Machine Learning Algorithms for Rupture Risk Assessment of Intracranial Aneurysms: A Diagnostic Meta-Analysis
Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial a...
Saved in:
| Published in | World neurosurgery Vol. 165; pp. e137 - e147 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Elsevier Inc
01.09.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1878-8750 1878-8769 1878-8769 |
| DOI | 10.1016/j.wneu.2022.05.117 |
Cover
| Abstract | Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms.
We systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases’ inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values.
A total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75–0.90); specificity, 0.78 (95% CI, 0.68–0.85); positive likelihood ratio, 3.8 (95% CI, 2.4–5.9); negative likelihood ratio, 0.21 (95% CI, 0.12–0.35), diagnostic odd ratio, 18 (95% CI, 7–46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85–0.90).
Our findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings. |
|---|---|
| AbstractList | Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms.
We systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases’ inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values.
A total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75–0.90); specificity, 0.78 (95% CI, 0.68–0.85); positive likelihood ratio, 3.8 (95% CI, 2.4–5.9); negative likelihood ratio, 0.21 (95% CI, 0.12–0.35), diagnostic odd ratio, 18 (95% CI, 7–46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85–0.90).
Our findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings. Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms.OBJECTIVESeveral machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic meta-analysis to comprehensively evaluate the diagnostic value of machine learning algorithms for assessing the rupture risk of intracranial aneurysms.We systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases' inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values.METHODSWe systematically searched 3 electronic databases, including Medline (via PubMed), the Cochrane Register of Controlled Trials (via Ovid), and Embase (via Elsevier), to retrieve eligible studies from the databases' inception through March 2021. The latest update was performed in June 2021. StataMP, version 14, was used to estimate all pooled diagnostic values.A total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75-0.90); specificity, 0.78 (95% CI, 0.68-0.85); positive likelihood ratio, 3.8 (95% CI, 2.4-5.9); negative likelihood ratio, 0.21 (95% CI, 0.12-0.35), diagnostic odd ratio, 18 (95% CI, 7-46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85-0.90).RESULTSA total of 4 studies involving 6 reports were considered to meet the inclusion criteria. Our diagnostic meta-analysis generated the following pooled diagnostic values: sensitivity, 0.84 (95% confidence interval [CI], 0.75-0.90); specificity, 0.78 (95% CI, 0.68-0.85); positive likelihood ratio, 3.8 (95% CI, 2.4-5.9); negative likelihood ratio, 0.21 (95% CI, 0.12-0.35), diagnostic odd ratio, 18 (95% CI, 7-46), and area under the summary receiver operating characteristic curve, 0.88 (95% CI, 0.85-0.90).Our findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings.CONCLUSIONSOur findings have demonstrated that the diagnostic performance of machine learning algorithms for the rupture risk assessment of AIs is excellent. Considering that the negative effects resulted from the limited number of eligible studies, we suggest developing more well-designed studies with larger sample sizes to validate our findings. |
| Author | Shu, Zhang Lyu, Nan Wang, Chi Wang, Wei Qiu, Yufa Yu, Ying Chen, Song |
| Author_xml | – sequence: 1 givenname: Zhang surname: Shu fullname: Shu, Zhang organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China – sequence: 2 givenname: Song surname: Chen fullname: Chen, Song organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China – sequence: 3 givenname: Wei surname: Wang fullname: Wang, Wei organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China – sequence: 4 givenname: Yufa surname: Qiu fullname: Qiu, Yufa organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China – sequence: 5 givenname: Ying surname: Yu fullname: Yu, Ying organization: Department of Neurosurgery, Changhai Hospital of Shanghai, Shanghai, China – sequence: 6 givenname: Nan surname: Lyu fullname: Lyu, Nan organization: Department of Neurosurgery, Changhai Hospital of Shanghai, Shanghai, China – sequence: 7 givenname: Chi surname: Wang fullname: Wang, Chi email: watch_2008@163.com organization: Department of Neurosurgery, The First People's Hospital of Taicang, Taicang, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35690311$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUFv1DAQhS1UREvpH-CAfOSSxU5iO-ktammptBVSBWdr1jvZepvYi8cB7b8nq205cKgvtqX3Pc28956dhBiQsY9SLKSQ-st28SfgtChFWS6EWkhp3rAz2ZimaIxuT_69lThlF0RbMZ9K1o2p3rHTSul2_skzNt6De_QB-RIhBR82vBs2Mfn8OBLvY-IP0y5PCfmDpyfeESHRiCHz2PO7kBO4BMHDwLt5mrSnkS55x689bEKk7B2_xwxFF2DYk6cP7G0PA-HF833Oft58_XH1rVh-v7276paFq4XJBUgjXF-pdd-Aq1EqMBqqtlYrqLWqWlFXstK9bpwWpu5bs1ISJLh1gwpFvarO2eej7y7FXxNStqMnh8MAAeNEttRGaVHOcczST8_SaTXi2u6SHyHt7UtEs6A5ClyKRAl763yG7ONhez9YKeyhELu1h0LsoRArlJ0LmdHyP_TF_VXo8gjhHNBvj8m6wQfvYHjCvV1H_xr8F5oMo9o |
| CitedBy_id | crossref_primary_10_12998_wjcc_v12_i23_5382 crossref_primary_10_3389_fneur_2024_1482119 crossref_primary_10_1016_j_wneu_2024_123636 crossref_primary_10_3389_fneur_2023_1268438 crossref_primary_10_1007_s10143_024_03086_5 crossref_primary_10_3390_bioengineering11070660 crossref_primary_10_1007_s00062_024_01474_4 |
| Cites_doi | 10.1186/s13054-015-1036-0 10.1007/s11548-019-02065-2 10.1056/NEJMoa1113260 10.1093/neuros/nyx484 10.1177/0954411918794724 10.1016/S1474-4422(14)70015-8 10.1136/bmj.327.7414.557 10.1161/STROKEAHA.115.010698 10.1186/1471-2288-3-25 10.1002/jmri.25842 10.7461/jcen.2015.17.3.217 10.1007/s00330-017-5300-3 10.1136/bmj.n71 10.1161/01.STR.32.3.597 10.1007/s10237-017-0903-9 10.1148/ryai.2019190077 10.3389/fneur.2020.570181 10.1001/jama.2017.18391 10.1177/1971400920937647 10.1016/j.wneu.2019.06.231 10.1161/01.STR.0000087149.42294.8C 10.1001/jamanetworkopen.2019.5600 10.1001/jamaneurol.2018.4165 10.1161/01.STR.16.4.591 10.1159/000103118 10.1161/STR.0000000000000070 10.1016/j.jcin.2019.02.035 10.1161/STROKEAHA.119.027664 10.1186/s12938-020-00770-7 10.1016/S1474-4422(11)70109-0 10.1016/S1474-4422(13)70263-1 10.1186/1471-2288-9-73 10.1038/s41591-018-0300-7 10.3174/ajnr.A7034 10.1007/s00330-020-06886-7 10.1007/s10278-019-00281-5 10.1161/STROKEAHA.117.019929 10.1016/j.jclinepi.2005.02.022 10.1007/s11548-020-02121-2 10.1093/ije/31.1.88 10.1016/j.jclinepi.2005.01.016 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Inc. Copyright © 2022 Elsevier Inc. All rights reserved. |
| Copyright_xml | – notice: 2022 Elsevier Inc. – notice: Copyright © 2022 Elsevier Inc. All rights reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.wneu.2022.05.117 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1878-8769 |
| EndPage | e147 |
| ExternalDocumentID | 35690311 10_1016_j_wneu_2022_05_117 S1878875022007586 |
| Genre | Meta-Analysis Systematic Review Journal Article |
| GrantInformation_xml | – fundername: Suzhou Youth Science and Technology Project grantid: KJXW2018064 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV EBS EFJIC EFKBS EFLBG EJD EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OQ- OZT P-8 P-9 PC. PG~ Q38 ROL SCC SDF SDP SEL SES SPCBC SSH SSN SSZ T5K Z5R ~G- ~HD AAYXX CITATION AACTN AFCTW CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c407t-a170cf35df8ac4e15a76a3945ba46539043136f68c6074f97b51a1acd8e5e04b3 |
| ISSN | 1878-8750 1878-8769 |
| IngestDate | Wed Oct 01 14:46:03 EDT 2025 Thu Apr 03 07:06:59 EDT 2025 Wed Oct 01 04:00:56 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Tue Oct 14 19:30:42 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Intracranial aneurysms CI DOR QUADAS-2 Rupture MeSH PRISMA SVM Meta-analysis CTA DSA NLR Machine learning PLR IA Cerebral aneurysms CA |
| Language | English |
| License | Copyright © 2022 Elsevier Inc. All rights reserved. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c407t-a170cf35df8ac4e15a76a3945ba46539043136f68c6074f97b51a1acd8e5e04b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| PMID | 35690311 |
| PQID | 2675602148 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_2675602148 pubmed_primary_35690311 crossref_citationtrail_10_1016_j_wneu_2022_05_117 crossref_primary_10_1016_j_wneu_2022_05_117 elsevier_clinicalkey_doi_10_1016_j_wneu_2022_05_117 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | September 2022 2022-09-00 20220901 |
| PublicationDateYYYYMMDD | 2022-09-01 |
| PublicationDate_xml | – month: 09 year: 2022 text: September 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | World neurosurgery |
| PublicationTitleAlternate | World Neurosurg |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Shi, Chen, Mao (bib24) 2021; 42 Liu, Chen, Lan (bib28) 2018; 28 Canchi, Ng, Narayanan, Finol (bib44) 2018; 232 Ahn, Kim, Rhim (bib26) 2021; 11 Song, Khan, Dinnes, Sutton (bib36) 2002; 31 Greving, Wermer, Brown (bib41) 2014; 13 Morita, Kirino, Hashi (bib40) 2012; 366 Nakao, Hanaoka, Nomura (bib18) 2018; 47 Chen, Lu, Shi (bib19) 2020; 30 Liang, Liu, Martin, Elefteriades, Sun (bib13) 2017; 16 Hamza, Arends, van Houwelingen, Stijnen (bib33) 2009; 9 Bonita, Thomson (bib6) 1985; 16 Johnston, Zhao, Dudley, Berman, Gress (bib10) 2001; 32 Silva, Patel, Kavouridis (bib25) 2019; 131 Page, McKenzie, Bossuyt (bib30) 2021; 372 Dai, Huang, Qian (bib17) 2020; 15 Kim, Rhim, Ahn (bib27) 2019; 8 Topol (bib14) 2019; 25 Higgins, Thompson, Deeks, Altman (bib34) 2003; 327 Algra, Lindgren, Vergouwen (bib12) 2019; 76 Vlak, Algra, Brandenburg, Rinkel (bib4) 2011; 10 Harris, Kim, Lohr (bib45) 2019; 32 Thompson, Brown, Amin-Hanjani (bib1) 2015; 46 Chen, Wei, Lei (bib20) 2020; 19 Yang (bib46) 2020; 15 Hainc, Mannil, Anagnostakou (bib22) 2020; 33 Lantigua, Ortega-Gutierrez, Schmidt (bib7) 2015; 19 Tanioka, Ishida, Yamamoto (bib29) 2020; 2 Murayama, Takao, Ishibashi (bib5) 2016; 47 Jabarkheel, Park, Chute (bib37) 2019; 131 Beam, Kohane (bib15) 2018; 319 Varble, Tutino, Yu (bib43) 2018; 49 Lee, Eom, Lee, Kim, Kang (bib9) 2015; 17 Bender, Wendt, Monarch (bib8) 2018; 83 Park, Chute, Rajpurkar (bib38) 2019; 2 Detmer, Lückehe, Mut (bib21) 2020; 15 Ou, Liu, Qian (bib23) 2020; 11 Sichtermann, Faron, Sijben, Teichert, Freiherr, Wiesmann (bib39) 2018; 28 Deeks, Macaskill, Irwig (bib35) 2005; 58 Brown, Broderick (bib3) 2014; 13 Reitsma, Glas, Rutjes, Scholten, Bossuyt, Zwinderman (bib32) 2005; 58 Suzuki, Takao, Rapaka (bib42) 2020; 51 Zack, Senecal, Kinar (bib16) 2019; 12 Katati, Santiago-Ramajo, Pérez-García (bib11) 2007; 24 Zhang, Yang, Hong (bib2) 2003; 34 Whiting, Rutjes, Reitsma, Bossuyt, Kleijnen (bib31) 2003; 3 Silva (10.1016/j.wneu.2022.05.117_bib25) 2019; 131 Reitsma (10.1016/j.wneu.2022.05.117_bib32) 2005; 58 Thompson (10.1016/j.wneu.2022.05.117_bib1) 2015; 46 Sichtermann (10.1016/j.wneu.2022.05.117_bib39) 2018; 28 Murayama (10.1016/j.wneu.2022.05.117_bib5) 2016; 47 Liu (10.1016/j.wneu.2022.05.117_bib28) 2018; 28 Page (10.1016/j.wneu.2022.05.117_bib30) 2021; 372 Vlak (10.1016/j.wneu.2022.05.117_bib4) 2011; 10 Liang (10.1016/j.wneu.2022.05.117_bib13) 2017; 16 Morita (10.1016/j.wneu.2022.05.117_bib40) 2012; 366 Ahn (10.1016/j.wneu.2022.05.117_bib26) 2021; 11 Katati (10.1016/j.wneu.2022.05.117_bib11) 2007; 24 Detmer (10.1016/j.wneu.2022.05.117_bib21) 2020; 15 Ou (10.1016/j.wneu.2022.05.117_bib23) 2020; 11 Algra (10.1016/j.wneu.2022.05.117_bib12) 2019; 76 Topol (10.1016/j.wneu.2022.05.117_bib14) 2019; 25 Dai (10.1016/j.wneu.2022.05.117_bib17) 2020; 15 Chen (10.1016/j.wneu.2022.05.117_bib19) 2020; 30 Bender (10.1016/j.wneu.2022.05.117_bib8) 2018; 83 Song (10.1016/j.wneu.2022.05.117_bib36) 2002; 31 Canchi (10.1016/j.wneu.2022.05.117_bib44) 2018; 232 Varble (10.1016/j.wneu.2022.05.117_bib43) 2018; 49 Nakao (10.1016/j.wneu.2022.05.117_bib18) 2018; 47 Greving (10.1016/j.wneu.2022.05.117_bib41) 2014; 13 Hainc (10.1016/j.wneu.2022.05.117_bib22) 2020; 33 Harris (10.1016/j.wneu.2022.05.117_bib45) 2019; 32 Chen (10.1016/j.wneu.2022.05.117_bib20) 2020; 19 Beam (10.1016/j.wneu.2022.05.117_bib15) 2018; 319 Tanioka (10.1016/j.wneu.2022.05.117_bib29) 2020; 2 Higgins (10.1016/j.wneu.2022.05.117_bib34) 2003; 327 Johnston (10.1016/j.wneu.2022.05.117_bib10) 2001; 32 Jabarkheel (10.1016/j.wneu.2022.05.117_bib37) 2019; 131 Lantigua (10.1016/j.wneu.2022.05.117_bib7) 2015; 19 Kim (10.1016/j.wneu.2022.05.117_bib27) 2019; 8 Deeks (10.1016/j.wneu.2022.05.117_bib35) 2005; 58 Lee (10.1016/j.wneu.2022.05.117_bib9) 2015; 17 Whiting (10.1016/j.wneu.2022.05.117_bib31) 2003; 3 Bonita (10.1016/j.wneu.2022.05.117_bib6) 1985; 16 Zack (10.1016/j.wneu.2022.05.117_bib16) 2019; 12 Shi (10.1016/j.wneu.2022.05.117_bib24) 2021; 42 Brown (10.1016/j.wneu.2022.05.117_bib3) 2014; 13 Suzuki (10.1016/j.wneu.2022.05.117_bib42) 2020; 51 Zhang (10.1016/j.wneu.2022.05.117_bib2) 2003; 34 Hamza (10.1016/j.wneu.2022.05.117_bib33) 2009; 9 Yang (10.1016/j.wneu.2022.05.117_bib46) 2020; 15 Park (10.1016/j.wneu.2022.05.117_bib38) 2019; 2 |
| References_xml | – volume: 12 start-page: 1304 year: 2019 end-page: 1311 ident: bib16 article-title: Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention publication-title: JACC Cardiovasc Interv – volume: 11 start-page: 239 year: 2021 ident: bib26 article-title: Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms publication-title: J Pers Med – volume: 13 start-page: 59 year: 2014 end-page: 66 ident: bib41 article-title: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies publication-title: Lancet Neurol – volume: 131 start-page: e46 year: 2019 end-page: e51 ident: bib25 article-title: Machine learning models can detect aneurysm rupture and identify clinical features associated with rupture publication-title: World Neurosurg – volume: 2 start-page: e195600 year: 2019 ident: bib38 article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model publication-title: JAMA Netw Open – volume: 33 start-page: 311 year: 2020 end-page: 317 ident: bib22 article-title: Deep learning based detection of intracranial aneurysms on digital subtraction angiography: a feasibility study publication-title: Neuroradiol J – volume: 8 start-page: 683 year: 2019 ident: bib27 article-title: Machine learning application for rupture risk assessment in small-sized intracranial aneurysm publication-title: J Clin Med – volume: 31 start-page: 88 year: 2002 end-page: 95 ident: bib36 article-title: Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy publication-title: Int J Epidemiol – volume: 30 start-page: 5170 year: 2020 end-page: 5182 ident: bib19 article-title: Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study publication-title: Eur Radiol – volume: 9 start-page: 73 year: 2009 ident: bib33 article-title: Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds publication-title: BMC Med Res Methodol – volume: 28 start-page: 3268 year: 2018 end-page: 3275 ident: bib28 article-title: Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network publication-title: Eur Radiol – volume: 232 start-page: 922 year: 2018 end-page: 929 ident: bib44 article-title: On the assessment of abdominal aortic aneurysm rupture risk in the Asian population based on geometric attributes publication-title: Proc Inst Mech Eng H – volume: 17 start-page: 217 year: 2015 end-page: 222 ident: bib9 article-title: Rupture of very small intracranial aneurysms: incidence and clinical characteristics publication-title: J Cerebrovasc Endovasc Neurosurg – volume: 10 start-page: 626 year: 2011 end-page: 636 ident: bib4 article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis publication-title: Lancet Neurol – volume: 76 start-page: 282 year: 2019 end-page: 293 ident: bib12 article-title: Procedural clinical complications, case-fatality risks, and risk factors in endovascular and neurosurgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis publication-title: JAMA Neurol – volume: 16 start-page: 591 year: 1985 end-page: 594 ident: bib6 article-title: Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome publication-title: Stroke – volume: 319 start-page: 1317 year: 2018 end-page: 1318 ident: bib15 article-title: Big data and machine learning in health care publication-title: JAMA – volume: 51 start-page: 641 year: 2020 end-page: 643 ident: bib42 article-title: Rupture risk of small unruptured intracranial aneurysms in Japanese adults publication-title: Stroke – volume: 3 start-page: 25 year: 2003 ident: bib31 article-title: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews publication-title: BMC Med Res Methodol – volume: 49 start-page: 856 year: 2018 end-page: 864 ident: bib43 article-title: Shared and distinct rupture discriminants of small and large intracranial aneurysms publication-title: Stroke – volume: 131 start-page: 7 year: 2019 end-page: 8 ident: bib37 article-title: AI-augmented diagnosis of brain aneurysms from CTA: a retrospective study publication-title: J Neurosurg – volume: 47 start-page: 365 year: 2016 end-page: 371 ident: bib5 article-title: Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study publication-title: Stroke – volume: 32 start-page: 597 year: 2001 end-page: 605 ident: bib10 article-title: Treatment of unruptured cerebral aneurysms in California publication-title: Stroke – volume: 19 start-page: 38 year: 2020 ident: bib20 article-title: Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network publication-title: Biomed Eng Online – volume: 372 start-page: n71 year: 2021 ident: bib30 article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews publication-title: BMJ – volume: 13 start-page: 393 year: 2014 end-page: 404 ident: bib3 article-title: Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening publication-title: Lancet Neurol – volume: 58 start-page: 982 year: 2005 end-page: 990 ident: bib32 article-title: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews publication-title: J Clin Epidemiol – volume: 25 start-page: 44 year: 2019 end-page: 56 ident: bib14 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat Med – volume: 15 start-page: 141 year: 2020 end-page: 150 ident: bib21 article-title: Comparison of statistical learning approaches for cerebral aneurysm rupture assessment publication-title: Int J Comput Assist Radiol Surg – volume: 42 start-page: 648 year: 2021 end-page: 654 ident: bib24 article-title: Machine learning-based prediction of small intracranial aneurysm rupture status using CTA-derived hemodynamics: a multicenter study publication-title: AJNR Am J Neuroradiol – volume: 327 start-page: 557 year: 2003 end-page: 560 ident: bib34 article-title: Measuring inconsistency in meta-analyses publication-title: BMJ – volume: 19 start-page: 309 year: 2015 ident: bib7 article-title: Subarachnoid hemorrhage: who dies, and why? publication-title: Crit Care – volume: 46 start-page: 2368 year: 2015 end-page: 2400 ident: bib1 article-title: Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association publication-title: Stroke – volume: 24 start-page: 66 year: 2007 end-page: 73 ident: bib11 article-title: Description of quality of life and its predictors in patients with aneurysmal subarachnoid hemorrhage publication-title: Cerebrovasc Dis – volume: 83 start-page: 692 year: 2018 end-page: 699 ident: bib8 article-title: Small aneurysms account for the majority and increasing percentage of aneurysmal subarachnoid hemorrhage: a 25-year, single institution study publication-title: Neurosurgery – volume: 47 start-page: 948 year: 2018 end-page: 953 ident: bib18 article-title: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography publication-title: J Magn Reson Imaging – volume: 16 start-page: 1519 year: 2017 end-page: 1533 ident: bib13 article-title: A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm publication-title: Biomech Model Mechanobiol – volume: 11 start-page: 570181 year: 2020 ident: bib23 article-title: Rupture risk assessment for cerebral aneurysm using interpretable machine learning on multidimensional data publication-title: Front Neurol – volume: 366 start-page: 2474 year: 2012 end-page: 2482 ident: bib40 article-title: The natural course of unruptured cerebral aneurysms in a Japanese cohort publication-title: N Engl J Med – volume: 15 start-page: 715 year: 2020 end-page: 723 ident: bib17 article-title: Deep learning for automated cerebral aneurysm detection on computed tomography images publication-title: Int J Comput Assist Radiol Surg – volume: 32 start-page: 939 year: 2019 end-page: 946 ident: bib45 article-title: Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network publication-title: J Digit Imaging – volume: 2 start-page: e190077 year: 2020 ident: bib29 article-title: Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters publication-title: Radiol Artif Intell – volume: 58 start-page: 882 year: 2005 end-page: 893 ident: bib35 article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed publication-title: J Clin Epidemiol – volume: 28 start-page: S89 year: 2018 ident: bib39 article-title: Performance of a deep learning algorithm for automated detection of intracranial aneurysms from non-invasive brain imaging publication-title: Clin Neuroradiol – volume: 15 start-page: 585 year: 2020 ident: bib46 article-title: Rupture risk evaluation of intracranial aneurysms using machine learning based on clinical and morphological features publication-title: Int J Stroke – volume: 34 start-page: 2091 year: 2003 end-page: 2096 ident: bib2 article-title: Proportion of different subtypes of stroke in China publication-title: Stroke – volume: 19 start-page: 309 year: 2015 ident: 10.1016/j.wneu.2022.05.117_bib7 article-title: Subarachnoid hemorrhage: who dies, and why? publication-title: Crit Care doi: 10.1186/s13054-015-1036-0 – volume: 15 start-page: 141 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib21 article-title: Comparison of statistical learning approaches for cerebral aneurysm rupture assessment publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-019-02065-2 – volume: 366 start-page: 2474 year: 2012 ident: 10.1016/j.wneu.2022.05.117_bib40 article-title: The natural course of unruptured cerebral aneurysms in a Japanese cohort publication-title: N Engl J Med doi: 10.1056/NEJMoa1113260 – volume: 83 start-page: 692 year: 2018 ident: 10.1016/j.wneu.2022.05.117_bib8 article-title: Small aneurysms account for the majority and increasing percentage of aneurysmal subarachnoid hemorrhage: a 25-year, single institution study publication-title: Neurosurgery doi: 10.1093/neuros/nyx484 – volume: 232 start-page: 922 year: 2018 ident: 10.1016/j.wneu.2022.05.117_bib44 article-title: On the assessment of abdominal aortic aneurysm rupture risk in the Asian population based on geometric attributes publication-title: Proc Inst Mech Eng H doi: 10.1177/0954411918794724 – volume: 13 start-page: 393 year: 2014 ident: 10.1016/j.wneu.2022.05.117_bib3 article-title: Unruptured intracranial aneurysms: epidemiology, natural history, management options, and familial screening publication-title: Lancet Neurol doi: 10.1016/S1474-4422(14)70015-8 – volume: 327 start-page: 557 year: 2003 ident: 10.1016/j.wneu.2022.05.117_bib34 article-title: Measuring inconsistency in meta-analyses publication-title: BMJ doi: 10.1136/bmj.327.7414.557 – volume: 47 start-page: 365 year: 2016 ident: 10.1016/j.wneu.2022.05.117_bib5 article-title: Risk analysis of unruptured intracranial aneurysms: prospective 10-year cohort study publication-title: Stroke doi: 10.1161/STROKEAHA.115.010698 – volume: 11 start-page: 239 year: 2021 ident: 10.1016/j.wneu.2022.05.117_bib26 article-title: Multi-view convolutional neural networks in rupture risk assessment of small, unruptured intracranial aneurysms publication-title: J Pers Med – volume: 3 start-page: 25 year: 2003 ident: 10.1016/j.wneu.2022.05.117_bib31 article-title: The development of QUADAS: a tool for the quality assessment of studies of diagnostic accuracy included in systematic reviews publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-3-25 – volume: 47 start-page: 948 year: 2018 ident: 10.1016/j.wneu.2022.05.117_bib18 article-title: Deep neural network-based computer-assisted detection of cerebral aneurysms in MR angiography publication-title: J Magn Reson Imaging doi: 10.1002/jmri.25842 – volume: 8 start-page: 683 year: 2019 ident: 10.1016/j.wneu.2022.05.117_bib27 article-title: Machine learning application for rupture risk assessment in small-sized intracranial aneurysm publication-title: J Clin Med – volume: 131 start-page: 7 year: 2019 ident: 10.1016/j.wneu.2022.05.117_bib37 article-title: AI-augmented diagnosis of brain aneurysms from CTA: a retrospective study publication-title: J Neurosurg – volume: 17 start-page: 217 year: 2015 ident: 10.1016/j.wneu.2022.05.117_bib9 article-title: Rupture of very small intracranial aneurysms: incidence and clinical characteristics publication-title: J Cerebrovasc Endovasc Neurosurg doi: 10.7461/jcen.2015.17.3.217 – volume: 28 start-page: 3268 year: 2018 ident: 10.1016/j.wneu.2022.05.117_bib28 article-title: Prediction of rupture risk in anterior communicating artery aneurysms with a feed-forward artificial neural network publication-title: Eur Radiol doi: 10.1007/s00330-017-5300-3 – volume: 372 start-page: n71 year: 2021 ident: 10.1016/j.wneu.2022.05.117_bib30 article-title: The PRISMA 2020 statement: an updated guideline for reporting systematic reviews publication-title: BMJ doi: 10.1136/bmj.n71 – volume: 32 start-page: 597 year: 2001 ident: 10.1016/j.wneu.2022.05.117_bib10 article-title: Treatment of unruptured cerebral aneurysms in California publication-title: Stroke doi: 10.1161/01.STR.32.3.597 – volume: 16 start-page: 1519 year: 2017 ident: 10.1016/j.wneu.2022.05.117_bib13 article-title: A machine learning approach to investigate the relationship between shape features and numerically predicted risk of ascending aortic aneurysm publication-title: Biomech Model Mechanobiol doi: 10.1007/s10237-017-0903-9 – volume: 2 start-page: e190077 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib29 article-title: Machine learning classification of cerebral aneurysm rupture status with morphologic variables and hemodynamic parameters publication-title: Radiol Artif Intell doi: 10.1148/ryai.2019190077 – volume: 11 start-page: 570181 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib23 article-title: Rupture risk assessment for cerebral aneurysm using interpretable machine learning on multidimensional data publication-title: Front Neurol doi: 10.3389/fneur.2020.570181 – volume: 319 start-page: 1317 year: 2018 ident: 10.1016/j.wneu.2022.05.117_bib15 article-title: Big data and machine learning in health care publication-title: JAMA doi: 10.1001/jama.2017.18391 – volume: 33 start-page: 311 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib22 article-title: Deep learning based detection of intracranial aneurysms on digital subtraction angiography: a feasibility study publication-title: Neuroradiol J doi: 10.1177/1971400920937647 – volume: 131 start-page: e46 year: 2019 ident: 10.1016/j.wneu.2022.05.117_bib25 article-title: Machine learning models can detect aneurysm rupture and identify clinical features associated with rupture publication-title: World Neurosurg doi: 10.1016/j.wneu.2019.06.231 – volume: 34 start-page: 2091 year: 2003 ident: 10.1016/j.wneu.2022.05.117_bib2 article-title: Proportion of different subtypes of stroke in China publication-title: Stroke doi: 10.1161/01.STR.0000087149.42294.8C – volume: 2 start-page: e195600 year: 2019 ident: 10.1016/j.wneu.2022.05.117_bib38 article-title: Deep learning-assisted diagnosis of cerebral aneurysms using the HeadXNet model publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2019.5600 – volume: 76 start-page: 282 year: 2019 ident: 10.1016/j.wneu.2022.05.117_bib12 article-title: Procedural clinical complications, case-fatality risks, and risk factors in endovascular and neurosurgical treatment of unruptured intracranial aneurysms: a systematic review and meta-analysis publication-title: JAMA Neurol doi: 10.1001/jamaneurol.2018.4165 – volume: 16 start-page: 591 year: 1985 ident: 10.1016/j.wneu.2022.05.117_bib6 article-title: Subarachnoid hemorrhage: epidemiology, diagnosis, management, and outcome publication-title: Stroke doi: 10.1161/01.STR.16.4.591 – volume: 24 start-page: 66 year: 2007 ident: 10.1016/j.wneu.2022.05.117_bib11 article-title: Description of quality of life and its predictors in patients with aneurysmal subarachnoid hemorrhage publication-title: Cerebrovasc Dis doi: 10.1159/000103118 – volume: 46 start-page: 2368 year: 2015 ident: 10.1016/j.wneu.2022.05.117_bib1 article-title: Guidelines for the management of patients with unruptured intracranial aneurysms: a guideline for healthcare professionals from the American Heart Association/American Stroke Association publication-title: Stroke doi: 10.1161/STR.0000000000000070 – volume: 12 start-page: 1304 year: 2019 ident: 10.1016/j.wneu.2022.05.117_bib16 article-title: Leveraging machine learning techniques to forecast patient prognosis after percutaneous coronary intervention publication-title: JACC Cardiovasc Interv doi: 10.1016/j.jcin.2019.02.035 – volume: 51 start-page: 641 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib42 article-title: Rupture risk of small unruptured intracranial aneurysms in Japanese adults publication-title: Stroke doi: 10.1161/STROKEAHA.119.027664 – volume: 19 start-page: 38 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib20 article-title: Automated computer-assisted detection system for cerebral aneurysms in time-of-flight magnetic resonance angiography using fully convolutional network publication-title: Biomed Eng Online doi: 10.1186/s12938-020-00770-7 – volume: 10 start-page: 626 year: 2011 ident: 10.1016/j.wneu.2022.05.117_bib4 article-title: Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis publication-title: Lancet Neurol doi: 10.1016/S1474-4422(11)70109-0 – volume: 13 start-page: 59 year: 2014 ident: 10.1016/j.wneu.2022.05.117_bib41 article-title: Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies publication-title: Lancet Neurol doi: 10.1016/S1474-4422(13)70263-1 – volume: 9 start-page: 73 year: 2009 ident: 10.1016/j.wneu.2022.05.117_bib33 article-title: Multivariate random effects meta-analysis of diagnostic tests with multiple thresholds publication-title: BMC Med Res Methodol doi: 10.1186/1471-2288-9-73 – volume: 25 start-page: 44 year: 2019 ident: 10.1016/j.wneu.2022.05.117_bib14 article-title: High-performance medicine: the convergence of human and artificial intelligence publication-title: Nat Med doi: 10.1038/s41591-018-0300-7 – volume: 42 start-page: 648 year: 2021 ident: 10.1016/j.wneu.2022.05.117_bib24 article-title: Machine learning-based prediction of small intracranial aneurysm rupture status using CTA-derived hemodynamics: a multicenter study publication-title: AJNR Am J Neuroradiol doi: 10.3174/ajnr.A7034 – volume: 30 start-page: 5170 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib19 article-title: Development and validation of machine learning prediction model based on computed tomography angiography-derived hemodynamics for rupture status of intracranial aneurysms: a Chinese multicenter study publication-title: Eur Radiol doi: 10.1007/s00330-020-06886-7 – volume: 28 start-page: S89 year: 2018 ident: 10.1016/j.wneu.2022.05.117_bib39 article-title: Performance of a deep learning algorithm for automated detection of intracranial aneurysms from non-invasive brain imaging publication-title: Clin Neuroradiol – volume: 32 start-page: 939 year: 2019 ident: 10.1016/j.wneu.2022.05.117_bib45 article-title: Classification of aortic dissection and rupture on post-contrast CT images using a convolutional neural network publication-title: J Digit Imaging doi: 10.1007/s10278-019-00281-5 – volume: 49 start-page: 856 year: 2018 ident: 10.1016/j.wneu.2022.05.117_bib43 article-title: Shared and distinct rupture discriminants of small and large intracranial aneurysms publication-title: Stroke doi: 10.1161/STROKEAHA.117.019929 – volume: 15 start-page: 585 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib46 article-title: Rupture risk evaluation of intracranial aneurysms using machine learning based on clinical and morphological features publication-title: Int J Stroke – volume: 58 start-page: 982 year: 2005 ident: 10.1016/j.wneu.2022.05.117_bib32 article-title: Bivariate analysis of sensitivity and specificity produces informative summary measures in diagnostic reviews publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2005.02.022 – volume: 15 start-page: 715 year: 2020 ident: 10.1016/j.wneu.2022.05.117_bib17 article-title: Deep learning for automated cerebral aneurysm detection on computed tomography images publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-020-02121-2 – volume: 31 start-page: 88 year: 2002 ident: 10.1016/j.wneu.2022.05.117_bib36 article-title: Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy publication-title: Int J Epidemiol doi: 10.1093/ije/31.1.88 – volume: 58 start-page: 882 year: 2005 ident: 10.1016/j.wneu.2022.05.117_bib35 article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2005.01.016 |
| SSID | ssj0000314873 |
| Score | 2.3867576 |
| SecondaryResourceType | review_article |
| Snippet | Several machine learning algorithms have been increasingly applied to predict the rupture risk of intracranial aneurysms. We performed the present diagnostic... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e137 |
| SubjectTerms | Algorithms Cerebral aneurysms Humans Intracranial Aneurysm - diagnosis Intracranial aneurysms Machine Learning Meta-analysis Risk Assessment ROC Curve Rupture |
| Title | Machine Learning Algorithms for Rupture Risk Assessment of Intracranial Aneurysms: A Diagnostic Meta-Analysis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1878875022007586 https://www.ncbi.nlm.nih.gov/pubmed/35690311 https://www.proquest.com/docview/2675602148 |
| Volume | 165 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: .~1 dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: ACRLP dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: AIKHN dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: AKRWK dateStart: 20100101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagXLggEK_lJSNxW2UVx7GT7S3ioQppOfShlpPleJ3Sqt1U3USoHPjtzMR2kgVaQS_RKlqvvZ7P45nxzGdC3hle8iTmOtKw-0UpaOFIy9xEIi-rxKQZWOVYO7z4IncO0s9H4mhIG-uqS5pyZn78ta7kNlKFdyBXrJL9D8n2Pwov4DPIF54gYXj-k4wXXSakDSSpx9Pi7LgGb_-bY1mY7rYX3QHBLuaPFz0Hpy8fudQGNiqMmBfIanm1Pl-7OvUPLv0OqVwXttFRIC4ZG7IuCcexYY4qqzuyx7Y78cBI9JA84LTbXj28O_SR6kN70kdfT7qmX9tKj6MR4MiGdCsfIgtlMhtZnCwHVxUco3hD7UoxUpyWOe4Xvwlb5ng4_1DwLtZwOvsOf3CGA0DeVcayYTvrkwz3sFvsNcF4rMjlXXIvAd2PF3zMfrI-EocE_nmXitCP01dXuUTA37u6zoK5zkPpLJX9h-SBdzFo4fDyiNyxq8fk3GOFBqzQASsUsEI9VihihQ5YoXVFx1ihPVa2aUEHpNANpDwhB58-7r_fifxVG5EBj76JNMtiU3GxrHJtUsuEziSs3lSUGgn45kjBxGUFq1iCzVnNs1IwzbRZ5lbYOC35U7K1qlf2OaF8mRuWZCbRS5vqlJexnEtY82CNgevK0wlhYfqU8Tz0eB3KmQoJh6cKp1zhlKtYIB39hEz7NheOheXGb_MgFRXqi2FHVIChG1u9DQJUoGLx3EyvbN2uVQJOtURuwXxCnjnJ9qPgQs4BQOzFrfp8Se4Pi-gV2WouW_sajNymfNNh9Bcquafm |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning+Algorithms+for+Rupture+Risk+Assessment+of+Intracranial+Aneurysms%3A+A+Diagnostic+Meta-Analysis&rft.jtitle=World+neurosurgery&rft.au=Shu%2C+Zhang&rft.au=Chen%2C+Song&rft.au=Wang%2C+Wei&rft.au=Qiu%2C+Yufa&rft.date=2022-09-01&rft.pub=Elsevier+Inc&rft.issn=1878-8750&rft.volume=165&rft.spage=e137&rft.epage=e147&rft_id=info:doi/10.1016%2Fj.wneu.2022.05.117&rft.externalDocID=S1878875022007586 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-8750&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-8750&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-8750&client=summon |