Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere
To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that...
Saved in:
Published in | Advances in atmospheric sciences Vol. 28; no. 4; pp. 832 - 842 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Heidelberg
SP Science Press
01.07.2011
Springer Nature B.V School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026%Anhui Institute of Meteorological Sciences,Hefei,230031 |
Subjects | |
Online Access | Get full text |
ISSN | 0256-1530 1861-9533 |
DOI | 10.1007/s00376-010-0047-7 |
Cover
Abstract | To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change. |
---|---|
AbstractList | To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change. To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change. To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change.[PUBLICATION ABSTRACT] P421.32; To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere,the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional,interactive chemical dynamical radiative model (SOCRATES) of NCAR.The results indicate that increases in stratospheric water vapor lead to stratospheric cooling,with the extent of cooling increasing with height,and that cooling in the middle stratosphere is stronger in Arctic regions.Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling.However,in the upper stratosphere (above 45 km),infrared radiation is not a factor in cooling;there,cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor.Dynamical cooling is important in the middle-upper stratosphere,and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and significantly affects temperature and ozone in winter over Arctic regions.Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process.However,ozone will increase in the middle stratosphere.The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change. |
Author | 毕云 陈月娟 周任君 易明建 邓淑梅 |
AuthorAffiliation | School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 Anhui Institute of Meteorological Sciences, Hefei 230031 |
AuthorAffiliation_xml | – name: School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026%Anhui Institute of Meteorological Sciences,Hefei,230031 |
Author_xml | – sequence: 1 fullname: 毕云 陈月娟 周任君 易明建 邓淑梅 |
BookMark | eNp9kU9v1DAQxS1UJLaFD8AtcEEcDGNPEidHVBWoVInDVuJoOc5kN0vWztoJ_z49TlMVqYf6Yo30e--N3pyzM-cdMfZawAcBoD5GAFQlBwEcIFdcPWMbUZWC1wXiGduALEouCoQX7DzGQ6JrrMSGbbf9cR7M1HuX-S6b9pRddR3ZaZm-m4kC_2lGH7JrZwOZSFkCb-k4UjDTHCjr3Z1oO6XZx3FPgV6y550ZIr26_y_Y9vPV7eVXfvPty_Xlpxtuc1ATx66VhawVCVKitdSiNCViA61NL8cGIW9JAFrRGSwLlKrJqVWyIdEovGDvV9dfxnXG7fTBz8GlPN2efvw-_NUkQQjIUyWJfbeyY_CnmeKkj320NAzGkZ-jrioEWcpicX37iHywrRSiKGtVJEiskA0-xkCdHkN_NOGPFqCXc-j1HDpl6-UcejFWjzS2n-56T831w5NKuSpjSnE7Cv9Xekr05j5u793ulHQPO2JV1rWAEv8B9-urGw |
CitedBy_id | crossref_primary_10_5194_angeo_39_189_2021 crossref_primary_10_1007_s00376_012_1177_x |
Cites_doi | 10.1029/97JD03282 10.1029/2002JD002977 10.1029/97JD00529 10.1007/s00376-009-0423-3 10.1029/98JD00799 10.1038/46521 10.1029/1999GL010487 10.1175/1520-0469(1988)045<1798:TRDROA>2.0.CO;2 10.1029/2003JD004410 10.1029/2001GL013909 10.5194/acp-5-1257-2005 10.1007/s00376-002-0044-6 10.1029/2002JD003332 10.1029/2001JD001503 10.1029/2001JD001235 10.1029/98JD00265 10.1029/95JD00196 10.5194/acp-9-6055-2009 10.1016/j.jastp.2009.01.010 10.1029/2002JD002069 10.1029/2001GL013137 10.1007/BF02918709 10.1038/33385 10.1029/2000GL012133 10.1029/96JD03510 10.1029/GM123p0241 10.1029/92JD00806 10.1007/978-94-009-6401-3 10.1007/BF02918718 |
ClassificationCodes | P421.32 |
ContentType | Journal Article |
Copyright | Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011 Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Chinese National Committee for International Association of Meteorology and Atmospheric Sciences, Institute of Atmospheric Physics, Science Press and Springer-Verlag Berlin Heidelberg 2011 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 3V. 7TG 7XB 88F 88I 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W GNUQQ H96 HCIFZ KL. L.G M1Q M2P PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PYCSY Q9U 7TV C1K 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.1007/s00376-010-0047-7 |
DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts ProQuest Central (purchase pre-March 2016) Military Database (Alumni Edition) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Military Database (ProQuest) Science Database (ProQuest) Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Pollution Abstracts Environmental Sciences and Pollution Management Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Military Collection ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Military Collection (Alumni Edition) Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) ProQuest Central (Alumni) Pollution Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology |
DocumentTitleAlternate | Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere |
EISSN | 1861-9533 |
EndPage | 842 |
ExternalDocumentID | dqkxjz_e201104010 2381787591 10_1007_s00376_010_0047_7 38699106 |
Genre | Feature |
GeographicLocations | PN, Arctic |
GeographicLocations_xml | – name: PN, Arctic |
GrantInformation_xml | – fundername: the National Basic Research Program of China; the National Natural Science Foundation of China(40505008; 40705014; ; 40633015) funderid: (2010CB428603); the National Natural Science Foundation of China(40505008; 40705014; ; 40633015) |
GroupedDBID | -5A -5G -5~ -BR -EM -Y2 -~C .86 .VR 06D 0R~ 0VY 1N0 2.D 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2RA 2VQ 2~H 30V 3V. 4.4 406 408 40D 40E 5GY 5VR 5VS 67M 6J9 6NX 7XC 88I 8FE 8FH 8TC 8UJ 92E 92I 92L 92Q 93N 95- 95. 95~ 96X AAAVM AABHQ AABYN AAFGU AAHNG AAIAL AAJKR AAMRO AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO AAZAB ABBBX ABDZT ABECU ABEOS ABFGW ABFTV ABHQN ABJNI ABJOX ABKAS ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACBMV ACBRV ACBXY ACBYP ACGFO ACGFS ACGOD ACHSB ACHXU ACIGE ACIHN ACIPQ ACKNC ACMDZ ACMLO ACOKC ACOMO ACREN ACSNA ACTTH ACVWB ACWMK ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEEQQ AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFUIB AFWTZ AFYQB AFZKB AGAYW AGDGC AGGBP AGGDS AGJBK AGMZJ AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGNMA BHPHI BKSAR BPHCQ C1A CAG CCEZO CCPQU CCVFK CHBEP COF CQIGP CS3 CSCUP CW9 D1K DDRTE DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FA0 FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 HCIFZ HF~ HG6 HMJXF HRMNR HVGLF HZ~ IHE IJ- IKXTQ ITM IWAJR IXC I~X I~Z J-C JBSCW JZLTJ K6- KOV L8X LAS LK5 LLZTM M1Q M2P M4Y M7R MA- N2Q NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J P19 P2P PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCL SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TCJ TGP TSG TUC U2A UG4 UNUBA UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 W94 WK6 WK8 YLTOR Z7R Z83 Z8M Z8W ZMTXR ~A9 ~WA -SA -S~ 5XA 5XB AACDK AAJBT AASML AAXDM AAYZH ABAKF ABQSL ACDTI ACPIV ADMLS AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU BSONS CAJEA H13 Q-- U1G U5K AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PUEGO 7TG 7XB 8FK F1W H96 KL. L.G PKEHL PQEST PQUKI Q9U 7TV C1K 4A8 ACMFV PMFND PSX |
ID | FETCH-LOGICAL-c407t-3fd25297e1e71dced32a633b0dcccc43b304de103c1fa365327b4ed72be1b73 |
IEDL.DBID | AGYKE |
ISSN | 0256-1530 |
IngestDate | Thu May 29 04:02:39 EDT 2025 Fri Sep 05 10:39:05 EDT 2025 Wed Sep 17 23:56:04 EDT 2025 Thu Apr 24 23:12:39 EDT 2025 Wed Oct 01 03:20:21 EDT 2025 Fri Feb 21 02:34:55 EST 2025 Wed Feb 14 10:09:17 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | temperature stratospheric water vapor SOCRATES model numerical simulation |
Language | English |
License | http://www.springer.com/tdm |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c407t-3fd25297e1e71dced32a633b0dcccc43b304de103c1fa365327b4ed72be1b73 |
Notes | stratospheric water vapor; temperature; numerical simulation; SOCRATES model To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the stratosphere were simulated using the two-dimensional, interactive chemical dynamical radiative model (SOCRATES) of NCAR. The results indicate that increases in stratospheric water vapor lead to stratospheric cooling, with the extent of cooling increasing with height, and that cooling in the middle stratosphere is stronger in Arctic regions. Analysis of the radiation process showed that infrared radiative cooling by water vapor is a pivotal factor in middle-lower stratospheric cooling. However, in the upper stratosphere (above 45 km), infrared radiation is not a factor in cooling; there, cooling is caused by the decreased solar radiative heating rate resulting from ozone decrease due to increased stratospheric water vapor. Dynamical cooling is important in the middle-upper stratosphere, and dynamical feedback to temperature change is more distinct in the Northern Hemisphere middle-high latitudes than in other regions and signiffcantly affects temperature and ozone in winter over Arctic regions. Increasing stratospheric water vapor will strengthen ozone depletion through the chemical process. However, ozone will increase in the middle stratosphere. The change in ozone due to increasing water vapor has an important effect on the stratospheric temperature change. BI Yun1, CHEN Yuejuan1 , ZHOU Renjun1 , YI Mingjian1 , and DENG Shumei2 1School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026 2Anhui Institute of Meteorological Sciences, Hefei 230031 11-1925/O4 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PQID | 873316975 |
PQPubID | 54452 |
PageCount | 11 |
ParticipantIDs | wanfang_journals_dqkxjz_e201104010 proquest_miscellaneous_883026257 proquest_journals_873316975 crossref_primary_10_1007_s00376_010_0047_7 crossref_citationtrail_10_1007_s00376_010_0047_7 springer_journals_10_1007_s00376_010_0047_7 chongqing_primary_38699106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-07-01 |
PublicationDateYYYYMMDD | 2011-07-01 |
PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Heidelberg |
PublicationPlace_xml | – name: Heidelberg – name: Dordrecht |
PublicationTitle | Advances in atmospheric sciences |
PublicationTitleAbbrev | Adv. Atmos. Sci |
PublicationTitleAlternate | Advances in Atmospheric Sciences |
PublicationTitle_FL | ADVANCES IN ATMOSPHERIC SCIENCES |
PublicationYear | 2011 |
Publisher | SP Science Press Springer Nature B.V School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026%Anhui Institute of Meteorological Sciences,Hefei,230031 |
Publisher_xml | – name: SP Science Press – name: Springer Nature B.V – name: School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026%Anhui Institute of Meteorological Sciences,Hefei,230031 |
References | Stenke, Grewe (CR29) 2005; 5 Oinas, Lasis, Rind, Shindell, Hansen (CR24) 2001; 28 Evans, Toumi, Harries, Chipperfield, Russell (CR7) 1998; 103 Gruzdev, Brasseur (CR12) 2005; 110 Jones (CR13) 2009; 9 Chen, Shi, Zheng (CR5) 2005; 22 Jucks, Salawitch (CR14) 2000 Christiansen, Guldberg, Hansen, Riishojgaard (CR6) 1997; 102 Zheng, Chen, Zhang (CR31) 2003; 27 Khosravi, Brasseur, Smith, Rusch, Walters, Chabrillat, Kockarts (CR15) 2002; 107 Langematz, Kunze, Krüger, Labitzke, Roff (CR18) 2003; 108 Bi, Chen, Xu, Deng, Zhou (CR1) 2007; 31 Forster, Shine (CR9) 1997; 102 Laštovička (CR19) 2009; 71 Nedoluha, Bevilacqua, Gomez, Siskind, Hicks, Russell, Connor (CR22) 1998; 103 Forster, Shine (CR10) 1999; 26 Kirk-Davidoff, Hintsa, Anderson, Keith (CR17) 1999; 402 Nedoluha, Bevilacqua, Gomez, Hicks, Russell, Connor (CR23) 2003; 108 Shindell, Rind, Onergan (CR28) 1998; 392 Briegleb (CR2) 1992; 97 Fomichev, Blanchet, Turner (CR8) 1998; 103 Oltmans, Vömel, Hofmann, Rosenlof, Kley (CR25) 2000; 27 Brasseur, Solomon (CR3) 1984 Tian, Chipperfield, Lü (CR30) 2009; 26 Shi, Zheng, Chen, Bi (CR27) 2009; 52 Forster, Shine (CR11) 2002; 29 Kiehl, Boville (CR16) 1998; 45 Lee, Smith (CR20) 2003; 108 Chen, Zheng, Zhang (CR4) 2002; 19 Rind, Lonergan (CR26) 1995; 100 Manzini, Steil, Brühl, Giorgetta, Krüger (CR21) 2003; 108 W. S. Tian (47_CR30) 2009; 26 Y.-J. Chen (47_CR4) 2002; 19 C. H. Shi (47_CR27) 2009; 52 A. Stenke (47_CR29) 2005; 5 Y. Bi (47_CR1) 2007; 31 S. J. Oltmans (47_CR25) 2000; 27 D. Rind (47_CR26) 1995; 100 G. Brasseur (47_CR3) 1984 R. Khosravi (47_CR15) 2002; 107 J. Laštovička (47_CR19) 2009; 71 B. Zheng (47_CR31) 2003; 27 H. Lee (47_CR20) 2003; 108 V. Oinas (47_CR24) 2001; 28 A. N. Gruzdev (47_CR12) 2005; 110 V. I. Fomichev (47_CR8) 1998; 103 J. T. Kiehl (47_CR16) 1998; 45 P. M. d. F. Forster (47_CR10) 1999; 26 D. T. Shindell (47_CR28) 1998; 392 B. P. Briegleb (47_CR2) 1992; 97 P. M. d. F. Forster (47_CR9) 1997; 102 P. M. d. F. Forster (47_CR11) 2002; 29 S. J. Evans (47_CR7) 1998; 103 D. B. Kirk-Davidoff (47_CR17) 1999; 402 G. E. Nedoluha (47_CR22) 1998; 103 G. E. Nedoluha (47_CR23) 2003; 108 K. W. Jucks (47_CR14) 2000 U. Langematz (47_CR18) 2003; 108 B. Christiansen (47_CR6) 1997; 102 E. Manzini (47_CR21) 2003; 108 Y.-J. Chen (47_CR5) 2005; 22 A. Jones (47_CR13) 2009; 9 |
References_xml | – volume: 103 start-page: 3531 year: 1998 end-page: 3543 ident: CR22 article-title: Increases in middle atmospheric water vapor as observed by the Halogen Occultation Experiment and the ground-based water vapor millimeter-wave spectrometer from 1991 to 1997 publication-title: J. Geophys. Res. doi: 10.1029/97JD03282 – volume: 108 start-page: 4429 year: 2003 end-page: 4450 ident: CR21 article-title: A new interactive chemistry-climate model: 2 Sensitivity of the middle atmosphere to ozone depletion and increase in greenhouse gases and implications for recent stratospheric cooling publication-title: J. Geophys. Res. doi: 10.1029/2002JD002977 – volume: 102 start-page: 13051 year: 1997 end-page: 13077 ident: CR6 article-title: On the response of a three-dimensional general circulation model to imposed changes in the ozone distribution publication-title: J. Geophys. Res. doi: 10.1029/97JD00529 – volume: 26 start-page: 423 year: 2009 end-page: 437 ident: CR30 article-title: Impact of increasing stratospheric water vapor on ozone depletion and temperature change publication-title: Adv. Atoms. Sci. doi: 10.1007/s00376-009-0423-3 – volume: 103 start-page: 11505 year: 1998 end-page: 11528 ident: CR8 article-title: Matrix parameterization of the 15 mm CO band cooling in the middle and upper atmosphere for variable CO concentration publication-title: J. Geophys. Res. doi: 10.1029/98JD00799 – volume: 402 start-page: 399 year: 1999 end-page: 401 ident: CR17 article-title: The effect of climate change on ozone depletion through changes in stratospheric water vapour publication-title: Nature doi: 10.1038/46521 – volume: 52 start-page: 2428 year: 2009 end-page: 2435 ident: CR27 article-title: The Quasi-biennial oscillation of water vapor in tropic stratosphere publication-title: Chinese Journal of Geophysics – volume: 97 start-page: 11475 year: 1992 end-page: 11485 ident: CR2 article-title: Longwave band model for thermal radiation in climate studies publication-title: J. Geophys. Res. – year: 1984 ident: CR3 publication-title: Aeronomy of the Middle Atmosphere – volume: 26 start-page: 3309 year: 1999 end-page: 3312 ident: CR10 article-title: Stratospheric water vapor changes as a possible contributor to the observed stratospheric cooling publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL010487 – volume: 45 start-page: 1798 year: 1998 end-page: 1817 ident: CR16 article-title: The radiativedynamical response of a stratospheric-tropospheric general circulation model to changes in ozone publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1988)045<1798:TRDROA>2.0.CO;2 – volume: 110 start-page: 304 year: 2005 end-page: 321 ident: CR12 article-title: Long-term changes in the mesosphere calculated by a two-dimensional model publication-title: J. Geophys. Res. doi: 10.1029/2003JD004410 – volume: 29 start-page: 1086 year: 2002 end-page: 1089 ident: CR11 article-title: Assessing in climate impact of trends in stratospheric water vapor publication-title: Geophys. Res. Lett. doi: 10.1029/2001GL013909 – volume: 5 start-page: 1257 year: 2005 end-page: 1272 ident: CR29 article-title: Simulation of stratospheric water vapor trends: impact on stratospheric ozone chemistry publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-5-1257-2005 – volume: 27 start-page: 387 year: 2003 end-page: 398 ident: CR31 article-title: Quasibiennial oscillation in NO and its relation to Quasibiennial oscillation in O , Part II: Numerical experiment publication-title: Chinese J. Atmos. Sci. – volume: 19 start-page: 777 year: 2002 end-page: 793 ident: CR4 article-title: The features of ozone quasi-biennial oscillation in tropical stratosphere and its numerical simulation publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-002-0044-6 – volume: 108 start-page: 4391 year: 2003 ident: CR23 article-title: An evaluation of trends in middle atmospheric water vapor as measured by HALOE, WVMS, and POAM publication-title: J. Geophys. Res. doi: 10.1029/2002JD003332 – volume: 108 start-page: 4049 year: 2003 end-page: 4064 ident: CR20 article-title: Simulation of the combined effects of solar cycle, quasi-biennial oscillation, and volcanic forcing on stratospheric ozone changes in recent decades publication-title: J. Geophys. Res. doi: 10.1029/2001JD001503 – volume: 107 start-page: 4358 year: 2002 end-page: 4378 ident: CR15 article-title: Response of the mesosphere to human-induced perturbations and solar variability calculated by 2-D model publication-title: J. Geophys. Res. doi: 10.1029/2001JD001235 – volume: 103 start-page: 8715 year: 1998 end-page: 8725 ident: CR7 article-title: Trends in stratospheric humidity and the sensitivity of ozone to these trends publication-title: J. Geophys. Res. doi: 10.1029/98JD00265 – volume: 100 start-page: 7381 year: 1995 end-page: 7396 ident: CR26 article-title: Modeled impacts of stratospheric ozone and water vapor perturbations with implications for high-speed civil transport aircraft publication-title: J. Geophys. Res. doi: 10.1029/95JD00196 – volume: 9 start-page: 6055 year: 2009 end-page: 6075 ident: CR13 article-title: Evolution of stratospheric ozone and water vapour time series studied with satellite measurements publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-9-6055-2009 – volume: 71 start-page: 1514 year: 2009 end-page: 1528 ident: CR19 article-title: Global pattern of trends in upper atmosphere and ionosphere: Recent progress publication-title: Journal of Atmospheric and Solar-Terrestrial Physics doi: 10.1016/j.jastp.2009.01.010 – start-page: 241 year: 2000 end-page: 255 ident: CR14 article-title: Future changes in upper stratospheric ozone, 2000 publication-title: , No. 123 – volume: 108 start-page: 4027 year: 2003 end-page: 4048 ident: CR18 article-title: Thermal and dynamical changes of the stratosphere since 1979 and their link to ozone and CO changes publication-title: J. Geophys. Res. doi: 10.1029/2002JD002069 – volume: 28 start-page: 2791 year: 2001 end-page: 2794 ident: CR24 article-title: Radiative cooling by stratospheric water vapor: Big differences in GCM results publication-title: Geophys. Res. Lett. doi: 10.1029/2001GL013137 – volume: 31 start-page: 440 year: 2007 end-page: 448 ident: CR1 article-title: Analysis of H O and CH distribution characteristics in the middle atmosphere using HALOE data publication-title: Chinese J. Atmos. Sci. – volume: 22 start-page: 751 year: 2005 end-page: 758 ident: CR5 article-title: HCl quasibiennial oscillation in the stratosphere and a comparison with ozone QBO publication-title: Adv. Atmos. Sci. doi: 10.1007/BF02918709 – volume: 392 start-page: 589 year: 1998 end-page: 592 ident: CR28 article-title: Increased polar stratospheric ozone losses and delayed eventual recovery owing to increasing greenhouse-gas concentrations publication-title: Nature doi: 10.1038/33385 – volume: 27 start-page: 3453 year: 2000 end-page: 3456 ident: CR25 article-title: The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL012133 – volume: 102 start-page: 10841 year: 1997 end-page: 10855 ident: CR9 article-title: Radiative forcing and temperature trends from stratospheric ozone change publication-title: J. Geophys. Res. doi: 10.1029/96JD03510 – volume: 392 start-page: 589 year: 1998 ident: 47_CR28 publication-title: Nature doi: 10.1038/33385 – volume: 29 start-page: 1086 year: 2002 ident: 47_CR11 publication-title: Geophys. Res. Lett. doi: 10.1029/2001GL013909 – start-page: 241 volume-title: Chapman Monograph on Atmospheric Science Across the Stratopause, No. 123 year: 2000 ident: 47_CR14 doi: 10.1029/GM123p0241 – volume: 28 start-page: 2791 year: 2001 ident: 47_CR24 publication-title: Geophys. Res. Lett. doi: 10.1029/2001GL013137 – volume: 100 start-page: 7381 year: 1995 ident: 47_CR26 publication-title: J. Geophys. Res. doi: 10.1029/95JD00196 – volume: 108 start-page: 4429 year: 2003 ident: 47_CR21 publication-title: J. Geophys. Res. doi: 10.1029/2002JD002977 – volume: 97 start-page: 11475 year: 1992 ident: 47_CR2 publication-title: J. Geophys. Res. doi: 10.1029/92JD00806 – volume: 27 start-page: 3453 year: 2000 ident: 47_CR25 publication-title: Geophys. Res. Lett. doi: 10.1029/2000GL012133 – volume: 108 start-page: 4391 year: 2003 ident: 47_CR23 publication-title: J. Geophys. Res. doi: 10.1029/2002JD003332 – volume: 103 start-page: 3531 year: 1998 ident: 47_CR22 publication-title: J. Geophys. Res. doi: 10.1029/97JD03282 – volume: 26 start-page: 3309 year: 1999 ident: 47_CR10 publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL010487 – volume: 9 start-page: 6055 year: 2009 ident: 47_CR13 publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-9-6055-2009 – volume: 107 start-page: 4358 year: 2002 ident: 47_CR15 publication-title: J. Geophys. Res. doi: 10.1029/2001JD001235 – volume: 102 start-page: 10841 year: 1997 ident: 47_CR9 publication-title: J. Geophys. Res. doi: 10.1029/96JD03510 – volume: 110 start-page: 304 year: 2005 ident: 47_CR12 publication-title: J. Geophys. Res. doi: 10.1029/2003JD004410 – volume: 102 start-page: 13051 year: 1997 ident: 47_CR6 publication-title: J. Geophys. Res. doi: 10.1029/97JD00529 – volume: 27 start-page: 387 year: 2003 ident: 47_CR31 publication-title: Chinese J. Atmos. Sci. – volume: 71 start-page: 1514 year: 2009 ident: 47_CR19 publication-title: Journal of Atmospheric and Solar-Terrestrial Physics doi: 10.1016/j.jastp.2009.01.010 – volume-title: Aeronomy of the Middle Atmosphere year: 1984 ident: 47_CR3 doi: 10.1007/978-94-009-6401-3 – volume: 402 start-page: 399 year: 1999 ident: 47_CR17 publication-title: Nature doi: 10.1038/46521 – volume: 52 start-page: 2428 year: 2009 ident: 47_CR27 publication-title: Chinese Journal of Geophysics – volume: 19 start-page: 777 year: 2002 ident: 47_CR4 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-002-0044-6 – volume: 103 start-page: 8715 year: 1998 ident: 47_CR7 publication-title: J. Geophys. Res. doi: 10.1029/98JD00265 – volume: 108 start-page: 4049 year: 2003 ident: 47_CR20 publication-title: J. Geophys. Res. doi: 10.1029/2001JD001503 – volume: 22 start-page: 751 year: 2005 ident: 47_CR5 publication-title: Adv. Atmos. Sci. doi: 10.1007/BF02918718 – volume: 31 start-page: 440 year: 2007 ident: 47_CR1 publication-title: Chinese J. Atmos. Sci. – volume: 45 start-page: 1798 year: 1998 ident: 47_CR16 publication-title: J. Atmos. Sci. doi: 10.1175/1520-0469(1988)045<1798:TRDROA>2.0.CO;2 – volume: 103 start-page: 11505 year: 1998 ident: 47_CR8 publication-title: J. Geophys. Res. doi: 10.1029/98JD00799 – volume: 5 start-page: 1257 year: 2005 ident: 47_CR29 publication-title: Atmospheric Chemistry and Physics doi: 10.5194/acp-5-1257-2005 – volume: 26 start-page: 423 year: 2009 ident: 47_CR30 publication-title: Adv. Atoms. Sci. doi: 10.1007/s00376-009-0423-3 – volume: 108 start-page: 4027 year: 2003 ident: 47_CR18 publication-title: J. Geophys. Res. doi: 10.1029/2002JD002069 |
SSID | ssj0039381 |
Score | 1.9108493 |
Snippet | To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere, the effects of water-vapor increases on temperature in the... P421.32; To analyze the mechanism by which water vapor increase leads to cooling in the stratosphere,the effects of water-vapor increases on temperature in the... |
SourceID | wanfang proquest crossref springer chongqing |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 832 |
SubjectTerms | Arctic zone Atmospheric models Atmospheric Sciences Climate Cooling Earth and Environmental Science Earth Sciences Geophysics/Geodesy Infrared radiation Meteorology Ozone Ozone depletion Stratosphere Temperature Water vapor 中高纬度地区 北极地区 平流层 模拟 水蒸气 温度变化 臭氧减少 辐射冷却 |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB2V7YUL4lOkhcqqUA8giyRO4uSAUKlaVUhbVSxIvVmO7bTblqT7UUD8ema8TrZcNjcnjhNlPJ5nj_MewLtcy0KTp2F4Nxw9MeFaNLTLysbGyDrTnoFvfFac_si-XuQXWzDu_4WhbZX9mOgHatsZWiP_WJK4YFHJ_PPdjJNoFCVXewUNHZQV7CfPMPYItlMSVR7B9pfjs_Nv_dAsKuFVSynOc3T1Ic0Ze1ZR9DXuc8PEXiCJbOGqay9nGEL-D1prJDokT_0vP22j28sH0enkKTwJsJIdrvrBM9hy7XOIxoiIu7lfOGcH7Oh2ivDUl17AZDL9GZS7WNcwhIFstbWDSr8RgM75L43YnE1bwpULx7Ai8VgFEmY872_ytLvdgsgJ3EuYnBx_PzrlQWCBG5zHLblobJqnlXSJk4k1zopUF0LUsTV4ZKIWcWZdEguTNGizXKRoPGdlWrukluIVjNquda-B2dxleaq1y12RmTTRJcKEqpal0RVOUMsIdoZvqe5WNBpKlAWC07iIIO4_rjKBmJz0MW7VQKnsbaPQNopso2QE74db-uY2VN7tLaaCgy7U0J0iYMNV9CxKl-jWdfdYhajRcHqIDXzo7bxuYMPj9kNXWFe2s5s_13-V82gLZ7TxzsZ32oXHq6Vr2hX8BkbL-b17i9hnWe-FHv0PSKf_lg priority: 102 providerName: ProQuest |
Title | Simulation of the Effect of Water-vapor Increase on Temperature in the Stratosphere |
URI | http://lib.cqvip.com/qk/84334X/201104/38699106.html https://link.springer.com/article/10.1007/s00376-010-0047-7 https://www.proquest.com/docview/873316975 https://www.proquest.com/docview/883026257 https://d.wanfangdata.com.cn/periodical/dqkxjz-e201104010 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1861-9533 dateEnd: 20241001 omitProxy: false ssIdentifier: ssj0039381 issn: 0256-1530 databaseCode: ADMLS dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1861-9533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0039381 issn: 0256-1530 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1861-9533 dateEnd: 20190228 omitProxy: true ssIdentifier: ssj0039381 issn: 0256-1530 databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1861-9533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0039381 issn: 0256-1530 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1861-9533 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0039381 issn: 0256-1530 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R7YULlJdIW1YWQhxAqZI4jpPjUrZUwFaIbaVyshzbaZeWhO4DUH89Y8fJAkKVmkuUxJkkHo_9TTz-BuAFkzyT1tJweFchWmIcSlrZKCsdKcXLVDoGvslRdniSvj9lp34d96KLdu-mJF1P3S92s1Qp1vu1K6FTHvIN2GTWPxnA5ujdlw_jrgOmBXW5Se1oHqJB95OZ_xNiKRXOm_rsCh_499C0xpv9FKlb2FNXsj77Yww6uA_H3du3oScXe6tluaeu_yF2vOXnbcE9j0nJqG1ED-COqR9CMEE43czdX3fykuxfzhDbuqNHMJ3Ovvm0X6SpCGJI0saF2KOfiF7n4Q-JwJ7MagtKF4ZgQUuC5Rmc8by7yXH2NgvLbGAew_RgfLx_GPrsDKFCJ3AZ0konLCm4iQ2PtTKaJjKjtIy0wi2lJY1SbeKIqrhChTOaoOaN5klp4pLTJzCom9o8BaKZSVkipWEmS1USyxwxRlHyXMkCvds8gO1eReJ7y8EhaJ4hso2yAKJOZ0J5VnObXONS9HzMrmIFVqywFSt4AK_6WzpxNxTe6RqC8Na9ELlNdJkVnAVA-qtolnauRdamWWERy6uGviUKeN3pey3ghsc99y1sXVhfXfz6ei2Mg2roDkfbtxK5A3fb_-A2xHgXBsv5yjxDILUsh2g4bycfp0NvQLh_Mz769HkIGyfJ6DdLzRat |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gCXiqdIy8NCwAEUkcSbODlUCEqrLe2uEFuknrAc2ykLJek-SoG_xp9jxutk4bK35pbEcRKPx_ONx_4G4GmqRKZI09C86xA1MQ4Vr2iVlYm0FmVPOQa-wTDrf-q9P0lP1uBPuxeGllW2Y6IbqE2jaY78VU7JBbNCpK_PJyEljaLgaptBQ_nMCmbHMYz5fR2H9tclenCznYN3KO5nSbK_d7zbD32SgVCjLzMPeWWSNCmEja2IjbaGJyrjvIyMxqPHS_T3jY0jruMKvzvlCf6ANSIpbVwKjrVegw3EHBxVauPt3vDDx9YQ8IK7HKmEKkIcWLqgauQ4TFGzQxeJJq4EQdQOX5r6dIIG638TucS9XajWbTCqK1Wf_mML92_Cpgex7M2i192CNVvfhmCA-LuZuml69pztno0RDLuzOzAajb_7PGGsqRiCTrZYSEJnlwh3p-EPhZ4AG9eEYmeWYUFizfKUz3jdPeRIfpsZUSHYuzC6gpa-B-t1U9v7wExqe2milE1t1tNJrHIEJUUpcq0KdIfzALa6tpTnC9IOyfMMoXCUBRC1jSu1p0GnbBxnsiNwdrKRKBtJspEigBfdI211KwpvtxKTfjiYya7zBsC6u6jHFJxRtW0usAgRsaEzihW8bOW8rGDF6574rrAsbCbffn79La3Ddug_R1srv-kxXO8fD47k0cHwcBtuLCbNaT3yA1ifTy_sQ0Rd8_KR790MPl-tOv0FX3w8VA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9UwFD9RTIwvRkTjQKExxgfNwrZu6_ZIgBtQISRXEt6aru3gAnZw7wWMf73ndB8XE0Li3rq1p0lPz87v9ON3AD5lSuSKLA3duw7REuNQ8ZpOWZlIa1GlyjPwHRzme8fpt5PspMtzOutPu_dbku2dBmJpcvPNK1NvDhffiDaFImG6FZ2KUDyFZym6aoq-jpOt_lfMS-6zlJJfD9G0h23Nh0QQucJZ406vset_ndQCeQ6bpf6Kj6uVO73njUav4GUHI9lWq_dleGLdawgOEAE3U79Qzj6z7csJwlFfWoHxePKry9TFmpoh7GPtUQ4q3SHgnIa3CrE4mzjCkTPLsCLxVnWky_jeN_I0u82MyAjsGxiPdn9u74VdQoVQY9w2D3ltkiwphY2tiI22hicq57yKjMYn5RWPUmPjiOu4Rh1lPEFlWSOSysaV4G9hyTXOvgNmMptmiVI2s3mqk1gVCAvKShRalRiQFgGsDmMpr1raDMmLHMFolAcQ9YMrdUdETvkwLuVAoex1I1E3knQjRQBfhia9uEcqr_Uak51BzmRBuSnzUmQBsOErWhJtjyhnmxusQlRoGA6igK-9nhcCHunuYzcVFpXN9cXv8z_SenSFEWy0-l8iN-D50c5I_tg__L4GL9pVbDog_B6W5tMb-wFh0Lxa91P9L69p_Po |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+the+effect+of+water-vapor+increase+on+temperature+in+the+stratosphere&rft.jtitle=Advances+in+atmospheric+sciences&rft.au=Bi%2C+Yun&rft.au=Chen%2C+Yuejuan&rft.au=Zhou%2C+Renjun&rft.au=Yi%2C+Mingjian&rft.date=2011-07-01&rft.issn=0256-1530&rft.eissn=1861-9533&rft.volume=28&rft.issue=4&rft.spage=832&rft.epage=842&rft_id=info:doi/10.1007%2Fs00376-010-0047-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84334X%2F84334X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fdqkxjz-e%2Fdqkxjz-e.jpg |