Precision and Speed at Your Fingertips: An Automated Intracranial Hematoma Volume Calculation
Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automat...
        Saved in:
      
    
          | Published in | World neurosurgery Vol. 185; pp. e827 - e834 | 
|---|---|
| Main Authors | , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        United States
          Elsevier Inc
    
        01.05.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1878-8750 1878-8769 1878-8769  | 
| DOI | 10.1016/j.wneu.2024.02.135 | 
Cover
| Abstract | Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data.
We developed a novel automated algorithm for calculating intracranial blood volume from computed tomography (CT) scans. The algorithm consists of a Python script that processes Digital Imaging and Communications in Medicine images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons.
Our novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, epidural hematoma (EDH), and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively.
The study introduces a novel automated algorithm for calculating the volumes of various ICHs (EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making.
[Display omitted] | 
    
|---|---|
| AbstractList | Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data.
We developed a novel automated algorithm for calculating intracranial blood volume from computed tomography (CT) scans. The algorithm consists of a Python script that processes Digital Imaging and Communications in Medicine images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons.
Our novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, epidural hematoma (EDH), and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively.
The study introduces a novel automated algorithm for calculating the volumes of various ICHs (EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making.
[Display omitted] Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decision-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data. We developed a novel automated algorithm for calculating intracranial blood volume from CT scans. The algorithm consists of a Python script that processes DICOM images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons. Our novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, EDH, and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively. The study introduces a novel automated algorithm for calculating the volumes of various intracranial hemorrhages (ICH, EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making. Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data.BACKGROUNDIntracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data.We developed a novel automated algorithm for calculating intracranial blood volume from computed tomography (CT) scans. The algorithm consists of a Python script that processes Digital Imaging and Communications in Medicine images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons.METHODSWe developed a novel automated algorithm for calculating intracranial blood volume from computed tomography (CT) scans. The algorithm consists of a Python script that processes Digital Imaging and Communications in Medicine images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons.Our novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, epidural hematoma (EDH), and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively.RESULTSOur novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, epidural hematoma (EDH), and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively.The study introduces a novel automated algorithm for calculating the volumes of various ICHs (EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making.CONCLUSIONSThe study introduces a novel automated algorithm for calculating the volumes of various ICHs (EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making.  | 
    
| Author | Khalili, HosseinAli Habibzadeh, Adrina Taheri, Reza Niakan, Amin Khademolhosseini, Sepehr Zoghi, Sina  | 
    
| Author_xml | – sequence: 1 givenname: Sepehr surname: Khademolhosseini fullname: Khademolhosseini, Sepehr organization: Shiraz Trauma Research Center, Shiraz, Iran – sequence: 2 givenname: Adrina orcidid: 0000-0003-2537-3279 surname: Habibzadeh fullname: Habibzadeh, Adrina organization: Shiraz Trauma Research Center, Shiraz, Iran – sequence: 3 givenname: Sina surname: Zoghi fullname: Zoghi, Sina organization: Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran – sequence: 4 givenname: Reza orcidid: 0000-0002-2971-3632 surname: Taheri fullname: Taheri, Reza email: reza.neuro@gmail.com organization: Shiraz Neurosurgery Department, Shiraz University of Medical Sciences, Shiraz, Iran – sequence: 5 givenname: Amin surname: Niakan fullname: Niakan, Amin organization: Shiraz Trauma Research Center, Shiraz, Iran – sequence: 6 givenname: HosseinAli surname: Khalili fullname: Khalili, HosseinAli organization: Shiraz Trauma Research Center, Shiraz, Iran  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38453009$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFkbtuFDEUQC0URELID1AglzQ7XD_mFdGsVgmJFAkkHhIFsjyeO8iLx15sDyh_j5cNKVIEN7bsc25x_Jwc-eCRkJcMKgasebOtfntcKg5cVsArJuon5IR1bbfq2qY_uj_XcEzOUtpCWYLJrhXPyLHoZC0A-hPy7UNEY5MNnmo_0o87xJHqTL-GJdJL679jzHaXzuna0_WSw6xzAa59jtpE7a129ArLZXmgX4JbZqQb7czidC4zX5Cnk3YJz-72U_L58uLT5mp18_7d9WZ9szIS2rwSoLuBjQ2D3tT9hBw1GM6lELIbcBy4HgaAbhyHwTTTYHTdN5IDti30ME0oTsnrw9xdDD8XTFnNNhl0TnsMS1K8r2WpwmRf0Fd36DLMOKpdtLOOt-pfkgLwA2BiSCnidI8wUPv0aqv26dU-vQKuSvoidQ8kY_PfBCWUdY-rbw8qlkC_LEaVjEVvcLTla7Iag31cP3-gG2e9Ndr9wNv_yX8ARl6zMg | 
    
| CitedBy_id | crossref_primary_10_1016_j_ynirp_2024_100215 | 
    
| Cites_doi | 10.1161/01.STR.27.8.1304 10.5566/ias.v28.p93-102 10.1161/STROKEAHA.120.032243 10.1161/STROKEAHA.119.026561 10.1109/34.295913 10.1161/STROKEAHA.110.607861 10.1007/s13311-010-0003-3 10.1056/NEJMra1814259 10.1111/j.1468-1331.2011.03395.x 10.3174/ajnr.A5256 10.1161/STROKEAHA.112.654970 10.1097/RCT.0b013e318245c1fa 10.1007/s11548-012-0670-0 10.1089/neu.2010.1558 10.1007/s11760-012-0298-0 10.3390/data5010014 10.1177/096228029900800204 10.1111/j.1747-4949.2010.00579.x 10.1007/s11548-011-0664-3 10.3389/fnins.2020.541817 10.1161/01.STR.24.7.987 10.1161/STROKEAHA.116.013779 10.1038/s41598-020-76459-7 10.3390/electronics11152460 10.1097/RLI.0b013e31828d8403 10.1186/s12880-021-00657-6  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier Inc. Copyright © 2024 Elsevier Inc. All rights reserved.  | 
    
| Copyright_xml | – notice: 2024 Elsevier Inc. – notice: Copyright © 2024 Elsevier Inc. All rights reserved.  | 
    
| DBID | AAYXX CITATION NPM 7X8  | 
    
| DOI | 10.1016/j.wneu.2024.02.135 | 
    
| DatabaseName | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic  | 
    
| DatabaseTitleList | PubMed MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 1878-8769 | 
    
| EndPage | e834 | 
    
| ExternalDocumentID | 38453009 10_1016_j_wneu_2024_02_135 S1878875024003486  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQQT AATTM AAXKI AAXLA AAXUO AAYWO ABBQC ABCQJ ABFNM ABFRF ABJNI ABLJU ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV EBS EFJIC EFKBS EFLBG EJD EP3 F5P FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OQ- OZT P-8 P-9 PC. PG~ Q38 ROL SCC SDF SDP SEL SES SPCBC SSH SSN SSZ T5K Z5R ~G- ~HD AFCTW AGCQF AGRNS RIG AAYXX CITATION NPM 7X8  | 
    
| ID | FETCH-LOGICAL-c407t-30a8b1d6109c59fe2ea0c2243348bedb2abb008ddbbc6fbca596420e77090ffe3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 1878-8750 1878-8769  | 
    
| IngestDate | Thu Oct 02 05:09:05 EDT 2025 Mon Jul 21 06:05:23 EDT 2025 Thu Apr 24 23:04:04 EDT 2025 Wed Oct 01 06:06:12 EDT 2025 Sat Jul 05 17:10:47 EDT 2025 Tue Oct 14 19:35:17 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Automated image analysis software CCC Hematoma quantification EDH ICC Imaging detection IQR HU ICH CT SDH DICOM AHD Noncontrast computed tomography Non-contrast computed tomography Imaging Detection  | 
    
| Language | English | 
    
| License | Copyright © 2024 Elsevier Inc. All rights reserved. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c407t-30a8b1d6109c59fe2ea0c2243348bedb2abb008ddbbc6fbca596420e77090ffe3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| ORCID | 0000-0003-2537-3279 0000-0002-2971-3632  | 
    
| PMID | 38453009 | 
    
| PQID | 2954769149 | 
    
| PQPubID | 23479 | 
    
| ParticipantIDs | proquest_miscellaneous_2954769149 pubmed_primary_38453009 crossref_primary_10_1016_j_wneu_2024_02_135 crossref_citationtrail_10_1016_j_wneu_2024_02_135 elsevier_sciencedirect_doi_10_1016_j_wneu_2024_02_135 elsevier_clinicalkey_doi_10_1016_j_wneu_2024_02_135  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-05-01 | 
    
| PublicationDateYYYYMMDD | 2024-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | United States | 
    
| PublicationPlace_xml | – name: United States | 
    
| PublicationTitle | World neurosurgery | 
    
| PublicationTitleAlternate | World Neurosurg | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Inc | 
    
| Publisher_xml | – name: Elsevier Inc | 
    
| References | Adams, Bischof (bib9) 1994; 16 Bhadauria, Dewal (bib10) 2014; 8 Kim, Gean (bib1) 2011; 8 Bland, Altman (bib15) 1999; 8 Jacobs, Beems, van der Vliet, Diaz-Arrastia, Borm, Vos (bib4) 2011; 28 Arab, Chinda, Medvedev (bib25) 2020; 10 Toikkanen, Kwon, Lee (bib8) 2021 Mohammed, Senan, Al-Mekhlafi (bib14) 2022; 11 Bullock, Chesnut, Ghajar (bib2) 2006; 58 KN, Hu, Morgan, Hanley, Nowinski (bib28) 2012; 36 Ironside, Chen, Mutasa (bib5) 2019; 50 Belaid, Mourou (bib12) 2009; 28 Li, Zhang, Hu, Li, Jia, Wu (bib30) 2012; 7 Scherer, Cordes, Younsi (bib19) 2016; 47 Prakash, Zhou, Morgan, Hanley, Nowinski (bib27) 2012; 7 Kosior, Idris, Dowlatshahi (bib20) 2011; 6 Broderick, Brott, Duldner, Tomsick, Huster (bib3) 1993; 24 Dowlatshahi, Kosior, Idris (bib21) 2012; 43 Divani, Majidi, Luo (bib23) 2011; 42 Zhou, Wan, Zhang (bib11) 2022; 13 Hssayeni, Croock, Salman, Al-khafaji, Yahya, Ghoraani (bib7) 2020; 5 Nowinski, Gupta, Qian (bib29) 2013; 48 Rajkomar, Dean, Kohane (bib26) 2019; 380 Demšar, Curk, Erjavec (bib16) 2013; 14 Volbers, Staykov, Wagner (bib17) 2011; 18 Yu, Yu, Li, Ma, Hu, Wang (bib24) 2022; 53 Wang, Song, Liu (bib13) 2021; 21 Xu, Zhang, Zhou (bib6) 2021; 14 Xue, Vegunta, Zwart (bib18) 2017; 38 Kothari, Brott, Broderick (bib22) 1996; 27 Xu (10.1016/j.wneu.2024.02.135_bib6) 2021; 14 Yu (10.1016/j.wneu.2024.02.135_bib24) 2022; 53 Bullock (10.1016/j.wneu.2024.02.135_bib2) 2006; 58 Kosior (10.1016/j.wneu.2024.02.135_bib20) 2011; 6 KN (10.1016/j.wneu.2024.02.135_bib28) 2012; 36 Arab (10.1016/j.wneu.2024.02.135_bib25) 2020; 10 Nowinski (10.1016/j.wneu.2024.02.135_bib29) 2013; 48 Kothari (10.1016/j.wneu.2024.02.135_bib22) 1996; 27 Prakash (10.1016/j.wneu.2024.02.135_bib27) 2012; 7 Li (10.1016/j.wneu.2024.02.135_bib30) 2012; 7 Belaid (10.1016/j.wneu.2024.02.135_bib12) 2009; 28 Divani (10.1016/j.wneu.2024.02.135_bib23) 2011; 42 Broderick (10.1016/j.wneu.2024.02.135_bib3) 1993; 24 Kim (10.1016/j.wneu.2024.02.135_bib1) 2011; 8 Zhou (10.1016/j.wneu.2024.02.135_bib11) 2022; 13 Hssayeni (10.1016/j.wneu.2024.02.135_bib7) 2020; 5 Mohammed (10.1016/j.wneu.2024.02.135_bib14) 2022; 11 Demšar (10.1016/j.wneu.2024.02.135_bib16) 2013; 14 Toikkanen (10.1016/j.wneu.2024.02.135_bib8) 2021 Wang (10.1016/j.wneu.2024.02.135_bib13) 2021; 21 Volbers (10.1016/j.wneu.2024.02.135_bib17) 2011; 18 Xue (10.1016/j.wneu.2024.02.135_bib18) 2017; 38 Bhadauria (10.1016/j.wneu.2024.02.135_bib10) 2014; 8 Ironside (10.1016/j.wneu.2024.02.135_bib5) 2019; 50 Dowlatshahi (10.1016/j.wneu.2024.02.135_bib21) 2012; 43 Adams (10.1016/j.wneu.2024.02.135_bib9) 1994; 16 Bland (10.1016/j.wneu.2024.02.135_bib15) 1999; 8 Scherer (10.1016/j.wneu.2024.02.135_bib19) 2016; 47 Rajkomar (10.1016/j.wneu.2024.02.135_bib26) 2019; 380 Jacobs (10.1016/j.wneu.2024.02.135_bib4) 2011; 28  | 
    
| References_xml | – volume: 10 year: 2020 ident: bib25 article-title: A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT publication-title: Sci Rep – volume: 48 start-page: 661 year: 2013 end-page: 670 ident: bib29 article-title: Automatic detection, localization, and volume estimation of ischemic infarcts in noncontrast computed tomographic scans: method and preliminary results publication-title: Invest Radiol – volume: 24 start-page: 987 year: 1993 end-page: 993 ident: bib3 article-title: Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality publication-title: Stroke – volume: 50 start-page: 3416 year: 2019 end-page: 3423 ident: bib5 article-title: Fully automated segmentation algorithm for hematoma volumetric analysis in spontaneous intracerebral hemorrhage publication-title: Stroke – volume: 8 start-page: 357 year: 2014 end-page: 364 ident: bib10 article-title: Intracranial hemorrhage detection using spatial fuzzy c-mean and region-based active contour on brain CT imaging publication-title: Signal, Image and Video Processing – volume: 58 start-page: S7 year: 2006 end-page: 15 ident: bib2 article-title: Surgical management of acute epidural hematomas publication-title: Neurosurgery – volume: 5 start-page: 14 year: 2020 ident: bib7 article-title: Intracranial hemorrhage segmentation using a deep convolutional model publication-title: Data – volume: 28 start-page: 93 year: 2009 end-page: 102 ident: bib12 article-title: Image segmentation: a watershed transformation algorithm publication-title: Image Anal Stereol – volume: 8 start-page: 135 year: 1999 end-page: 160 ident: bib15 article-title: Measuring agreement in method comparison studies publication-title: Stat Methods Med Res – start-page: 400 year: 2021 end-page: 409 ident: bib8 article-title: ReSGAN: Intracranial hemorrhage segmentation with residuals of synthetic brain CT scans publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24 – volume: 6 start-page: 302 year: 2011 end-page: 305 ident: bib20 article-title: Quantomo: validation of a computer-assisted methodology for the volumetric analysis of intracerebral haemorrhage publication-title: Int J Stroke – volume: 380 start-page: 1347 year: 2019 end-page: 1358 ident: bib26 article-title: Machine learning in medicine publication-title: N Engl J Med – volume: 53 start-page: 167 year: 2022 end-page: 176 ident: bib24 article-title: A robust deep learning segmentation method for hematoma volumetric detection in intracerebral hemorrhage publication-title: Stroke – volume: 47 start-page: 2776 year: 2016 end-page: 2782 ident: bib19 article-title: Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage publication-title: Stroke – volume: 8 start-page: 39 year: 2011 end-page: 53 ident: bib1 article-title: Imaging for the diagnosis and management of traumatic brain injury publication-title: Neurotherapeutics – volume: 28 start-page: 203 year: 2011 end-page: 215 ident: bib4 article-title: Computed tomography and outcome in moderate and severe traumatic brain injury: hematoma volume and midline shift revisited publication-title: J Neurotrauma – volume: 36 start-page: 109 year: 2012 end-page: 120 ident: bib28 article-title: Comparison of 3-segmentation techniques for intraventricular and intracerebral hemorrhages in unenhanced computed tomography scans publication-title: J Comput Assist Tomogr – volume: 18 start-page: 1323 year: 2011 end-page: 1328 ident: bib17 article-title: Semi-automatic volumetric assessment of perihemorrhagic edema with computed tomography publication-title: Eur J Neurol – volume: 27 start-page: 1304 year: 1996 end-page: 1305 ident: bib22 article-title: The ABCs of measuring intracerebral hemorrhage volumes publication-title: Stroke – volume: 7 start-page: 785 year: 2012 end-page: 798 ident: bib27 article-title: Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique publication-title: Int J Comput Assist Radiol Surg – volume: 11 start-page: 2460 year: 2022 ident: bib14 article-title: Multi-method diagnosis of CT images for rapid detection of intracranial hemorrhages based on deep and hybrid learning publication-title: Electronics – volume: 13 year: 2022 ident: bib11 article-title: Segmentation of spontaneous intracerebral hemorrhage on CT with a region growing method based on watershed preprocessing publication-title: Front Neurol – volume: 38 start-page: 1536 year: 2017 end-page: 1542 ident: bib18 article-title: Retrospective validation of a computer-assisted quantification model of intracerebral hemorrhage volume on accuracy, precision, and acquisition time, compared with standard ABC/2 manual volume calculation publication-title: Am J Neuroradiol – volume: 14 start-page: 2349 year: 2013 end-page: 2353 ident: bib16 article-title: Orange: data mining toolbox in Python publication-title: the Journal of machine Learning research – volume: 7 start-page: 507 year: 2012 end-page: 516 ident: bib30 article-title: Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans publication-title: Int J Comput Assist Radiol Surg – volume: 16 start-page: 641 year: 1994 end-page: 647 ident: bib9 article-title: Seeded region growing publication-title: IEEE Trans Pattern Anal Mach Intell – volume: 42 start-page: 1569 year: 2011 end-page: 1574 ident: bib23 article-title: The ABCs of accurate volumetric measurement of cerebral hematoma publication-title: Stroke – volume: 14 year: 2021 ident: bib6 article-title: Deep network for the automatic segmentation and quantification of intracranial hemorrhage on CT publication-title: Front Neurosci – volume: 43 start-page: 1961 year: 2012 end-page: 1963 ident: bib21 article-title: Planimetric hematoma measurement in patients with intraventricular hemorrhage: is total volume a preferred target for reliable analysis? publication-title: Stroke – volume: 21 start-page: 1 year: 2021 end-page: 9 ident: bib13 article-title: Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement publication-title: BMC Med Imag – volume: 27 start-page: 1304 year: 1996 ident: 10.1016/j.wneu.2024.02.135_bib22 article-title: The ABCs of measuring intracerebral hemorrhage volumes publication-title: Stroke doi: 10.1161/01.STR.27.8.1304 – volume: 28 start-page: 93 year: 2009 ident: 10.1016/j.wneu.2024.02.135_bib12 article-title: Image segmentation: a watershed transformation algorithm publication-title: Image Anal Stereol doi: 10.5566/ias.v28.p93-102 – volume: 53 start-page: 167 year: 2022 ident: 10.1016/j.wneu.2024.02.135_bib24 article-title: A robust deep learning segmentation method for hematoma volumetric detection in intracerebral hemorrhage publication-title: Stroke doi: 10.1161/STROKEAHA.120.032243 – volume: 13 year: 2022 ident: 10.1016/j.wneu.2024.02.135_bib11 article-title: Segmentation of spontaneous intracerebral hemorrhage on CT with a region growing method based on watershed preprocessing publication-title: Front Neurol – volume: 50 start-page: 3416 year: 2019 ident: 10.1016/j.wneu.2024.02.135_bib5 article-title: Fully automated segmentation algorithm for hematoma volumetric analysis in spontaneous intracerebral hemorrhage publication-title: Stroke doi: 10.1161/STROKEAHA.119.026561 – volume: 16 start-page: 641 year: 1994 ident: 10.1016/j.wneu.2024.02.135_bib9 article-title: Seeded region growing publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/34.295913 – volume: 42 start-page: 1569 year: 2011 ident: 10.1016/j.wneu.2024.02.135_bib23 article-title: The ABCs of accurate volumetric measurement of cerebral hematoma publication-title: Stroke doi: 10.1161/STROKEAHA.110.607861 – volume: 8 start-page: 39 year: 2011 ident: 10.1016/j.wneu.2024.02.135_bib1 article-title: Imaging for the diagnosis and management of traumatic brain injury publication-title: Neurotherapeutics doi: 10.1007/s13311-010-0003-3 – volume: 380 start-page: 1347 year: 2019 ident: 10.1016/j.wneu.2024.02.135_bib26 article-title: Machine learning in medicine publication-title: N Engl J Med doi: 10.1056/NEJMra1814259 – start-page: 400 year: 2021 ident: 10.1016/j.wneu.2024.02.135_bib8 article-title: ReSGAN: Intracranial hemorrhage segmentation with residuals of synthetic brain CT scans – volume: 18 start-page: 1323 year: 2011 ident: 10.1016/j.wneu.2024.02.135_bib17 article-title: Semi-automatic volumetric assessment of perihemorrhagic edema with computed tomography publication-title: Eur J Neurol doi: 10.1111/j.1468-1331.2011.03395.x – volume: 38 start-page: 1536 year: 2017 ident: 10.1016/j.wneu.2024.02.135_bib18 article-title: Retrospective validation of a computer-assisted quantification model of intracerebral hemorrhage volume on accuracy, precision, and acquisition time, compared with standard ABC/2 manual volume calculation publication-title: Am J Neuroradiol doi: 10.3174/ajnr.A5256 – volume: 43 start-page: 1961 year: 2012 ident: 10.1016/j.wneu.2024.02.135_bib21 article-title: Planimetric hematoma measurement in patients with intraventricular hemorrhage: is total volume a preferred target for reliable analysis? publication-title: Stroke doi: 10.1161/STROKEAHA.112.654970 – volume: 36 start-page: 109 year: 2012 ident: 10.1016/j.wneu.2024.02.135_bib28 article-title: Comparison of 3-segmentation techniques for intraventricular and intracerebral hemorrhages in unenhanced computed tomography scans publication-title: J Comput Assist Tomogr doi: 10.1097/RCT.0b013e318245c1fa – volume: 7 start-page: 785 year: 2012 ident: 10.1016/j.wneu.2024.02.135_bib27 article-title: Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-012-0670-0 – volume: 28 start-page: 203 year: 2011 ident: 10.1016/j.wneu.2024.02.135_bib4 article-title: Computed tomography and outcome in moderate and severe traumatic brain injury: hematoma volume and midline shift revisited publication-title: J Neurotrauma doi: 10.1089/neu.2010.1558 – volume: 8 start-page: 357 year: 2014 ident: 10.1016/j.wneu.2024.02.135_bib10 article-title: Intracranial hemorrhage detection using spatial fuzzy c-mean and region-based active contour on brain CT imaging publication-title: Signal, Image and Video Processing doi: 10.1007/s11760-012-0298-0 – volume: 58 start-page: S7 issue: 3 Suppl year: 2006 ident: 10.1016/j.wneu.2024.02.135_bib2 article-title: Surgical management of acute epidural hematomas publication-title: Neurosurgery – volume: 5 start-page: 14 year: 2020 ident: 10.1016/j.wneu.2024.02.135_bib7 article-title: Intracranial hemorrhage segmentation using a deep convolutional model publication-title: Data doi: 10.3390/data5010014 – volume: 8 start-page: 135 year: 1999 ident: 10.1016/j.wneu.2024.02.135_bib15 article-title: Measuring agreement in method comparison studies publication-title: Stat Methods Med Res doi: 10.1177/096228029900800204 – volume: 6 start-page: 302 year: 2011 ident: 10.1016/j.wneu.2024.02.135_bib20 article-title: Quantomo: validation of a computer-assisted methodology for the volumetric analysis of intracerebral haemorrhage publication-title: Int J Stroke doi: 10.1111/j.1747-4949.2010.00579.x – volume: 7 start-page: 507 year: 2012 ident: 10.1016/j.wneu.2024.02.135_bib30 article-title: Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-011-0664-3 – volume: 14 year: 2021 ident: 10.1016/j.wneu.2024.02.135_bib6 article-title: Deep network for the automatic segmentation and quantification of intracranial hemorrhage on CT publication-title: Front Neurosci doi: 10.3389/fnins.2020.541817 – volume: 24 start-page: 987 year: 1993 ident: 10.1016/j.wneu.2024.02.135_bib3 article-title: Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality publication-title: Stroke doi: 10.1161/01.STR.24.7.987 – volume: 47 start-page: 2776 year: 2016 ident: 10.1016/j.wneu.2024.02.135_bib19 article-title: Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage publication-title: Stroke doi: 10.1161/STROKEAHA.116.013779 – volume: 10 year: 2020 ident: 10.1016/j.wneu.2024.02.135_bib25 article-title: A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT publication-title: Sci Rep doi: 10.1038/s41598-020-76459-7 – volume: 11 start-page: 2460 year: 2022 ident: 10.1016/j.wneu.2024.02.135_bib14 article-title: Multi-method diagnosis of CT images for rapid detection of intracranial hemorrhages based on deep and hybrid learning publication-title: Electronics doi: 10.3390/electronics11152460 – volume: 48 start-page: 661 year: 2013 ident: 10.1016/j.wneu.2024.02.135_bib29 article-title: Automatic detection, localization, and volume estimation of ischemic infarcts in noncontrast computed tomographic scans: method and preliminary results publication-title: Invest Radiol doi: 10.1097/RLI.0b013e31828d8403 – volume: 21 start-page: 1 year: 2021 ident: 10.1016/j.wneu.2024.02.135_bib13 article-title: Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement publication-title: BMC Med Imag doi: 10.1186/s12880-021-00657-6 – volume: 14 start-page: 2349 year: 2013 ident: 10.1016/j.wneu.2024.02.135_bib16 article-title: Orange: data mining toolbox in Python publication-title: the Journal of machine Learning research  | 
    
| SSID | ssj0000314873 | 
    
| Score | 2.4042215 | 
    
| Snippet | Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human... | 
    
| SourceID | proquest pubmed crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | e827 | 
    
| SubjectTerms | Automated image analysis software Hematoma quantification ICH Imaging detection Noncontrast computed tomography  | 
    
| Title | Precision and Speed at Your Fingertips: An Automated Intracranial Hematoma Volume Calculation | 
    
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1878875024003486 https://dx.doi.org/10.1016/j.wneu.2024.02.135 https://www.ncbi.nlm.nih.gov/pubmed/38453009 https://www.proquest.com/docview/2954769149  | 
    
| Volume | 185 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Freedom Collection customDbUrl: eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: ACRLP dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: .~1 dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: AIKHN dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1878-8769 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000314873 issn: 1878-8750 databaseCode: AKRWK dateStart: 20100101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRxVd9sYI3id1089geS7G0iiJUpRdZ9hWolLTUFG_-dmeSTUHwAR6T7JBkdnYeuzPfEHKRWphkYXWgjciCyKZhoITiAZ7Z6LibQeCC-x1398nwKbqZxJMG6de1MJhW6XV_pdNLbe3vtD0324vptD0OBWbCxQjSxXgkEHY7ilLsYnD1Ea73WRCeXZQHzTg-QAJfO1Oleb3nbgVhYidC6M6w7Pr2rX36yf8s7dBgm2x5B5L2qm_cIQ2X75KXh6XvlUNVbul4ATaJqoLCWl7SQblzV0zhz2kvp71VMQc3FQaMcGPXgLECGaRDBG-FB_S51Fe0r2bGt_baI0-D68f-MPCNEwID8VkRcKaEDi0iqRvgt-s4xQzYaqy61c7qjtKw2oS1Wpsk00bFXQhDmEtT1mVZ5vg-aebz3B0SGiKkXKJjpgyPNKKVOaZSbXUKy0vxpEXCml3SeFRxbG4xk3X62KtEFktksWQdCSxukcs1zaLC1Ph1NK9nQdbVoqDfJKj8X6niNdUXefqT7ryeaAkLDU9PVO7mqzeJB6Jp0oWIskUOKglYfz0XUczBWz3651uPySZeVYmUJ6RZLFfuFJydQp-V0nxGNnqj2-H9JzPZ_Xw | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eD_oiitd6RvBN6qZNj-zjsrisJ4IHvkjIVViR7rJ28c3f7kybLgge4GvToelkMkcy8w0hx5mFRRZWB9qIPIhtFgZKKB7gnY1OOjkELnjecX2TDh7ii6fkaY70mloYTKv0ur_W6ZW29k_anpvt8XDYvgsFZsIlCNLFeCzSebIYJ1GGEdjpRzg7aEF8dlHdNCNBgBS-eKbO83ov3BTixChG7M6wavv2rYH6yQGtDFF_lax4D5J260mukTlXrJPn24lvlkNVYendGIwSVSWFzTyh_erorhzCr9NuQbvTcgR-Krxwjie7BqwVCCEdIHorDNDHSmHRnno1vrfXBnnon933BoHvnBAYCNDKgDMldGgRSt0Aw13kFDNgrLHsVjurI6VhuwlrtTZpro1KOhCHMJdlrMPy3PFNslCMCrdNaIiYcqlOmDI81ghX5pjKtNUZ7C_F0xYJG3ZJ42HFsbvFq2zyx14kslgiiyWLJLC4RU5mNOMaVOPXt3mzCrIpFwUFJ0Hn_0qVzKi-CNSfdEfNQkvYaXh9ogo3mr5JvBHN0g6ElC2yVUvAbPZcxAkHd3Xnn189JEuD--sreXV-c7lLlnGkzqrcIwvlZOr2wfMp9UEl2Z8Hnv8R | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+and+Speed+at+Your+Fingertips%3A+An+Automated+Intracranial+Hematoma+Volume+Calculation&rft.jtitle=World+neurosurgery&rft.au=Khademolhosseini%2C+Sepehr&rft.au=Habibzadeh%2C+Adrina&rft.au=Zoghi%2C+Sina&rft.au=Taheri%2C+Reza&rft.date=2024-05-01&rft.issn=1878-8769&rft.eissn=1878-8769&rft.volume=185&rft.spage=e827&rft_id=info:doi/10.1016%2Fj.wneu.2024.02.135&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-8750&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-8750&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-8750&client=summon |