A model-based algorithm to correct for the loss of backscatter in superficial X-ray radiation therapy

•Insufficient scattering material results in published Bw values that overestimate scatter.•An algorithm was developed for calculating backscatter in situations with reduced scattering medium.•Model validation by comparison with published data, Monte Carlo simulations and film measurements. Dosimetr...

Full description

Saved in:
Bibliographic Details
Published inPhysica medica Vol. 65; pp. 157 - 166
Main Authors Harwood, Jeffrey R., Nelli, Flavio E.
Format Journal Article
LanguageEnglish
Published Italy Elsevier Ltd 01.09.2019
Subjects
Online AccessGet full text
ISSN1120-1797
1724-191X
1724-191X
DOI10.1016/j.ejmp.2019.08.018

Cover

Abstract •Insufficient scattering material results in published Bw values that overestimate scatter.•An algorithm was developed for calculating backscatter in situations with reduced scattering medium.•Model validation by comparison with published data, Monte Carlo simulations and film measurements. Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm’s underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect.
AbstractList •Insufficient scattering material results in published Bw values that overestimate scatter.•An algorithm was developed for calculating backscatter in situations with reduced scattering medium.•Model validation by comparison with published data, Monte Carlo simulations and film measurements. Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm’s underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect.
Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm's underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect.Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that accounts for the effect of phantom scatter. Bw values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published Bw values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of Bw in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm's underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect.
Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (B ) that accounts for the effect of phantom scatter. B values corresponding to full-scatter phantoms are provided by these protocols. In practice, clinical situations arise wherein there is insufficient scattering material downstream, resulting in published B values that overestimate the amount of occurring scatter. To provide an accurate dose calculation the backscatter values need to be corrected for any reduction in scattered radiation. Estimating the change of B in situations with incomplete backscatter has previously been achieved by direct measurements or Monte Carlo modelling. For increasing the accuracy of clinical dosimetries, we developed a physical model to deduce an algorithm for calculating backscatter factors in situations with reduced downstream scattering medium. The predictions of the model were validated by comparison with published data, Monte Carlo simulations and film-based measurements for beams with a half-value layer of 0.8, 2 and 4 mm Al. Our algorithm accurately predicts the effect of partial scatter conditions with suitable precision. Its reliability, combined with the simplicity of calculation, makes this methodology suitable to be incorporated into routine clinical dosimetry. The algorithm's underlying physical model provides an intuitive understanding of the effects of field size and beam energy on backscatter reduction, permitting a rational management of this effect.
Author Harwood, Jeffrey R.
Nelli, Flavio E.
Author_xml – sequence: 1
  givenname: Jeffrey R.
  surname: Harwood
  fullname: Harwood, Jeffrey R.
  email: jeffharwoodromp@gmail.com
– sequence: 2
  givenname: Flavio E.
  surname: Nelli
  fullname: Nelli, Flavio E.
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31494369$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrFTEYQINU7EP_gAvJ0s2MecwkGXFTii8ouFHoLmSSb2xuM5MxyS3cf2_GW110USGQLM4JfOc7RydLXACh15S0lFDxbtfCbl5bRujQEtUSqp6hMypZ19CB3pzUN2WkoXKQp-g85x0hnLG-f4FOOe2GjovhDMElnqOD0Iwmg8Mm_IzJl9sZl4htTAlswVNMuNwCDjFnHCc8GnuXrSkFEvYLzvsV0uStNwHfNMkccDLOm-LjsmnJrIeX6PlkQoZXD_cF-vHp4_erL831t89fry6vG9sRWRrBB9HX05E6heSuh643g3CCWC4VgOyoA0GpcEZMzowS1EBBMKOEGkfu-AV6e_x3TfHXHnLRs88WQjALxH3WjCnZUy4HVdE3D-h-nMHpNfnZpIP-m6YC7AjYVOdOMP1DKNFbf73TW3-99ddE6dq_SuqRZH35k6Ik48PT6oejCjXQvYeks_WwWHB-24J20T-tv3-k2-AXb024g8P_5N_SDrRe
CitedBy_id crossref_primary_10_3390_coatings12070973
crossref_primary_10_3390_coatings12081142
Cites_doi 10.1120/jacmp.v14i6.4358
10.1088/0031-9155/38/8/012
10.1088/0031-9155/41/12/002
10.1118/1.597594
10.1118/1.1374247
10.1118/1.3694100
10.1118/1.4866216
10.1007/BF03178453
10.1007/s13246-018-0692-1
10.1002/mp.12725
10.1088/0031-9155/27/8/005
10.3109/0284186X.2015.1062139
10.1088/0031-9155/55/3/016
10.1088/0031-9155/59/6/R183
10.1088/0031-9155/50/12/001
10.1088/0031-9155/52/1/015
ContentType Journal Article
Copyright 2019 Associazione Italiana di Fisica Medica
Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Associazione Italiana di Fisica Medica
– notice: Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ejmp.2019.08.018
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1724-191X
EndPage 166
ExternalDocumentID 31494369
10_1016_j_ejmp_2019_08_018
S1120179719301954
Genre Journal Article
GroupedDBID ---
--K
--M
-QF
.1-
.FO
.~1
0R~
123
1B1
1P~
1~.
1~5
3J0
4.4
457
4G.
53G
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFS
ACIEU
ACLOT
ACNNM
ACRLP
ACXCU
ADBBV
ADEZE
ADVLN
AEBSH
AEFWE
AEIPS
AEKER
AEVXI
AFJKZ
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIIUN
AIKHN
AITUG
AIVDX
AJRQY
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DC1
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OI~
OU0
OZT
P-8
P-9
PC.
Q38
RLW
ROL
RPZ
SDF
SDG
SEL
SES
SJN
SPC
SPCBC
SSH
SSQ
SSZ
T5K
UNMZH
Z5R
~G-
~HD
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJBFU
AJOXV
AMFUW
CLCPZ
LCYCR
~XS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c407t-639659654017273d5e45a96d60c378ee741de6116da6fdab7e891e62a868bb3d3
IEDL.DBID .~1
ISSN 1120-1797
1724-191X
IngestDate Sun Sep 28 11:01:27 EDT 2025
Wed Feb 19 02:32:11 EST 2025
Wed Oct 01 05:04:19 EDT 2025
Thu Apr 24 23:01:26 EDT 2025
Fri Feb 23 02:29:06 EST 2024
Tue Oct 14 19:31:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Monte Carlo
Gafchromic film
Backscatter
Superficial X-ray therapy
Language English
License Copyright © 2019 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-639659654017273d5e45a96d60c378ee741de6116da6fdab7e891e62a868bb3d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 31494369
PQID 2287513798
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_2287513798
pubmed_primary_31494369
crossref_primary_10_1016_j_ejmp_2019_08_018
crossref_citationtrail_10_1016_j_ejmp_2019_08_018
elsevier_sciencedirect_doi_10_1016_j_ejmp_2019_08_018
elsevier_clinicalkey_doi_10_1016_j_ejmp_2019_08_018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2019
2019-09-00
2019-Sep
20190901
PublicationDateYYYYMMDD 2019-09-01
PublicationDate_xml – month: 09
  year: 2019
  text: September 2019
PublicationDecade 2010
PublicationPlace Italy
PublicationPlace_xml – name: Italy
PublicationTitle Physica medica
PublicationTitleAlternate Phys Med
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Radiation Oncology Tripartite Committee (b0060) 2012
Klevenhagen, Aukett, Harrison, Nahum, Rosser (b0010) 1996; 41
Kim, Hill, Claridge Mackonis, Kuncic (b0035) 2010; 55
Rogers, Kawrakow, Seuntjens, Walters, Mainegra-Hing (b0100) 2013; 702
Healy, Sylvander, Nitschke (b0050) 2008; 31
Paelinck, De, De (b0085) 2007; 52
British Institute of Radiology/Institute of Physics and Engineering in Medicine and Biology. Central axis depth dose data for use in radiotherapy, 1996 : a survey of depth doses and related data measured in water or equivalent media. British Institute of Radiology; 1996.
Klevenhagen (b0055) 1982; 27
Mayer, Ma, Chen, Miller, Belard, McDonough (b0095) 2012; 39
The range in liquid water of 300 keV electrons is 0.08421 g/cm2, calculated using the continuous slowing down approximation. Source: NIST – ESTAR database, https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html; n.d.
Dr. John Baines kindly shared with us the measured PDD of his 150 kV beam. We used his published HVL value, together with the PDD data, as input for our model; n.d.
Borras, Lievens, Grau (b0070) 2015; 54
Eaton, Doolan (b0040) 2013; 14
Baines, Zawlodzka, Markwell, Chan (b0030) 2018; 45
Hernandez, Boone (b0110) 2014; 41
Lanzon, Sorell (b0115) 1993; 38
Das, Chopra (b0135) 1995; 22
McGregor, Minni, Herold (b0075) 2015; 8
Méndez, Peterlin, Hudej, Strojnik, Casar (b0090) 2014; 41
The Royal College of Radiologists (b0065) 2015
Kawrakow I, Rogers DWO. The EGSnrc code system. NRC Rep PIRS-701, NRC, Ottawa; 2000.
Hill, Healy, Holloway, Kuncic, Thwaites, Baldock (b0045) 2014; 59
Khan (b0120) 1994
Aukett, Burns, Greener, Harrison, Moretti, Nahum (b0005) 2005; 50
Mayles, Nahum, Rosenwald (b0140) 2010
We extracted the values from a pdf version of Healy’s paper using the free, web-based tool “WebPlotDigitizer” (http://arohatgi.info/WebPlotDigitizer/app3_12/) created by Ankit Rohatgi; n.d.
Ma, Coffey, DeWerd, Liu, Nath, Seltzer (b0015) 2001; 28
Hill, Healy, Butler, Odgers, Gill, Lye (b0025) 2018
Klevenhagen (10.1016/j.ejmp.2019.08.018_b0055) 1982; 27
10.1016/j.ejmp.2019.08.018_b0080
Aukett (10.1016/j.ejmp.2019.08.018_b0005) 2005; 50
Healy (10.1016/j.ejmp.2019.08.018_b0050) 2008; 31
Radiation Oncology Tripartite Committee (10.1016/j.ejmp.2019.08.018_b0060) 2012
Lanzon (10.1016/j.ejmp.2019.08.018_b0115) 1993; 38
Hill (10.1016/j.ejmp.2019.08.018_b0045) 2014; 59
Mayer (10.1016/j.ejmp.2019.08.018_b0095) 2012; 39
10.1016/j.ejmp.2019.08.018_b0105
Mayles (10.1016/j.ejmp.2019.08.018_b0140) 2010
Ma (10.1016/j.ejmp.2019.08.018_b0015) 2001; 28
10.1016/j.ejmp.2019.08.018_b0125
Rogers (10.1016/j.ejmp.2019.08.018_b0100) 2013; 702
10.1016/j.ejmp.2019.08.018_b0020
Hernandez (10.1016/j.ejmp.2019.08.018_b0110) 2014; 41
The Royal College of Radiologists (10.1016/j.ejmp.2019.08.018_b0065) 2015
Das (10.1016/j.ejmp.2019.08.018_b0135) 1995; 22
Khan (10.1016/j.ejmp.2019.08.018_b0120) 1994
Paelinck (10.1016/j.ejmp.2019.08.018_b0085) 2007; 52
Eaton (10.1016/j.ejmp.2019.08.018_b0040) 2013; 14
Baines (10.1016/j.ejmp.2019.08.018_b0030) 2018; 45
Hill (10.1016/j.ejmp.2019.08.018_b0025) 2018
10.1016/j.ejmp.2019.08.018_b0130
Klevenhagen (10.1016/j.ejmp.2019.08.018_b0010) 1996; 41
Kim (10.1016/j.ejmp.2019.08.018_b0035) 2010; 55
Méndez (10.1016/j.ejmp.2019.08.018_b0090) 2014; 41
Borras (10.1016/j.ejmp.2019.08.018_b0070) 2015; 54
McGregor (10.1016/j.ejmp.2019.08.018_b0075) 2015; 8
References_xml – volume: 38
  start-page: 1137
  year: 1993
  end-page: 1144
  ident: b0115
  article-title: The effect of lead underlying water on the backscatter of X-rays of beam qualities 0.5 mm to 8 mm Al HVT
  publication-title: Phys Med Biol
– volume: 8
  start-page: 12
  year: 2015
  end-page: 14
  ident: b0075
  article-title: Superficial radiation therapy for the treatment of nonmelanoma skin cancers
  publication-title: J Clin Aesthet Dermatol
– reference: British Institute of Radiology/Institute of Physics and Engineering in Medicine and Biology. Central axis depth dose data for use in radiotherapy, 1996 : a survey of depth doses and related data measured in water or equivalent media. British Institute of Radiology; 1996.
– volume: 27
  start-page: 1035
  year: 1982
  end-page: 1043
  ident: b0055
  article-title: The build-up of backscatter in the energy range 1 mm Al to 8 mm Al HVT (radiotherapy beams)
  publication-title: Phys Med Biol
– volume: 702
  start-page: 1
  year: 2013
  end-page: 92
  ident: b0100
  article-title: NRC user codes for EGSnrc. NRCC Rep PIRS-702
  publication-title: Rev B
– volume: 41
  year: 2014
  ident: b0090
  article-title: On multichannel film dosimetry with channel-independent perturbations
  publication-title: Med Phys
– volume: 39
  start-page: 2147
  year: 2012
  ident: b0095
  article-title: Enhanced dosimetry procedures and assessment for EBT2 radiochromic film
  publication-title: Med Phys
– volume: 50
  start-page: 2739
  year: 2005
  end-page: 2748
  ident: b0005
  article-title: Addendum to the IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL)
  publication-title: Phys Med Biol
– volume: 59
  year: 2014
  ident: b0045
  article-title: Advances in kilovoltage x-ray beam dosimetry
  publication-title: Phys Med Biol
– reference: The range in liquid water of 300 keV electrons is 0.08421 g/cm2, calculated using the continuous slowing down approximation. Source: NIST – ESTAR database, https://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html; n.d.
– volume: 54
  start-page: 1268
  year: 2015
  end-page: 1274
  ident: b0070
  article-title: The need for radiotherapy in Europe in 2020: not only data but also a cancer plan
  publication-title: Acta Oncol (Madrid)
– year: 2018
  ident: b0025
  article-title: Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine
  publication-title: Aust Phys Eng Sci Med
– volume: 31
  start-page: 49
  year: 2008
  end-page: 55
  ident: b0050
  article-title: Dose reduction from loss of backscatter in superficial x-ray radiation therapy with the Pantak SXT 150 unit
  publication-title: Aust Phys Eng Sci Med
– volume: 45
  start-page: 926
  year: 2018
  end-page: 933
  ident: b0030
  article-title: Measured and Monte Carlo simulated surface dose reduction for superficial X-rays incident on tissue with underlying air or bone
  publication-title: Med Phys
– volume: 52
  start-page: 231
  year: 2007
  end-page: 242
  ident: b0085
  article-title: Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry
  publication-title: Phys Med Biol
– volume: 14
  start-page: 5
  year: 2013
  end-page: 17
  ident: b0040
  article-title: Review of backscatter measurement in kilovoltage radiotherapy using novel detectors and reduction from lack of underlying scattering material
  publication-title: J Appl Clin Med Phys
– volume: 41
  year: 2014
  ident: b0110
  article-title: Tungsten anode spectral model using interpolating cubic splines: unfiltered x-ray spectra from 20 kV to 640 kV
  publication-title: Med Phys
– reference: Dr. John Baines kindly shared with us the measured PDD of his 150 kV beam. We used his published HVL value, together with the PDD data, as input for our model; n.d.
– volume: 55
  start-page: 783
  year: 2010
  end-page: 797
  ident: b0035
  article-title: An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements
  publication-title: Phys Med Biol
– year: 1994
  ident: b0120
  article-title: The Physics of Radiation Therapy
– volume: 22
  start-page: 767
  year: 1995
  end-page: 773
  ident: b0135
  article-title: Backscatter dose perturbation in kilovoltage photon beams at high atomic number interfaces
  publication-title: Med Phys
– volume: 41
  start-page: 2605
  year: 1996
  ident: b0010
  article-title: The IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0. 035 mm Al – 4 mm Cu HVL; 10–300 kV generating potential)
  publication-title: Phys Med Biol
– volume: 28
  start-page: 868
  year: 2001
  end-page: 893
  ident: b0015
  article-title: AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology
  publication-title: Med Phys
– year: 2015
  ident: b0065
  article-title: A review of the use of radiotherapy in the UK for the treatment of benign clinical conditions and benign tumours
  publication-title: Clin Oncol
– reference: We extracted the values from a pdf version of Healy’s paper using the free, web-based tool “WebPlotDigitizer” (http://arohatgi.info/WebPlotDigitizer/app3_12/) created by Ankit Rohatgi; n.d.
– year: 2012
  ident: b0060
  article-title: Planning for the best: tripartite national strategic plan for radiation oncology 2012–2022
  publication-title: R Aust New Zeal Coll Radiol
– year: 2010
  ident: b0140
  article-title: Handbook of radiotherapy physics: theory and practice
– reference: Kawrakow I, Rogers DWO. The EGSnrc code system. NRC Rep PIRS-701, NRC, Ottawa; 2000.
– volume: 14
  start-page: 5
  year: 2013
  ident: 10.1016/j.ejmp.2019.08.018_b0040
  article-title: Review of backscatter measurement in kilovoltage radiotherapy using novel detectors and reduction from lack of underlying scattering material
  publication-title: J Appl Clin Med Phys
  doi: 10.1120/jacmp.v14i6.4358
– volume: 38
  start-page: 1137
  year: 1993
  ident: 10.1016/j.ejmp.2019.08.018_b0115
  article-title: The effect of lead underlying water on the backscatter of X-rays of beam qualities 0.5 mm to 8 mm Al HVT
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/38/8/012
– volume: 41
  start-page: 2605
  year: 1996
  ident: 10.1016/j.ejmp.2019.08.018_b0010
  article-title: The IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0. 035 mm Al – 4 mm Cu HVL; 10–300 kV generating potential)
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/41/12/002
– volume: 22
  start-page: 767
  year: 1995
  ident: 10.1016/j.ejmp.2019.08.018_b0135
  article-title: Backscatter dose perturbation in kilovoltage photon beams at high atomic number interfaces
  publication-title: Med Phys
  doi: 10.1118/1.597594
– ident: 10.1016/j.ejmp.2019.08.018_b0130
– volume: 28
  start-page: 868
  year: 2001
  ident: 10.1016/j.ejmp.2019.08.018_b0015
  article-title: AAPM protocol for 40–300 kV x-ray beam dosimetry in radiotherapy and radiobiology
  publication-title: Med Phys
  doi: 10.1118/1.1374247
– volume: 8
  start-page: 12
  year: 2015
  ident: 10.1016/j.ejmp.2019.08.018_b0075
  article-title: Superficial radiation therapy for the treatment of nonmelanoma skin cancers
  publication-title: J Clin Aesthet Dermatol
– volume: 39
  start-page: 2147
  year: 2012
  ident: 10.1016/j.ejmp.2019.08.018_b0095
  article-title: Enhanced dosimetry procedures and assessment for EBT2 radiochromic film
  publication-title: Med Phys
  doi: 10.1118/1.3694100
– volume: 41
  year: 2014
  ident: 10.1016/j.ejmp.2019.08.018_b0110
  article-title: Tungsten anode spectral model using interpolating cubic splines: unfiltered x-ray spectra from 20 kV to 640 kV
  publication-title: Med Phys
  doi: 10.1118/1.4866216
– year: 2015
  ident: 10.1016/j.ejmp.2019.08.018_b0065
  article-title: A review of the use of radiotherapy in the UK for the treatment of benign clinical conditions and benign tumours
  publication-title: Clin Oncol
– ident: 10.1016/j.ejmp.2019.08.018_b0105
– volume: 31
  start-page: 49
  year: 2008
  ident: 10.1016/j.ejmp.2019.08.018_b0050
  article-title: Dose reduction from loss of backscatter in superficial x-ray radiation therapy with the Pantak SXT 150 unit
  publication-title: Aust Phys Eng Sci Med
  doi: 10.1007/BF03178453
– ident: 10.1016/j.ejmp.2019.08.018_b0080
– year: 2018
  ident: 10.1016/j.ejmp.2019.08.018_b0025
  article-title: Australasian recommendations for quality assurance in kilovoltage radiation therapy from the Kilovoltage Dosimetry Working Group of the Australasian College of Physical Scientists and Engineers in Medicine
  publication-title: Aust Phys Eng Sci Med
  doi: 10.1007/s13246-018-0692-1
– year: 2012
  ident: 10.1016/j.ejmp.2019.08.018_b0060
  article-title: Planning for the best: tripartite national strategic plan for radiation oncology 2012–2022
  publication-title: R Aust New Zeal Coll Radiol
– volume: 702
  start-page: 1
  year: 2013
  ident: 10.1016/j.ejmp.2019.08.018_b0100
  article-title: NRC user codes for EGSnrc. NRCC Rep PIRS-702
  publication-title: Rev B
– ident: 10.1016/j.ejmp.2019.08.018_b0020
– volume: 41
  year: 2014
  ident: 10.1016/j.ejmp.2019.08.018_b0090
  article-title: On multichannel film dosimetry with channel-independent perturbations
  publication-title: Med Phys
– volume: 45
  start-page: 926
  year: 2018
  ident: 10.1016/j.ejmp.2019.08.018_b0030
  article-title: Measured and Monte Carlo simulated surface dose reduction for superficial X-rays incident on tissue with underlying air or bone
  publication-title: Med Phys
  doi: 10.1002/mp.12725
– volume: 27
  start-page: 1035
  year: 1982
  ident: 10.1016/j.ejmp.2019.08.018_b0055
  article-title: The build-up of backscatter in the energy range 1 mm Al to 8 mm Al HVT (radiotherapy beams)
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/27/8/005
– volume: 54
  start-page: 1268
  year: 2015
  ident: 10.1016/j.ejmp.2019.08.018_b0070
  article-title: The need for radiotherapy in Europe in 2020: not only data but also a cancer plan
  publication-title: Acta Oncol (Madrid)
  doi: 10.3109/0284186X.2015.1062139
– year: 2010
  ident: 10.1016/j.ejmp.2019.08.018_b0140
– ident: 10.1016/j.ejmp.2019.08.018_b0125
– volume: 55
  start-page: 783
  year: 2010
  ident: 10.1016/j.ejmp.2019.08.018_b0035
  article-title: An investigation of backscatter factors for kilovoltage x-rays: a comparison between Monte Carlo simulations and Gafchromic EBT film measurements
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/55/3/016
– volume: 59
  year: 2014
  ident: 10.1016/j.ejmp.2019.08.018_b0045
  article-title: Advances in kilovoltage x-ray beam dosimetry
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/59/6/R183
– volume: 50
  start-page: 2739
  year: 2005
  ident: 10.1016/j.ejmp.2019.08.018_b0005
  article-title: Addendum to the IPEMB code of practice for the determination of absorbed dose for x-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL)
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/50/12/001
– volume: 52
  start-page: 231
  year: 2007
  ident: 10.1016/j.ejmp.2019.08.018_b0085
  article-title: Precautions and strategies in using a commercial flatbed scanner for radiochromic film dosimetry
  publication-title: Phys Med Biol
  doi: 10.1088/0031-9155/52/1/015
– year: 1994
  ident: 10.1016/j.ejmp.2019.08.018_b0120
SSID ssj0032255
Score 2.1624622
Snippet •Insufficient scattering material results in published Bw values that overestimate scatter.•An algorithm was developed for calculating backscatter in...
Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (B ) that...
Dosimetry protocols for superficial X-rays prescribe the determination of kerma on the surface of a phantom through the use of a backscatter factor (Bw) that...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 157
SubjectTerms Algorithms
Backscatter
Gafchromic film
Monte Carlo
Monte Carlo Method
Phantoms, Imaging
Radiometry
Scattering, Radiation
Superficial X-ray therapy
X-Ray Therapy
Title A model-based algorithm to correct for the loss of backscatter in superficial X-ray radiation therapy
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1120179719301954
https://dx.doi.org/10.1016/j.ejmp.2019.08.018
https://www.ncbi.nlm.nih.gov/pubmed/31494369
https://www.proquest.com/docview/2287513798
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1724-191X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032255
  issn: 1120-1797
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1724-191X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0032255
  issn: 1120-1797
  databaseCode: .~1
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1724-191X
  dateEnd: 20201031
  omitProxy: true
  ssIdentifier: ssj0032255
  issn: 1120-1797
  databaseCode: ACRLP
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1724-191X
  dateEnd: 20201031
  omitProxy: true
  ssIdentifier: ssj0032255
  issn: 1120-1797
  databaseCode: AIKHN
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA6iIF7E91sieJO4TZuk7XFZlPWJiMLeQtqmurK2y9o9ePG3O5O2C4IPEAqlJUNDMpl808zMR8ix79lIilyyGFowwVPDothIxiPABzYwnnH8KTe3qv8oLgdyMEd6bS4MhlU2tr-26c5aN286zWh2xsNhB9ahj-oUAgTBrDesCSpEiCwGpx-zMA_UV-kIVsBNwtZN4kwd42VfXrFmJY9dGU8k_vh-c_oJfLpN6HyFLDfokXbrDq6SOVuskcWb5nx8ndguddQ2DDenjJrRUwnO__MrrUqaIg9HWlFAqRRQHx1BD2iZ0wSz7FNXZpMOC_o2HSNxNf5JpwM2Me90guULcP5onaz1vkEez88een3WECmwFPy1igEKURIu4Tm4kkkrpIlVprw0CCNrAVVkVnGuMqPyzCShjWJulW8iFSVJkAWbZL4oC7tNqBfmNheZyn1lhErQIYoFD3NjpErB-dkhvB1BnTZVxpHsYqTbcLIXjaOucdQ1MmDyaIeczGTGdY2NX1sH7cToNnsU7J2GLeBXKTmT-qJff8odtXOvYeHhaYopbDl90z74mpIHYQxttmqlmPU-AL9TBCre_edX98gSPtWxbPtkvppM7QGAnyo5dNp9SBa6vfvrO7xfXPVvPwF7rAOm
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA4-QL2I77dG8CZxmzZJ26OIsj7Wk8LeQtqmurK2y9o9ePG3O5O2C4IPEHpqExom05lvmpn5CDnxPRtJkUsWwwgmeGpYFBvJeAT4wAbGM44_pXevuo_ipi_7M-SirYXBtMrG9tc23Vnr5k6nkWZnNBh04Dv0UZ1CgCBY9SZmybyQfogR2NnHNM8DFVY6hhWIk3B4UzlTJ3nZl1dsWslj18cTmT--904_oU_nha5WyHIDH-l5vcJVMmOLNbLQaw7I14k9p47bhqF3yqgZPpUQ_T-_0qqkKRJxpBUFmEoB9tEhrICWOU2wzD51fTbpoKBvkxEyV-OvdNpnY_NOx9i_ADeQ1tVa7xvk8ery4aLLGiYFlkLAVjGAIUrCJTyHVzJphTSxypSXBmFkLcCKzCrOVWZUnpkktFHMrfJNpKIkCbJgk8wVZWG3CfXC3OYiU7mvjFAJRkSx4GFujFQpRD87hLcS1GnTZhzZLoa6zSd70Sh1jVLXSIHJox1yOp0zqpts_Do6aDdGt-WjYPA0-IBfZ8nprC8K9ue843bvNXx5eJxiCltO3rQPwabkQRjDmK1aKaarDyDwFIGKd__51iOy2H3o3em76_vbPbKET-rEtn0yV40n9gCQUJUcOk3_BE6KA6Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+model-based+algorithm+to+correct+for+the+loss+of+backscatter+in+superficial+X-ray+radiation+therapy&rft.jtitle=Physica+medica&rft.au=Harwood%2C+Jeffrey+R&rft.au=Nelli%2C+Flavio+E&rft.date=2019-09-01&rft.issn=1724-191X&rft.eissn=1724-191X&rft.volume=65&rft.spage=157&rft_id=info:doi/10.1016%2Fj.ejmp.2019.08.018&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1120-1797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1120-1797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1120-1797&client=summon