Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere

To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that...

Full description

Saved in:
Bibliographic Details
Published inAdvances in atmospheric sciences Vol. 28; no. 4; pp. 832 - 842
Main Author 毕云 陈月娟 周任君 易明建 邓淑梅
Format Journal Article
LanguageEnglish
Published Heidelberg SP Science Press 01.07.2011
Springer Nature B.V
School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026%Anhui Institute of Meteorological Sciences,Hefei,230031
Subjects
Online AccessGet full text
ISSN0256-1530
1861-9533
DOI10.1007/s00376-010-0047-7

Cover

Abstract To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.
AbstractList To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.[PUBLICATION ABSTRACT]
P421.32; To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere,the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional,interactive chemical dynamical radiative model (SOCRATES) of NCAR.The results indicate that increases in stratospheric water vapor lead to stratospheric cooling,with the extent of cooling increasing with height,and that cooling in the middle stratosphere is stronger in Arctic regions.Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling.However,in the upper stratosphere (above 45 km),infrared radiation is not a factor in cooling;there,cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor.Dynamical cooling is important in the middle-upper stratosphere,and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions.Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process.However,ozone will increase in the middle stratosphere.The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.
Author 毕云 陈月娟 周任君 易明建 邓淑梅
AuthorAffiliation School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 Anhui Institute of Meteorological Sciences, Hefei 230031
AuthorAffiliation_xml – name: School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026%Anhui Institute of Meteorological Sciences,Hefei,230031
Author_xml – sequence: 1
  fullname: 毕云 陈月娟 周任君 易明建 邓淑梅
BookMark eNp9kU9v1DAQxS1UJLaFD8AtcEEcDGNPEidHVBWoVInDVuJoOc5kN0vWztoJ_z49TlMVqYf6Yo30e--N3pyzM-cdMfZawAcBoD5GAFQlBwEcIFdcPWMbUZWC1wXiGduALEouCoQX7DzGQ6JrrMSGbbf9cR7M1HuX-S6b9pRddR3ZaZm-m4kC_2lGH7JrZwOZSFkCb-k4UjDTHCjr3Z1oO6XZx3FPgV6y550ZIr26_y_Y9vPV7eVXfvPty_Xlpxtuc1ATx66VhawVCVKitdSiNCViA61NL8cGIW9JAFrRGSwLlKrJqVWyIdEovGDvV9dfxnXG7fTBz8GlPN2efvw-_NUkQQjIUyWJfbeyY_CnmeKkj320NAzGkZ-jrioEWcpicX37iHywrRSiKGtVJEiskA0-xkCdHkN_NOGPFqCXc-j1HDpl6-UcejFWjzS2n-56T831w5NKuSpjSnE7Cv9Xekr05j5u793ulHQPO2JV1rWAEv8B9-urGw
CitedBy_id crossref_primary_10_5194_angeo_39_189_2021
crossref_primary_10_1007_s00376_012_1177_x
Cites_doi 10.1029/97JD03282
10.1029/2002JD002977
10.1029/97JD00529
10.1007/s00376-009-0423-3
10.1029/98JD00799
10.1038/46521
10.1029/1999GL010487
10.1175/1520-0469(1988)045<1798:TRDROA>2.0.CO;2
10.1029/2003JD004410
10.1029/2001GL013909
10.5194/acp-5-1257-2005
10.1007/s00376-002-0044-6
10.1029/2002JD003332
10.1029/2001JD001503
10.1029/2001JD001235
10.1029/98JD00265
10.1029/95JD00196
10.5194/acp-9-6055-2009
10.1016/j.jastp.2009.01.010
10.1029/2002JD002069
10.1029/2001GL013137
10.1007/BF02918709
10.1038/33385
10.1029/2000GL012133
10.1029/96JD03510
10.1029/GM123p0241
10.1029/92JD00806
10.1007/978-94-009-6401-3
10.1007/BF02918718
ClassificationCodes P421.32
ContentType Journal Article
Copyright Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
3V.
7TG
7XB
88F
88I
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
KL.
L.G
M1Q
M2P
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
Q9U
7TV
C1K
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s00376-010-0047-7
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
ProQuest Central (Corporate)
Meteorological & Geoastrophysical Abstracts
ProQuest Central (purchase pre-March 2016)
Military Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Military Database (ProQuest)
Science Database (ProQuest)
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Pollution Abstracts
Environmental Sciences and Pollution Management
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Military Collection
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Military Collection (Alumni Edition)
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
Pollution Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) Professional

Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
DocumentTitleAlternate Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere
EISSN 1861-9533
EndPage 842
ExternalDocumentID dqkxjz_e201104010
2381787591
10_1007_s00376_010_0047_7
38699106
Genre Feature
GeographicLocations PN, Arctic
GeographicLocations_xml – name: PN, Arctic
GrantInformation_xml – fundername: the National Basic Research Program of China; the National Natural Science Foundation of China(40505008; 40705014; ; 40633015)
  funderid: (2010CB428603); the National Natural Science Foundation of China(40505008; 40705014; ; 40633015)
GroupedDBID -5A
-5G
-5~
-BR
-EM
-Y2
-~C
.86
.VR
06D
0R~
0VY
1N0
2.D
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
3V.
4.4
406
408
40D
40E
5GY
5VR
5VS
67M
6J9
6NX
7XC
88I
8FE
8FH
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
95~
96X
AAAVM
AABHQ
AABYN
AAFGU
AAHNG
AAIAL
AAJKR
AAMRO
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
AAZAB
ABBBX
ABDZT
ABECU
ABEOS
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABUWG
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACIGE
ACIHN
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACREN
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEEQQ
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGGDS
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BHPHI
BKSAR
BPHCQ
C1A
CAG
CCEZO
CCPQU
CCVFK
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
D1K
DDRTE
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
HCIFZ
HF~
HG6
HMJXF
HRMNR
HVGLF
HZ~
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
I~X
I~Z
J-C
JBSCW
JZLTJ
K6-
KOV
L8X
LAS
LK5
LLZTM
M1Q
M2P
M4Y
M7R
MA-
N2Q
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
P19
P2P
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCL
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TCJ
TGP
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W94
WK6
WK8
YLTOR
Z7R
Z83
Z8M
Z8W
ZMTXR
~A9
~WA
-SA
-S~
5XA
5XB
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
ADMLS
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
BSONS
CAJEA
H13
Q--
U1G
U5K
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PUEGO
7TG
7XB
8FK
F1W
H96
KL.
L.G
PKEHL
PQEST
PQUKI
Q9U
7TV
C1K
4A8
ACMFV
PMFND
PSX
ID FETCH-LOGICAL-c407t-3fd25297e1e71dced32a633b0dcccc43b304de103c1fa365327b4ed72be1b73
IEDL.DBID AGYKE
ISSN 0256-1530
IngestDate Thu May 29 04:02:39 EDT 2025
Fri Sep 05 10:39:05 EDT 2025
Wed Sep 17 23:56:04 EDT 2025
Thu Apr 24 23:12:39 EDT 2025
Wed Oct 01 03:20:21 EDT 2025
Fri Feb 21 02:34:55 EST 2025
Wed Feb 14 10:09:17 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords temperature
stratospheric water vapor
SOCRATES model
numerical simulation
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-3fd25297e1e71dced32a633b0dcccc43b304de103c1fa365327b4ed72be1b73
Notes stratospheric water vapor; temperature; numerical simulation; SOCRATES model
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.
BI Yun1, CHEN Yuejuan1 , ZHOU Renjun1 , YI Mingjian1 , and DENG Shumei2 1School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 2Anhui Institute of Meteorological Sciences, Hefei 230031
11-1925/O4
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 873316975
PQPubID 54452
PageCount 11
ParticipantIDs wanfang_journals_dqkxjz_e201104010
proquest_miscellaneous_883026257
proquest_journals_873316975
crossref_primary_10_1007_s00376_010_0047_7
crossref_citationtrail_10_1007_s00376_010_0047_7
springer_journals_10_1007_s00376_010_0047_7
chongqing_primary_38699106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-07-01
PublicationDateYYYYMMDD 2011-07-01
PublicationDate_xml – month: 07
  year: 2011
  text: 2011-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Heidelberg
PublicationPlace_xml – name: Heidelberg
– name: Dordrecht
PublicationTitle Advances in atmospheric sciences
PublicationTitleAbbrev Adv. Atmos. Sci
PublicationTitleAlternate Advances in Atmospheric Sciences
PublicationTitle_FL ADVANCES IN ATMOSPHERIC SCIENCES
PublicationYear 2011
Publisher SP Science Press
Springer Nature B.V
School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026%Anhui Institute of Meteorological Sciences,Hefei,230031
Publisher_xml – name: SP Science Press
– name: Springer Nature B.V
– name: School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026%Anhui Institute of Meteorological Sciences,Hefei,230031
References Stenke, Grewe (CR29) 2005; 5
Oinas, Lasis, Rind, Shindell, Hansen (CR24) 2001; 28
Evans, Toumi, Harries, Chipperfield, Russell (CR7) 1998; 103
Gruzdev, Brasseur (CR12) 2005; 110
Jones (CR13) 2009; 9
Chen, Shi, Zheng (CR5) 2005; 22
Jucks, Salawitch (CR14) 2000
Christiansen, Guldberg, Hansen, Riishojgaard (CR6) 1997; 102
Zheng, Chen, Zhang (CR31) 2003; 27
Khosravi, Brasseur, Smith, Rusch, Walters, Chabrillat, Kockarts (CR15) 2002; 107
Langematz, Kunze, Krüger, Labitzke, Roff (CR18) 2003; 108
Bi, Chen, Xu, Deng, Zhou (CR1) 2007; 31
Forster, Shine (CR9) 1997; 102
Laštovička (CR19) 2009; 71
Nedoluha, Bevilacqua, Gomez, Siskind, Hicks, Russell, Connor (CR22) 1998; 103
Forster, Shine (CR10) 1999; 26
Kirk-Davidoff, Hintsa, Anderson, Keith (CR17) 1999; 402
Nedoluha, Bevilacqua, Gomez, Hicks, Russell, Connor (CR23) 2003; 108
Shindell, Rind, Onergan (CR28) 1998; 392
Briegleb (CR2) 1992; 97
Fomichev, Blanchet, Turner (CR8) 1998; 103
Oltmans, Vömel, Hofmann, Rosenlof, Kley (CR25) 2000; 27
Brasseur, Solomon (CR3) 1984
Tian, Chipperfield, Lü (CR30) 2009; 26
Shi, Zheng, Chen, Bi (CR27) 2009; 52
Forster, Shine (CR11) 2002; 29
Kiehl, Boville (CR16) 1998; 45
Lee, Smith (CR20) 2003; 108
Chen, Zheng, Zhang (CR4) 2002; 19
Rind, Lonergan (CR26) 1995; 100
Manzini, Steil, Brühl, Giorgetta, Krüger (CR21) 2003; 108
W. S. Tian (47_CR30) 2009; 26
Y.-J. Chen (47_CR4) 2002; 19
C. H. Shi (47_CR27) 2009; 52
A. Stenke (47_CR29) 2005; 5
Y. Bi (47_CR1) 2007; 31
S. J. Oltmans (47_CR25) 2000; 27
D. Rind (47_CR26) 1995; 100
G. Brasseur (47_CR3) 1984
R. Khosravi (47_CR15) 2002; 107
J. Laštovička (47_CR19) 2009; 71
B. Zheng (47_CR31) 2003; 27
H. Lee (47_CR20) 2003; 108
V. Oinas (47_CR24) 2001; 28
A. N. Gruzdev (47_CR12) 2005; 110
V. I. Fomichev (47_CR8) 1998; 103
J. T. Kiehl (47_CR16) 1998; 45
P. M. d. F. Forster (47_CR10) 1999; 26
D. T. Shindell (47_CR28) 1998; 392
B. P. Briegleb (47_CR2) 1992; 97
P. M. d. F. Forster (47_CR9) 1997; 102
P. M. d. F. Forster (47_CR11) 2002; 29
S. J. Evans (47_CR7) 1998; 103
D. B. Kirk-Davidoff (47_CR17) 1999; 402
G. E. Nedoluha (47_CR22) 1998; 103
G. E. Nedoluha (47_CR23) 2003; 108
K. W. Jucks (47_CR14) 2000
U. Langematz (47_CR18) 2003; 108
B. Christiansen (47_CR6) 1997; 102
E. Manzini (47_CR21) 2003; 108
Y.-J. Chen (47_CR5) 2005; 22
A. Jones (47_CR13) 2009; 9
References_xml – volume: 103
  start-page: 3531
  year: 1998
  end-page: 3543
  ident: CR22
  article-title: Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-based water vapor millimeter-wave spectrometer from 1991 to 1997
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JD03282
– volume: 108
  start-page: 4429
  year: 2003
  end-page: 4450
  ident: CR21
  article-title: A new interactive chemistry-climate model: 2 Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD002977
– volume: 102
  start-page: 13051
  year: 1997
  end-page: 13077
  ident: CR6
  article-title: On the response of a three-dimensional general circulation model to imposed changes in the ozone distribution
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JD00529
– volume: 26
  start-page: 423
  year: 2009
  end-page: 437
  ident: CR30
  article-title: Impact of increasing stratospheric water vapor on ozone depletion and temperature change
  publication-title: Adv. Atoms. Sci.
  doi: 10.1007/s00376-009-0423-3
– volume: 103
  start-page: 11505
  year: 1998
  end-page: 11528
  ident: CR8
  article-title: Matrix parameterization of the 15 mm CO band cooling in the middle and upper atmosphere for variable CO concentration
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JD00799
– volume: 402
  start-page: 399
  year: 1999
  end-page: 401
  ident: CR17
  article-title: The effect of climate change on ozone depletion through changes in stratospheric water vapour
  publication-title: Nature
  doi: 10.1038/46521
– volume: 52
  start-page: 2428
  year: 2009
  end-page: 2435
  ident: CR27
  article-title: The Quasi-biennial oscillation of water vapor in tropic stratosphere
  publication-title: Chinese Journal of Geophysics
– volume: 97
  start-page: 11475
  year: 1992
  end-page: 11485
  ident: CR2
  article-title: Longwave band model for thermal radiation in climate studies
  publication-title: J. Geophys. Res.
– year: 1984
  ident: CR3
  publication-title: Aeronomy of the Middle Atmosphere
– volume: 26
  start-page: 3309
  year: 1999
  end-page: 3312
  ident: CR10
  article-title: Stratospheric water vapor changes as a possible contributor to the observed stratospheric cooling
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL010487
– volume: 45
  start-page: 1798
  year: 1998
  end-page: 1817
  ident: CR16
  article-title: The radiativedynamical response of a stratospheric-tropospheric general circulation model to changes in ozone
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1988)045<1798:TRDROA>2.0.CO;2
– volume: 110
  start-page: 304
  year: 2005
  end-page: 321
  ident: CR12
  article-title: Long-term changes in the mesosphere calculated by a two-dimensional model
  publication-title: J. Geophys. Res.
  doi: 10.1029/2003JD004410
– volume: 29
  start-page: 1086
  year: 2002
  end-page: 1089
  ident: CR11
  article-title: Assessing in climate impact of trends in stratospheric water vapor
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL013909
– volume: 5
  start-page: 1257
  year: 2005
  end-page: 1272
  ident: CR29
  article-title: Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-5-1257-2005
– volume: 27
  start-page: 387
  year: 2003
  end-page: 398
  ident: CR31
  article-title: Quasibiennial oscillation in NO and its relation to Quasibiennial oscillation in O , Part II: Numerical experiment
  publication-title: Chinese J. Atmos. Sci.
– volume: 19
  start-page: 777
  year: 2002
  end-page: 793
  ident: CR4
  article-title: The features of ozone quasi-biennial oscillation in tropical stratosphere and its numerical simulation
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-002-0044-6
– volume: 108
  start-page: 4391
  year: 2003
  ident: CR23
  article-title: An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD003332
– volume: 108
  start-page: 4049
  year: 2003
  end-page: 4064
  ident: CR20
  article-title: Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD001503
– volume: 107
  start-page: 4358
  year: 2002
  end-page: 4378
  ident: CR15
  article-title: Response of the mesosphere to human-induced perturbations and solar variability calculated by 2-D model
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD001235
– volume: 103
  start-page: 8715
  year: 1998
  end-page: 8725
  ident: CR7
  article-title: Trends in stratospheric humidity and the sensitivity of ozone to these trends
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JD00265
– volume: 100
  start-page: 7381
  year: 1995
  end-page: 7396
  ident: CR26
  article-title: Modeled impacts of stratospheric ozone and water vapor perturbations with implications for high-speed civil transport aircraft
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JD00196
– volume: 9
  start-page: 6055
  year: 2009
  end-page: 6075
  ident: CR13
  article-title: Evolution of stratospheric ozone and water vapour time series studied with satellite measurements
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-9-6055-2009
– volume: 71
  start-page: 1514
  year: 2009
  end-page: 1528
  ident: CR19
  article-title: Global pattern of trends in upper atmosphere and ionosphere: Recent progress
  publication-title: Journal of Atmospheric and Solar-Terrestrial Physics
  doi: 10.1016/j.jastp.2009.01.010
– start-page: 241
  year: 2000
  end-page: 255
  ident: CR14
  article-title: Future changes in upper stratospheric ozone, 2000
  publication-title: , No. 123
– volume: 108
  start-page: 4027
  year: 2003
  end-page: 4048
  ident: CR18
  article-title: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO changes
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD002069
– volume: 28
  start-page: 2791
  year: 2001
  end-page: 2794
  ident: CR24
  article-title: Radiative cooling by stratospheric water vapor: Big differences in GCM results
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL013137
– volume: 31
  start-page: 440
  year: 2007
  end-page: 448
  ident: CR1
  article-title: Analysis of H O and CH distribution characteristics in the middle atmosphere using HALOE data
  publication-title: Chinese J. Atmos. Sci.
– volume: 22
  start-page: 751
  year: 2005
  end-page: 758
  ident: CR5
  article-title: HCl quasibiennial oscillation in the stratosphere and a comparison with ozone QBO
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/BF02918709
– volume: 392
  start-page: 589
  year: 1998
  end-page: 592
  ident: CR28
  article-title: Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations
  publication-title: Nature
  doi: 10.1038/33385
– volume: 27
  start-page: 3453
  year: 2000
  end-page: 3456
  ident: CR25
  article-title: The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL012133
– volume: 102
  start-page: 10841
  year: 1997
  end-page: 10855
  ident: CR9
  article-title: Radiative forcing and temperature trends from stratospheric ozone change
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JD03510
– volume: 392
  start-page: 589
  year: 1998
  ident: 47_CR28
  publication-title: Nature
  doi: 10.1038/33385
– volume: 29
  start-page: 1086
  year: 2002
  ident: 47_CR11
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL013909
– start-page: 241
  volume-title: Chapman Monograph on Atmospheric Science Across the Stratopause, No. 123
  year: 2000
  ident: 47_CR14
  doi: 10.1029/GM123p0241
– volume: 28
  start-page: 2791
  year: 2001
  ident: 47_CR24
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2001GL013137
– volume: 100
  start-page: 7381
  year: 1995
  ident: 47_CR26
  publication-title: J. Geophys. Res.
  doi: 10.1029/95JD00196
– volume: 108
  start-page: 4429
  year: 2003
  ident: 47_CR21
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD002977
– volume: 97
  start-page: 11475
  year: 1992
  ident: 47_CR2
  publication-title: J. Geophys. Res.
  doi: 10.1029/92JD00806
– volume: 27
  start-page: 3453
  year: 2000
  ident: 47_CR25
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2000GL012133
– volume: 108
  start-page: 4391
  year: 2003
  ident: 47_CR23
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD003332
– volume: 103
  start-page: 3531
  year: 1998
  ident: 47_CR22
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JD03282
– volume: 26
  start-page: 3309
  year: 1999
  ident: 47_CR10
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL010487
– volume: 9
  start-page: 6055
  year: 2009
  ident: 47_CR13
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-9-6055-2009
– volume: 107
  start-page: 4358
  year: 2002
  ident: 47_CR15
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD001235
– volume: 102
  start-page: 10841
  year: 1997
  ident: 47_CR9
  publication-title: J. Geophys. Res.
  doi: 10.1029/96JD03510
– volume: 110
  start-page: 304
  year: 2005
  ident: 47_CR12
  publication-title: J. Geophys. Res.
  doi: 10.1029/2003JD004410
– volume: 102
  start-page: 13051
  year: 1997
  ident: 47_CR6
  publication-title: J. Geophys. Res.
  doi: 10.1029/97JD00529
– volume: 27
  start-page: 387
  year: 2003
  ident: 47_CR31
  publication-title: Chinese J. Atmos. Sci.
– volume: 71
  start-page: 1514
  year: 2009
  ident: 47_CR19
  publication-title: Journal of Atmospheric and Solar-Terrestrial Physics
  doi: 10.1016/j.jastp.2009.01.010
– volume-title: Aeronomy of the Middle Atmosphere
  year: 1984
  ident: 47_CR3
  doi: 10.1007/978-94-009-6401-3
– volume: 402
  start-page: 399
  year: 1999
  ident: 47_CR17
  publication-title: Nature
  doi: 10.1038/46521
– volume: 52
  start-page: 2428
  year: 2009
  ident: 47_CR27
  publication-title: Chinese Journal of Geophysics
– volume: 19
  start-page: 777
  year: 2002
  ident: 47_CR4
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-002-0044-6
– volume: 103
  start-page: 8715
  year: 1998
  ident: 47_CR7
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JD00265
– volume: 108
  start-page: 4049
  year: 2003
  ident: 47_CR20
  publication-title: J. Geophys. Res.
  doi: 10.1029/2001JD001503
– volume: 22
  start-page: 751
  year: 2005
  ident: 47_CR5
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/BF02918718
– volume: 31
  start-page: 440
  year: 2007
  ident: 47_CR1
  publication-title: Chinese J. Atmos. Sci.
– volume: 45
  start-page: 1798
  year: 1998
  ident: 47_CR16
  publication-title: J. Atmos. Sci.
  doi: 10.1175/1520-0469(1988)045<1798:TRDROA>2.0.CO;2
– volume: 103
  start-page: 11505
  year: 1998
  ident: 47_CR8
  publication-title: J. Geophys. Res.
  doi: 10.1029/98JD00799
– volume: 5
  start-page: 1257
  year: 2005
  ident: 47_CR29
  publication-title: Atmospheric Chemistry and Physics
  doi: 10.5194/acp-5-1257-2005
– volume: 26
  start-page: 423
  year: 2009
  ident: 47_CR30
  publication-title: Adv. Atoms. Sci.
  doi: 10.1007/s00376-009-0423-3
– volume: 108
  start-page: 4027
  year: 2003
  ident: 47_CR18
  publication-title: J. Geophys. Res.
  doi: 10.1029/2002JD002069
SSID ssj0039381
Score 1.9108493
Snippet To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the...
P421.32; To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere,the effects of water-vapor increases on temperature in the...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 832
SubjectTerms Arctic zone
Atmospheric models
Atmospheric Sciences
Climate
Cooling
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Infrared radiation
Meteorology
Ozone
Ozone depletion
Stratosphere
Temperature
Water vapor
中高纬度地区
北极地区
平流层
模拟
水蒸气
温度变化
臭氧减少
辐射冷却
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7YUL4lOkhcqqUA8giyRO4uSAUKlaVUhbVSxIvVmO7bTblqT7UUD8ema8TrZcNjcnjhNlPJ5nj_MewLtcy0KTp2F4Nxw9MeFaNLTLysbGyDrTnoFvfFac_si-XuQXWzDu_4WhbZX9mOgHatsZWiP_WJK4YFHJ_PPdjJNoFCVXewUNHZQV7CfPMPYItlMSVR7B9pfjs_Nv_dAsKuFVSynOc3T1Ic0Ze1ZR9DXuc8PEXiCJbOGqay9nGEL-D1prJDokT_0vP22j28sH0enkKTwJsJIdrvrBM9hy7XOIxoiIu7lfOGcH7Oh2ivDUl17AZDL9GZS7WNcwhIFstbWDSr8RgM75L43YnE1bwpULx7Ai8VgFEmY872_ytLvdgsgJ3EuYnBx_PzrlQWCBG5zHLblobJqnlXSJk4k1zopUF0LUsTV4ZKIWcWZdEguTNGizXKRoPGdlWrukluIVjNquda-B2dxleaq1y12RmTTRJcKEqpal0RVOUMsIdoZvqe5WNBpKlAWC07iIIO4_rjKBmJz0MW7VQKnsbaPQNopso2QE74db-uY2VN7tLaaCgy7U0J0iYMNV9CxKl-jWdfdYhajRcHqIDXzo7bxuYMPj9kNXWFe2s5s_13-V82gLZ7TxzsZ32oXHq6Vr2hX8BkbL-b17i9hnWe-FHv0PSKf_lg
  priority: 102
  providerName: ProQuest
Title Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere
URI http://lib.cqvip.com/qk/84334X/201104/38699106.html
https://link.springer.com/article/10.1007/s00376-010-0047-7
https://www.proquest.com/docview/873316975
https://www.proquest.com/docview/883026257
https://d.wanfangdata.com.cn/periodical/dqkxjz-e201104010
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1861-9533
  dateEnd: 20241001
  omitProxy: false
  ssIdentifier: ssj0039381
  issn: 0256-1530
  databaseCode: ADMLS
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1861-9533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039381
  issn: 0256-1530
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1861-9533
  dateEnd: 20190228
  omitProxy: true
  ssIdentifier: ssj0039381
  issn: 0256-1530
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1861-9533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0039381
  issn: 0256-1530
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1861-9533
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0039381
  issn: 0256-1530
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7YULlJdIW1YWQhxAqZI4jpPjUrZUwFaIbaVyshzbaZeWhO4DUH89Y8fJAkKVmkuUxJkkHo_9TTz-BuAFkzyT1tJweFchWmIcSlrZKCsdKcXLVDoGvslRdniSvj9lp34d96KLdu-mJF1P3S92s1Qp1vu1K6FTHvIN2GTWPxnA5ujdlw_jrgOmBXW5Se1oHqJB95OZ_xNiKRXOm_rsCh_499C0xpv9FKlb2FNXsj77Yww6uA_H3du3oScXe6tluaeu_yF2vOXnbcE9j0nJqG1ED-COqR9CMEE43czdX3fykuxfzhDbuqNHMJ3Ovvm0X6SpCGJI0saF2KOfiF7n4Q-JwJ7MagtKF4ZgQUuC5Rmc8by7yXH2NgvLbGAew_RgfLx_GPrsDKFCJ3AZ0konLCm4iQ2PtTKaJjKjtIy0wi2lJY1SbeKIqrhChTOaoOaN5klp4pLTJzCom9o8BaKZSVkipWEmS1USyxwxRlHyXMkCvds8gO1eReJ7y8EhaJ4hso2yAKJOZ0J5VnObXONS9HzMrmIFVqywFSt4AK_6WzpxNxTe6RqC8Na9ELlNdJkVnAVA-qtolnauRdamWWERy6uGviUKeN3pey3ghsc99y1sXVhfXfz6ei2Mg2roDkfbtxK5A3fb_-A2xHgXBsv5yjxDILUsh2g4bycfp0NvQLh_Mz769HkIGyfJ6DdLzRat
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gCXiqdIy8NCwAEUkcSbODlUCEqrLe2uEFuknrAc2ykLJek-SoG_xp9jxutk4bK35pbEcRKPx_ONx_4G4GmqRKZI09C86xA1MQ4Vr2iVlYm0FmVPOQa-wTDrf-q9P0lP1uBPuxeGllW2Y6IbqE2jaY78VU7JBbNCpK_PJyEljaLgaptBQ_nMCmbHMYz5fR2H9tclenCznYN3KO5nSbK_d7zbD32SgVCjLzMPeWWSNCmEja2IjbaGJyrjvIyMxqPHS_T3jY0jruMKvzvlCf6ANSIpbVwKjrVegw3EHBxVauPt3vDDx9YQ8IK7HKmEKkIcWLqgauQ4TFGzQxeJJq4EQdQOX5r6dIIG638TucS9XajWbTCqK1Wf_mML92_Cpgex7M2i192CNVvfhmCA-LuZuml69pztno0RDLuzOzAajb_7PGGsqRiCTrZYSEJnlwh3p-EPhZ4AG9eEYmeWYUFizfKUz3jdPeRIfpsZUSHYuzC6gpa-B-t1U9v7wExqe2milE1t1tNJrHIEJUUpcq0KdIfzALa6tpTnC9IOyfMMoXCUBRC1jSu1p0GnbBxnsiNwdrKRKBtJspEigBfdI211KwpvtxKTfjiYya7zBsC6u6jHFJxRtW0usAgRsaEzihW8bOW8rGDF6574rrAsbCbffn79La3Ddug_R1srv-kxXO8fD47k0cHwcBtuLCbNaT3yA1ifTy_sQ0Rd8_KR790MPl-tOv0FX3w8VA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFD9RTIwvRkTjQKExxgfNwrZu6_ZIgBtQISRXEt6aru3gAnZw7wWMf73ndB8XE0Li3rq1p0lPz87v9ON3AD5lSuSKLA3duw7REuNQ8ZpOWZlIa1GlyjPwHRzme8fpt5PspMtzOutPu_dbku2dBmJpcvPNK1NvDhffiDaFImG6FZ2KUDyFZym6aoq-jpOt_lfMS-6zlJJfD9G0h23Nh0QQucJZ406vset_ndQCeQ6bpf6Kj6uVO73njUav4GUHI9lWq_dleGLdawgOEAE3U79Qzj6z7csJwlFfWoHxePKry9TFmpoh7GPtUQ4q3SHgnIa3CrE4mzjCkTPLsCLxVnWky_jeN_I0u82MyAjsGxiPdn9u74VdQoVQY9w2D3ltkiwphY2tiI22hicq57yKjMYn5RWPUmPjiOu4Rh1lPEFlWSOSysaV4G9hyTXOvgNmMptmiVI2s3mqk1gVCAvKShRalRiQFgGsDmMpr1raDMmLHMFolAcQ9YMrdUdETvkwLuVAoex1I1E3knQjRQBfhia9uEcqr_Uak51BzmRBuSnzUmQBsOErWhJtjyhnmxusQlRoGA6igK-9nhcCHunuYzcVFpXN9cXv8z_SenSFEWy0-l8iN-D50c5I_tg__L4GL9pVbDog_B6W5tMb-wFh0Lxa91P9L69p_Po
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+the+effect+of+water-vapor+increase+on+temperature+in+the+stratosphere&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Bi%2C+Yun&rft.au=Chen%2C+Yuejuan&rft.au=Zhou%2C+Renjun&rft.au=Yi%2C+Mingjian&rft.date=2011-07-01&rft.issn=0256-1530&rft.eissn=1861-9533&rft.volume=28&rft.issue=4&rft.spage=832&rft.epage=842&rft_id=info:doi/10.1007%2Fs00376-010-0047-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84334X%2F84334X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg