Deep-learning framework to detect lung abnormality – A study with chest X-Ray and lung CT scan images

•This work proposes a Modified AlexNet (MAN) deep-learning framework to evaluate the lung abnormality.•This work introduces a threshold filter to remove the artifacts from the Lung CT images.•This work introduces an Ensemble-Feature-Technique (EFT) by integrating the deep-features and the handcrafte...

Full description

Saved in:
Bibliographic Details
Published inPattern recognition letters Vol. 129; pp. 271 - 278
Main Authors Bhandary, Abhir, Prabhu, G. Ananth, Rajinikanth, V., Thanaraj, K. Palani, Satapathy, Suresh Chandra, Robbins, David E., Shasky, Charles, Zhang, Yu-Dong, Tavares, João Manuel R.S., Raja, N. Sri Madhava
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2020
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0167-8655
1872-7344
DOI10.1016/j.patrec.2019.11.013

Cover

Abstract •This work proposes a Modified AlexNet (MAN) deep-learning framework to evaluate the lung abnormality.•This work introduces a threshold filter to remove the artifacts from the Lung CT images.•This work introduces an Ensemble-Feature-Technique (EFT) by integrating the deep-features and the handcrafted features.•Serial fusion and PCA based selection is implemented in EFT to chose principal feature set.•Experimental results demonstrate superior performance of MAN in comparison with other existing state of the art methods. Lung abnormalities are highly risky conditions in humans. The early diagnosis of lung abnormalities is essential to reduce the risk by enabling quick and efficient treatment. This research work aims to propose a Deep-Learning (DL) framework to examine lung pneumonia and cancer. This work proposes two different DL techniques to assess the considered problem: (i) The initial DL method, named a modified AlexNet (MAN), is proposed to classify chest X-Ray images into normal and pneumonia class. In the MAN, the classification is implemented using with Support Vector Machine (SVM), and its performance is compared against Softmax. Further, its performance is validated with other pre-trained DL techniques, such as AlexNet, VGG16, VGG19 and ResNet50. (ii) The second DL work implements a fusion of handcrafted and learned features in the MAN to improve classification accuracy during lung cancer assessment. This work employs serial fusion and Principal Component Analysis (PCA) based features selection to enhance the feature vector. The performance of this DL frame work is tested using benchmark lung cancer CT images of LIDC-IDRI and classification accuracy (97.27%) is attained. [Display omitted]
AbstractList Lung abnormalities are highly risky conditions in humans. The early diagnosis of lung abnormalities is essential to reduce the risk by enabling quick and efficient treatment. This research work aims to propose a Deep-Learning (DL) framework to examine lung pneumonia and cancer. This work proposes two different DL techniques to assess the considered problem: (i) The initial DL method, named a modified AlexNet (MAN), is proposed to classify chest X-Ray images into normal and pneumonia class. In the MAN, the classification is implemented using with Support Vector Machine (SVM), and its performance is compared against Softmax. Further, its performance is validated with other pre-trained DL techniques, such as AlexNet, VGG16, VGG19 and ResNet50. (ii) The second DL work implements a fusion of handcrafted and learned features in the MAN to improve classification accuracy during lung cancer assessment. This work employs serial fusion and Principal Component Analysis (PCA) based features selection to enhance the feature vector. The performance of this DL frame work is tested using benchmark lung cancer CT images of LIDC-IDRI and classification accuracy (97.27%) is attained.
•This work proposes a Modified AlexNet (MAN) deep-learning framework to evaluate the lung abnormality.•This work introduces a threshold filter to remove the artifacts from the Lung CT images.•This work introduces an Ensemble-Feature-Technique (EFT) by integrating the deep-features and the handcrafted features.•Serial fusion and PCA based selection is implemented in EFT to chose principal feature set.•Experimental results demonstrate superior performance of MAN in comparison with other existing state of the art methods. Lung abnormalities are highly risky conditions in humans. The early diagnosis of lung abnormalities is essential to reduce the risk by enabling quick and efficient treatment. This research work aims to propose a Deep-Learning (DL) framework to examine lung pneumonia and cancer. This work proposes two different DL techniques to assess the considered problem: (i) The initial DL method, named a modified AlexNet (MAN), is proposed to classify chest X-Ray images into normal and pneumonia class. In the MAN, the classification is implemented using with Support Vector Machine (SVM), and its performance is compared against Softmax. Further, its performance is validated with other pre-trained DL techniques, such as AlexNet, VGG16, VGG19 and ResNet50. (ii) The second DL work implements a fusion of handcrafted and learned features in the MAN to improve classification accuracy during lung cancer assessment. This work employs serial fusion and Principal Component Analysis (PCA) based features selection to enhance the feature vector. The performance of this DL frame work is tested using benchmark lung cancer CT images of LIDC-IDRI and classification accuracy (97.27%) is attained. [Display omitted]
Author Shasky, Charles
Satapathy, Suresh Chandra
Rajinikanth, V.
Robbins, David E.
Bhandary, Abhir
Prabhu, G. Ananth
Thanaraj, K. Palani
Zhang, Yu-Dong
Tavares, João Manuel R.S.
Raja, N. Sri Madhava
Author_xml – sequence: 1
  givenname: Abhir
  surname: Bhandary
  fullname: Bhandary, Abhir
  organization: Department of InformationScience Engineering, NMAM Institute of Technology, Nitte, Karnataka 574110, India
– sequence: 2
  givenname: G. Ananth
  surname: Prabhu
  fullname: Prabhu, G. Ananth
  organization: Department of Computer Science Engineering, Sahyadri College of Engineering & Management, Mangaluru 575007, India
– sequence: 3
  givenname: V.
  surname: Rajinikanth
  fullname: Rajinikanth, V.
  email: rajinikanthv@stjosephs.ac.in
  organization: Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, Chennai, Tamilnadu 600 119, India
– sequence: 4
  givenname: K. Palani
  surname: Thanaraj
  fullname: Thanaraj, K. Palani
  organization: Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, Chennai, Tamilnadu 600 119, India
– sequence: 5
  givenname: Suresh Chandra
  surname: Satapathy
  fullname: Satapathy, Suresh Chandra
  organization: School of Computer Engineering, Kalinga Institute of Industrial Technology (Deemed to Be University), Bhubaneswar, Odisha 751024, India
– sequence: 6
  givenname: David E.
  surname: Robbins
  fullname: Robbins, David E.
  organization: School of Public Health, Department of Health Informatics and Information Management, Samford University, Birmingham, AL, USA
– sequence: 7
  givenname: Charles
  surname: Shasky
  fullname: Shasky, Charles
  organization: Visiting Professor, Department of Health Administration, VCU/KMU EMHA Program, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, USA
– sequence: 8
  givenname: Yu-Dong
  surname: Zhang
  fullname: Zhang, Yu-Dong
  organization: Department of Informatics, University of Leicester, Leicester LE1 7RH, UK
– sequence: 9
  givenname: João Manuel R.S.
  surname: Tavares
  fullname: Tavares, João Manuel R.S.
  organization: Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de Engenharia, Universidade do Porto, Porto, PORTUGAL
– sequence: 10
  givenname: N. Sri Madhava
  surname: Raja
  fullname: Raja, N. Sri Madhava
  organization: Department of Electronics and Instrumentation Engineering, St. Joseph's College of Engineering, Chennai, Tamilnadu 600 119, India
BookMark eNqFkE1qHDEQhUWwIWM7N8hCkHV39Nfq7iwCZvILhoBxIDuhlkpjTXqkiaSxmV3ukBv6JJbprLKIV7Wo972q987QSYgBEHpNSUsJlW-37V6XBKZlhI4tpS2h_AVa0aFnTc-FOEGrKuubQXbdS3SW85YQIvk4rNDmA8C-mUGn4MMGu6R3cB_TT1witlDAFDwf6kJPIaadnn054offf_AlzuVgj_jel1tsbiEX_KO51kesg12I9Q3ORgfsd3oD-QKdOj1nePV3nqPvnz7erL80V98-f11fXjVGkL404zDJyU6dFYRTcFKMxgnBOKHaWU6c092kB84mNgIdhTHAxp45Owg5cSYdP0dvFt99ir8O9S21jYcU6knFeMe4lCMhVfVuUZkUc07glPFFFx9DSdrPihL1VKzaqqVY9VSsolTVYiss_oH3qYZMx-ew9wsGNf6dh6Sy8RAMWF-lRdno_2_wCC6nl6g
CitedBy_id crossref_primary_10_1016_j_eswa_2024_125355
crossref_primary_10_37391_IJEER_120122
crossref_primary_10_1002_ima_22659
crossref_primary_10_1088_2057_1976_ad0b4b
crossref_primary_10_3390_s22124426
crossref_primary_10_3934_mbe_2022017
crossref_primary_10_1016_j_cmpb_2020_105910
crossref_primary_10_52547_joc_14_5_131
crossref_primary_10_32604_iasc_2022_020386
crossref_primary_10_1007_s13042_023_01789_7
crossref_primary_10_1016_j_compbiomed_2021_104348
crossref_primary_10_32604_cmc_2024_052404
crossref_primary_10_1002_ima_22884
crossref_primary_10_1109_RBME_2021_3115703
crossref_primary_10_1002_ima_22646
crossref_primary_10_1002_ima_22888
crossref_primary_10_3390_diagnostics11122208
crossref_primary_10_7717_peerj_cs_364
crossref_primary_10_2174_1573405618666220803123626
crossref_primary_10_1111_coin_12682
crossref_primary_10_1007_s10555_020_09901_x
crossref_primary_10_1016_j_patrec_2020_09_033
crossref_primary_10_1007_s44230_022_00002_2
crossref_primary_10_1007_s00521_023_08867_5
crossref_primary_10_1080_15567036_2021_1941435
crossref_primary_10_1007_s11042_021_11580_x
crossref_primary_10_1080_20479700_2022_2102223
crossref_primary_10_1007_s40846_023_00785_0
crossref_primary_10_1016_j_ajt_2025_01_039
crossref_primary_10_1364_BOE_477384
crossref_primary_10_1016_j_compbiomed_2022_106137
crossref_primary_10_1016_j_imu_2020_100391
crossref_primary_10_31590_ejosat_898385
crossref_primary_10_32604_iasc_2022_021211
crossref_primary_10_3390_diagnostics13020248
crossref_primary_10_37394_23208_2024_21_24
crossref_primary_10_1080_07391102_2020_1767212
crossref_primary_10_1080_02286203_2021_1934797
crossref_primary_10_1002_ima_22627
crossref_primary_10_1109_ACCESS_2024_3510856
crossref_primary_10_3390_su14105820
crossref_primary_10_1016_j_bspc_2021_102812
crossref_primary_10_1016_j_measurement_2021_109953
crossref_primary_10_1007_s11042_023_16864_y
crossref_primary_10_1007_s42979_024_03407_x
crossref_primary_10_1007_s00500_020_05275_y
crossref_primary_10_1016_j_procs_2021_08_068
crossref_primary_10_1007_s40031_021_00589_3
crossref_primary_10_1016_j_patrec_2021_10_025
crossref_primary_10_52756_10_52756_ijerr_2023_v31spl_002
crossref_primary_10_3390_s20215982
crossref_primary_10_1109_TEM_2021_3103334
crossref_primary_10_3390_su13031224
crossref_primary_10_4018_JITR_299391
crossref_primary_10_1007_s40747_020_00216_6
crossref_primary_10_35377_saucis_04_01_787030
crossref_primary_10_1007_s12559_020_09774_w
crossref_primary_10_1088_1757_899X_1051_1_012007
crossref_primary_10_3390_app132212510
crossref_primary_10_1007_s11760_022_02183_6
crossref_primary_10_1002_ima_22858
crossref_primary_10_3233_JIFS_232875
crossref_primary_10_1109_ACCESS_2024_3360691
crossref_primary_10_3390_bioengineering11080799
crossref_primary_10_1016_j_compeleceng_2023_108586
crossref_primary_10_3390_biomedinformatics4030111
crossref_primary_10_1615_JFlowVisImageProc_2024053126
crossref_primary_10_1016_j_bea_2023_100076
crossref_primary_10_1016_j_cosrev_2021_100452
crossref_primary_10_1007_s12652_021_03686_9
crossref_primary_10_1016_j_jestch_2023_101490
crossref_primary_10_3389_fdata_2024_1393758
crossref_primary_10_1007_s42600_021_00138_3
crossref_primary_10_3390_app11083414
crossref_primary_10_1007_s13735_021_00204_7
crossref_primary_10_48084_etasr_9788
crossref_primary_10_1007_s13369_021_05956_2
crossref_primary_10_2174_1573405617666210806125953
crossref_primary_10_1007_s12652_021_03676_x
crossref_primary_10_1007_s10140_020_01893_z
crossref_primary_10_3233_XST_211082
crossref_primary_10_3389_fmed_2022_955765
crossref_primary_10_3390_jpm12030417
crossref_primary_10_1155_2022_5905230
crossref_primary_10_2174_1573405616666200425220513
crossref_primary_10_1007_s00521_024_10527_1
crossref_primary_10_32604_cmc_2022_024312
crossref_primary_10_1155_2021_8865237
crossref_primary_10_1007_s11042_023_18014_w
crossref_primary_10_1371_journal_pone_0296352
crossref_primary_10_1142_S0219622023500700
crossref_primary_10_1109_ACCESS_2024_3519341
crossref_primary_10_1016_j_compbiomed_2020_103898
crossref_primary_10_1007_s10462_023_10457_9
crossref_primary_10_1007_s11042_022_13005_9
crossref_primary_10_3389_fphys_2022_1094743
crossref_primary_10_1016_j_knosys_2020_105949
crossref_primary_10_1007_s11042_023_14893_1
crossref_primary_10_1016_j_eswa_2022_118956
crossref_primary_10_1007_s11042_023_16555_8
crossref_primary_10_1007_s10278_025_01458_x
crossref_primary_10_3390_app13042218
crossref_primary_10_1007_s13735_021_00205_6
crossref_primary_10_56294_saludcyt2024_922
crossref_primary_10_1007_s42979_022_01464_8
crossref_primary_10_1515_pjbr_2022_0108
crossref_primary_10_1007_s00330_020_07087_y
crossref_primary_10_1155_2024_3249929
crossref_primary_10_3390_healthcare10102072
crossref_primary_10_1016_j_measen_2023_100993
crossref_primary_10_59324_ejtas_2024_2_5__15
crossref_primary_10_1007_s10278_021_00463_0
crossref_primary_10_1016_j_eswa_2020_114054
crossref_primary_10_1002_ima_22812
crossref_primary_10_1016_j_media_2023_102894
crossref_primary_10_1038_s42003_023_04585_9
crossref_primary_10_2174_0929867329666220222154733
crossref_primary_10_3233_XST_210976
crossref_primary_10_1016_j_irbm_2020_05_003
crossref_primary_10_1080_0954898X_2022_2147231
crossref_primary_10_3390_diagnostics15030313
crossref_primary_10_1109_ACCESS_2021_3086103
crossref_primary_10_1016_j_array_2024_100357
crossref_primary_10_1109_TCSVT_2021_3063952
crossref_primary_10_1080_23307706_2023_2191596
crossref_primary_10_54097_hset_v41i_6740
crossref_primary_10_1007_s11042_021_11748_5
crossref_primary_10_1371_journal_pdig_0000460
crossref_primary_10_1016_j_asoc_2021_108094
crossref_primary_10_1038_s41598_021_99015_3
crossref_primary_10_1007_s11633_022_1382_8
crossref_primary_10_1155_2021_9989237
crossref_primary_10_11648_j_ajdmkd_20240901_12
crossref_primary_10_1007_s13755_020_00116_6
crossref_primary_10_1007_s12559_020_09751_3
crossref_primary_10_1007_s11042_023_15131_4
crossref_primary_10_1007_s11042_022_13499_3
crossref_primary_10_1038_s41598_022_12364_5
crossref_primary_10_3390_s21248219
crossref_primary_10_1016_j_patrec_2020_03_011
crossref_primary_10_1016_j_procs_2023_01_250
crossref_primary_10_23939_ujit2024_01_095
crossref_primary_10_1016_j_patcog_2020_107747
crossref_primary_10_24017_covid_14
crossref_primary_10_1016_j_compbiomed_2021_105123
crossref_primary_10_32604_cmc_2022_018487
crossref_primary_10_1109_ACCESS_2023_3325404
crossref_primary_10_1007_s00521_022_08033_3
crossref_primary_10_3390_app10103429
crossref_primary_10_1155_2022_1043299
crossref_primary_10_32628_CSEIT217339
crossref_primary_10_1007_s00521_021_06102_7
crossref_primary_10_32604_cmc_2022_025208
crossref_primary_10_1007_s00198_023_06913_5
crossref_primary_10_1155_2022_9036457
crossref_primary_10_1080_00051144_2024_2376776
crossref_primary_10_1016_j_rineng_2024_103448
crossref_primary_10_56977_jicce_2024_22_2_165
crossref_primary_10_1088_2399_6528_ac24d8
crossref_primary_10_1088_1742_6596_1951_1_012064
crossref_primary_10_4018_IJSIR_287544
crossref_primary_10_1371_journal_pone_0285796
crossref_primary_10_3390_e24030313
crossref_primary_10_1109_ACCESS_2020_2979755
crossref_primary_10_1016_j_engappai_2022_105490
crossref_primary_10_3390_jpm12050680
crossref_primary_10_1186_s12938_024_01201_7
crossref_primary_10_15212_bioi_2020_0038
crossref_primary_10_1007_s00521_021_05841_x
crossref_primary_10_1016_j_patcog_2022_108650
crossref_primary_10_35377_saucis___787030
crossref_primary_10_1051_bioconf_20249700050
crossref_primary_10_3390_cancers14051117
crossref_primary_10_3390_diagnostics14151596
crossref_primary_10_1007_s13755_021_00169_1
crossref_primary_10_1142_S0219467824500402
crossref_primary_10_1080_23080477_2023_2246285
crossref_primary_10_3390_cancers13194961
crossref_primary_10_1016_j_compbiomed_2021_104306
crossref_primary_10_3390_s20071822
crossref_primary_10_1007_s13246_021_00980_w
crossref_primary_10_1007_s12065_021_00581_2
crossref_primary_10_4108_eetpht_10_6805
crossref_primary_10_1038_s41598_022_22586_2
crossref_primary_10_1007_s11042_024_18721_y
crossref_primary_10_1007_s12553_022_00677_4
crossref_primary_10_1016_j_eswa_2024_125571
crossref_primary_10_1016_j_asoc_2020_106744
crossref_primary_10_1007_s10278_024_01005_0
crossref_primary_10_1166_jctn_2020_9439
crossref_primary_10_1088_1757_899X_928_3_032072
crossref_primary_10_1007_s11227_021_04181_w
crossref_primary_10_1007_s11042_022_13618_0
crossref_primary_10_1615_CritRevBiomedEng_v50_i6_40
crossref_primary_10_1080_00051144_2023_2293274
crossref_primary_10_56977_jicce_2022_20_3_219
crossref_primary_10_1109_TMI_2020_3001810
crossref_primary_10_1016_j_measurement_2024_115330
crossref_primary_10_1371_journal_pone_0313386
Cites_doi 10.1016/j.compeleceng.2019.03.004
10.1371/journal.pmed.1002683
10.3390/diagnostics9010029
10.1109/CVPR.2017.369
10.2174/1573405613666170306114320
10.1166/jmihi.2017.2280
10.1016/j.procs.2018.01.104
10.1016/j.bbe.2019.07.005
10.1016/j.inffus.2017.10.005
10.1118/1.3528204
10.3390/diagnostics6010013
10.1038/srep24454
10.1038/s41598-018-27569-w
10.1007/s11548-017-1605-6
10.4018/IJACI.2019070106
10.1007/s10916-018-1003-9
10.1016/j.cmpb.2017.09.005
10.1371/journal.pone.0063559
10.1007/s11042-017-4480-9
10.1155/2017/8314740
10.3390/app9050940
10.1371/journal.pmed.1002686
10.1016/j.patrec.2017.05.028
10.1016/j.procs.2019.05.028
10.1007/s00330-015-4030-7
10.1007/s11517-018-1850-z
10.1016/j.asoc.2018.10.006
10.1016/j.eswa.2017.02.002
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright Elsevier Science Ltd. Jan 2020
Copyright_xml – notice: 2019 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jan 2020
DBID AAYXX
CITATION
7SC
7TK
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.patrec.2019.11.013
DatabaseName CrossRef
Computer and Information Systems Abstracts
Neurosciences Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Neurosciences Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1872-7344
EndPage 278
ExternalDocumentID 10_1016_j_patrec_2019_11_013
S0167865519303277
GroupedDBID --K
--M
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WH7
WUQ
XFK
XPP
Y6R
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TK
8FD
EFKBS
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c407t-98b6bdb5d4031ef649cf442301afd30ffa5ba832b29e194cce2972fd846b326f3
IEDL.DBID AIKHN
ISSN 0167-8655
IngestDate Mon Jul 14 08:23:08 EDT 2025
Tue Jul 01 02:40:40 EDT 2025
Thu Apr 24 22:56:52 EDT 2025
Fri Feb 23 02:49:09 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-98b6bdb5d4031ef649cf442301afd30ffa5ba832b29e194cce2972fd846b326f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink http://hdl.handle.net/10216/124569
PQID 2352366900
PQPubID 2047552
PageCount 8
ParticipantIDs proquest_journals_2352366900
crossref_citationtrail_10_1016_j_patrec_2019_11_013
crossref_primary_10_1016_j_patrec_2019_11_013
elsevier_sciencedirect_doi_10_1016_j_patrec_2019_11_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
20200101
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Pattern recognition letters
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Peña, Luo, Abdelgader (bib0011) 2016; 6
Rajinikanth, Satapathy, Fernandes, Nachiappan (bib0030) 2017; 94
Skourt, Hassani, Majda (bib0023) 2018; 127
Pehrson, Nielsen, Lauridsen (bib0018) 2019; 9
Wang, Xiaosong, Peng, Yifan, Lu, Le, Lu, Zhiyong, Bagheri, Mohammadhadi, and Summers, Ronald M. Chestx-ray: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. 2017. arXiv
Xie, Zhang, Xia, Fulham, Zhang (bib0037) 2018; 42
bib0007
Cheng (bib0013) 2016; 6
Polat, Mehr (bib0024) 2019; 9
bib0027
Rajinikanth, Dey, Kumar, Panneerselvam, Raja (bib0029) 2019; 152
Wang (bib0001) 2019; 74
Nanni, Ghidoni, Brahnam (bib0006) 2018
Xie, Xia, Zhang, Song, Feng, Fulham, Cai (bib0040) 2018
Zech, Badgeley, Liu, Costa, Titano, Oermann (bib0015) 2018; 15
Ramachandran, George, Skaria, Varun (bib0033) 2018
Lan (bib0002) 2018; 42
Xiao, Wu, Lin, Zhau (bib0016) 2018; 153
Sun, Zhang, Wang, Li, Guo (bib0014) 2013; 8
Causey, Zhang, Ma, Jiang, Qualls, Politte, Prior, Zhang, Huang (bib0032) 2018; 8
Zhang, Zhao, Luo, Qiang (bib0036) 2017; 13
Rajpurkar (bib0025) 2018; 15
[cs.CV].
Jacobs (bib0009) 2016; 26
Shanthi, Sabeenian (bib0026) 2019; 76
Huang, Leng (bib0044) 2010
Irvin, J. et al., CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. (2019). arXiv
Dey (bib0028) 2019; 39
Yao, Li, Poblenz, Eric, Dagunts, Dmitry, Covington, Ben, Bernard, Devon, and Lyman, Kevin. Learning to diagnose from scratch by exploiting dependenciesamong labels. 2017. arXiv
P. Rajpurkar, et al., CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. (2017). arXiv
M.F. Serj, B. Lavi, G. Hoff, D.P. Valls. A deep convolutional neural network for lung cancer diagnostic. (2018). arXiv
Naqi, Sharif, Yasmin, Fernandes (bib0043) 2018; 14
.
Han, Liu, Zheng, Wang, Huang (bib0035) 2018
Nibali, He, Wollersheim (bib0041) 2017; 12
Armato (bib0008) 2011; 38
Song, Zhao, Luo, Dou (bib0004) 2017
Araque (bib0017) 2017; 77
Da Silva, da Silva Neto, Silva, de Paiva, Gattass (bib0031) 2017; 76
Song, Zhao, Luo, Dou (bib0034) 2017
Abbas (bib0039) 2017; 6
Fernandes, Gurupur, Lin, Martis (bib0042) 2017; 7
Pehrson, Nielsen, Lauridsen (bib0010) 2019; 9
Shaffie, Soliman, Fraiwan, Ghazal, Taher, Dunlap, Wang, van Berkel, Keynton, Elmaghraby (bib0038) 2018
Nagi (bib0005) 2018; 14
Ali (bib0003) 2019; 10
Ramachandran (10.1016/j.patrec.2019.11.013_bib0033) 2018
Causey (10.1016/j.patrec.2019.11.013_bib0032) 2018; 8
Skourt (10.1016/j.patrec.2019.11.013_bib0023) 2018; 127
Zhang (10.1016/j.patrec.2019.11.013_bib0036) 2017; 13
Ali (10.1016/j.patrec.2019.11.013_bib0003) 2019; 10
10.1016/j.patrec.2019.11.013_bib0019
Huang (10.1016/j.patrec.2019.11.013_bib0044) 2010
10.1016/j.patrec.2019.11.013_bib0012
Jacobs (10.1016/j.patrec.2019.11.013_bib0009) 2016; 26
Pehrson (10.1016/j.patrec.2019.11.013_bib0010) 2019; 9
Sun (10.1016/j.patrec.2019.11.013_bib0014) 2013; 8
Armato (10.1016/j.patrec.2019.11.013_bib0008) 2011; 38
Han (10.1016/j.patrec.2019.11.013_bib0035) 2018
Rajpurkar (10.1016/j.patrec.2019.11.013_bib0025) 2018; 15
Zech (10.1016/j.patrec.2019.11.013_bib0015) 2018; 15
Xie (10.1016/j.patrec.2019.11.013_bib0037) 2018; 42
Dey (10.1016/j.patrec.2019.11.013_bib0028) 2019; 39
Nibali (10.1016/j.patrec.2019.11.013_bib0041) 2017; 12
Araque (10.1016/j.patrec.2019.11.013_bib0017) 2017; 77
Wang (10.1016/j.patrec.2019.11.013_bib0001) 2019; 74
Lan (10.1016/j.patrec.2019.11.013_bib0002) 2018; 42
10.1016/j.patrec.2019.11.013_bib0020
10.1016/j.patrec.2019.11.013_bib0022
10.1016/j.patrec.2019.11.013_bib0021
Song (10.1016/j.patrec.2019.11.013_bib0004) 2017
Nagi (10.1016/j.patrec.2019.11.013_bib0005) 2018; 14
Rajinikanth (10.1016/j.patrec.2019.11.013_bib0029) 2019; 152
Da Silva (10.1016/j.patrec.2019.11.013_bib0031) 2017; 76
10.1016/j.patrec.2019.11.013_bib0027
10.1016/j.patrec.2019.11.013_bib0007
Pehrson (10.1016/j.patrec.2019.11.013_bib0018) 2019; 9
Rajinikanth (10.1016/j.patrec.2019.11.013_bib0030) 2017; 94
Song (10.1016/j.patrec.2019.11.013_bib0034) 2017
Xie (10.1016/j.patrec.2019.11.013_bib0040) 2018
Polat (10.1016/j.patrec.2019.11.013_bib0024) 2019; 9
Shaffie (10.1016/j.patrec.2019.11.013_bib0038) 2018
Cheng (10.1016/j.patrec.2019.11.013_bib0013) 2016; 6
Shanthi (10.1016/j.patrec.2019.11.013_bib0026) 2019; 76
Nanni (10.1016/j.patrec.2019.11.013_bib0006) 2018
Naqi (10.1016/j.patrec.2019.11.013_bib0043) 2018; 14
Peña (10.1016/j.patrec.2019.11.013_bib0011) 2016; 6
Fernandes (10.1016/j.patrec.2019.11.013_bib0042) 2017; 7
Abbas (10.1016/j.patrec.2019.11.013_bib0039) 2017; 6
Xiao (10.1016/j.patrec.2019.11.013_bib0016) 2018; 153
References_xml – volume: 10
  start-page: 92
  year: 2019
  end-page: 116
  ident: bib0003
  article-title: Adam deep learning with SOM for human sentiment classification
  publication-title: Int. J. Ambient Comput. Intell. (IJACI)
– ident: bib0027
– volume: 15
  year: 2018
  ident: bib0015
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study
  publication-title: PLoS Med.
– volume: 14
  start-page: 108
  year: 2018
  end-page: 117
  ident: bib0043
  article-title: Lung nodule detection using polygon approximation and hybrid features from CT images
  publication-title: Curr. Med. Imaging Rev.
– volume: 9
  start-page: 29
  year: 2019
  ident: bib0010
  article-title: Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review
  publication-title: Diagnostics.
– volume: 74
  start-page: 40
  year: 2019
  end-page: 50
  ident: bib0001
  article-title: Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network
  publication-title: Appl. Soft Comput.
– year: 2017
  ident: bib0034
  article-title: Using deep learning for classification of lung nodules on computed tomography images
  publication-title: J. Healthcare Eng.
– volume: 76
  start-page: 19039
  year: 2017
  end-page: 19055
  ident: bib0031
  article-title: Lung nodules diagnosis based on evolutionary convolutional neural network
  publication-title: Multimed. Tools Appl.
– reference: Irvin, J. et al., CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. (2019). arXiv:
– volume: 77
  start-page: 236
  year: 2017
  end-page: 246
  ident: bib0017
  article-title: Enhancing deep learning sentiment analysis with ensemble techniques in social applications
  publication-title: Expert Syst. Appl.
– volume: 26
  start-page: 2139
  year: 2016
  end-page: 2147
  ident: bib0009
  article-title: Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database
  publication-title: Eur. Radiol.
– volume: 127
  start-page: 109
  year: 2018
  end-page: 113
  ident: bib0023
  article-title: Lung CT image segmentation using deep neural networks
  publication-title: Procedia Comput. Sci.
– volume: 9
  start-page: 940
  year: 2019
  ident: bib0024
  article-title: Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture
  publication-title: Appl. Sci.
– reference: M.F. Serj, B. Lavi, G. Hoff, D.P. Valls. A deep convolutional neural network for lung cancer diagnostic. (2018). arXiv:
– reference: [cs.CV].
– start-page: 2201
  year: 2018
  end-page: 2212
  ident: bib0035
  article-title: Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs
  publication-title: Med. Biol. Eng. Comput.
– start-page: 17
  year: 2018
  ident: bib0038
  article-title: A generalized deep learning-based diagnostic system for early diagnosis of various types of pulmonary nodules
  publication-title: Technol. Cancer Res. Treat.
– volume: 15
  year: 2018
  ident: bib0025
  article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
  publication-title: PLoS Med.
– volume: 152
  start-page: 66
  year: 2019
  end-page: 73
  ident: bib0029
  article-title: Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation
  publication-title: Procedia Comput. Sci.
– volume: 38
  start-page: 915
  year: 2011
  end-page: 931
  ident: bib0008
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
– volume: 8
  start-page: 9286
  year: 2018
  ident: bib0032
  article-title: Highly accurate model for prediction of lung nodule malignancy with CT scans
  publication-title: Sci. Rep.
– year: 2018
  ident: bib0040
  article-title: Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT
  publication-title: IEEE Trans. Med. Imaging
– reference: Wang, Xiaosong, Peng, Yifan, Lu, Le, Lu, Zhiyong, Bagheri, Mohammadhadi, and Summers, Ronald M. Chestx-ray: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. 2017. arXiv:
– start-page: 476
  year: 2010
  end-page: 480
  ident: bib0044
  article-title: Analysis of Hu’s moment invariants on image scaling and rotation
  publication-title: Proceedings of 2010 2nd International Conference on Computer Engineering and Technology (ICCET)
– volume: 94
  start-page: 87
  year: 2017
  end-page: 95
  ident: bib0030
  article-title: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization
  publication-title: Pattern Recognit. Lett.
– reference: P. Rajpurkar, et al., CheXNet: radiologist-level pneumonia detection on chest x-rays with deep learning. (2017). arXiv:
– volume: 6
  start-page: 111
  year: 2017
  end-page: 118
  ident: bib0039
  article-title: Classification of pulmonary nodules using deep neural network
  publication-title: Int. J.Med. Res. Heal. Sci.
– volume: 153
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0016
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Prog. Biomed.
– year: 2018
  ident: bib0006
  article-title: Ensemble of convolutional neural networks for bioimage classification
  publication-title: Appl. Comput. Inf.
– ident: bib0007
– volume: 6
  start-page: 24454
  year: 2016
  ident: bib0013
  article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
  publication-title: Sci. Rep.
– volume: 76
  start-page: 56
  year: 2019
  end-page: 64
  ident: bib0026
  article-title: Modified Alexnet architecture for classification of diabetic retinopathy images
  publication-title: Comput. Electr. Eng.
– volume: 13
  start-page: 1358
  year: 2017
  end-page: 1370
  ident: bib0036
  article-title: Deep belief network for lung nodules diagnosed in CT imaging
  publication-title: Int. J. Perform. Eng.
– volume: 7
  start-page: 1841
  year: 2017
  end-page: 1850
  ident: bib0042
  article-title: A Novel fusion approach for early lung cancer detection using computer aided diagnosis techniques
  publication-title: J. Med. Imaging Health Inf.
– volume: 9
  start-page: 29
  year: 2019
  ident: bib0018
  article-title: Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review
  publication-title: Diagnostics (Basel)
– reference: .
– volume: 39
  start-page: 843
  year: 2019
  end-page: 856
  ident: bib0028
  article-title: Social-group-optimization based tumor evaluation tool for clinical brain MRI of flair/DW modality
  publication-title: Biocybern. Biomed. Eng.
– volume: 42
  start-page: 102
  year: 2018
  end-page: 110
  ident: bib0037
  article-title: shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT
  publication-title: Inf. Fusion
– volume: 12
  start-page: 1799
  year: 2017
  end-page: 1808
  ident: bib0041
  article-title: Pulmonary nodule classification with deep residual networks
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 8
  start-page: e63559
  year: 2013
  ident: bib0014
  article-title: Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data
  publication-title: Plos ONE
– volume: 42
  start-page: 139
  year: 2018
  ident: bib0002
  article-title: A survey of data mining and deep learning in bioinformatics
  publication-title: J. Med. Syst.
– year: 2018
  ident: bib0033
  article-title: Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans
  publication-title: Proceedings of the Medical Imaging 2018: Computer-Aided Diagnosis, Houston, TX, USA, 12–15 February
– year: 2017
  ident: bib0004
  article-title: Using deep learning for classification of lung nodules on computed tomography images
  publication-title: J. Healthcare Eng.
– reference: Yao, Li, Poblenz, Eric, Dagunts, Dmitry, Covington, Ben, Bernard, Devon, and Lyman, Kevin. Learning to diagnose from scratch by exploiting dependenciesamong labels. 2017. arXiv:
– volume: 14
  start-page: 108
  year: 2018
  end-page: 117
  ident: bib0005
  article-title: Lung nodule detection using polygon approximation and hybrid features from CT images
  publication-title: Curr. Med. Imaging Rev.
– volume: 6
  start-page: 13
  year: 2016
  ident: bib0011
  article-title: Auto diagnostics of lung nodules using minimal characteristics extraction technique
  publication-title: Diagnostics
– year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0006
  article-title: Ensemble of convolutional neural networks for bioimage classification
  publication-title: Appl. Comput. Inf.
– ident: 10.1016/j.patrec.2019.11.013_bib0012
– volume: 76
  start-page: 56
  year: 2019
  ident: 10.1016/j.patrec.2019.11.013_bib0026
  article-title: Modified Alexnet architecture for classification of diabetic retinopathy images
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2019.03.004
– volume: 15
  issue: 11
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0015
  article-title: Variable generalization performance of a deep learning model to detect pneumonia in chest radiographs: a cross-sectional study
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002683
– volume: 9
  start-page: 29
  issue: 1
  year: 2019
  ident: 10.1016/j.patrec.2019.11.013_bib0018
  article-title: Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review
  publication-title: Diagnostics (Basel)
  doi: 10.3390/diagnostics9010029
– ident: 10.1016/j.patrec.2019.11.013_bib0022
  doi: 10.1109/CVPR.2017.369
– volume: 14
  start-page: 108
  issue: 1
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0043
  article-title: Lung nodule detection using polygon approximation and hybrid features from CT images
  publication-title: Curr. Med. Imaging Rev.
  doi: 10.2174/1573405613666170306114320
– volume: 7
  start-page: 1841
  issue: 8
  year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0042
  article-title: A Novel fusion approach for early lung cancer detection using computer aided diagnosis techniques
  publication-title: J. Med. Imaging Health Inf.
  doi: 10.1166/jmihi.2017.2280
– volume: 127
  start-page: 109
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0023
  article-title: Lung CT image segmentation using deep neural networks
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.01.104
– volume: 6
  start-page: 111
  year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0039
  article-title: Classification of pulmonary nodules using deep neural network
  publication-title: Int. J.Med. Res. Heal. Sci.
– ident: 10.1016/j.patrec.2019.11.013_bib0019
– volume: 39
  start-page: 843
  issue: 3
  year: 2019
  ident: 10.1016/j.patrec.2019.11.013_bib0028
  article-title: Social-group-optimization based tumor evaluation tool for clinical brain MRI of flair/DW modality
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2019.07.005
– volume: 42
  start-page: 102
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0037
  article-title: shape and deep model-learned information at decision level for automated classification of lung nodules on chest CT
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2017.10.005
– volume: 38
  start-page: 915
  issue: 2
  year: 2011
  ident: 10.1016/j.patrec.2019.11.013_bib0008
  article-title: The lung image database consortium (LIDC) and image database resource initiative (IDRI): a completed reference database of lung nodules on CT scans
  publication-title: Med. Phys.
  doi: 10.1118/1.3528204
– volume: 6
  start-page: 13
  year: 2016
  ident: 10.1016/j.patrec.2019.11.013_bib0011
  article-title: Auto diagnostics of lung nodules using minimal characteristics extraction technique
  publication-title: Diagnostics
  doi: 10.3390/diagnostics6010013
– volume: 6
  start-page: 24454
  year: 2016
  ident: 10.1016/j.patrec.2019.11.013_bib0013
  article-title: Computer-aided diagnosis with deep learning architecture: applications to breast lesions in US images and pulmonary nodules in CT scans
  publication-title: Sci. Rep.
  doi: 10.1038/srep24454
– ident: 10.1016/j.patrec.2019.11.013_bib0020
– volume: 8
  start-page: 9286
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0032
  article-title: Highly accurate model for prediction of lung nodule malignancy with CT scans
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-27569-w
– volume: 12
  start-page: 1799
  year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0041
  article-title: Pulmonary nodule classification with deep residual networks
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-017-1605-6
– volume: 10
  start-page: 92
  issue: 3
  year: 2019
  ident: 10.1016/j.patrec.2019.11.013_bib0003
  article-title: Adam deep learning with SOM for human sentiment classification
  publication-title: Int. J. Ambient Comput. Intell. (IJACI)
  doi: 10.4018/IJACI.2019070106
– volume: 13
  start-page: 1358
  year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0036
  article-title: Deep belief network for lung nodules diagnosed in CT imaging
  publication-title: Int. J. Perform. Eng.
– volume: 42
  start-page: 139
  issue: 8
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0002
  article-title: A survey of data mining and deep learning in bioinformatics
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1003-9
– volume: 153
  start-page: 1
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0016
  article-title: A deep learning-based multi-model ensemble method for cancer prediction
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2017.09.005
– ident: 10.1016/j.patrec.2019.11.013_bib0007
– volume: 8
  start-page: e63559
  year: 2013
  ident: 10.1016/j.patrec.2019.11.013_bib0014
  article-title: Computer-aided diagnosis for early-stage lung cancer based on longitudinal and balanced data
  publication-title: Plos ONE
  doi: 10.1371/journal.pone.0063559
– volume: 76
  start-page: 19039
  year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0031
  article-title: Lung nodules diagnosis based on evolutionary convolutional neural network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-017-4480-9
– year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0033
  article-title: Using YOLO based deep learning network for real time detection and localization of lung nodules from low dose CT scans
– year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0004
  article-title: Using deep learning for classification of lung nodules on computed tomography images
  publication-title: J. Healthcare Eng.
  doi: 10.1155/2017/8314740
– year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0034
  article-title: Using deep learning for classification of lung nodules on computed tomography images
  publication-title: J. Healthcare Eng.
  doi: 10.1155/2017/8314740
– volume: 9
  start-page: 940
  year: 2019
  ident: 10.1016/j.patrec.2019.11.013_bib0024
  article-title: Classification of pulmonary CT images by using hybrid 3D-deep convolutional neural network architecture
  publication-title: Appl. Sci.
  doi: 10.3390/app9050940
– ident: 10.1016/j.patrec.2019.11.013_bib0021
– volume: 15
  issue: 11
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0025
  article-title: Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists
  publication-title: PLoS Med.
  doi: 10.1371/journal.pmed.1002686
– start-page: 17
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0038
  article-title: A generalized deep learning-based diagnostic system for early diagnosis of various types of pulmonary nodules
  publication-title: Technol. Cancer Res. Treat.
– volume: 14
  start-page: 108
  issue: 1
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0005
  article-title: Lung nodule detection using polygon approximation and hybrid features from CT images
  publication-title: Curr. Med. Imaging Rev.
– start-page: 476
  year: 2010
  ident: 10.1016/j.patrec.2019.11.013_bib0044
  article-title: Analysis of Hu’s moment invariants on image scaling and rotation
– volume: 94
  start-page: 87
  year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0030
  article-title: Entropy based segmentation of tumor from brain MR images–a study with teaching learning based optimization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2017.05.028
– ident: 10.1016/j.patrec.2019.11.013_bib0027
– volume: 152
  start-page: 66
  year: 2019
  ident: 10.1016/j.patrec.2019.11.013_bib0029
  article-title: Fetal head periphery extraction from ultrasound image using Jaya algorithm and Chan-Vese segmentation
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.05.028
– volume: 26
  start-page: 2139
  issue: 7
  year: 2016
  ident: 10.1016/j.patrec.2019.11.013_bib0009
  article-title: Computer-aided detection of pulmonary nodules: a comparative study using the public LIDC/IDRI database
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-015-4030-7
– start-page: 2201
  year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0035
  article-title: Automatic recognition of 3D GGO CT imaging signs through the fusion of hybrid resampling and layer-wise fine-tuning CNNs
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-018-1850-z
– volume: 74
  start-page: 40
  year: 2019
  ident: 10.1016/j.patrec.2019.11.013_bib0001
  article-title: Classification of mice hepatic granuloma microscopic images based on a deep convolutional neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.10.006
– volume: 77
  start-page: 236
  year: 2017
  ident: 10.1016/j.patrec.2019.11.013_bib0017
  article-title: Enhancing deep learning sentiment analysis with ensemble techniques in social applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.02.002
– volume: 9
  start-page: 29
  year: 2019
  ident: 10.1016/j.patrec.2019.11.013_bib0010
  article-title: Automatic pulmonary nodule detection applying deep learning or machine learning algorithms to the LIDC-IDRI database: a systematic review
  publication-title: Diagnostics.
  doi: 10.3390/diagnostics9010029
– year: 2018
  ident: 10.1016/j.patrec.2019.11.013_bib0040
  article-title: Knowledge-based collaborative deep learning for benign-malignant lung nodule classification on chest CT
  publication-title: IEEE Trans. Med. Imaging
SSID ssj0006398
Score 2.683034
Snippet •This work proposes a Modified AlexNet (MAN) deep-learning framework to evaluate the lung abnormality.•This work introduces a threshold filter to remove the...
Lung abnormalities are highly risky conditions in humans. The early diagnosis of lung abnormalities is essential to reduce the risk by enabling quick and...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 271
SubjectTerms Abnormalities
Chest
Classification
Computed tomography
Deep learning
Image classification
Lung cancer
Medical imaging
Pneumonia
Principal components analysis
Support vector machines
Title Deep-learning framework to detect lung abnormality – A study with chest X-Ray and lung CT scan images
URI https://dx.doi.org/10.1016/j.patrec.2019.11.013
https://www.proquest.com/docview/2352366900
Volume 129
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxQxDLba7QUOPAqIQqly4JpuJsk8clwtVAuIHqCV9hblWS1qpyt2OXBB_Af-Ib8EZyapAAlV4joaR6M4tj9n7M8AL5uuNb4xjpqOOyo7ZlIRgKQIjTgTkvmoUjfy-9NmcS7fLuvlDsxLL0wqq8y-f_Tpg7fOT6Z5N6fr1Wr6MRXQp7ZKhCBM8LbdhT0uVFNPYG_25t3i9MYhYxDuCsV3EigddEOZV7pyDonLsFLHic6zEv-KUH_56iEAnTyAexk5ktn4cQ9hJ_T7cL9MZSDZSPfh7m8Ug4_g4lUIa5pnQ1yQWGqxyPaa-JD-IJBLtHdibJ_QawLl5Of3H2RGBuJZku5pyTBUiyzpB_OVmN6PEvMzskG9kNUVuqTNYzg_eX02X9A8XIE6zOG2VHW2sd7WXqJZh9hI5aJEbMUqE71gMZraGjR3y1WolHQucNXy6BGvWIR8UTyBSX_dh6dAKi8q4VzdGFzBh9hZ7jvDnWPSJfh2AKJsqHaZeTwNwLjUpcTskx7VoJMaMCnRqIYDoDdS65F545b326Ir_ccJ0hgcbpE8LKrV2YI3miMyFU2jGHv23ws_hzs8pefDjc0hTLafv4QXiGG29gh2j79VR_mk_gI4NPGs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07bxQxELZCUgAFhEBEIAQXtM55be-rjA6iIyQp4CJdZ_kZXZRsTtxR0CD-A_-QX8LMrh0eEoqUdmVbqx3PzGfvN98Q8qZqauMr45hphGOq4QZJAIoBNBJcKu5ji9XIJ6fV5EwdzcrZGhnnWhikVabYP8T0PlqnJ6P0NUeL-Xz0CQn0WFYJEIRLUdf3yIYqZY0C-vvffvM8IAU3WeAbh-f6uZ7khRfOAZUMi3YfxTwL-b_89E-k7tPP4SZ5lHAjPRhe7QlZC90WeZx7MtDkolvk4R8Cg0_J-dsQFix1hjinMTOx6Oqa-oD_D-gleDs1tkPsipCc_vz-gx7QXnaW4i0t7Vtq0Rn7aL5S0_lhxnhKl2AVOr-CgLR8Rs4O303HE5ZaKzAHJ7gVaxtbWW9Lr8CpQ6xU66ICZMULE73kMZrSGnB2K9pQtMq5INpaRA9oxQLgi3KbrHfXXXhOaOFlIZ0rKwMr-BAbK3xjhHNcOQRvO0TmD6pd0h3H9heXOhPMLvRgBo1mgCOJBjPsEHYzazHobtwyvs620n_tHw2p4ZaZu9m0OvnvUgvApbKqWs5f3Hnh1-T-ZHpyrI_fn354SR4IPKj3dze7ZH31-Ut4BWhmZff63foLQvDydg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep-learning+framework+to+detect+lung+abnormality+%E2%80%93+A+study+with+chest+X-Ray+and+lung+CT+scan+images&rft.jtitle=Pattern+recognition+letters&rft.au=Bhandary%2C+Abhir&rft.au=Prabhu%2C+G.+Ananth&rft.au=Rajinikanth%2C+V.&rft.au=Thanaraj%2C+K.+Palani&rft.date=2020-01-01&rft.issn=0167-8655&rft.volume=129&rft.spage=271&rft.epage=278&rft_id=info:doi/10.1016%2Fj.patrec.2019.11.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patrec_2019_11_013
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8655&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8655&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8655&client=summon