo AP, Chen C, Frankenstein S, Lerner M (2014) GrammarViz 2.0: a tool for grammar-based pattern discovery in time series. In: Joint European conference on machine learning and knowledge discovery in databases, pp 468–472
– reference: KeoghERatanamahatanaCAExact indexing of dynamic time warpingKnowl Inf Syst2005735838610.1007/s10115-004-0154-9
– reference: LinJKeoghEWeiLLonardiSExperiencing SAX: a novel symbolic representation of time seriesData Min Knowl Discovery2007152107144240978310.1007/s10618-007-0064-z
– reference: Mueen A, Keogh E, Young N (2011) Logical-shapelets: an expressive primitive for time series classification. In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data mining, pp 1154–1162
– reference: ShimodairaHNomaKINakaiMSagayamaSDynamic time-alignment kernel in support vector machineAdv Neural Inf Process Syst200221921928
– reference: TanPNSteinbachMKumarVIntroduction to data mining2005BostonAddison Wesley
– reference: HochreiterSObermayerKSupport vector machines for dyadic dataNeural Comput200615101472151022188401101.6876210.1162/neco.2006.18.6.1472
– reference: YeLKeoghETime series shapelets: a novel technique that allows accurate, interpretable and fast classificationData Min Knowl Discovery2011221–214918227645551235.6821310.1007/s10618-010-0179-5
– reference: FuTCA review on time series data miningEng Appl Artif Intell201124116418110.1016/j.engappai.2010.09.007
– reference: Pȩkalska E, Duin RPW (2005) The dissimilarity representation for pattern recognition: foundations and applications
– reference: SerràJArcosJLAn empirical evaluation of similarity measures for time series classificationKnowl Based Syst20146730531410.1016/j.knosys.2014.04.035
– reference: VapnikVStatistical learning theory1998New YorkWiley0935.62007
– reference: TaxDMJDuinRPWSupport vector data descriptionMach Learn20045445661078.6872810.1023/B:MACH.0000008084.60811.49
– reference: Zhang D, Zuo W, Zhang D, Zhang H (2010) Time series classification using support vector machine with Gaussian elastic metric kernel. In: Proceedings of international conference on pattern recognition, pp 29–32
– reference: Chen Y, Hu B, Keogh E, Batista GEAPA (2013) DTW-D: time series semi-supervised learning from a single example. In: Proceedings of the 19th ACM SIGKDD international conference on knowledge discovery and data mining, p 383
– reference: CortesCVapnikVSupport-vector networksMach Learn19952972732970831.68098
– reference: Grabocka J, Schilling N, Wistuba M, Schmidt-Thieme L (2014) Learning time-series shapelets. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, pp 392–401
– reference: Bahlmann C, Haasdonk B, Burkhardt H (2002) Online handwriting recognition with support vector machines: a kernel approach. In: Proceedings of international workshop on frontiers in handwriting recognition, IWFHR, pp 49–54
– reference: JeongYJeongMKOmitaomuOAWeighted dynamic time warping for time series classificationPattern Recognit20114492231224010.1016/j.patcog.2010.09.022
– reference: Rahimi A, Recht B (2008) Random features for large-scale kernel machines. In: Advances in neural information processing systems
– reference: TroncosoAAriasMRiquelmeJCA multi-scale smoothing kernel for measuring time-series similarityNeurocomputing201516781710.1016/j.neucom.2014.08.099
– reference: Popivanov I, Miller RJ (2002) Similarity search over time-series data using wavelets. In: Proceedings 18th international conference on data engineering (ICDE), pp 212–221
– reference: LinesJBagnallATime series classification with ensembles of elastic distance measuresData Min Knowl Discovery201529356559233343151405.6829510.1007/s10618-014-0361-2
– reference: Sivaramakrishnan KR, Bhattacharyya C (2004) Time series classification for online tamil handwritten character recognition a kernel based approach. In: International conference on neural information processing, pp 800–805
– reference: GreubWHLinear algebra1975BerlinSpringer0317.1500210.1007/978-1-4684-9446-4
– reference: Wu G, Chang EY, Zhang Z (2005b) Learning with non-metric proximity matrices. In: Proceedings of the 13th ACM international conference on multimedia, p 411
– reference: Rüping S (2001) SVM kernels for time series analysis. Technical report
– reference: KateRJUsing dynamic time warping distances as features for improved time series classificationData Min Knowl Discovery201530228331234581960705050610.1007/s10618-015-0418-x
– reference: EslingPAgonCTime-series data miningACM Comput Surv20124511341293.6810410.1145/2379776.2379788
– reference: Rakthanmanon T, Keogh E (2013) Fast shapelets: a scalable algorithm for discovering time series shapelets. In: Proceedings of the 13th ICDM international conference on data mining, pp 668–676
– reference: ChenZZuoWHuQLinLKernel sparse representation for time series classificationInf Sci2015292152632670471404.6809510.1016/j.ins.2014.08.066
– reference: He Q, Zhi D, Zhuang F, Shang T, Shi Z (2012) Fast time series classification based on infrequent shapelets. In: Proceedings of the 11th ICMLA international conference on machine learning and applications vol 1, pp 215–219
– reference: SunRLuoZQGuaranteed matrix completion via non-convex factorizationIEEE Trans Inf Theory201662116535657935651311359.9417910.1109/TIT.2016.2598574
– reference: AdamsCCThe knot book: an elementary introduction to the mathematical theory of knots2004ProvidenceAmerican Mathematical Society1065.57003
– reference: Chen Y, Keogh E, Hu B, Begum N, Bagnall A, Mueen A, Batista GEAPA (2015a) The UCR time series classification archive
– reference: Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series databases. In: ACM SIGMOD international conference on management of data, pp 419–429
– reference: Lines J, Davis LM, Hills J, Bagnall A (2012) A shapelet transform for time series classification. In: Proceedings of the 18th ACM SIGKDD international conference on knowledge discovery and data mining, pp 289
– reference: Wachman G, Khardon R, Protopapas P, Charles RA (2009) Kernels for periodic time series arising in astronomy. In: European conference on machine learning and knowledge discovery in databases
– reference: KayaHGündüz-ÖüdücüSSAGA: a novel signal alignment method based on genetic algorithmInf Sci2013228113130301870710.1016/j.ins.2012.12.012
– reference: BorgIGroenenPModern multidimensional scaling: theory and applications1997BerlinSpringer0862.6205210.1007/978-1-4757-2711-1
– reference: Wu L, Yen IEH, Xu F, Ravikuma P, Witbrock M (2018a) D2KE: from distance to kernel and embedding, pp 1–18. arXiv:1802.04956
– reference: RasmussenCWilliamsCGaussian processes for machine learning2006BerlinSpringer1177.68165
– reference: Weston J, Schölkopf B, Eskin E, Leslie C, Noble WS (2003) Dealing with large diagonals in kernel matrices. In: Annals of the institute of statistical mathematics, vol 55, pp 391–408
– reference: ZhangLChangPLiuJYanZWangTLiFKernel sparse representation-based classifierIEEE Trans Signal Process20126041684169529341891393.9473310.1109/TSP.2011.2179539
– reference: Lei Q, Yi J, Vaculin R, Wu L, Dhillon IS (2017) Similarity preserving representation learning for time series analysis. arXiv: 1702.03584 [cs]
– reference: MarteauPFBonnelNMénierGDiscrete elastic inner vector spaces with application in time series and sequence miningIEEE Trans Knowl Data Eng20122592024203510.1109/TKDE.2012.131
– reference: JalalianAChalupSKGDTW-P-SVMs: variable-length time series analysis using support vector machinesNeurocomputing20139927028210.1016/j.neucom.2012.07.006
– reference: Jain B, Spiegel S (2015) Dimension reduction in dissimilarity spaces for time series classification. In: International workshop on advanced analytics and learning on temporal data, pp 31–46
– reference: BostromABagnallABinary shapelet transform for multiclass time series classificationTrans Large Scale Data Knowl Centered Syst201488002446
– reference: CasacubertaFVidalERulotHOn the metric properties of dynamic time warpingIEEE Trans Acoustics Speech Signal Process198735111631163310.1109/TASSP.1987.1165065
– reference: CorduasMPiccoloDTime series clustering and classification by the autoregressive metricComput Stat Data Anal20085241860187224184760556460710.1016/j.csda.2007.06.001
– reference: WilsonRCHancockERPȩkalskaEDuinRPWSpherical and hyperbolic embeddings of dataIEEE Trans Pattern Anal Mach Intell201436112255226910.1109/TPAMI.2014.2316836
– reference: BerndtDCliffordJUsing dynamic time warping to find patterns in time seriesWorkshop Knowl Discovery Databases1994398359370
– reference: Hayashi A, Mizuhara Y, Suematsu N (2005) Embedding time series data for classification. In: International workshop on machine learning and data mining in pattern recognition, pp 356–365
– reference: Leslie C, Eskin E, Noble WS (2002) The spectrum kernel: a string kernel for SVM protein classification. In: Proceedings of the pacific symposium on biocomputing, pp 564–575
– reference: PȩkalskaEDuinRPWPaclíkPPrototype selection for dissimilarity-based classifiersPattern Recognit20063921892081080.6864610.1016/j.patcog.2005.06.012
– reference: CuturiMVertJA kernel for time series based on global alignmentsIEEE Trans Acoustics Speech Signal Process20071413416
– reference: Ye L, Keogh E (2009) Time series shapelets: a new primitive for data mining. In: Proceedings of the 15th ACM SIGKDD international conference on knowledge discovery and data mining, p 947
– reference: ChenPFanRLinCA study on SMO-type decomposition methods for support vector machinesIEEE Trans Neural Netw Learn Syst200617489390810.1109/TNN.2006.875973
– reference: Chen L, Ng R (2004) On the marriage of Lp-norms and edit distance. In: International conference on very large data bases, pp 792–803
– reference: SakoeHChibaSDynamic programming algorithm optimization for spoken word recognitionIEEE Trans Acoustics Speech Signal Process197826143490371.6803510.1109/TASSP.1978.1163055
– reference: Xi X, Keogh E, Shelton C, Wei L, Ratanamahatana CA (2006) Fast time series classification using numerosity reduction. In: Proceedings of the 23rd ICML international conference on machine learning, pp 1033–1040
– reference: Lei H, Sun B (2007) A study on the dynamic time warping in kernel machines. In: Proceedings of the 3rd SITIS international IEEE conference on signal-image technologies and internet-based system, pp 839–845
– reference: Liberman M (1993) TI46 speech corpus. In: Linguistic data consortium
– reference: JeongYSJayaramanRSupport vector-based algorithms with weighted dynamic time warping kernel function for time series classificationKnowl Based Syst201575June18419110.1016/j.knosys.2014.12.003
– reference: BagnallAJanacekGA run length transformation for discriminating between autoregressive time seriesJ Classif20143122742951360.6244810.1007/s00357-013-9135-6
– reference: Bostrom A, Bagnall A, Lines J (2016) Evaluating improvements to the shapelet transform. www-bcf.usc.edu. Accessed 21 Nov 2017
– reference: BagnallALinesJBostromALargeJKeoghEThe great time series classification bake off: a review and experimental evaluation of recent algorithmic advancesData Min Knowl Discov2017313606660364065910.1007/s10618-016-0483-9
– reference: Lods A, Malinowski S, Tavenard R, Amsaleg L (2017) Learning DTW-preserving shapelets. In: International symposium on intelligent data analysis. Springer, Cham, pp 198–209
– reference: Haasdonk B, Bahlmann C (2004) Learning with distance substitution kernels. In: Joint pattern recognition symposium, pp 220–227
– reference: KumaraKAgrawalRBhattacharyyaCA large margin approach for writer independent online handwriting classificationPattern Recognit Lett200829793393710.1016/j.patrec.2008.01.016
– reference: DecosteDSchölkopfBTraining invariant support vector machines using selective samplingMach Learn2002461611900998.6810210.1023/A:1012454411458
– reference: PȩkalskaEPaclíkPDuinRPWA generalized kernel approach to dissimilarity-based classificationJ Mach Learn Res2001217521119047581037.68127
– reference: MoriUMendiburuAKeoghELozanoJAReliable early classification of time series based on discriminating the classes over timeData Min Knowl Discovery2017311233263359682210.1007/s10618-016-0462-1
– reference: HaasdonkBFeature space interpretation of SVMs with indefinite kernelsIEEE Trans Pattern Anal Mach Intell200527448249210.1109/TPAMI.2005.78
– reference: PreeHHerwigBGruberTSickBDavidKLukowiczPOn general purpose time series similarity measures and their use as kernel functions in support vector machinesInf Sci201428147849510.1016/j.ins.2014.05.025
– reference: Xue Y, Zhang L, Tao Z, Wang B, Li F (2017) An altered kernel transformation for time series classification. In: International conference on neural information processing, pp 455–465
– reference: Korn F, Jagaciish HV, Faloutsos C (1997) Efficiently supporting ad hoc queries sequences in large datasets of time for systems. In: Proceedings of the 1997 ACM SIGMOD international conference on management of data, pp 289–300
– reference: CoverTHartPNearest neighbor pattern classificationIEEE Trans Inf Theory196713121270154.4450510.1109/TIT.1967.1053964
– reference: LiMChenXLiXMaBVitányiPMBThe similarity metricIEEE Trans Inf Theory200450123250326421034951316.6805210.1109/TIT.2004.838101
– reference: GraepelTHerbrichRBollmann-SdorraPObermayerKClassification on pairwise proximity dataAdv Neural Inf Process Syst199911438444
– reference: ChenYGarciaEGuptaMSimilarity-based classification: concepts and algorithmsJ Mach Learn Res20091020674777624917571235.68138
– reference: MizuharaYHayashiASuematsuNEmbedding of time series data by using dynamic time warping distancesSyst Comput Jpn20063731910.1002/scj.20486
– reference: FreundYSchapireREA decision-theoretic generalization of on-line learning and an application to boostingComput Syst Sci199713911913914730550880.6810310.1006/jcss.1997.1504
– reference: MarteauPFGibetSOn recursive edit distance kernels with application to time series classificationIEEE Trans Neural Netw Learn Syst20142661153454837
– reference: WuLYenIE-HYiJXuFLeiQWitbrockMRandom warping series: a random features method for time-series embeddingProc Twenty-First Int Conf Artif Intell Stat201884793802
– reference: WangXMueenADingHTrajcevskiGScheuermannPKeoghEExperimental comparison of representation methods and distance measures for time series dataData Min Knowl Discovery2013262275309301773910.1007/s10618-012-0250-5
– reference: Wu G, Chang EY, Zhang Z (2005a) An analysis of transformation on non-positive semidefinite similarity matrix for kernel machines. In: Proceedings of the 22th ICML international conference on machine learning, p 8
– reference: Li X, Lin J (2018) Evolving separating references for time series classification. In: Proceedings of the 2018 SIAM international conference on data mining, pp 243–251
– reference: DingHTrajcevskiGScheuermannPWangXKeoghEQuerying and mining of time series data: experimental comparison of representations and distance measuresProc VLDB Very Large Database Endow2008121542155210.14778/1454159.1454226
– reference: Marteau PF, Gibet S (2010) Constructing positive definite elastic kernels with application to time series classification. In: CoRR, pp 1–18
– reference: Lu Z, Leen KT, Huang Y, Erdogmus D (2008) A reproducing kernel hilbert space framework for pairwise time series distances. In: Proceedings of the 25th ICML international conference on machine learning, vol 56, pp 624–631
– reference: SmythPClustering sequences with hidden Markov modelsAdv Neural Inf Process Syst19979648654
– reference: Janyalikit T, Sathianwiriyakhun P, Sivaraks H, Ratanamahatana CA (2016) An enhanced support vector machine for faster time series classification. In: Asian conference on intelligent information and database systems, pp 616–625
– volume: 22
  start-page: 583
  issue: 6
  year: 2000
  ident: 596_CR43
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.862197
– volume: 26
  start-page: 275
  issue: 2
  year: 2013
  ident: 596_CR99
  publication-title: Data Min Knowl Discovery
  doi: 10.1007/s10618-012-0250-5
– ident: 596_CR4
  doi: 10.1109/IWFHR.2002.1030883
– ident: 596_CR82
  doi: 10.1137/1.9781611972832.74
– volume-title: Gaussian processes for machine learning
  year: 2006
  ident: 596_CR83
– volume: 31
  start-page: 233
  issue: 1
  year: 2017
  ident: 596_CR73
  publication-title: Data Min Knowl Discovery
  doi: 10.1007/s10618-016-0462-1
– ident: 596_CR11
  doi: 10.1016/B978-012088469-8.50070-X
– volume: 52
  start-page: 1860
  issue: 4
  year: 2008
  ident: 596_CR17
  publication-title: Comput Stat Data Anal
  doi: 10.1016/j.csda.2007.06.001
– ident: 596_CR62
– volume-title: Statistical learning theory
  year: 1998
  ident: 596_CR97
– volume: 45
  start-page: 1
  issue: 1
  year: 2012
  ident: 596_CR25
  publication-title: ACM Comput Surv
  doi: 10.1145/2379776.2379788
– volume: 10
  start-page: 747
  issue: 206
  year: 2009
  ident: 596_CR14
  publication-title: J Mach Learn Res
– volume: 26
  start-page: 43
  issue: 1
  year: 1978
  ident: 596_CR85
  publication-title: IEEE Trans Acoustics Speech Signal Process
  doi: 10.1109/TASSP.1978.1163055
– volume: 292
  start-page: 15
  year: 2015
  ident: 596_CR16
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.08.066
– ident: 596_CR26
  doi: 10.1145/191843.191925
– volume: 139
  start-page: 119
  year: 1997
  ident: 596_CR27
  publication-title: Comput Syst Sci
  doi: 10.1006/jcss.1997.1504
– volume: 37
  start-page: 1
  issue: 3
  year: 2006
  ident: 596_CR72
  publication-title: Syst Comput Jpn
  doi: 10.1002/scj.20486
– volume: 27
  start-page: 482
  issue: 4
  year: 2005
  ident: 596_CR36
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.78
– ident: 596_CR79
  doi: 10.1109/ICDE.2002.994711
– volume: 8800
  start-page: 24
  year: 2014
  ident: 596_CR8
  publication-title: Trans Large Scale Data Knowl Centered Syst
– volume: 1510
  start-page: 1472
  year: 2006
  ident: 596_CR41
  publication-title: Neural Comput
  doi: 10.1162/neco.2006.18.6.1472
– ident: 596_CR101
  doi: 10.1007/BF02530507
– volume: 67
  start-page: 305
  year: 2014
  ident: 596_CR88
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.04.035
– volume: 24
  start-page: 164
  issue: 1
  year: 2011
  ident: 596_CR28
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2010.09.007
– ident: 596_CR74
  doi: 10.1145/2020408.2020587
– ident: 596_CR15
– ident: 596_CR66
  doi: 10.1007/978-3-319-68765-0_17
– ident: 596_CR91
– ident: 596_CR30
  doi: 10.1109/ICMLA.2016.0010
– volume: 7
  start-page: 358
  year: 2005
  ident: 596_CR53
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-004-0154-9
– ident: 596_CR76
  doi: 10.1142/9789812703170
– volume-title: Linear algebra
  year: 1975
  ident: 596_CR33
  doi: 10.1007/978-1-4684-9446-4
– ident: 596_CR37
  doi: 10.1007/978-3-540-28649-3_27
– ident: 596_CR107
  doi: 10.1145/1143844.1143974
– volume: 84
  start-page: 793
  year: 2018
  ident: 596_CR106
  publication-title: Proc Twenty-First Int Conf Artif Intell Stat
– ident: 596_CR52
  doi: 10.1145/775047.775062
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 596_CR20
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 5
  start-page: 1035
  year: 2004
  ident: 596_CR19
  publication-title: J Mach Learn Res
– ident: 596_CR112
  doi: 10.1109/ICPR.2010.16
– ident: 596_CR39
  doi: 10.1109/ICMLA.2012.44
– volume: 2
  start-page: 175
  year: 2001
  ident: 596_CR77
  publication-title: J Mach Learn Res
– ident: 596_CR105
– volume: 31
  start-page: 274
  issue: 2
  year: 2014
  ident: 596_CR2
  publication-title: J Classif
  doi: 10.1007/s00357-013-9135-6
– ident: 596_CR54
– volume-title: Modern multidimensional scaling: theory and applications
  year: 1997
  ident: 596_CR7
  doi: 10.1007/978-1-4757-2711-1
– ident: 596_CR9
– volume: 31
  start-page: 306
  issue: 2
  year: 2009
  ident: 596_CR68
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2008.76
– volume: 22
  start-page: 149
  issue: 1–2
  year: 2011
  ident: 596_CR111
  publication-title: Data Min Knowl Discovery
  doi: 10.1007/s10618-010-0179-5
– volume-title: Introduction to data mining
  year: 2005
  ident: 596_CR94
– volume: 398
  start-page: 359
  year: 1994
  ident: 596_CR6
  publication-title: Workshop Knowl Discovery Databases
– volume: 35
  start-page: 1631
  issue: 11
  year: 1987
  ident: 596_CR10
  publication-title: IEEE Trans Acoustics Speech Signal Process
  doi: 10.1109/TASSP.1987.1165065
– volume: 1
  start-page: 1542
  issue: 2
  year: 2008
  ident: 596_CR24
  publication-title: Proc VLDB Very Large Database Endow
  doi: 10.14778/1454159.1454226
– ident: 596_CR75
  doi: 10.1145/1015330.1015443
– ident: 596_CR86
  doi: 10.7551/mitpress/4175.001.0001
– volume: 29
  start-page: 933
  issue: 7
  year: 2008
  ident: 596_CR55
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2008.01.016
– ident: 596_CR31
  doi: 10.1145/2623330.2623613
– volume: 64
  start-page: 268
  year: 2017
  ident: 596_CR42
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2016.11.013
– volume: 50
  start-page: 3250
  issue: 12
  year: 2004
  ident: 596_CR59
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2004.838101
– volume: 1
  start-page: 413
  year: 2007
  ident: 596_CR22
  publication-title: IEEE Trans Acoustics Speech Signal Process
– ident: 596_CR65
  doi: 10.1145/2339530.2339579
– ident: 596_CR100
– ident: 596_CR98
  doi: 10.1007/978-3-642-04174-7_32
– volume: 281
  start-page: 478
  year: 2014
  ident: 596_CR80
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2014.05.025
– ident: 596_CR81
– ident: 596_CR87
  doi: 10.1007/978-3-662-44845-8_37
– volume: 75
  start-page: 184
  issue: June
  year: 2015
  ident: 596_CR47
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2014.12.003
– ident: 596_CR67
  doi: 10.1145/1390156.1390235
– ident: 596_CR38
  doi: 10.1007/11510888_35
– volume: 167
  start-page: 8
  year: 2015
  ident: 596_CR96
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.08.099
– volume: 28
  start-page: 851
  issue: 4
  year: 2014
  ident: 596_CR40
  publication-title: Data Min Knowl Discovery
  doi: 10.1007/s10618-013-0322-1
– volume: 26
  start-page: 1
  issue: 6
  year: 2014
  ident: 596_CR70
  publication-title: IEEE Trans Neural Netw Learn Syst
– ident: 596_CR13
  doi: 10.1145/2487575.2487633
– volume: 11
  start-page: 438
  year: 1999
  ident: 596_CR32
  publication-title: Adv Neural Inf Process Syst
– ident: 596_CR103
– volume: 51
  start-page: 27
  year: 2015
  ident: 596_CR51
  publication-title: Inf Syst
  doi: 10.1016/j.is.2015.02.005
– volume: 29
  start-page: 565
  issue: 3
  year: 2015
  ident: 596_CR64
  publication-title: Data Min Knowl Discovery
  doi: 10.1007/s10618-014-0361-2
– volume: 62
  start-page: 6535
  issue: 11
  year: 2016
  ident: 596_CR93
  publication-title: IEEE Trans Inf Theory
  doi: 10.1109/TIT.2016.2598574
– volume: 44
  start-page: 2231
  issue: 9
  year: 2011
  ident: 596_CR48
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2010.09.022
– volume: 30
  start-page: 283
  issue: 2
  year: 2015
  ident: 596_CR49
  publication-title: Data Min Knowl Discovery
  doi: 10.1007/s10618-015-0418-x
– volume: 54
  start-page: 45
  year: 2004
  ident: 596_CR95
  publication-title: Mach Learn
  doi: 10.1023/B:MACH.0000008084.60811.49
– ident: 596_CR46
  doi: 10.1007/978-3-662-49381-6_59
– ident: 596_CR84
– ident: 596_CR110
  doi: 10.1145/1557019.1557122
– volume: 228
  start-page: 113
  year: 2013
  ident: 596_CR50
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2012.12.012
– ident: 596_CR60
  doi: 10.1137/1.9781611975321.28
– volume: 31
  start-page: 606
  issue: 3
  year: 2017
  ident: 596_CR3
  publication-title: Data Min Knowl Discov
  doi: 10.1007/s10618-016-0483-9
– volume: 60
  start-page: 1684
  issue: 4
  year: 2012
  ident: 596_CR113
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/TSP.2011.2179539
– volume: 36
  start-page: 2255
  issue: 11
  year: 2014
  ident: 596_CR102
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2014.2316836
– volume: 46
  start-page: 161
  year: 2002
  ident: 596_CR23
  publication-title: Mach Learn
  doi: 10.1023/A:1012454411458
– ident: 596_CR57
– volume-title: Kernel methods for pattern analysis
  year: 2004
  ident: 596_CR89
  doi: 10.1017/CBO9780511809682
– ident: 596_CR29
  doi: 10.5244/C.25.63
– volume: 99
  start-page: 270
  year: 2013
  ident: 596_CR45
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.07.006
– ident: 596_CR109
  doi: 10.1007/978-3-319-70139-4_46
– volume: 25
  start-page: 2024
  issue: 9
  year: 2012
  ident: 596_CR71
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2012.131
– ident: 596_CR21
– ident: 596_CR44
– volume: 12
  start-page: 40
  issue: 1
  year: 2010
  ident: 596_CR108
  publication-title: ACM SIGKDD Explor Newsl
  doi: 10.1145/1882471.1882478
– volume: 14
  start-page: 585
  year: 2002
  ident: 596_CR5
  publication-title: Adv Neural Inf Process Syst
– ident: 596_CR34
  doi: 10.1109/IJCNN.2008.4634188
– ident: 596_CR35
– volume: 2
  start-page: 921
  issue: 1
  year: 2002
  ident: 596_CR90
  publication-title: Adv Neural Inf Process Syst
– ident: 596_CR58
– volume: 39
  start-page: 189
  issue: 2
  year: 2006
  ident: 596_CR78
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2005.06.012
– ident: 596_CR104
  doi: 10.1145/1101149.1101239
– volume: 9
  start-page: 648
  year: 1997
  ident: 596_CR92
  publication-title: Adv Neural Inf Process Syst
– ident: 596_CR61
– ident: 596_CR69
– volume: 17
  start-page: 893
  issue: 4
  year: 2006
  ident: 596_CR12
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNN.2006.875973
– ident: 596_CR56
  doi: 10.1109/SITIS.2007.112
– volume: 297
  start-page: 273
  year: 1995
  ident: 596_CR18
  publication-title: Mach Learn
– volume: 15
  start-page: 107
  issue: 2
  year: 2007
  ident: 596_CR63
  publication-title: Data Min Knowl Discovery
  doi: 10.1007/s10618-007-0064-z
– volume-title: The knot book: an elementary introduction to the mathematical theory of knots
  year: 2004
  ident: 596_CR1
SSID ssj0005230
Score 2.6379113
Snippet Time series classification is an increasing research topic due to the vast amount of time series data that is being created over a wide variety of fields. The...
SourceID unpaywall
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 378
SubjectTerms Academic Surveys and Tutorials
Artificial Intelligence
Chemistry and Earth Sciences
Classification
Classifiers
Computer Science
Data Mining and Knowledge Discovery
Distance measurement
Information Storage and Retrieval
Kernel functions
Measurement methods
Physics
Statistics for Engineering
Taxonomy
Time series
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LTwIxEJ4gHNSDbyOKpgdPksZ9dF8HY9BAiInEGEm4bbqd9kQWFIjx39thdwEveOhlt91mZ9rO13ZmPoDbADFzRKS5TLTDBWrkickkR6kjZeGuigydQ74Owv5QvIyCUQ0GVSwMuVVWa-JyocaJojPye8pEHhNVd_A4_eTEGkW3qxWFhiypFfBhmWJsBxoeZcaqQ-OpO3h733D68Iu44VjwIHZX95xFMF3okmOXLUEScvHXUq3h5-rGdB92F_lU_nzL8XjDKPWO4KBEk6xTqP8Yajo_gcOKqYGVE_cUgg4rYlTYJGdIkNE-ZmTBkBG7PKOBqGdMEZYm56Glvs5g2Ot-PPd5SZjAld2Xzbl0lXF9Y39OxR5GkR972ol1hiZOTBhLkYUm8xMLWpQnpOOjreOhiyIiWirP-OdQzye5vgCGGHpKhAI9o2wza7OiKEQlEyVU5iq_CU4lnFSV2cSJ1GKcrvMgkzxTh4qVZyqacLdqMi1SaWyr3Koknpazapaux0AT2pUW1q-3fKy9UtT_XV9u7_oK9ixoSgo_tBbU518LfW2ByTy7KUfbL3Ve3Pw
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB60IurBR1WsVsnBkyWwj2ySPRaxFEFPFnpbspnkVLZiW8R_b7KvVpCKh5x2MsvOTHa-3XkB3CeIecCEoSo1AWVokKY2VxSVEdrBXS2s_w_58srHE_Y8TaZ1HfeiyXZvQpLlm3qj2I2HPvHKrSTllO3CXuK7eTkjnkTDjbyOuCoNlowmMmxDmb-x-OmM1gizDYoewcGqeFdfn2o22_A7o1M4rgEjGVYaPoMdU3ThpBnGQOqz2YX9MpdTL84hGZKqIIXMC4IeHzoC4t0VEj9KnnirMwuiPXD2mUKlci5gMnp6exzTejoC1e4jbElVqG0YW_eYWkYoRCwjE0iTo5Wp5VKxnNs8Th1C0RFTQYyOJsIQmfAzqCIbX0KnmBfmCggijzTjDCOr3TbnoITgqFWqmc5DHfcgaMSU6bp1uJ9gMcvWTY-9ZLPALyfZjPXgod3yXvXN2Ebcb2Sf1UdokfnW89LPZk96MGj0sb68hdmgVdnft77-F-8bOHSAKa1y0PrQWX6szK0DJcv8rjTCbyDT1fU
  priority: 102
  providerName: Springer Nature
Title A review on distance based time series classification
URI https://link.springer.com/article/10.1007/s10618-018-0596-4
https://www.proquest.com/docview/2127843895
http://hdl.handle.net/20.500.11824/888
UnpaywallVersion submittedVersion
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: AMVHM
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-756X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-756X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005230
  issn: 1384-5810
  databaseCode: U2A
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEB4a-9Dk0PSRErep2UNPDetKq33pqBbboSEmlBqck1jt41KjhMQmJL--s5Fk9wEJPSyC1ayEdnaZb7Qz3wB8FM5VCVeemtwnlDvvaB4qQ53xyiLctSrE_5BnM3ky598WYrENkP2LXoAlI5HEba0Z_4y-2g70pUDM3YP-fHZeXDx4U5pToRvaAaEyqoRcdMeXTY6cTGO8FjYcSvmfBmiLKjcHoXvwfF1fmbtbs1z-Zmsm-zDtMnaaEJOfo_WqGtn7fwkcn_iMl_CihZukaNbHK3jm69ew35VyIO3OfgOiIE0SC7msiYuYErtJNHGOxPLzJK5Uf0NsBNsxuuhBoQcwn4x_fD2hbUUFatFxW1GT2pBmAafMauaUyjTzifaVCzoPUhteyVBlOaIay7hJMocyzKWOq1i3ioXsLfTqy9ofAnFOMssldyxYHIZGTSnprMktt1VqswEk3TSXtqUbj1UvluWWKDlqpkxiQ82UfACfNkOuGq6Nx4SPOt2V7ba7KSNdvY713MUAjjt9bm8_8rDjjcqffvW7_5J-D7sIsvImbu0Ieqvrtf-AQGZVDWFHT6ZD6BfTi9MxXr-MZ-ffsXfOimG7wn8BK6Dsjg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RONAegD5QlwL1ob0UWU1sJ3EOqwooaCmwqiqQuKWOxz6tsgu7CO2f47fh2SS79LI9cfAl8UMajz2f7Zn5AL4kiGWkMsdN7iKu0CHPfWk4GpfZAHdt5uke8rKf9q7Vr5vkZgUe21gYcqts98TZRo1DS3fk3ykTuSaq7uTH6JYTaxS9rrYUGqahVsDuLMVYE9hx7qYP4Qg37p79DPP9VYjTk6vjHm9YBrgNh5kJN7H1sfRSK6sFZpnUwkXaleh17lNtVJn6UubB0luhTCQx1BEYo8qIy0l4Gfp9BWtKqjwc_taOTvq__zxzMpF1nLJWPNHx_F21Dt5LY3IkCyXJU67-tYwLuDt_oX0D6_fVyEwfzGDwzAiebsFGg17ZYa1ub2HFVe9gs2WGYM1G8R6SQ1bHxLBhxZAgavjMyGIiIzZ7RorvxswSdidnpZl-fIDrFxHdNqxWw8p9BIaYCqtShcLb0CzYyCxL0ZrcKlvGVnYgaoVT2CZ7OZFoDIpF3mWSZxFRCfIsVAe-zZuM6tQdyyrvthIvmlU8LhY614GDdhYWv5d0djCfqP8PvbN86M-w3ru6vCguzvrnn-B1AGx57QO3C6uTu3u3F0DRpNxvNI_B35dW9ieJ4xmD
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwEB5RkPo48Ebd8vKBXkAWiePEzgEhBCzPoh6KxC04Hvu0ym67ixB_rb-unk2ySy_LiYMviR_S-LNnbM_MB7CXIpaRVI6b3EVcokOe-9JwNE7ZYO5a5eke8sdddnkvrx_Shzn428bCkFtluyeON2rsW7ojP6RM5JqoutND37hF_DzrHg9-c2KQopfWlk6jhsiNe3kOx7fh0dVZmOvvQnTPf51e8oZhgNtwkBlxE1sfJz7R0mqBSiVauEi7Er3OfaaNLDNfJnnQ8lZIEyUY6giMUSricRI-Cf1-gAVFWdwpSr178cq9JKkjlLXkqY4nL6p12F4WkwtZKGmecfm_TpwaupO32S_w6akamJdn0-u9Un_dZVhs7FZ2UgNtBeZctQpLLScEa7aINUhPWB0Nw_oVQzJOw2dGuhIZ8dgzgrwbMktWO7kpjZGxDvfvIrgNmK_6lfsKDDETVmYShbehWdCOSmVoTW6lLWObdCBqhVPYJm850Wf0imnGZZJnEVEJ8ixkB_YnTQZ10o5ZlbdaiRfN-h0WU7R14KCdhenvGZ0dTCbq7aG_zR56Fz4GiBe3V3c3m_A5WGp57fy2BfOjP09uO1hDo3JnDDsGj--N83-6nRcd
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwED5BGYCB8hSFgjwwgVwSx6-MFQIqJBADlcoUOX4sVGkFrRD8emyStDwkKgYvyV2i-M66z_HddwAnzJg8osJildoIU2MNTl2usFFWaA93tXDhP-TtHe_16c2ADeYJsj_oBUjUYVFY1pLQc79XW4YVzjzmbsBK_-6--_i5m5IUM1nSDjCRYMH4oD6-LGvkeBzytfzwqph-D0BzVDk7CF2H1WkxVm-vajj8EmuumnBdV-yUKSZPnekk7-j33wSOCz5jEzYquIm6pX9swZIttqFZt3JA1creAdZFZRELGhXIBEzpL6MQ4gwK7edR8FT7gnQA2yG76NOgu9C_uny46OGqowLWfuM2wSrWLk6cnzItiREikcRG0ubGydRxqWjOXZ6kHtVoQlWUGC9DTGyoCH2riEv2oFGMCrsPyBhONOXUEKe9mg9qQnCjVaqpzmOdtCCqpznTFd146HoxzOZEycEyWRSGt0xGW3A6UxmXXBt_Cbdr22XVsnvJAl29DP3cWQvOanvOb__xsLOZyRe_-uBf0oew5kFWWuattaExeZ7aIw9kJvlx5cUfmuLnkQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+review+on+distance+based+time+series+classification&rft.jtitle=Data+mining+and+knowledge+discovery&rft.au=Abanda%2C+Amaia&rft.au=Mori%2C+Usue&rft.au=Lozano%2C+Jose+A.&rft.date=2019-03-01&rft.pub=Springer+US&rft.issn=1384-5810&rft.eissn=1573-756X&rft.volume=33&rft.issue=2&rft.spage=378&rft.epage=412&rft_id=info:doi/10.1007%2Fs10618-018-0596-4&rft.externalDocID=10_1007_s10618_018_0596_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-5810&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-5810&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-5810&client=summon