Machine Learning Algorithms for Rupture Risk Assessment of Intracranial Aneurysms: A Diagnostic Meta-Analysis

Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial a...

Full description

Saved in:
Bibliographic Details
Published inWorld neurosurgery Vol. 165; pp. e137 - e147
Main Authors Shu, Zhang, Chen, Song, Wang, Wei, Qiu, Yufa, Yu, Ying, Lyu, Nan, Wang, Chi
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.09.2022
Subjects
Online AccessGet full text
ISSN1878-8750
1878-8769
1878-8769
DOI10.1016/j.wneu.2022.05.117

Cover

Abstract Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms. We systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases’ inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values. A total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75–0.90); specificity, 0.78 (95% CI, 0.68–0.85); positive likelihood ratio, 3.8 (95% CI, 2.4–5.9); negative likelihood ratio, 0.21 (95% CI, 0.12–0.35), diagnostic odd ratio, 18 (95% CI, 7–46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85–0.90). Our findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings.
AbstractList Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms. We systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases’ inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values. A total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75–0.90); specificity, 0.78 (95% CI, 0.68–0.85); positive likelihood ratio, 3.8 (95% CI, 2.4–5.9); negative likelihood ratio, 0.21 (95% CI, 0.12–0.35), diagnostic odd ratio, 18 (95% CI, 7–46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85–0.90). Our findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings.
Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms.OBJECTIVESeveral machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms.We systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases' inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values.METHODSWe systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases' inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values.A total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75-0.90); specificity, 0.78 (95% CI, 0.68-0.85); positive likelihood ratio, 3.8 (95% CI, 2.4-5.9); negative likelihood ratio, 0.21 (95% CI, 0.12-0.35), diagnostic odd ratio, 18 (95% CI, 7-46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85-0.90).RESULTSA total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75-0.90); specificity, 0.78 (95% CI, 0.68-0.85); positive likelihood ratio, 3.8 (95% CI, 2.4-5.9); negative likelihood ratio, 0.21 (95% CI, 0.12-0.35), diagnostic odd ratio, 18 (95% CI, 7-46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85-0.90).Our findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings.CONCLUSIONSOur findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings.
Author Shu, Zhang
Lyu, Nan
Wang, Chi
Wang, Wei
Qiu, Yufa
Yu, Ying
Chen, Song
Author_xml – sequence: 1
  givenname: Zhang
  surname: Shu
  fullname: Shu, Zhang
  organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
– sequence: 2
  givenname: Song
  surname: Chen
  fullname: Chen, Song
  organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
– sequence: 3
  givenname: Wei
  surname: Wang
  fullname: Wang, Wei
  organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
– sequence: 4
  givenname: Yufa
  surname: Qiu
  fullname: Qiu, Yufa
  organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
– sequence: 5
  givenname: Ying
  surname: Yu
  fullname: Yu, Ying
  organization: Department of Neurosurgery, Changhai Hospital of Shanghai, Shanghai, China
– sequence: 6
  givenname: Nan
  surname: Lyu
  fullname: Lyu, Nan
  organization: Department of Neurosurgery, Changhai Hospital of Shanghai, Shanghai, China
– sequence: 7
  givenname: Chi
  surname: Wang
  fullname: Wang, Chi
  email: watch_2008@163.com
  organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35690311$$D View this record in MEDLINE/PubMed
BookMark eNp9kUFv1DAQhS1UREvpH-CAfOSSxU5iO-ktammptBVSBWdr1jvZepvYi8cB7b8nq205cKgvtqX3Pc28956dhBiQsY9SLKSQ-st28SfgtChFWS6EWkhp3rAz2ZimaIxuT_69lThlF0RbMZ9K1o2p3rHTSul2_skzNt6De_QB-RIhBR82vBs2Mfn8OBLvY-IP0y5PCfmDpyfeESHRiCHz2PO7kBO4BMHDwLt5mrSnkS55x689bEKk7B2_xwxFF2DYk6cP7G0PA-HF833Oft58_XH1rVh-v7276paFq4XJBUgjXF-pdd-Aq1EqMBqqtlYrqLWqWlFXstK9bpwWpu5bs1ISJLh1gwpFvarO2eej7y7FXxNStqMnh8MAAeNEttRGaVHOcczST8_SaTXi2u6SHyHt7UtEs6A5ClyKRAl763yG7ONhez9YKeyhELu1h0LsoRArlJ0LmdHyP_TF_VXo8gjhHNBvj8m6wQfvYHjCvV1H_xr8F5oMo9o
CitedBy_id crossref_primary_10_12998_wjcc_v12_i23_5382
crossref_primary_10_3389_fneur_2024_1482119
crossref_primary_10_1016_j_wneu_2024_123636
crossref_primary_10_3389_fneur_2023_1268438
crossref_primary_10_1007_s10143_024_03086_5
crossref_primary_10_3390_bioengineering11070660
crossref_primary_10_1007_s00062_024_01474_4
Cites_doi 10.1186/s13054-015-1036-0
10.1007/s11548-019-02065-2
10.1056/NEJMoa1113260
10.1093/neuros/nyx484
10.1177/0954411918794724
10.1016/S1474-4422(14)70015-8
10.1136/bmj.327.7414.557
10.1161/STROKEAHA.115.010698
10.1186/1471-2288-3-25
10.1002/jmri.25842
10.7461/jcen.2015.17.3.217
10.1007/s00330-017-5300-3
10.1136/bmj.n71
10.1161/01.STR.32.3.597
10.1007/s10237-017-0903-9
10.1148/ryai.2019190077
10.3389/fneur.2020.570181
10.1001/jama.2017.18391
10.1177/1971400920937647
10.1016/j.wneu.2019.06.231
10.1161/01.STR.0000087149.42294.8C
10.1001/jamanetworkopen.2019.5600
10.1001/jamaneurol.2018.4165
10.1161/01.STR.16.4.591
10.1159/000103118
10.1161/STR.0000000000000070
10.1016/j.jcin.2019.02.035
10.1161/STROKEAHA.119.027664
10.1186/s12938-020-00770-7
10.1016/S1474-4422(11)70109-0
10.1016/S1474-4422(13)70263-1
10.1186/1471-2288-9-73
10.1038/s41591-018-0300-7
10.3174/ajnr.A7034
10.1007/s00330-020-06886-7
10.1007/s10278-019-00281-5
10.1161/STROKEAHA.117.019929
10.1016/j.jclinepi.2005.02.022
10.1007/s11548-020-02121-2
10.1093/ije/31.1.88
10.1016/j.jclinepi.2005.01.016
ContentType Journal Article
Copyright 2022 Elsevier Inc.
Copyright © 2022 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 Elsevier Inc.
– notice: Copyright © 2022 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.wneu.2022.05.117
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1878-8769
EndPage e147
ExternalDocumentID 35690311
10_1016_j_wneu_2022_05_117
S1878875022007586
Genre Meta-Analysis
Systematic Review
Journal Article
GrantInformation_xml – fundername: Suzhou Youth Science and Technology Project
  grantid: KJXW2018064
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFKBS
EFLBG
EJD
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OQ-
OZT
P-8
P-9
PC.
PG~
Q38
ROL
SCC
SDF
SDP
SEL
SES
SPCBC
SSH
SSN
SSZ
T5K
Z5R
~G-
~HD
AAYXX
CITATION
AACTN
AFCTW
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c407t-a170cf35df8ac4e15a76a3945ba46539043136f68c6074f97b51a1acd8e5e04b3
ISSN 1878-8750
1878-8769
IngestDate Wed Oct 01 14:46:03 EDT 2025
Thu Apr 03 07:06:59 EDT 2025
Wed Oct 01 04:00:56 EDT 2025
Thu Apr 24 23:09:54 EDT 2025
Tue Oct 14 19:30:42 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Intracranial aneurysms
CI
DOR
QUADAS-2
Rupture
MeSH
PRISMA
SVM
Meta-analysis
CTA
DSA
NLR
Machine learning
PLR
IA
Cerebral aneurysms
CA
Language English
License Copyright © 2022 Elsevier Inc. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-a170cf35df8ac4e15a76a3945ba46539043136f68c6074f97b51a1acd8e5e04b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
PMID 35690311
PQID 2675602148
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2675602148
pubmed_primary_35690311
crossref_citationtrail_10_1016_j_wneu_2022_05_117
crossref_primary_10_1016_j_wneu_2022_05_117
elsevier_clinicalkey_doi_10_1016_j_wneu_2022_05_117
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2022
2022-09-00
20220901
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: September 2022
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle World neurosurgery
PublicationTitleAlternate World Neurosurg
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Shi, Chen, Mao (bib24) 2021; 42
Liu, Chen, Lan (bib28) 2018; 28
Canchi, Ng, Narayanan, Finol (bib44) 2018; 232
Ahn, Kim, Rhim (bib26) 2021; 11
Song, Khan, Dinnes, Sutton (bib36) 2002; 31
Greving, Wermer, Brown (bib41) 2014; 13
Morita, Kirino, Hashi (bib40) 2012; 366
Nakao, Hanaoka, Nomura (bib18) 2018; 47
Chen, Lu, Shi (bib19) 2020; 30
Liang, Liu, Martin, Elefteriades, Sun (bib13) 2017; 16
Hamza, Arends, van Houwelingen, Stijnen (bib33) 2009; 9
Bonita, Thomson (bib6) 1985; 16
Johnston, Zhao, Dudley, Berman, Gress (bib10) 2001; 32
Silva, Patel, Kavouridis (bib25) 2019; 131
Page, McKenzie, Bossuyt (bib30) 2021; 372
Dai, Huang, Qian (bib17) 2020; 15
Kim, Rhim, Ahn (bib27) 2019; 8
Topol (bib14) 2019; 25
Higgins, Thompson, Deeks, Altman (bib34) 2003; 327
Algra, Lindgren, Vergouwen (bib12) 2019; 76
Vlak, Algra, Brandenburg, Rinkel (bib4) 2011; 10
Harris, Kim, Lohr (bib45) 2019; 32
Thompson, Brown, Amin-Hanjani (bib1) 2015; 46
Chen, Wei, Lei (bib20) 2020; 19
Yang (bib46) 2020; 15
Hainc, Mannil, Anagnostakou (bib22) 2020; 33
Lantigua, Ortega-Gutierrez, Schmidt (bib7) 2015; 19
Tanioka, Ishida, Yamamoto (bib29) 2020; 2
Murayama, Takao, Ishibashi (bib5) 2016; 47
Jabarkheel, Park, Chute (bib37) 2019; 131
Beam, Kohane (bib15) 2018; 319
Varble, Tutino, Yu (bib43) 2018; 49
Lee, Eom, Lee, Kim, Kang (bib9) 2015; 17
Bender, Wendt, Monarch (bib8) 2018; 83
Park, Chute, Rajpurkar (bib38) 2019; 2
Detmer, Lückehe, Mut (bib21) 2020; 15
Ou, Liu, Qian (bib23) 2020; 11
Sichtermann, Faron, Sijben, Teichert, Freiherr, Wiesmann (bib39) 2018; 28
Deeks, Macaskill, Irwig (bib35) 2005; 58
Brown, Broderick (bib3) 2014; 13
Reitsma, Glas, Rutjes, Scholten, Bossuyt, Zwinderman (bib32) 2005; 58
Suzuki, Takao, Rapaka (bib42) 2020; 51
Zack, Senecal, Kinar (bib16) 2019; 12
Katati, Santiago-Ramajo, Pérez-García (bib11) 2007; 24
Zhang, Yang, Hong (bib2) 2003; 34
Whiting, Rutjes, Reitsma, Bossuyt, Kleijnen (bib31) 2003; 3
Silva (10.1016/j.wneu.2022.05.117_bib25) 2019; 131
Reitsma (10.1016/j.wneu.2022.05.117_bib32) 2005; 58
Thompson (10.1016/j.wneu.2022.05.117_bib1) 2015; 46
Sichtermann (10.1016/j.wneu.2022.05.117_bib39) 2018; 28
Murayama (10.1016/j.wneu.2022.05.117_bib5) 2016; 47
Liu (10.1016/j.wneu.2022.05.117_bib28) 2018; 28
Page (10.1016/j.wneu.2022.05.117_bib30) 2021; 372
Vlak (10.1016/j.wneu.2022.05.117_bib4) 2011; 10
Liang (10.1016/j.wneu.2022.05.117_bib13) 2017; 16
Morita (10.1016/j.wneu.2022.05.117_bib40) 2012; 366
Ahn (10.1016/j.wneu.2022.05.117_bib26) 2021; 11
Katati (10.1016/j.wneu.2022.05.117_bib11) 2007; 24
Detmer (10.1016/j.wneu.2022.05.117_bib21) 2020; 15
Ou (10.1016/j.wneu.2022.05.117_bib23) 2020; 11
Algra (10.1016/j.wneu.2022.05.117_bib12) 2019; 76
Topol (10.1016/j.wneu.2022.05.117_bib14) 2019; 25
Dai (10.1016/j.wneu.2022.05.117_bib17) 2020; 15
Chen (10.1016/j.wneu.2022.05.117_bib19) 2020; 30
Bender (10.1016/j.wneu.2022.05.117_bib8) 2018; 83
Song (10.1016/j.wneu.2022.05.117_bib36) 2002; 31
Canchi (10.1016/j.wneu.2022.05.117_bib44) 2018; 232
Varble (10.1016/j.wneu.2022.05.117_bib43) 2018; 49
Nakao (10.1016/j.wneu.2022.05.117_bib18) 2018; 47
Greving (10.1016/j.wneu.2022.05.117_bib41) 2014; 13
Hainc (10.1016/j.wneu.2022.05.117_bib22) 2020; 33
Harris (10.1016/j.wneu.2022.05.117_bib45) 2019; 32
Chen (10.1016/j.wneu.2022.05.117_bib20) 2020; 19
Beam (10.1016/j.wneu.2022.05.117_bib15) 2018; 319
Tanioka (10.1016/j.wneu.2022.05.117_bib29) 2020; 2
Higgins (10.1016/j.wneu.2022.05.117_bib34) 2003; 327
Johnston (10.1016/j.wneu.2022.05.117_bib10) 2001; 32
Jabarkheel (10.1016/j.wneu.2022.05.117_bib37) 2019; 131
Lantigua (10.1016/j.wneu.2022.05.117_bib7) 2015; 19
Kim (10.1016/j.wneu.2022.05.117_bib27) 2019; 8
Deeks (10.1016/j.wneu.2022.05.117_bib35) 2005; 58
Lee (10.1016/j.wneu.2022.05.117_bib9) 2015; 17
Whiting (10.1016/j.wneu.2022.05.117_bib31) 2003; 3
Bonita (10.1016/j.wneu.2022.05.117_bib6) 1985; 16
Zack (10.1016/j.wneu.2022.05.117_bib16) 2019; 12
Shi (10.1016/j.wneu.2022.05.117_bib24) 2021; 42
Brown (10.1016/j.wneu.2022.05.117_bib3) 2014; 13
Suzuki (10.1016/j.wneu.2022.05.117_bib42) 2020; 51
Zhang (10.1016/j.wneu.2022.05.117_bib2) 2003; 34
Hamza (10.1016/j.wneu.2022.05.117_bib33) 2009; 9
Yang (10.1016/j.wneu.2022.05.117_bib46) 2020; 15
Park (10.1016/j.wneu.2022.05.117_bib38) 2019; 2
References_xml – volume: 12
  start-page: 1304
  year: 2019
  end-page: 1311
  ident: bib16
  article-title: Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention
  publication-title: JACC Cardiovasc Interv
– volume: 11
  start-page: 239
  year: 2021
  ident: bib26
  article-title: Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms
  publication-title: J Pers Med
– volume: 13
  start-page: 59
  year: 2014
  end-page: 66
  ident: bib41
  article-title: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies
  publication-title: Lancet Neurol
– volume: 131
  start-page: e46
  year: 2019
  end-page: e51
  ident: bib25
  article-title: Machine learning models can detect aneurysm rupture and identify clinical features associated with rupture
  publication-title: World Neurosurg
– volume: 2
  start-page: e195600
  year: 2019
  ident: bib38
  article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model
  publication-title: JAMA Netw Open
– volume: 33
  start-page: 311
  year: 2020
  end-page: 317
  ident: bib22
  article-title: Deep learning based detection of intracranial aneurysms on digital subtraction angiography: a feasibility study
  publication-title: Neuroradiol J
– volume: 8
  start-page: 683
  year: 2019
  ident: bib27
  article-title: Machine learning application for rupture risk assessment in small-sized intracranial aneurysm
  publication-title: J Clin Med
– volume: 31
  start-page: 88
  year: 2002
  end-page: 95
  ident: bib36
  article-title: Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy
  publication-title: Int J Epidemiol
– volume: 30
  start-page: 5170
  year: 2020
  end-page: 5182
  ident: bib19
  article-title: Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study
  publication-title: Eur Radiol
– volume: 9
  start-page: 73
  year: 2009
  ident: bib33
  article-title: Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds
  publication-title: BMC Med Res Methodol
– volume: 28
  start-page: 3268
  year: 2018
  end-page: 3275
  ident: bib28
  article-title: Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network
  publication-title: Eur Radiol
– volume: 232
  start-page: 922
  year: 2018
  end-page: 929
  ident: bib44
  article-title: On the assessment of abdominal aortic aneurysm rupture risk in the Asian population based on geometric attributes
  publication-title: Proc Inst Mech Eng H
– volume: 17
  start-page: 217
  year: 2015
  end-page: 222
  ident: bib9
  article-title: Rupture of very small intracranial aneurysms: incidence and clinical characteristics
  publication-title: J Cerebrovasc Endovasc Neurosurg
– volume: 10
  start-page: 626
  year: 2011
  end-page: 636
  ident: bib4
  article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis
  publication-title: Lancet Neurol
– volume: 76
  start-page: 282
  year: 2019
  end-page: 293
  ident: bib12
  article-title: Procedural clinical complications, case-fatality risks, and risk factors in endovascular and neurosurgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis
  publication-title: JAMA Neurol
– volume: 16
  start-page: 591
  year: 1985
  end-page: 594
  ident: bib6
  article-title: Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome
  publication-title: Stroke
– volume: 319
  start-page: 1317
  year: 2018
  end-page: 1318
  ident: bib15
  article-title: Big data and machine learning in health care
  publication-title: JAMA
– volume: 51
  start-page: 641
  year: 2020
  end-page: 643
  ident: bib42
  article-title: Rupture risk of small unruptured intracranial aneurysms in Japanese adults
  publication-title: Stroke
– volume: 3
  start-page: 25
  year: 2003
  ident: bib31
  article-title: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews
  publication-title: BMC Med Res Methodol
– volume: 49
  start-page: 856
  year: 2018
  end-page: 864
  ident: bib43
  article-title: Shared and distinct rupture discriminants of small and large intracranial aneurysms
  publication-title: Stroke
– volume: 131
  start-page: 7
  year: 2019
  end-page: 8
  ident: bib37
  article-title: AI-augmented diagnosis of brain aneurysms from CTA: a retrospective study
  publication-title: J Neurosurg
– volume: 47
  start-page: 365
  year: 2016
  end-page: 371
  ident: bib5
  article-title: Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study
  publication-title: Stroke
– volume: 32
  start-page: 597
  year: 2001
  end-page: 605
  ident: bib10
  article-title: Treatment of unruptured cerebral aneurysms in California
  publication-title: Stroke
– volume: 19
  start-page: 38
  year: 2020
  ident: bib20
  article-title: Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network
  publication-title: Biomed Eng Online
– volume: 372
  start-page: n71
  year: 2021
  ident: bib30
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
– volume: 13
  start-page: 393
  year: 2014
  end-page: 404
  ident: bib3
  article-title: Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening
  publication-title: Lancet Neurol
– volume: 58
  start-page: 982
  year: 2005
  end-page: 990
  ident: bib32
  article-title: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews
  publication-title: J Clin Epidemiol
– volume: 25
  start-page: 44
  year: 2019
  end-page: 56
  ident: bib14
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
– volume: 15
  start-page: 141
  year: 2020
  end-page: 150
  ident: bib21
  article-title: Comparison of statistical learning approaches for cerebral aneurysm rupture assessment
  publication-title: Int J Comput Assist Radiol Surg
– volume: 42
  start-page: 648
  year: 2021
  end-page: 654
  ident: bib24
  article-title: Machine learning-based prediction of small intracranial aneurysm rupture status using CTA-derived hemodynamics: a multicenter study
  publication-title: AJNR Am J Neuroradiol
– volume: 327
  start-page: 557
  year: 2003
  end-page: 560
  ident: bib34
  article-title: Measuring inconsistency in meta-analyses
  publication-title: BMJ
– volume: 19
  start-page: 309
  year: 2015
  ident: bib7
  article-title: Subarachnoid hemorrhage: who dies, and why?
  publication-title: Crit Care
– volume: 46
  start-page: 2368
  year: 2015
  end-page: 2400
  ident: bib1
  article-title: Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association
  publication-title: Stroke
– volume: 24
  start-page: 66
  year: 2007
  end-page: 73
  ident: bib11
  article-title: Description of quality of life and its predictors in patients with aneurysmal subarachnoid hemorrhage
  publication-title: Cerebrovasc Dis
– volume: 83
  start-page: 692
  year: 2018
  end-page: 699
  ident: bib8
  article-title: Small aneurysms account for the majority and increasing percentage of aneurysmal subarachnoid hemorrhage: a 25-year, single institution study
  publication-title: Neurosurgery
– volume: 47
  start-page: 948
  year: 2018
  end-page: 953
  ident: bib18
  article-title: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography
  publication-title: J Magn Reson Imaging
– volume: 16
  start-page: 1519
  year: 2017
  end-page: 1533
  ident: bib13
  article-title: A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm
  publication-title: Biomech Model Mechanobiol
– volume: 11
  start-page: 570181
  year: 2020
  ident: bib23
  article-title: Rupture risk assessment for cerebral aneurysm using interpretable machine learning on multidimensional data
  publication-title: Front Neurol
– volume: 366
  start-page: 2474
  year: 2012
  end-page: 2482
  ident: bib40
  article-title: The natural course of unruptured cerebral aneurysms in a Japanese cohort
  publication-title: N Engl J Med
– volume: 15
  start-page: 715
  year: 2020
  end-page: 723
  ident: bib17
  article-title: Deep learning for automated cerebral aneurysm detection on computed tomography images
  publication-title: Int J Comput Assist Radiol Surg
– volume: 32
  start-page: 939
  year: 2019
  end-page: 946
  ident: bib45
  article-title: Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network
  publication-title: J Digit Imaging
– volume: 2
  start-page: e190077
  year: 2020
  ident: bib29
  article-title: Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters
  publication-title: Radiol Artif Intell
– volume: 58
  start-page: 882
  year: 2005
  end-page: 893
  ident: bib35
  article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed
  publication-title: J Clin Epidemiol
– volume: 28
  start-page: S89
  year: 2018
  ident: bib39
  article-title: Performance of a deep learning algorithm for automated detection of intracranial aneurysms from non-invasive brain imaging
  publication-title: Clin Neuroradiol
– volume: 15
  start-page: 585
  year: 2020
  ident: bib46
  article-title: Rupture risk evaluation of intracranial aneurysms using machine learning based on clinical and morphological features
  publication-title: Int J Stroke
– volume: 34
  start-page: 2091
  year: 2003
  end-page: 2096
  ident: bib2
  article-title: Proportion of different subtypes of stroke in China
  publication-title: Stroke
– volume: 19
  start-page: 309
  year: 2015
  ident: 10.1016/j.wneu.2022.05.117_bib7
  article-title: Subarachnoid hemorrhage: who dies, and why?
  publication-title: Crit Care
  doi: 10.1186/s13054-015-1036-0
– volume: 15
  start-page: 141
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib21
  article-title: Comparison of statistical learning approaches for cerebral aneurysm rupture assessment
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-019-02065-2
– volume: 366
  start-page: 2474
  year: 2012
  ident: 10.1016/j.wneu.2022.05.117_bib40
  article-title: The natural course of unruptured cerebral aneurysms in a Japanese cohort
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1113260
– volume: 83
  start-page: 692
  year: 2018
  ident: 10.1016/j.wneu.2022.05.117_bib8
  article-title: Small aneurysms account for the majority and increasing percentage of aneurysmal subarachnoid hemorrhage: a 25-year, single institution study
  publication-title: Neurosurgery
  doi: 10.1093/neuros/nyx484
– volume: 232
  start-page: 922
  year: 2018
  ident: 10.1016/j.wneu.2022.05.117_bib44
  article-title: On the assessment of abdominal aortic aneurysm rupture risk in the Asian population based on geometric attributes
  publication-title: Proc Inst Mech Eng H
  doi: 10.1177/0954411918794724
– volume: 13
  start-page: 393
  year: 2014
  ident: 10.1016/j.wneu.2022.05.117_bib3
  article-title: Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(14)70015-8
– volume: 327
  start-page: 557
  year: 2003
  ident: 10.1016/j.wneu.2022.05.117_bib34
  article-title: Measuring inconsistency in meta-analyses
  publication-title: BMJ
  doi: 10.1136/bmj.327.7414.557
– volume: 47
  start-page: 365
  year: 2016
  ident: 10.1016/j.wneu.2022.05.117_bib5
  article-title: Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.115.010698
– volume: 11
  start-page: 239
  year: 2021
  ident: 10.1016/j.wneu.2022.05.117_bib26
  article-title: Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms
  publication-title: J Pers Med
– volume: 3
  start-page: 25
  year: 2003
  ident: 10.1016/j.wneu.2022.05.117_bib31
  article-title: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-3-25
– volume: 47
  start-page: 948
  year: 2018
  ident: 10.1016/j.wneu.2022.05.117_bib18
  article-title: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography
  publication-title: J Magn Reson Imaging
  doi: 10.1002/jmri.25842
– volume: 8
  start-page: 683
  year: 2019
  ident: 10.1016/j.wneu.2022.05.117_bib27
  article-title: Machine learning application for rupture risk assessment in small-sized intracranial aneurysm
  publication-title: J Clin Med
– volume: 131
  start-page: 7
  year: 2019
  ident: 10.1016/j.wneu.2022.05.117_bib37
  article-title: AI-augmented diagnosis of brain aneurysms from CTA: a retrospective study
  publication-title: J Neurosurg
– volume: 17
  start-page: 217
  year: 2015
  ident: 10.1016/j.wneu.2022.05.117_bib9
  article-title: Rupture of very small intracranial aneurysms: incidence and clinical characteristics
  publication-title: J Cerebrovasc Endovasc Neurosurg
  doi: 10.7461/jcen.2015.17.3.217
– volume: 28
  start-page: 3268
  year: 2018
  ident: 10.1016/j.wneu.2022.05.117_bib28
  article-title: Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network
  publication-title: Eur Radiol
  doi: 10.1007/s00330-017-5300-3
– volume: 372
  start-page: n71
  year: 2021
  ident: 10.1016/j.wneu.2022.05.117_bib30
  article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews
  publication-title: BMJ
  doi: 10.1136/bmj.n71
– volume: 32
  start-page: 597
  year: 2001
  ident: 10.1016/j.wneu.2022.05.117_bib10
  article-title: Treatment of unruptured cerebral aneurysms in California
  publication-title: Stroke
  doi: 10.1161/01.STR.32.3.597
– volume: 16
  start-page: 1519
  year: 2017
  ident: 10.1016/j.wneu.2022.05.117_bib13
  article-title: A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm
  publication-title: Biomech Model Mechanobiol
  doi: 10.1007/s10237-017-0903-9
– volume: 2
  start-page: e190077
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib29
  article-title: Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2019190077
– volume: 11
  start-page: 570181
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib23
  article-title: Rupture risk assessment for cerebral aneurysm using interpretable machine learning on multidimensional data
  publication-title: Front Neurol
  doi: 10.3389/fneur.2020.570181
– volume: 319
  start-page: 1317
  year: 2018
  ident: 10.1016/j.wneu.2022.05.117_bib15
  article-title: Big data and machine learning in health care
  publication-title: JAMA
  doi: 10.1001/jama.2017.18391
– volume: 33
  start-page: 311
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib22
  article-title: Deep learning based detection of intracranial aneurysms on digital subtraction angiography: a feasibility study
  publication-title: Neuroradiol J
  doi: 10.1177/1971400920937647
– volume: 131
  start-page: e46
  year: 2019
  ident: 10.1016/j.wneu.2022.05.117_bib25
  article-title: Machine learning models can detect aneurysm rupture and identify clinical features associated with rupture
  publication-title: World Neurosurg
  doi: 10.1016/j.wneu.2019.06.231
– volume: 34
  start-page: 2091
  year: 2003
  ident: 10.1016/j.wneu.2022.05.117_bib2
  article-title: Proportion of different subtypes of stroke in China
  publication-title: Stroke
  doi: 10.1161/01.STR.0000087149.42294.8C
– volume: 2
  start-page: e195600
  year: 2019
  ident: 10.1016/j.wneu.2022.05.117_bib38
  article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2019.5600
– volume: 76
  start-page: 282
  year: 2019
  ident: 10.1016/j.wneu.2022.05.117_bib12
  article-title: Procedural clinical complications, case-fatality risks, and risk factors in endovascular and neurosurgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis
  publication-title: JAMA Neurol
  doi: 10.1001/jamaneurol.2018.4165
– volume: 16
  start-page: 591
  year: 1985
  ident: 10.1016/j.wneu.2022.05.117_bib6
  article-title: Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome
  publication-title: Stroke
  doi: 10.1161/01.STR.16.4.591
– volume: 24
  start-page: 66
  year: 2007
  ident: 10.1016/j.wneu.2022.05.117_bib11
  article-title: Description of quality of life and its predictors in patients with aneurysmal subarachnoid hemorrhage
  publication-title: Cerebrovasc Dis
  doi: 10.1159/000103118
– volume: 46
  start-page: 2368
  year: 2015
  ident: 10.1016/j.wneu.2022.05.117_bib1
  article-title: Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association
  publication-title: Stroke
  doi: 10.1161/STR.0000000000000070
– volume: 12
  start-page: 1304
  year: 2019
  ident: 10.1016/j.wneu.2022.05.117_bib16
  article-title: Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention
  publication-title: JACC Cardiovasc Interv
  doi: 10.1016/j.jcin.2019.02.035
– volume: 51
  start-page: 641
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib42
  article-title: Rupture risk of small unruptured intracranial aneurysms in Japanese adults
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.027664
– volume: 19
  start-page: 38
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib20
  article-title: Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network
  publication-title: Biomed Eng Online
  doi: 10.1186/s12938-020-00770-7
– volume: 10
  start-page: 626
  year: 2011
  ident: 10.1016/j.wneu.2022.05.117_bib4
  article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(11)70109-0
– volume: 13
  start-page: 59
  year: 2014
  ident: 10.1016/j.wneu.2022.05.117_bib41
  article-title: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies
  publication-title: Lancet Neurol
  doi: 10.1016/S1474-4422(13)70263-1
– volume: 9
  start-page: 73
  year: 2009
  ident: 10.1016/j.wneu.2022.05.117_bib33
  article-title: Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds
  publication-title: BMC Med Res Methodol
  doi: 10.1186/1471-2288-9-73
– volume: 25
  start-page: 44
  year: 2019
  ident: 10.1016/j.wneu.2022.05.117_bib14
  article-title: High-performance medicine: the convergence of human and artificial intelligence
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0300-7
– volume: 42
  start-page: 648
  year: 2021
  ident: 10.1016/j.wneu.2022.05.117_bib24
  article-title: Machine learning-based prediction of small intracranial aneurysm rupture status using CTA-derived hemodynamics: a multicenter study
  publication-title: AJNR Am J Neuroradiol
  doi: 10.3174/ajnr.A7034
– volume: 30
  start-page: 5170
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib19
  article-title: Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study
  publication-title: Eur Radiol
  doi: 10.1007/s00330-020-06886-7
– volume: 28
  start-page: S89
  year: 2018
  ident: 10.1016/j.wneu.2022.05.117_bib39
  article-title: Performance of a deep learning algorithm for automated detection of intracranial aneurysms from non-invasive brain imaging
  publication-title: Clin Neuroradiol
– volume: 32
  start-page: 939
  year: 2019
  ident: 10.1016/j.wneu.2022.05.117_bib45
  article-title: Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-019-00281-5
– volume: 49
  start-page: 856
  year: 2018
  ident: 10.1016/j.wneu.2022.05.117_bib43
  article-title: Shared and distinct rupture discriminants of small and large intracranial aneurysms
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.117.019929
– volume: 15
  start-page: 585
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib46
  article-title: Rupture risk evaluation of intracranial aneurysms using machine learning based on clinical and morphological features
  publication-title: Int J Stroke
– volume: 58
  start-page: 982
  year: 2005
  ident: 10.1016/j.wneu.2022.05.117_bib32
  article-title: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2005.02.022
– volume: 15
  start-page: 715
  year: 2020
  ident: 10.1016/j.wneu.2022.05.117_bib17
  article-title: Deep learning for automated cerebral aneurysm detection on computed tomography images
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02121-2
– volume: 31
  start-page: 88
  year: 2002
  ident: 10.1016/j.wneu.2022.05.117_bib36
  article-title: Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy
  publication-title: Int J Epidemiol
  doi: 10.1093/ije/31.1.88
– volume: 58
  start-page: 882
  year: 2005
  ident: 10.1016/j.wneu.2022.05.117_bib35
  article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2005.01.016
SSID ssj0000314873
Score 2.3867576
SecondaryResourceType review_article
Snippet Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e137
SubjectTerms Algorithms
Cerebral aneurysms
Humans
Intracranial Aneurysm - diagnosis
Intracranial aneurysms
Machine Learning
Meta-analysis
Risk Assessment
ROC Curve
Rupture
Title Machine Learning Algorithms for Rupture Risk Assessment of Intracranial Aneurysms: A Diagnostic Meta-Analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1878875022007586
https://www.ncbi.nlm.nih.gov/pubmed/35690311
https://www.proquest.com/docview/2675602148
Volume 165
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: .~1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: ACRLP
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: AIKHN
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: AKRWK
  dateStart: 20100101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggEK_lJSNxW2UVx7GT7S3ioQppOfShlpPleJ3Sqt1U3USoHPjtzMR2kgVaQS_RKlqvvZ7P45nxzGdC3hle8iTmOtKw-0UpaOFIy9xEIi-rxKQZWOVYO7z4IncO0s9H4mhIG-uqS5pyZn78ta7kNlKFdyBXrJL9D8n2Pwov4DPIF54gYXj-k4wXXSakDSSpx9Pi7LgGb_-bY1mY7rYX3QHBLuaPFz0Hpy8fudQGNiqMmBfIanm1Pl-7OvUPLv0OqVwXttFRIC4ZG7IuCcexYY4qqzuyx7Y78cBI9JA84LTbXj28O_SR6kN70kdfT7qmX9tKj6MR4MiGdCsfIgtlMhtZnCwHVxUco3hD7UoxUpyWOe4Xvwlb5ng4_1DwLtZwOvsOf3CGA0DeVcayYTvrkwz3sFvsNcF4rMjlXXIvAd2PF3zMfrI-EocE_nmXitCP01dXuUTA37u6zoK5zkPpLJX9h-SBdzFo4fDyiNyxq8fk3GOFBqzQASsUsEI9VihihQ5YoXVFx1ihPVa2aUEHpNANpDwhB58-7r_fifxVG5EBj76JNMtiU3GxrHJtUsuEziSs3lSUGgn45kjBxGUFq1iCzVnNs1IwzbRZ5lbYOC35U7K1qlf2OaF8mRuWZCbRS5vqlJexnEtY82CNgevK0wlhYfqU8Tz0eB3KmQoJh6cKp1zhlKtYIB39hEz7NheOheXGb_MgFRXqi2FHVIChG1u9DQJUoGLx3EyvbN2uVQJOtURuwXxCnjnJ9qPgQs4BQOzFrfp8Se4Pi-gV2WouW_sajNymfNNh9Bcquafm
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithms+for+Rupture+Risk+Assessment+of+Intracranial+Aneurysms%3A+A+Diagnostic+Meta-Analysis&rft.jtitle=World+neurosurgery&rft.au=Shu%2C+Zhang&rft.au=Chen%2C+Song&rft.au=Wang%2C+Wei&rft.au=Qiu%2C+Yufa&rft.date=2022-09-01&rft.pub=Elsevier+Inc&rft.issn=1878-8750&rft.volume=165&rft.spage=e137&rft.epage=e147&rft_id=info:doi/10.1016%2Fj.wneu.2022.05.117&rft.externalDocID=S1878875022007586
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-8750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-8750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-8750&client=summon