A model-based algorithm to correct for the loss of backscatter in superficial X-ray radiation therapy
•Insufficient scattering material results in published Bw values that overestimate scatter.•An algorithm was developed for calculating backscatter in situations with reduced scattering medium.•Model validation by comparison with published data, Monte Carlo simulations and film measurements. Dosimetr...
        Saved in:
      
    
          | Published in | Physica medica Vol. 65; pp. 157 - 166 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Italy
          Elsevier Ltd
    
        01.09.2019
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1120-1797 1724-191X 1724-191X  | 
| DOI | 10.1016/j.ejmp.2019.08.018 | 
Cover
| Abstract | •Insufficient scattering material results in published Bw values that overestimate scatter.•An algorithm was developed for calculating backscatter in situations with reduced scattering medium.•Model validation by comparison with published data, Monte Carlo simulations and film measurements.
Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter.
To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al.
Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm’s underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect. | 
    
|---|---|
| AbstractList | •Insufficient scattering material results in published Bw values that overestimate scatter.•An algorithm was developed for calculating backscatter in situations with reduced scattering medium.•Model validation by comparison with published data, Monte Carlo simulations and film measurements.
Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter.
To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al.
Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm’s underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect. Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm's underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect.Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm's underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect. Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (B ) that accounts for the effect of phantom scatter. B values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published B values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of B in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm's underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect.  | 
    
| Author | Harwood, Jeffrey R. Nelli, Flavio E.  | 
    
| Author_xml | – sequence: 1 givenname: Jeffrey R. surname: Harwood fullname: Harwood, Jeffrey R. email: jeffharwoodromp@gmail.com – sequence: 2 givenname: Flavio E. surname: Nelli fullname: Nelli, Flavio E.  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31494369$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkUtrFTEYQINU7EP_gAvJ0s2MecwkGXFTii8ouFHoLmSSb2xuM5MxyS3cf2_GW110USGQLM4JfOc7RydLXACh15S0lFDxbtfCbl5bRujQEtUSqp6hMypZ19CB3pzUN2WkoXKQp-g85x0hnLG-f4FOOe2GjovhDMElnqOD0Iwmg8Mm_IzJl9sZl4htTAlswVNMuNwCDjFnHCc8GnuXrSkFEvYLzvsV0uStNwHfNMkccDLOm-LjsmnJrIeX6PlkQoZXD_cF-vHp4_erL831t89fry6vG9sRWRrBB9HX05E6heSuh643g3CCWC4VgOyoA0GpcEZMzowS1EBBMKOEGkfu-AV6e_x3TfHXHnLRs88WQjALxH3WjCnZUy4HVdE3D-h-nMHpNfnZpIP-m6YC7AjYVOdOMP1DKNFbf73TW3-99ddE6dq_SuqRZH35k6Ik48PT6oejCjXQvYeks_WwWHB-24J20T-tv3-k2-AXb024g8P_5N_SDrRe | 
    
| CitedBy_id | crossref_primary_10_3390_coatings12070973 crossref_primary_10_3390_coatings12081142  | 
    
| Cites_doi | 10.1120/jacmp.v14i6.4358 10.1088/0031-9155/38/8/012 10.1088/0031-9155/41/12/002 10.1118/1.597594 10.1118/1.1374247 10.1118/1.3694100 10.1118/1.4866216 10.1007/BF03178453 10.1007/s13246-018-0692-1 10.1002/mp.12725 10.1088/0031-9155/27/8/005 10.3109/0284186X.2015.1062139 10.1088/0031-9155/55/3/016 10.1088/0031-9155/59/6/R183 10.1088/0031-9155/50/12/001 10.1088/0031-9155/52/1/015  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2019 Associazione Italiana di Fisica Medica Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.  | 
    
| Copyright_xml | – notice: 2019 Associazione Italiana di Fisica Medica – notice: Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.  | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| DOI | 10.1016/j.ejmp.2019.08.018 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic  | 
    
| DatabaseTitleList | MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Medicine | 
    
| EISSN | 1724-191X | 
    
| EndPage | 166 | 
    
| ExternalDocumentID | 31494369 10_1016_j_ejmp_2019_08_018 S1120179719301954  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M -QF .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 3J0 4.4 457 4G. 53G 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABFRF ABJNI ABMAC ABMZM ABNEU ABXDB ACDAQ ACFVG ACGFS ACIEU ACLOT ACNNM ACRLP ACXCU ADBBV ADEZE ADVLN AEBSH AEFWE AEIPS AEKER AEVXI AFJKZ AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AIEXJ AIIUN AIKHN AITUG AIVDX AJRQY AJUYK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DC1 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ IHE J1W KOM M41 MO0 N9A O-L O9- OAUVE OGIMB OI~ OU0 OZT P-8 P-9 PC. Q38 RLW ROL RPZ SDF SDG SEL SES SJN SPC SPCBC SSH SSQ SSZ T5K UNMZH Z5R ~G- ~HD AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJBFU AJOXV AMFUW CLCPZ LCYCR ~XS AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c407t-639659654017273d5e45a96d60c378ee741de6116da6fdab7e891e62a868bb3d3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1120-1797 1724-191X  | 
    
| IngestDate | Sun Sep 28 11:01:27 EDT 2025 Wed Feb 19 02:32:11 EST 2025 Wed Oct 01 05:04:19 EDT 2025 Thu Apr 24 23:01:26 EDT 2025 Fri Feb 23 02:29:06 EST 2024 Tue Oct 14 19:31:08 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Monte Carlo Gafchromic film Backscatter Superficial X-ray therapy  | 
    
| Language | English | 
    
| License | Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c407t-639659654017273d5e45a96d60c378ee741de6116da6fdab7e891e62a868bb3d3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PMID | 31494369 | 
    
| PQID | 2287513798 | 
    
| PQPubID | 23479 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | proquest_miscellaneous_2287513798 pubmed_primary_31494369 crossref_primary_10_1016_j_ejmp_2019_08_018 crossref_citationtrail_10_1016_j_ejmp_2019_08_018 elsevier_sciencedirect_doi_10_1016_j_ejmp_2019_08_018 elsevier_clinicalkey_doi_10_1016_j_ejmp_2019_08_018  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | September 2019 2019-09-00 2019-Sep 20190901  | 
    
| PublicationDateYYYYMMDD | 2019-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2019 text: September 2019  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Italy | 
    
| PublicationPlace_xml | – name: Italy | 
    
| PublicationTitle | Physica medica | 
    
| PublicationTitleAlternate | Phys Med | 
    
| PublicationYear | 2019 | 
    
| Publisher | Elsevier Ltd | 
    
| Publisher_xml | – name: Elsevier Ltd | 
    
| References | Radiation Oncology Tripartite Committee (b0060) 2012 Klevenhagen, Aukett, Harrison, Nahum, Rosser (b0010) 1996; 41 Kim, Hill, Claridge Mackonis, Kuncic (b0035) 2010; 55 Rogers, Kawrakow, Seuntjens, Walters, Mainegra-Hing (b0100) 2013; 702 Healy, Sylvander, Nitschke (b0050) 2008; 31 Paelinck, De, De (b0085) 2007; 52 British Institute of Radiology/Institute of Physics and Engineering in Medicine and Biology. Central axis depth dose data for use in radiotherapy, 1996 : a survey of depth doses and related data measured in water or equivalent media. British Institute of Radiology; 1996. Klevenhagen (b0055) 1982; 27 Mayer, Ma, Chen, Miller, Belard, McDonough (b0095) 2012; 39 The range in liquid water of 300 keV electrons is 0.08421 g/cm2, calculated using the continuous slowing down approximation. Source: NIST – ESTAR database, https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html; n.d. Dr. John Baines kindly shared with us the measured PDD of his 150 kV beam. We used his published HVL value, together with the PDD data, as input for our model; n.d. Borras, Lievens, Grau (b0070) 2015; 54 Eaton, Doolan (b0040) 2013; 14 Baines, Zawlodzka, Markwell, Chan (b0030) 2018; 45 Hernandez, Boone (b0110) 2014; 41 Lanzon, Sorell (b0115) 1993; 38 Das, Chopra (b0135) 1995; 22 McGregor, Minni, Herold (b0075) 2015; 8 Méndez, Peterlin, Hudej, Strojnik, Casar (b0090) 2014; 41 The Royal College of Radiologists (b0065) 2015 Kawrakow I, Rogers DWO. The EGSnrc code system. NRC Rep PIRS-701, NRC, Ottawa; 2000. Hill, Healy, Holloway, Kuncic, Thwaites, Baldock (b0045) 2014; 59 Khan (b0120) 1994 Aukett, Burns, Greener, Harrison, Moretti, Nahum (b0005) 2005; 50 Mayles, Nahum, Rosenwald (b0140) 2010 We extracted the values from a pdf version of Healy’s paper using the free, web-based tool “WebPlotDigitizer” (http://arohatgi.info/WebPlotDigitizer/app3_12/) created by Ankit Rohatgi; n.d. Ma, Coffey, DeWerd, Liu, Nath, Seltzer (b0015) 2001; 28 Hill, Healy, Butler, Odgers, Gill, Lye (b0025) 2018 Klevenhagen (10.1016/j.ejmp.2019.08.018_b0055) 1982; 27 10.1016/j.ejmp.2019.08.018_b0080 Aukett (10.1016/j.ejmp.2019.08.018_b0005) 2005; 50 Healy (10.1016/j.ejmp.2019.08.018_b0050) 2008; 31 Radiation Oncology Tripartite Committee (10.1016/j.ejmp.2019.08.018_b0060) 2012 Lanzon (10.1016/j.ejmp.2019.08.018_b0115) 1993; 38 Hill (10.1016/j.ejmp.2019.08.018_b0045) 2014; 59 Mayer (10.1016/j.ejmp.2019.08.018_b0095) 2012; 39 10.1016/j.ejmp.2019.08.018_b0105 Mayles (10.1016/j.ejmp.2019.08.018_b0140) 2010 Ma (10.1016/j.ejmp.2019.08.018_b0015) 2001; 28 10.1016/j.ejmp.2019.08.018_b0125 Rogers (10.1016/j.ejmp.2019.08.018_b0100) 2013; 702 10.1016/j.ejmp.2019.08.018_b0020 Hernandez (10.1016/j.ejmp.2019.08.018_b0110) 2014; 41 The Royal College of Radiologists (10.1016/j.ejmp.2019.08.018_b0065) 2015 Das (10.1016/j.ejmp.2019.08.018_b0135) 1995; 22 Khan (10.1016/j.ejmp.2019.08.018_b0120) 1994 Paelinck (10.1016/j.ejmp.2019.08.018_b0085) 2007; 52 Eaton (10.1016/j.ejmp.2019.08.018_b0040) 2013; 14 Baines (10.1016/j.ejmp.2019.08.018_b0030) 2018; 45 Hill (10.1016/j.ejmp.2019.08.018_b0025) 2018 10.1016/j.ejmp.2019.08.018_b0130 Klevenhagen (10.1016/j.ejmp.2019.08.018_b0010) 1996; 41 Kim (10.1016/j.ejmp.2019.08.018_b0035) 2010; 55 Méndez (10.1016/j.ejmp.2019.08.018_b0090) 2014; 41 Borras (10.1016/j.ejmp.2019.08.018_b0070) 2015; 54 McGregor (10.1016/j.ejmp.2019.08.018_b0075) 2015; 8  | 
    
| References_xml | – volume: 38 start-page: 1137 year: 1993 end-page: 1144 ident: b0115 article-title: The effect of lead underlying water on the backscatter of X-rays of beam qualities 0.5 mm to 8 mm Al HVT publication-title: Phys Med Biol – volume: 8 start-page: 12 year: 2015 end-page: 14 ident: b0075 article-title: Superficial radiation therapy for the treatment of nonmelanoma skin cancers publication-title: J Clin Aesthet Dermatol – reference: British Institute of Radiology/Institute of Physics and Engineering in Medicine and Biology. Central axis depth dose data for use in radiotherapy, 1996 : a survey of depth doses and related data measured in water or equivalent media. British Institute of Radiology; 1996. – volume: 27 start-page: 1035 year: 1982 end-page: 1043 ident: b0055 article-title: The build-up of backscatter in the energy range 1 mm Al to 8 mm Al HVT (radiotherapy beams) publication-title: Phys Med Biol – volume: 702 start-page: 1 year: 2013 end-page: 92 ident: b0100 article-title: NRC user codes for EGSnrc. NRCC Rep PIRS-702 publication-title: Rev B – volume: 41 year: 2014 ident: b0090 article-title: On multichannel film dosimetry with channel-independent perturbations publication-title: Med Phys – volume: 39 start-page: 2147 year: 2012 ident: b0095 article-title: Enhanced dosimetry procedures and assessment for EBT2 radiochromic film publication-title: Med Phys – volume: 50 start-page: 2739 year: 2005 end-page: 2748 ident: b0005 article-title: Addendum to the IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL) publication-title: Phys Med Biol – volume: 59 year: 2014 ident: b0045 article-title: Advances in kilovoltage x-ray beam dosimetry publication-title: Phys Med Biol – reference: The range in liquid water of 300 keV electrons is 0.08421 g/cm2, calculated using the continuous slowing down approximation. Source: NIST – ESTAR database, https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html; n.d. – volume: 54 start-page: 1268 year: 2015 end-page: 1274 ident: b0070 article-title: The need for radiotherapy in Europe in 2020: not only data but also a cancer plan publication-title: Acta Oncol (Madrid) – year: 2018 ident: b0025 article-title: Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine publication-title: Aust Phys Eng Sci Med – volume: 31 start-page: 49 year: 2008 end-page: 55 ident: b0050 article-title: Dose reduction from loss of backscatter in superficial x-ray radiation therapy with the Pantak SXT 150 unit publication-title: Aust Phys Eng Sci Med – volume: 45 start-page: 926 year: 2018 end-page: 933 ident: b0030 article-title: Measured and Monte Carlo simulated surface dose reduction for superficial X-rays incident on tissue with underlying air or bone publication-title: Med Phys – volume: 52 start-page: 231 year: 2007 end-page: 242 ident: b0085 article-title: Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry publication-title: Phys Med Biol – volume: 14 start-page: 5 year: 2013 end-page: 17 ident: b0040 article-title: Review of backscatter measurement in kilovoltage radiotherapy using novel detectors and reduction from lack of underlying scattering material publication-title: J Appl Clin Med Phys – volume: 41 year: 2014 ident: b0110 article-title: Tungsten anode spectral model using interpolating cubic splines: unfiltered x-ray spectra from 20 kV to 640 kV publication-title: Med Phys – reference: Dr. John Baines kindly shared with us the measured PDD of his 150 kV beam. We used his published HVL value, together with the PDD data, as input for our model; n.d. – volume: 55 start-page: 783 year: 2010 end-page: 797 ident: b0035 article-title: An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements publication-title: Phys Med Biol – year: 1994 ident: b0120 article-title: The Physics of Radiation Therapy – volume: 22 start-page: 767 year: 1995 end-page: 773 ident: b0135 article-title: Backscatter dose perturbation in kilovoltage photon beams at high atomic number interfaces publication-title: Med Phys – volume: 41 start-page: 2605 year: 1996 ident: b0010 article-title: The IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0. 035 mm Al – 4 mm Cu HVL; 10–300 kV generating potential) publication-title: Phys Med Biol – volume: 28 start-page: 868 year: 2001 end-page: 893 ident: b0015 article-title: AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology publication-title: Med Phys – year: 2015 ident: b0065 article-title: A review of the use of radiotherapy in the UK for the treatment of benign clinical conditions and benign tumours publication-title: Clin Oncol – reference: We extracted the values from a pdf version of Healy’s paper using the free, web-based tool “WebPlotDigitizer” (http://arohatgi.info/WebPlotDigitizer/app3_12/) created by Ankit Rohatgi; n.d. – year: 2012 ident: b0060 article-title: Planning for the best: tripartite national strategic plan for radiation oncology 2012–2022 publication-title: R Aust New Zeal Coll Radiol – year: 2010 ident: b0140 article-title: Handbook of radiotherapy physics: theory and practice – reference: Kawrakow I, Rogers DWO. The EGSnrc code system. NRC Rep PIRS-701, NRC, Ottawa; 2000. – volume: 14 start-page: 5 year: 2013 ident: 10.1016/j.ejmp.2019.08.018_b0040 article-title: Review of backscatter measurement in kilovoltage radiotherapy using novel detectors and reduction from lack of underlying scattering material publication-title: J Appl Clin Med Phys doi: 10.1120/jacmp.v14i6.4358 – volume: 38 start-page: 1137 year: 1993 ident: 10.1016/j.ejmp.2019.08.018_b0115 article-title: The effect of lead underlying water on the backscatter of X-rays of beam qualities 0.5 mm to 8 mm Al HVT publication-title: Phys Med Biol doi: 10.1088/0031-9155/38/8/012 – volume: 41 start-page: 2605 year: 1996 ident: 10.1016/j.ejmp.2019.08.018_b0010 article-title: The IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0. 035 mm Al – 4 mm Cu HVL; 10–300 kV generating potential) publication-title: Phys Med Biol doi: 10.1088/0031-9155/41/12/002 – volume: 22 start-page: 767 year: 1995 ident: 10.1016/j.ejmp.2019.08.018_b0135 article-title: Backscatter dose perturbation in kilovoltage photon beams at high atomic number interfaces publication-title: Med Phys doi: 10.1118/1.597594 – ident: 10.1016/j.ejmp.2019.08.018_b0130 – volume: 28 start-page: 868 year: 2001 ident: 10.1016/j.ejmp.2019.08.018_b0015 article-title: AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology publication-title: Med Phys doi: 10.1118/1.1374247 – volume: 8 start-page: 12 year: 2015 ident: 10.1016/j.ejmp.2019.08.018_b0075 article-title: Superficial radiation therapy for the treatment of nonmelanoma skin cancers publication-title: J Clin Aesthet Dermatol – volume: 39 start-page: 2147 year: 2012 ident: 10.1016/j.ejmp.2019.08.018_b0095 article-title: Enhanced dosimetry procedures and assessment for EBT2 radiochromic film publication-title: Med Phys doi: 10.1118/1.3694100 – volume: 41 year: 2014 ident: 10.1016/j.ejmp.2019.08.018_b0110 article-title: Tungsten anode spectral model using interpolating cubic splines: unfiltered x-ray spectra from 20 kV to 640 kV publication-title: Med Phys doi: 10.1118/1.4866216 – year: 2015 ident: 10.1016/j.ejmp.2019.08.018_b0065 article-title: A review of the use of radiotherapy in the UK for the treatment of benign clinical conditions and benign tumours publication-title: Clin Oncol – ident: 10.1016/j.ejmp.2019.08.018_b0105 – volume: 31 start-page: 49 year: 2008 ident: 10.1016/j.ejmp.2019.08.018_b0050 article-title: Dose reduction from loss of backscatter in superficial x-ray radiation therapy with the Pantak SXT 150 unit publication-title: Aust Phys Eng Sci Med doi: 10.1007/BF03178453 – ident: 10.1016/j.ejmp.2019.08.018_b0080 – year: 2018 ident: 10.1016/j.ejmp.2019.08.018_b0025 article-title: Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine publication-title: Aust Phys Eng Sci Med doi: 10.1007/s13246-018-0692-1 – year: 2012 ident: 10.1016/j.ejmp.2019.08.018_b0060 article-title: Planning for the best: tripartite national strategic plan for radiation oncology 2012–2022 publication-title: R Aust New Zeal Coll Radiol – volume: 702 start-page: 1 year: 2013 ident: 10.1016/j.ejmp.2019.08.018_b0100 article-title: NRC user codes for EGSnrc. NRCC Rep PIRS-702 publication-title: Rev B – ident: 10.1016/j.ejmp.2019.08.018_b0020 – volume: 41 year: 2014 ident: 10.1016/j.ejmp.2019.08.018_b0090 article-title: On multichannel film dosimetry with channel-independent perturbations publication-title: Med Phys – volume: 45 start-page: 926 year: 2018 ident: 10.1016/j.ejmp.2019.08.018_b0030 article-title: Measured and Monte Carlo simulated surface dose reduction for superficial X-rays incident on tissue with underlying air or bone publication-title: Med Phys doi: 10.1002/mp.12725 – volume: 27 start-page: 1035 year: 1982 ident: 10.1016/j.ejmp.2019.08.018_b0055 article-title: The build-up of backscatter in the energy range 1 mm Al to 8 mm Al HVT (radiotherapy beams) publication-title: Phys Med Biol doi: 10.1088/0031-9155/27/8/005 – volume: 54 start-page: 1268 year: 2015 ident: 10.1016/j.ejmp.2019.08.018_b0070 article-title: The need for radiotherapy in Europe in 2020: not only data but also a cancer plan publication-title: Acta Oncol (Madrid) doi: 10.3109/0284186X.2015.1062139 – year: 2010 ident: 10.1016/j.ejmp.2019.08.018_b0140 – ident: 10.1016/j.ejmp.2019.08.018_b0125 – volume: 55 start-page: 783 year: 2010 ident: 10.1016/j.ejmp.2019.08.018_b0035 article-title: An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements publication-title: Phys Med Biol doi: 10.1088/0031-9155/55/3/016 – volume: 59 year: 2014 ident: 10.1016/j.ejmp.2019.08.018_b0045 article-title: Advances in kilovoltage x-ray beam dosimetry publication-title: Phys Med Biol doi: 10.1088/0031-9155/59/6/R183 – volume: 50 start-page: 2739 year: 2005 ident: 10.1016/j.ejmp.2019.08.018_b0005 article-title: Addendum to the IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL) publication-title: Phys Med Biol doi: 10.1088/0031-9155/50/12/001 – volume: 52 start-page: 231 year: 2007 ident: 10.1016/j.ejmp.2019.08.018_b0085 article-title: Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry publication-title: Phys Med Biol doi: 10.1088/0031-9155/52/1/015 – year: 1994 ident: 10.1016/j.ejmp.2019.08.018_b0120  | 
    
| SSID | ssj0032255 | 
    
| Score | 2.1624622 | 
    
| Snippet | •Insufficient scattering material results in published Bw values that overestimate scatter.•An algorithm was developed for calculating backscatter in... Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (B ) that... Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that...  | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 157 | 
    
| SubjectTerms | Algorithms Backscatter Gafchromic film Monte Carlo Monte Carlo Method Phantoms, Imaging Radiometry Scattering, Radiation Superficial X-ray therapy X-Ray Therapy  | 
    
| Title | A model-based algorithm to correct for the loss of backscatter in superficial X-ray radiation therapy | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1120179719301954 https://dx.doi.org/10.1016/j.ejmp.2019.08.018 https://www.ncbi.nlm.nih.gov/pubmed/31494369 https://www.proquest.com/docview/2287513798  | 
    
| Volume | 65 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1724-191X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032255 issn: 1120-1797 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1724-191X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0032255 issn: 1120-1797 databaseCode: .~1 dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1724-191X dateEnd: 20201031 omitProxy: true ssIdentifier: ssj0032255 issn: 1120-1797 databaseCode: ACRLP dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1724-191X dateEnd: 20201031 omitProxy: true ssIdentifier: ssj0032255 issn: 1120-1797 databaseCode: AIKHN dateStart: 20050101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIF7E91sieJO4TZuk7XFZlPWJiMLeQtqmurK2y9o9ePG3O5O2C4IPEAqlJUNDMpl808zMR8ix79lIilyyGFowwVPDothIxiPABzYwnnH8KTe3qv8oLgdyMEd6bS4MhlU2tr-26c5aN286zWh2xsNhB9ahj-oUAgTBrDesCSpEiCwGpx-zMA_UV-kIVsBNwtZN4kwd42VfXrFmJY9dGU8k_vh-c_oJfLpN6HyFLDfokXbrDq6SOVuskcWb5nx8ndguddQ2DDenjJrRUwnO__MrrUqaIg9HWlFAqRRQHx1BD2iZ0wSz7FNXZpMOC_o2HSNxNf5JpwM2Me90guULcP5onaz1vkEez88een3WECmwFPy1igEKURIu4Tm4kkkrpIlVprw0CCNrAVVkVnGuMqPyzCShjWJulW8iFSVJkAWbZL4oC7tNqBfmNheZyn1lhErQIYoFD3NjpErB-dkhvB1BnTZVxpHsYqTbcLIXjaOucdQ1MmDyaIeczGTGdY2NX1sH7cToNnsU7J2GLeBXKTmT-qJff8odtXOvYeHhaYopbDl90z74mpIHYQxttmqlmPU-AL9TBCre_edX98gSPtWxbPtkvppM7QGAnyo5dNp9SBa6vfvrO7xfXPVvPwF7rAOm | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-QL2I77dG8CZxmzZJ26OIsj7Wk8LeQtqmurK2y9o9ePG3O5O2C4IPEHpqExom05lvmpn5CDnxPRtJkUsWwwgmeGpYFBvJeAT4wAbGM44_pXevuo_ipi_7M-SirYXBtMrG9tc23Vnr5k6nkWZnNBh04Dv0UZ1CgCBY9SZmybyQfogR2NnHNM8DFVY6hhWIk3B4UzlTJ3nZl1dsWslj18cTmT--904_oU_nha5WyHIDH-l5vcJVMmOLNbLQaw7I14k9p47bhqF3yqgZPpUQ_T-_0qqkKRJxpBUFmEoB9tEhrICWOU2wzD51fTbpoKBvkxEyV-OvdNpnY_NOx9i_ADeQ1tVa7xvk8ery4aLLGiYFlkLAVjGAIUrCJTyHVzJphTSxypSXBmFkLcCKzCrOVWZUnpkktFHMrfJNpKIkCbJgk8wVZWG3CfXC3OYiU7mvjFAJRkSx4GFujFQpRD87hLcS1GnTZhzZLoa6zSd70Sh1jVLXSIHJox1yOp0zqpts_Do6aDdGt-WjYPA0-IBfZ8nprC8K9ue843bvNXx5eJxiCltO3rQPwabkQRjDmK1aKaarDyDwFIGKd__51iOy2H3o3em76_vbPbKET-rEtn0yV40n9gCQUJUcOk3_BE6KA6Y | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model-based+algorithm+to+correct+for+the+loss+of+backscatter+in+superficial+X-ray+radiation+therapy&rft.jtitle=Physica+medica&rft.au=Harwood%2C+Jeffrey+R&rft.au=Nelli%2C+Flavio+E&rft.date=2019-09-01&rft.issn=1724-191X&rft.eissn=1724-191X&rft.volume=65&rft.spage=157&rft_id=info:doi/10.1016%2Fj.ejmp.2019.08.018&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon |