Deep-learning framework to detect lung abnormality – A study with chest X-Ray and lung CT scan images
•This work proposes a Modified AlexNet (MAN) deep-learning framework to evaluate the lung abnormality.•This work introduces a threshold filter to remove the artifacts from the Lung CT images.•This work introduces an Ensemble-Feature-Technique (EFT) by integrating the deep-features and the handcrafte...
Saved in:
Published in | Pattern recognition letters Vol. 129; pp. 271 - 278 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier B.V
01.01.2020
Elsevier Science Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0167-8655 1872-7344 |
DOI | 10.1016/j.patrec.2019.11.013 |
Cover
Abstract | •This work proposes a Modified AlexNet (MAN) deep-learning framework to evaluate the lung abnormality.•This work introduces a threshold filter to remove the artifacts from the Lung CT images.•This work introduces an Ensemble-Feature-Technique (EFT) by integrating the deep-features and the handcrafted features.•Serial fusion and PCA based selection is implemented in EFT to chose principal feature set.•Experimental results demonstrate superior performance of MAN in comparison with other existing state of the art methods.
Lung abnormalities are highly risky conditions in humans. The early diagnosis of lung abnormalities is essential to reduce the risk by enabling quick and efficient treatment. This research work aims to propose a Deep-Learning (DL) framework to examine lung pneumonia and cancer. This work proposes two different DL techniques to assess the considered problem: (i) The initial DL method, named a modified AlexNet (MAN), is proposed to classify chest X-Ray images into normal and pneumonia class. In the MAN, the classification is implemented using with Support Vector Machine (SVM), and its performance is compared against Softmax. Further, its performance is validated with other pre-trained DL techniques, such as AlexNet, VGG16, VGG19 and ResNet50. (ii) The second DL work implements a fusion of handcrafted and learned features in the MAN to improve classification accuracy during lung cancer assessment. This work employs serial fusion and Principal Component Analysis (PCA) based features selection to enhance the feature vector. The performance of this DL frame work is tested using benchmark lung cancer CT images of LIDC-IDRI and classification accuracy (97.27%) is attained.
[Display omitted] |
---|---|
AbstractList | Lung abnormalities are highly risky conditions in humans. The early diagnosis of lung abnormalities is essential to reduce the risk by enabling quick and efficient treatment. This research work aims to propose a Deep-Learning (DL) framework to examine lung pneumonia and cancer. This work proposes two different DL techniques to assess the considered problem: (i) The initial DL method, named a modified AlexNet (MAN), is proposed to classify chest X-Ray images into normal and pneumonia class. In the MAN, the classification is implemented using with Support Vector Machine (SVM), and its performance is compared against Softmax. Further, its performance is validated with other pre-trained DL techniques, such as AlexNet, VGG16, VGG19 and ResNet50. (ii) The second DL work implements a fusion of handcrafted and learned features in the MAN to improve classification accuracy during lung cancer assessment. This work employs serial fusion and Principal Component Analysis (PCA) based features selection to enhance the feature vector. The performance of this DL frame work is tested using benchmark lung cancer CT images of LIDC-IDRI and classification accuracy (97.27%) is attained. •This work proposes a Modified AlexNet (MAN) deep-learning framework to evaluate the lung abnormality.•This work introduces a threshold filter to remove the artifacts from the Lung CT images.•This work introduces an Ensemble-Feature-Technique (EFT) by integrating the deep-features and the handcrafted features.•Serial fusion and PCA based selection is implemented in EFT to chose principal feature set.•Experimental results demonstrate superior performance of MAN in comparison with other existing state of the art methods. Lung abnormalities are highly risky conditions in humans. The early diagnosis of lung abnormalities is essential to reduce the risk by enabling quick and efficient treatment. This research work aims to propose a Deep-Learning (DL) framework to examine lung pneumonia and cancer. This work proposes two different DL techniques to assess the considered problem: (i) The initial DL method, named a modified AlexNet (MAN), is proposed to classify chest X-Ray images into normal and pneumonia class. In the MAN, the classification is implemented using with Support Vector Machine (SVM), and its performance is compared against Softmax. Further, its performance is validated with other pre-trained DL techniques, such as AlexNet, VGG16, VGG19 and ResNet50. (ii) The second DL work implements a fusion of handcrafted and learned features in the MAN to improve classification accuracy during lung cancer assessment. This work employs serial fusion and Principal Component Analysis (PCA) based features selection to enhance the feature vector. The performance of this DL frame work is tested using benchmark lung cancer CT images of LIDC-IDRI and classification accuracy (97.27%) is attained. [Display omitted] |
Author | Shasky, Charles Satapathy, Suresh Chandra Rajinikanth, V. Robbins, David E. Bhandary, Abhir Prabhu, G. Ananth Thanaraj, K. Palani Zhang, Yu-Dong Tavares, João Manuel R.S. Raja, N. Sri Madhava |
Author_xml | – sequence: 1 givenname: Abhir surname: Bhandary fullname: Bhandary, Abhir organization: Department of InformationScience Engineering, NMAM Institute of Technology, Nitte, Karnataka 574110, India – sequence: 2 givenname: G. Ananth surname: Prabhu fullname: Prabhu, G. Ananth organization: Department of Computer Science Engineering, Sahyadri College of Engineering & Management, Mangaluru 575007, India – sequence: 3 givenname: V. surname: Rajinikanth fullname: Rajinikanth, V. email: rajinikanthv@stjosephs.ac.in organization: Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, Chennai, Tamilnadu 600 119, India – sequence: 4 givenname: K. Palani surname: Thanaraj fullname: Thanaraj, K. Palani organization: Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, Chennai, Tamilnadu 600 119, India – sequence: 5 givenname: Suresh Chandra surname: Satapathy fullname: Satapathy, Suresh Chandra organization: School of Computer Engineering, Kalinga Institute of Industrial Technology (Deemed to Be University), Bhubaneswar, Odisha 751024, India – sequence: 6 givenname: David E. surname: Robbins fullname: Robbins, David E. organization: School of Public Health, Department of Health Informatics and Information Management, Samford University, Birmingham, AL, USA – sequence: 7 givenname: Charles surname: Shasky fullname: Shasky, Charles organization: Visiting Professor, Department of Health Administration, VCU/KMU EMHA Program, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA – sequence: 8 givenname: Yu-Dong surname: Zhang fullname: Zhang, Yu-Dong organization: Department of Informatics, University of Leicester, Leicester LE1 7RH, UK – sequence: 9 givenname: João Manuel R.S. surname: Tavares fullname: Tavares, João Manuel R.S. organization: Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, PORTUGAL – sequence: 10 givenname: N. Sri Madhava surname: Raja fullname: Raja, N. Sri Madhava organization: Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, Chennai, Tamilnadu 600 119, India |
BookMark | eNqFkE1qHDEQhUWwIWM7N8hCkHV39Nfq7iwCZvILhoBxIDuhlkpjTXqkiaSxmV3ukBv6JJbprLKIV7Wo972q987QSYgBEHpNSUsJlW-37V6XBKZlhI4tpS2h_AVa0aFnTc-FOEGrKuubQXbdS3SW85YQIvk4rNDmA8C-mUGn4MMGu6R3cB_TT1witlDAFDwf6kJPIaadnn054offf_AlzuVgj_jel1tsbiEX_KO51kesg12I9Q3ORgfsd3oD-QKdOj1nePV3nqPvnz7erL80V98-f11fXjVGkL404zDJyU6dFYRTcFKMxgnBOKHaWU6c092kB84mNgIdhTHAxp45Owg5cSYdP0dvFt99ir8O9S21jYcU6knFeMe4lCMhVfVuUZkUc07glPFFFx9DSdrPihL1VKzaqqVY9VSsolTVYiss_oH3qYZMx-ew9wsGNf6dh6Sy8RAMWF-lRdno_2_wCC6nl6g |
CitedBy_id | crossref_primary_10_1016_j_eswa_2024_125355 crossref_primary_10_37391_IJEER_120122 crossref_primary_10_1002_ima_22659 crossref_primary_10_1088_2057_1976_ad0b4b crossref_primary_10_3390_s22124426 crossref_primary_10_3934_mbe_2022017 crossref_primary_10_1016_j_cmpb_2020_105910 crossref_primary_10_52547_joc_14_5_131 crossref_primary_10_32604_iasc_2022_020386 crossref_primary_10_1007_s13042_023_01789_7 crossref_primary_10_1016_j_compbiomed_2021_104348 crossref_primary_10_32604_cmc_2024_052404 crossref_primary_10_1002_ima_22884 crossref_primary_10_1109_RBME_2021_3115703 crossref_primary_10_1002_ima_22646 crossref_primary_10_1002_ima_22888 crossref_primary_10_3390_diagnostics11122208 crossref_primary_10_7717_peerj_cs_364 crossref_primary_10_2174_1573405618666220803123626 crossref_primary_10_1111_coin_12682 crossref_primary_10_1007_s10555_020_09901_x crossref_primary_10_1016_j_patrec_2020_09_033 crossref_primary_10_1007_s44230_022_00002_2 crossref_primary_10_1007_s00521_023_08867_5 crossref_primary_10_1080_15567036_2021_1941435 crossref_primary_10_1007_s11042_021_11580_x crossref_primary_10_1080_20479700_2022_2102223 crossref_primary_10_1007_s40846_023_00785_0 crossref_primary_10_1016_j_ajt_2025_01_039 crossref_primary_10_1364_BOE_477384 crossref_primary_10_1016_j_compbiomed_2022_106137 crossref_primary_10_1016_j_imu_2020_100391 crossref_primary_10_31590_ejosat_898385 crossref_primary_10_32604_iasc_2022_021211 crossref_primary_10_3390_diagnostics13020248 crossref_primary_10_37394_23208_2024_21_24 crossref_primary_10_1080_07391102_2020_1767212 crossref_primary_10_1080_02286203_2021_1934797 crossref_primary_10_1002_ima_22627 crossref_primary_10_1109_ACCESS_2024_3510856 crossref_primary_10_3390_su14105820 crossref_primary_10_1016_j_bspc_2021_102812 crossref_primary_10_1016_j_measurement_2021_109953 crossref_primary_10_1007_s11042_023_16864_y crossref_primary_10_1007_s42979_024_03407_x crossref_primary_10_1007_s00500_020_05275_y crossref_primary_10_1016_j_procs_2021_08_068 crossref_primary_10_1007_s40031_021_00589_3 crossref_primary_10_1016_j_patrec_2021_10_025 crossref_primary_10_52756_10_52756_ijerr_2023_v31spl_002 crossref_primary_10_3390_s20215982 crossref_primary_10_1109_TEM_2021_3103334 crossref_primary_10_3390_su13031224 crossref_primary_10_4018_JITR_299391 crossref_primary_10_1007_s40747_020_00216_6 crossref_primary_10_35377_saucis_04_01_787030 crossref_primary_10_1007_s12559_020_09774_w crossref_primary_10_1088_1757_899X_1051_1_012007 crossref_primary_10_3390_app132212510 crossref_primary_10_1007_s11760_022_02183_6 crossref_primary_10_1002_ima_22858 crossref_primary_10_3233_JIFS_232875 crossref_primary_10_1109_ACCESS_2024_3360691 crossref_primary_10_3390_bioengineering11080799 crossref_primary_10_1016_j_compeleceng_2023_108586 crossref_primary_10_3390_biomedinformatics4030111 crossref_primary_10_1615_JFlowVisImageProc_2024053126 crossref_primary_10_1016_j_bea_2023_100076 crossref_primary_10_1016_j_cosrev_2021_100452 crossref_primary_10_1007_s12652_021_03686_9 crossref_primary_10_1016_j_jestch_2023_101490 crossref_primary_10_3389_fdata_2024_1393758 crossref_primary_10_1007_s42600_021_00138_3 crossref_primary_10_3390_app11083414 crossref_primary_10_1007_s13735_021_00204_7 crossref_primary_10_48084_etasr_9788 crossref_primary_10_1007_s13369_021_05956_2 crossref_primary_10_2174_1573405617666210806125953 crossref_primary_10_1007_s12652_021_03676_x crossref_primary_10_1007_s10140_020_01893_z crossref_primary_10_3233_XST_211082 crossref_primary_10_3389_fmed_2022_955765 crossref_primary_10_3390_jpm12030417 crossref_primary_10_1155_2022_5905230 crossref_primary_10_2174_1573405616666200425220513 crossref_primary_10_1007_s00521_024_10527_1 crossref_primary_10_32604_cmc_2022_024312 crossref_primary_10_1155_2021_8865237 crossref_primary_10_1007_s11042_023_18014_w crossref_primary_10_1371_journal_pone_0296352 crossref_primary_10_1142_S0219622023500700 crossref_primary_10_1109_ACCESS_2024_3519341 crossref_primary_10_1016_j_compbiomed_2020_103898 crossref_primary_10_1007_s10462_023_10457_9 crossref_primary_10_1007_s11042_022_13005_9 crossref_primary_10_3389_fphys_2022_1094743 crossref_primary_10_1016_j_knosys_2020_105949 crossref_primary_10_1007_s11042_023_14893_1 crossref_primary_10_1016_j_eswa_2022_118956 crossref_primary_10_1007_s11042_023_16555_8 crossref_primary_10_1007_s10278_025_01458_x crossref_primary_10_3390_app13042218 crossref_primary_10_1007_s13735_021_00205_6 crossref_primary_10_56294_saludcyt2024_922 crossref_primary_10_1007_s42979_022_01464_8 crossref_primary_10_1515_pjbr_2022_0108 crossref_primary_10_1007_s00330_020_07087_y crossref_primary_10_1155_2024_3249929 crossref_primary_10_3390_healthcare10102072 crossref_primary_10_1016_j_measen_2023_100993 crossref_primary_10_59324_ejtas_2024_2_5__15 crossref_primary_10_1007_s10278_021_00463_0 crossref_primary_10_1016_j_eswa_2020_114054 crossref_primary_10_1002_ima_22812 crossref_primary_10_1016_j_media_2023_102894 crossref_primary_10_1038_s42003_023_04585_9 crossref_primary_10_2174_0929867329666220222154733 crossref_primary_10_3233_XST_210976 crossref_primary_10_1016_j_irbm_2020_05_003 crossref_primary_10_1080_0954898X_2022_2147231 crossref_primary_10_3390_diagnostics15030313 crossref_primary_10_1109_ACCESS_2021_3086103 crossref_primary_10_1016_j_array_2024_100357 crossref_primary_10_1109_TCSVT_2021_3063952 crossref_primary_10_1080_23307706_2023_2191596 crossref_primary_10_54097_hset_v41i_6740 crossref_primary_10_1007_s11042_021_11748_5 crossref_primary_10_1371_journal_pdig_0000460 crossref_primary_10_1016_j_asoc_2021_108094 crossref_primary_10_1038_s41598_021_99015_3 crossref_primary_10_1007_s11633_022_1382_8 crossref_primary_10_1155_2021_9989237 crossref_primary_10_11648_j_ajdmkd_20240901_12 crossref_primary_10_1007_s13755_020_00116_6 crossref_primary_10_1007_s12559_020_09751_3 crossref_primary_10_1007_s11042_023_15131_4 crossref_primary_10_1007_s11042_022_13499_3 crossref_primary_10_1038_s41598_022_12364_5 crossref_primary_10_3390_s21248219 crossref_primary_10_1016_j_patrec_2020_03_011 crossref_primary_10_1016_j_procs_2023_01_250 crossref_primary_10_23939_ujit2024_01_095 crossref_primary_10_1016_j_patcog_2020_107747 crossref_primary_10_24017_covid_14 crossref_primary_10_1016_j_compbiomed_2021_105123 crossref_primary_10_32604_cmc_2022_018487 crossref_primary_10_1109_ACCESS_2023_3325404 crossref_primary_10_1007_s00521_022_08033_3 crossref_primary_10_3390_app10103429 crossref_primary_10_1155_2022_1043299 crossref_primary_10_32628_CSEIT217339 crossref_primary_10_1007_s00521_021_06102_7 crossref_primary_10_32604_cmc_2022_025208 crossref_primary_10_1007_s00198_023_06913_5 crossref_primary_10_1155_2022_9036457 crossref_primary_10_1080_00051144_2024_2376776 crossref_primary_10_1016_j_rineng_2024_103448 crossref_primary_10_56977_jicce_2024_22_2_165 crossref_primary_10_1088_2399_6528_ac24d8 crossref_primary_10_1088_1742_6596_1951_1_012064 crossref_primary_10_4018_IJSIR_287544 crossref_primary_10_1371_journal_pone_0285796 crossref_primary_10_3390_e24030313 crossref_primary_10_1109_ACCESS_2020_2979755 crossref_primary_10_1016_j_engappai_2022_105490 crossref_primary_10_3390_jpm12050680 crossref_primary_10_1186_s12938_024_01201_7 crossref_primary_10_15212_bioi_2020_0038 crossref_primary_10_1007_s00521_021_05841_x crossref_primary_10_1016_j_patcog_2022_108650 crossref_primary_10_35377_saucis___787030 crossref_primary_10_1051_bioconf_20249700050 crossref_primary_10_3390_cancers14051117 crossref_primary_10_3390_diagnostics14151596 crossref_primary_10_1007_s13755_021_00169_1 crossref_primary_10_1142_S0219467824500402 crossref_primary_10_1080_23080477_2023_2246285 crossref_primary_10_3390_cancers13194961 crossref_primary_10_1016_j_compbiomed_2021_104306 crossref_primary_10_3390_s20071822 crossref_primary_10_1007_s13246_021_00980_w crossref_primary_10_1007_s12065_021_00581_2 crossref_primary_10_4108_eetpht_10_6805 crossref_primary_10_1038_s41598_022_22586_2 crossref_primary_10_1007_s11042_024_18721_y crossref_primary_10_1007_s12553_022_00677_4 crossref_primary_10_1016_j_eswa_2024_125571 crossref_primary_10_1016_j_asoc_2020_106744 crossref_primary_10_1007_s10278_024_01005_0 crossref_primary_10_1166_jctn_2020_9439 crossref_primary_10_1088_1757_899X_928_3_032072 crossref_primary_10_1007_s11227_021_04181_w crossref_primary_10_1007_s11042_022_13618_0 crossref_primary_10_1615_CritRevBiomedEng_v50_i6_40 crossref_primary_10_1080_00051144_2023_2293274 crossref_primary_10_56977_jicce_2022_20_3_219 crossref_primary_10_1109_TMI_2020_3001810 crossref_primary_10_1016_j_measurement_2024_115330 crossref_primary_10_1371_journal_pone_0313386 |
Cites_doi | 10.1016/j.compeleceng.2019.03.004 10.1371/journal.pmed.1002683 10.3390/diagnostics9010029 10.1109/CVPR.2017.369 10.2174/1573405613666170306114320 10.1166/jmihi.2017.2280 10.1016/j.procs.2018.01.104 10.1016/j.bbe.2019.07.005 10.1016/j.inffus.2017.10.005 10.1118/1.3528204 10.3390/diagnostics6010013 10.1038/srep24454 10.1038/s41598-018-27569-w 10.1007/s11548-017-1605-6 10.4018/IJACI.2019070106 10.1007/s10916-018-1003-9 10.1016/j.cmpb.2017.09.005 10.1371/journal.pone.0063559 10.1007/s11042-017-4480-9 10.1155/2017/8314740 10.3390/app9050940 10.1371/journal.pmed.1002686 10.1016/j.patrec.2017.05.028 10.1016/j.procs.2019.05.028 10.1007/s00330-015-4030-7 10.1007/s11517-018-1850-z 10.1016/j.asoc.2018.10.006 10.1016/j.eswa.2017.02.002 |
ContentType | Journal Article |
Copyright | 2019 Elsevier B.V. Copyright Elsevier Science Ltd. Jan 2020 |
Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jan 2020 |
DBID | AAYXX CITATION 7SC 7TK 8FD JQ2 L7M L~C L~D |
DOI | 10.1016/j.patrec.2019.11.013 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Neurosciences Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Neurosciences Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Computer Science |
EISSN | 1872-7344 |
EndPage | 278 |
ExternalDocumentID | 10_1016_j_patrec_2019_11_013 S0167865519303277 |
GroupedDBID | --K --M .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WH7 WUQ XFK XPP Y6R ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7SC 7TK 8FD EFKBS JQ2 L7M L~C L~D |
ID | FETCH-LOGICAL-c407t-98b6bdb5d4031ef649cf442301afd30ffa5ba832b29e194cce2972fd846b326f3 |
IEDL.DBID | AIKHN |
ISSN | 0167-8655 |
IngestDate | Mon Jul 14 08:23:08 EDT 2025 Tue Jul 01 02:40:40 EDT 2025 Thu Apr 24 22:56:52 EDT 2025 Fri Feb 23 02:49:09 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-98b6bdb5d4031ef649cf442301afd30ffa5ba832b29e194cce2972fd846b326f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | http://hdl.handle.net/10216/124569 |
PQID | 2352366900 |
PQPubID | 2047552 |
PageCount | 8 |
ParticipantIDs | proquest_journals_2352366900 crossref_citationtrail_10_1016_j_patrec_2019_11_013 crossref_primary_10_1016_j_patrec_2019_11_013 elsevier_sciencedirect_doi_10_1016_j_patrec_2019_11_013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2020 2020-01-00 20200101 |
PublicationDateYYYYMMDD | 2020-01-01 |
PublicationDate_xml | – month: 01 year: 2020 text: January 2020 |
PublicationDecade | 2020 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Pattern recognition letters |
PublicationYear | 2020 |
Publisher | Elsevier B.V Elsevier Science Ltd |
Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
References | Peña, Luo, Abdelgader (bib0011) 2016; 6 Rajinikanth, Satapathy, Fernandes, Nachiappan (bib0030) 2017; 94 Skourt, Hassani, Majda (bib0023) 2018; 127 Pehrson, Nielsen, Lauridsen (bib0018) 2019; 9 Wang, Xiaosong, Peng, Yifan, Lu, Le, Lu, Zhiyong, Bagheri, Mohammadhadi, and Summers, Ronald M. Chestx-ray: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. 2017. arXiv Xie, Zhang, Xia, Fulham, Zhang (bib0037) 2018; 42 bib0007 Cheng (bib0013) 2016; 6 Polat, Mehr (bib0024) 2019; 9 bib0027 Rajinikanth, Dey, Kumar, Panneerselvam, Raja (bib0029) 2019; 152 Wang (bib0001) 2019; 74 Nanni, Ghidoni, Brahnam (bib0006) 2018 Xie, Xia, Zhang, Song, Feng, Fulham, Cai (bib0040) 2018 Zech, Badgeley, Liu, Costa, Titano, Oermann (bib0015) 2018; 15 Ramachandran, George, Skaria, Varun (bib0033) 2018 Lan (bib0002) 2018; 42 Xiao, Wu, Lin, Zhau (bib0016) 2018; 153 Sun, Zhang, Wang, Li, Guo (bib0014) 2013; 8 Causey, Zhang, Ma, Jiang, Qualls, Politte, Prior, Zhang, Huang (bib0032) 2018; 8 Zhang, Zhao, Luo, Qiang (bib0036) 2017; 13 Rajpurkar (bib0025) 2018; 15 [cs.CV]. Jacobs (bib0009) 2016; 26 Shanthi, Sabeenian (bib0026) 2019; 76 Huang, Leng (bib0044) 2010 Irvin, J. et al., CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. (2019). arXiv Dey (bib0028) 2019; 39 Yao, Li, Poblenz, Eric, Dagunts, Dmitry, Covington, Ben, Bernard, Devon, and Lyman, Kevin. Learning to diagnose from scratch by exploiting dependenciesamong labels. 2017. arXiv P. Rajpurkar, et al., CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. (2017). arXiv M.F. Serj, B. Lavi, G. Hoff, D.P. Valls. A deep convolutional neural network for lung cancer diagnostic. (2018). arXiv Naqi, Sharif, Yasmin, Fernandes (bib0043) 2018; 14 . Han, Liu, Zheng, Wang, Huang (bib0035) 2018 Nibali, He, Wollersheim (bib0041) 2017; 12 Armato (bib0008) 2011; 38 Song, Zhao, Luo, Dou (bib0004) 2017 Araque (bib0017) 2017; 77 Da Silva, da Silva Neto, Silva, de Paiva, Gattass (bib0031) 2017; 76 Song, Zhao, Luo, Dou (bib0034) 2017 Abbas (bib0039) 2017; 6 Fernandes, Gurupur, Lin, Martis (bib0042) 2017; 7 Pehrson, Nielsen, Lauridsen (bib0010) 2019; 9 Shaffie, Soliman, Fraiwan, Ghazal, Taher, Dunlap, Wang, van Berkel, Keynton, Elmaghraby (bib0038) 2018 Nagi (bib0005) 2018; 14 Ali (bib0003) 2019; 10 Ramachandran (10.1016/j.patrec.2019.11.013_bib0033) 2018 Causey (10.1016/j.patrec.2019.11.013_bib0032) 2018; 8 Skourt (10.1016/j.patrec.2019.11.013_bib0023) 2018; 127 Zhang (10.1016/j.patrec.2019.11.013_bib0036) 2017; 13 Ali (10.1016/j.patrec.2019.11.013_bib0003) 2019; 10 10.1016/j.patrec.2019.11.013_bib0019 Huang (10.1016/j.patrec.2019.11.013_bib0044) 2010 10.1016/j.patrec.2019.11.013_bib0012 Jacobs (10.1016/j.patrec.2019.11.013_bib0009) 2016; 26 Pehrson (10.1016/j.patrec.2019.11.013_bib0010) 2019; 9 Sun (10.1016/j.patrec.2019.11.013_bib0014) 2013; 8 Armato (10.1016/j.patrec.2019.11.013_bib0008) 2011; 38 Han (10.1016/j.patrec.2019.11.013_bib0035) 2018 Rajpurkar (10.1016/j.patrec.2019.11.013_bib0025) 2018; 15 Zech (10.1016/j.patrec.2019.11.013_bib0015) 2018; 15 Xie (10.1016/j.patrec.2019.11.013_bib0037) 2018; 42 Dey (10.1016/j.patrec.2019.11.013_bib0028) 2019; 39 Nibali (10.1016/j.patrec.2019.11.013_bib0041) 2017; 12 Araque (10.1016/j.patrec.2019.11.013_bib0017) 2017; 77 Wang (10.1016/j.patrec.2019.11.013_bib0001) 2019; 74 Lan (10.1016/j.patrec.2019.11.013_bib0002) 2018; 42 10.1016/j.patrec.2019.11.013_bib0020 10.1016/j.patrec.2019.11.013_bib0022 10.1016/j.patrec.2019.11.013_bib0021 Song (10.1016/j.patrec.2019.11.013_bib0004) 2017 Nagi (10.1016/j.patrec.2019.11.013_bib0005) 2018; 14 Rajinikanth (10.1016/j.patrec.2019.11.013_bib0029) 2019; 152 Da Silva (10.1016/j.patrec.2019.11.013_bib0031) 2017; 76 10.1016/j.patrec.2019.11.013_bib0027 10.1016/j.patrec.2019.11.013_bib0007 Pehrson (10.1016/j.patrec.2019.11.013_bib0018) 2019; 9 Rajinikanth (10.1016/j.patrec.2019.11.013_bib0030) 2017; 94 Song (10.1016/j.patrec.2019.11.013_bib0034) 2017 Xie (10.1016/j.patrec.2019.11.013_bib0040) 2018 Polat (10.1016/j.patrec.2019.11.013_bib0024) 2019; 9 Shaffie (10.1016/j.patrec.2019.11.013_bib0038) 2018 Cheng (10.1016/j.patrec.2019.11.013_bib0013) 2016; 6 Shanthi (10.1016/j.patrec.2019.11.013_bib0026) 2019; 76 Nanni (10.1016/j.patrec.2019.11.013_bib0006) 2018 Naqi (10.1016/j.patrec.2019.11.013_bib0043) 2018; 14 Peña (10.1016/j.patrec.2019.11.013_bib0011) 2016; 6 Fernandes (10.1016/j.patrec.2019.11.013_bib0042) 2017; 7 Abbas (10.1016/j.patrec.2019.11.013_bib0039) 2017; 6 Xiao (10.1016/j.patrec.2019.11.013_bib0016) 2018; 153 |
References_xml | – volume: 10 start-page: 92 year: 2019 end-page: 116 ident: bib0003 article-title: Adam deep learning with SOM for human sentiment classification publication-title: Int. J. Ambient Comput. Intell. (IJACI) – ident: bib0027 – volume: 15 year: 2018 ident: bib0015 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study publication-title: PLoS Med. – volume: 14 start-page: 108 year: 2018 end-page: 117 ident: bib0043 article-title: Lung nodule detection using polygon approximation and hybrid features from CT images publication-title: Curr. Med. Imaging Rev. – volume: 9 start-page: 29 year: 2019 ident: bib0010 article-title: Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review publication-title: Diagnostics. – volume: 74 start-page: 40 year: 2019 end-page: 50 ident: bib0001 article-title: Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network publication-title: Appl. Soft Comput. – year: 2017 ident: bib0034 article-title: Using deep learning for classification of lung nodules on computed tomography images publication-title: J. Healthcare Eng. – volume: 76 start-page: 19039 year: 2017 end-page: 19055 ident: bib0031 article-title: Lung nodules diagnosis based on evolutionary convolutional neural network publication-title: Multimed. Tools Appl. – reference: Irvin, J. et al., CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. (2019). arXiv: – volume: 77 start-page: 236 year: 2017 end-page: 246 ident: bib0017 article-title: Enhancing deep learning sentiment analysis with ensemble techniques in social applications publication-title: Expert Syst. Appl. – volume: 26 start-page: 2139 year: 2016 end-page: 2147 ident: bib0009 article-title: Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database publication-title: Eur. Radiol. – volume: 127 start-page: 109 year: 2018 end-page: 113 ident: bib0023 article-title: Lung CT image segmentation using deep neural networks publication-title: Procedia Comput. Sci. – volume: 9 start-page: 940 year: 2019 ident: bib0024 article-title: Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture publication-title: Appl. Sci. – reference: M.F. Serj, B. Lavi, G. Hoff, D.P. Valls. A deep convolutional neural network for lung cancer diagnostic. (2018). arXiv: – reference: [cs.CV]. – start-page: 2201 year: 2018 end-page: 2212 ident: bib0035 article-title: Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs publication-title: Med. Biol. Eng. Comput. – start-page: 17 year: 2018 ident: bib0038 article-title: A generalized deep learning-based diagnostic system for early diagnosis of various types of pulmonary nodules publication-title: Technol. Cancer Res. Treat. – volume: 15 year: 2018 ident: bib0025 article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists publication-title: PLoS Med. – volume: 152 start-page: 66 year: 2019 end-page: 73 ident: bib0029 article-title: Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation publication-title: Procedia Comput. Sci. – volume: 38 start-page: 915 year: 2011 end-page: 931 ident: bib0008 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans publication-title: Med. Phys. – volume: 8 start-page: 9286 year: 2018 ident: bib0032 article-title: Highly accurate model for prediction of lung nodule malignancy with CT scans publication-title: Sci. Rep. – year: 2018 ident: bib0040 article-title: Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT publication-title: IEEE Trans. Med. Imaging – reference: Wang, Xiaosong, Peng, Yifan, Lu, Le, Lu, Zhiyong, Bagheri, Mohammadhadi, and Summers, Ronald M. Chestx-ray: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. 2017. arXiv: – start-page: 476 year: 2010 end-page: 480 ident: bib0044 article-title: Analysis of Hu’s moment invariants on image scaling and rotation publication-title: Proceedings of 2010 2nd International Conference on Computer Engineering and Technology (ICCET) – volume: 94 start-page: 87 year: 2017 end-page: 95 ident: bib0030 article-title: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization publication-title: Pattern Recognit. Lett. – reference: P. Rajpurkar, et al., CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. (2017). arXiv: – volume: 6 start-page: 111 year: 2017 end-page: 118 ident: bib0039 article-title: Classification of pulmonary nodules using deep neural network publication-title: Int. J.Med. Res. Heal. Sci. – volume: 153 start-page: 1 year: 2018 end-page: 9 ident: bib0016 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Prog. Biomed. – year: 2018 ident: bib0006 article-title: Ensemble of convolutional neural networks for bioimage classification publication-title: Appl. Comput. Inf. – ident: bib0007 – volume: 6 start-page: 24454 year: 2016 ident: bib0013 article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans publication-title: Sci. Rep. – volume: 76 start-page: 56 year: 2019 end-page: 64 ident: bib0026 article-title: Modified Alexnet architecture for classification of diabetic retinopathy images publication-title: Comput. Electr. Eng. – volume: 13 start-page: 1358 year: 2017 end-page: 1370 ident: bib0036 article-title: Deep belief network for lung nodules diagnosed in CT imaging publication-title: Int. J. Perform. Eng. – volume: 7 start-page: 1841 year: 2017 end-page: 1850 ident: bib0042 article-title: A Novel fusion approach for early lung cancer detection using computer aided diagnosis techniques publication-title: J. Med. Imaging Health Inf. – volume: 9 start-page: 29 year: 2019 ident: bib0018 article-title: Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review publication-title: Diagnostics (Basel) – reference: . – volume: 39 start-page: 843 year: 2019 end-page: 856 ident: bib0028 article-title: Social-group-optimization based tumor evaluation tool for clinical brain MRI of flair/DW modality publication-title: Biocybern. Biomed. Eng. – volume: 42 start-page: 102 year: 2018 end-page: 110 ident: bib0037 article-title: shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT publication-title: Inf. Fusion – volume: 12 start-page: 1799 year: 2017 end-page: 1808 ident: bib0041 article-title: Pulmonary nodule classification with deep residual networks publication-title: Int. J. Comput. Assist. Radiol. Surg. – volume: 8 start-page: e63559 year: 2013 ident: bib0014 article-title: Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data publication-title: Plos ONE – volume: 42 start-page: 139 year: 2018 ident: bib0002 article-title: A survey of data mining and deep learning in bioinformatics publication-title: J. Med. Syst. – year: 2018 ident: bib0033 article-title: Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans publication-title: Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, Houston, TX, USA, 12–15 February – year: 2017 ident: bib0004 article-title: Using deep learning for classification of lung nodules on computed tomography images publication-title: J. Healthcare Eng. – reference: Yao, Li, Poblenz, Eric, Dagunts, Dmitry, Covington, Ben, Bernard, Devon, and Lyman, Kevin. Learning to diagnose from scratch by exploiting dependenciesamong labels. 2017. arXiv: – volume: 14 start-page: 108 year: 2018 end-page: 117 ident: bib0005 article-title: Lung nodule detection using polygon approximation and hybrid features from CT images publication-title: Curr. Med. Imaging Rev. – volume: 6 start-page: 13 year: 2016 ident: bib0011 article-title: Auto diagnostics of lung nodules using minimal characteristics extraction technique publication-title: Diagnostics – year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0006 article-title: Ensemble of convolutional neural networks for bioimage classification publication-title: Appl. Comput. Inf. – ident: 10.1016/j.patrec.2019.11.013_bib0012 – volume: 76 start-page: 56 year: 2019 ident: 10.1016/j.patrec.2019.11.013_bib0026 article-title: Modified Alexnet architecture for classification of diabetic retinopathy images publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2019.03.004 – volume: 15 issue: 11 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0015 article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002683 – volume: 9 start-page: 29 issue: 1 year: 2019 ident: 10.1016/j.patrec.2019.11.013_bib0018 article-title: Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review publication-title: Diagnostics (Basel) doi: 10.3390/diagnostics9010029 – ident: 10.1016/j.patrec.2019.11.013_bib0022 doi: 10.1109/CVPR.2017.369 – volume: 14 start-page: 108 issue: 1 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0043 article-title: Lung nodule detection using polygon approximation and hybrid features from CT images publication-title: Curr. Med. Imaging Rev. doi: 10.2174/1573405613666170306114320 – volume: 7 start-page: 1841 issue: 8 year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0042 article-title: A Novel fusion approach for early lung cancer detection using computer aided diagnosis techniques publication-title: J. Med. Imaging Health Inf. doi: 10.1166/jmihi.2017.2280 – volume: 127 start-page: 109 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0023 article-title: Lung CT image segmentation using deep neural networks publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.01.104 – volume: 6 start-page: 111 year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0039 article-title: Classification of pulmonary nodules using deep neural network publication-title: Int. J.Med. Res. Heal. Sci. – ident: 10.1016/j.patrec.2019.11.013_bib0019 – volume: 39 start-page: 843 issue: 3 year: 2019 ident: 10.1016/j.patrec.2019.11.013_bib0028 article-title: Social-group-optimization based tumor evaluation tool for clinical brain MRI of flair/DW modality publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2019.07.005 – volume: 42 start-page: 102 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0037 article-title: shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT publication-title: Inf. Fusion doi: 10.1016/j.inffus.2017.10.005 – volume: 38 start-page: 915 issue: 2 year: 2011 ident: 10.1016/j.patrec.2019.11.013_bib0008 article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans publication-title: Med. Phys. doi: 10.1118/1.3528204 – volume: 6 start-page: 13 year: 2016 ident: 10.1016/j.patrec.2019.11.013_bib0011 article-title: Auto diagnostics of lung nodules using minimal characteristics extraction technique publication-title: Diagnostics doi: 10.3390/diagnostics6010013 – volume: 6 start-page: 24454 year: 2016 ident: 10.1016/j.patrec.2019.11.013_bib0013 article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans publication-title: Sci. Rep. doi: 10.1038/srep24454 – ident: 10.1016/j.patrec.2019.11.013_bib0020 – volume: 8 start-page: 9286 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0032 article-title: Highly accurate model for prediction of lung nodule malignancy with CT scans publication-title: Sci. Rep. doi: 10.1038/s41598-018-27569-w – volume: 12 start-page: 1799 year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0041 article-title: Pulmonary nodule classification with deep residual networks publication-title: Int. J. Comput. Assist. Radiol. Surg. doi: 10.1007/s11548-017-1605-6 – volume: 10 start-page: 92 issue: 3 year: 2019 ident: 10.1016/j.patrec.2019.11.013_bib0003 article-title: Adam deep learning with SOM for human sentiment classification publication-title: Int. J. Ambient Comput. Intell. (IJACI) doi: 10.4018/IJACI.2019070106 – volume: 13 start-page: 1358 year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0036 article-title: Deep belief network for lung nodules diagnosed in CT imaging publication-title: Int. J. Perform. Eng. – volume: 42 start-page: 139 issue: 8 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0002 article-title: A survey of data mining and deep learning in bioinformatics publication-title: J. Med. Syst. doi: 10.1007/s10916-018-1003-9 – volume: 153 start-page: 1 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0016 article-title: A deep learning-based multi-model ensemble method for cancer prediction publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2017.09.005 – ident: 10.1016/j.patrec.2019.11.013_bib0007 – volume: 8 start-page: e63559 year: 2013 ident: 10.1016/j.patrec.2019.11.013_bib0014 article-title: Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data publication-title: Plos ONE doi: 10.1371/journal.pone.0063559 – volume: 76 start-page: 19039 year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0031 article-title: Lung nodules diagnosis based on evolutionary convolutional neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-017-4480-9 – year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0033 article-title: Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans – year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0004 article-title: Using deep learning for classification of lung nodules on computed tomography images publication-title: J. Healthcare Eng. doi: 10.1155/2017/8314740 – year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0034 article-title: Using deep learning for classification of lung nodules on computed tomography images publication-title: J. Healthcare Eng. doi: 10.1155/2017/8314740 – volume: 9 start-page: 940 year: 2019 ident: 10.1016/j.patrec.2019.11.013_bib0024 article-title: Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture publication-title: Appl. Sci. doi: 10.3390/app9050940 – ident: 10.1016/j.patrec.2019.11.013_bib0021 – volume: 15 issue: 11 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0025 article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists publication-title: PLoS Med. doi: 10.1371/journal.pmed.1002686 – start-page: 17 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0038 article-title: A generalized deep learning-based diagnostic system for early diagnosis of various types of pulmonary nodules publication-title: Technol. Cancer Res. Treat. – volume: 14 start-page: 108 issue: 1 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0005 article-title: Lung nodule detection using polygon approximation and hybrid features from CT images publication-title: Curr. Med. Imaging Rev. – start-page: 476 year: 2010 ident: 10.1016/j.patrec.2019.11.013_bib0044 article-title: Analysis of Hu’s moment invariants on image scaling and rotation – volume: 94 start-page: 87 year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0030 article-title: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2017.05.028 – ident: 10.1016/j.patrec.2019.11.013_bib0027 – volume: 152 start-page: 66 year: 2019 ident: 10.1016/j.patrec.2019.11.013_bib0029 article-title: Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.05.028 – volume: 26 start-page: 2139 issue: 7 year: 2016 ident: 10.1016/j.patrec.2019.11.013_bib0009 article-title: Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database publication-title: Eur. Radiol. doi: 10.1007/s00330-015-4030-7 – start-page: 2201 year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0035 article-title: Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-018-1850-z – volume: 74 start-page: 40 year: 2019 ident: 10.1016/j.patrec.2019.11.013_bib0001 article-title: Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.10.006 – volume: 77 start-page: 236 year: 2017 ident: 10.1016/j.patrec.2019.11.013_bib0017 article-title: Enhancing deep learning sentiment analysis with ensemble techniques in social applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2017.02.002 – volume: 9 start-page: 29 year: 2019 ident: 10.1016/j.patrec.2019.11.013_bib0010 article-title: Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review publication-title: Diagnostics. doi: 10.3390/diagnostics9010029 – year: 2018 ident: 10.1016/j.patrec.2019.11.013_bib0040 article-title: Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT publication-title: IEEE Trans. Med. Imaging |
SSID | ssj0006398 |
Score | 2.683034 |
Snippet | •This work proposes a Modified AlexNet (MAN) deep-learning framework to evaluate the lung abnormality.•This work introduces a threshold filter to remove the... Lung abnormalities are highly risky conditions in humans. The early diagnosis of lung abnormalities is essential to reduce the risk by enabling quick and... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 271 |
SubjectTerms | Abnormalities Chest Classification Computed tomography Deep learning Image classification Lung cancer Medical imaging Pneumonia Principal components analysis Support vector machines |
Title | Deep-learning framework to detect lung abnormality – A study with chest X-Ray and lung CT scan images |
URI | https://dx.doi.org/10.1016/j.patrec.2019.11.013 https://www.proquest.com/docview/2352366900 |
Volume | 129 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLba7QUOPAqIQqly4JpuJsk8clwtVAuIHqCV9hblWS1qpyt2OXBB_Af-Ib8EZyapAAlV4joaR6M4tj9n7M8AL5uuNb4xjpqOOyo7ZlIRgKQIjTgTkvmoUjfy-9NmcS7fLuvlDsxLL0wqq8y-f_Tpg7fOT6Z5N6fr1Wr6MRXQp7ZKhCBM8LbdhT0uVFNPYG_25t3i9MYhYxDuCsV3EigddEOZV7pyDonLsFLHic6zEv-KUH_56iEAnTyAexk5ktn4cQ9hJ_T7cL9MZSDZSPfh7m8Ug4_g4lUIa5pnQ1yQWGqxyPaa-JD-IJBLtHdibJ_QawLl5Of3H2RGBuJZku5pyTBUiyzpB_OVmN6PEvMzskG9kNUVuqTNYzg_eX02X9A8XIE6zOG2VHW2sd7WXqJZh9hI5aJEbMUqE71gMZraGjR3y1WolHQucNXy6BGvWIR8UTyBSX_dh6dAKi8q4VzdGFzBh9hZ7jvDnWPSJfh2AKJsqHaZeTwNwLjUpcTskx7VoJMaMCnRqIYDoDdS65F545b326Ir_ccJ0hgcbpE8LKrV2YI3miMyFU2jGHv23ws_hzs8pefDjc0hTLafv4QXiGG29gh2j79VR_mk_gI4NPGs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELZCUgAFhEBEIAQXtM55be-rjA6iIyQp4CJdZ_kZXZRsTtxR0CD-A_-QX8LMrh0eEoqUdmVbqx3PzGfvN98Q8qZqauMr45hphGOq4QZJAIoBNBJcKu5ji9XIJ6fV5EwdzcrZGhnnWhikVabYP8T0PlqnJ6P0NUeL-Xz0CQn0WFYJEIRLUdf3yIYqZY0C-vvffvM8IAU3WeAbh-f6uZ7khRfOAZUMi3YfxTwL-b_89E-k7tPP4SZ5lHAjPRhe7QlZC90WeZx7MtDkolvk4R8Cg0_J-dsQFix1hjinMTOx6Oqa-oD_D-gleDs1tkPsipCc_vz-gx7QXnaW4i0t7Vtq0Rn7aL5S0_lhxnhKl2AVOr-CgLR8Rs4O303HE5ZaKzAHJ7gVaxtbWW9Lr8CpQ6xU66ICZMULE73kMZrSGnB2K9pQtMq5INpaRA9oxQLgi3KbrHfXXXhOaOFlIZ0rKwMr-BAbK3xjhHNcOQRvO0TmD6pd0h3H9heXOhPMLvRgBo1mgCOJBjPsEHYzazHobtwyvs620n_tHw2p4ZaZu9m0OvnvUgvApbKqWs5f3Hnh1-T-ZHpyrI_fn354SR4IPKj3dze7ZH31-Ut4BWhmZff63foLQvDydg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning+framework+to+detect+lung+abnormality+%E2%80%93+A+study+with+chest+X-Ray+and+lung+CT+scan+images&rft.jtitle=Pattern+recognition+letters&rft.au=Bhandary%2C+Abhir&rft.au=Prabhu%2C+G.+Ananth&rft.au=Rajinikanth%2C+V.&rft.au=Thanaraj%2C+K.+Palani&rft.date=2020-01-01&rft.issn=0167-8655&rft.volume=129&rft.spage=271&rft.epage=278&rft_id=info:doi/10.1016%2Fj.patrec.2019.11.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2019_11_013 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon |