Precision and Speed at Your Fingertips: An Automated Intracranial Hematoma Volume Calculation

Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automat...

Full description

Saved in:
Bibliographic Details
Published inWorld neurosurgery Vol. 185; pp. e827 - e834
Main Authors Khademolhosseini, Sepehr, Habibzadeh, Adrina, Zoghi, Sina, Taheri, Reza, Niakan, Amin, Khalili, HosseinAli
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.05.2024
Subjects
Online AccessGet full text
ISSN1878-8750
1878-8769
1878-8769
DOI10.1016/j.wneu.2024.02.135

Cover

Abstract Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data. We developed a novel automated algorithm for calculating intracranial blood volume from computed tomography (CT) scans. The algorithm consists of a Python script that processes Digital Imaging and Communications in Medicine images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons. Our novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, epidural hematoma (EDH), and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively. The study introduces a novel automated algorithm for calculating the volumes of various ICHs (EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making. [Display omitted]
AbstractList Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data. We developed a novel automated algorithm for calculating intracranial blood volume from computed tomography (CT) scans. The algorithm consists of a Python script that processes Digital Imaging and Communications in Medicine images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons. Our novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, epidural hematoma (EDH), and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively. The study introduces a novel automated algorithm for calculating the volumes of various ICHs (EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making. [Display omitted]
Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decision-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data. We developed a novel automated algorithm for calculating intracranial blood volume from CT scans. The algorithm consists of a Python script that processes DICOM images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons. Our novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, EDH, and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively. The study introduces a novel automated algorithm for calculating the volumes of various intracranial hemorrhages (ICH, EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making.
Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data.BACKGROUNDIntracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human error and improve clinical decisioPlease provide professional degrees (e.g., PhD, MD) for the corresponding author.n-making. A novel automated method has been developed that is comparable to the ABC/2 method in terms of speed and accuracy while providing more accurate volumetric data.We developed a novel automated algorithm for calculating intracranial blood volume from computed tomography (CT) scans. The algorithm consists of a Python script that processes Digital Imaging and Communications in Medicine images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons.METHODSWe developed a novel automated algorithm for calculating intracranial blood volume from computed tomography (CT) scans. The algorithm consists of a Python script that processes Digital Imaging and Communications in Medicine images and determines the blood volume and ratio. The algorithm was validated against manual calculations performed by neurosurgeons.Our novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, epidural hematoma (EDH), and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively.RESULTSOur novel automated algorithm for calculating intracranial blood volume from CT scans demonstrated excellent agreement with the ABC/2 method, with a median overall difference of just 1.46 mL. The algorithm was also validated in patient groups with ICH, epidural hematoma (EDH), and SDH, with agreement coefficients of 0.992, 0.983, and 0.997, respectively.The study introduces a novel automated algorithm for calculating the volumes of various ICHs (EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making.CONCLUSIONSThe study introduces a novel automated algorithm for calculating the volumes of various ICHs (EDH, and SDH) within CT scans. The algorithm showed excellent agreement with manual calculations and outperformed the commonly used ABC/2 method, which tends to overestimate ICH volume. The automated algorithm offers a more accurate, efficient, and time-saving approach to quantifying ICH, EDH, and SDH volumes, making it a valuable tool for clinical evaluation and decision-making.
Author Khalili, HosseinAli
Habibzadeh, Adrina
Taheri, Reza
Niakan, Amin
Khademolhosseini, Sepehr
Zoghi, Sina
Author_xml – sequence: 1
  givenname: Sepehr
  surname: Khademolhosseini
  fullname: Khademolhosseini, Sepehr
  organization: Shiraz Trauma Research Center, Shiraz, Iran
– sequence: 2
  givenname: Adrina
  orcidid: 0000-0003-2537-3279
  surname: Habibzadeh
  fullname: Habibzadeh, Adrina
  organization: Shiraz Trauma Research Center, Shiraz, Iran
– sequence: 3
  givenname: Sina
  surname: Zoghi
  fullname: Zoghi, Sina
  organization: Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
– sequence: 4
  givenname: Reza
  orcidid: 0000-0002-2971-3632
  surname: Taheri
  fullname: Taheri, Reza
  email: reza.neuro@gmail.com
  organization: Shiraz Neurosurgery Department, Shiraz University of Medical Sciences, Shiraz, Iran
– sequence: 5
  givenname: Amin
  surname: Niakan
  fullname: Niakan, Amin
  organization: Shiraz Trauma Research Center, Shiraz, Iran
– sequence: 6
  givenname: HosseinAli
  surname: Khalili
  fullname: Khalili, HosseinAli
  organization: Shiraz Trauma Research Center, Shiraz, Iran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38453009$$D View this record in MEDLINE/PubMed
BookMark eNqFkbtuFDEUQC0URELID1AglzQ7XD_mFdGsVgmJFAkkHhIFsjyeO8iLx15sDyh_j5cNKVIEN7bsc25x_Jwc-eCRkJcMKgasebOtfntcKg5cVsArJuon5IR1bbfq2qY_uj_XcEzOUtpCWYLJrhXPyLHoZC0A-hPy7UNEY5MNnmo_0o87xJHqTL-GJdJL679jzHaXzuna0_WSw6xzAa59jtpE7a129ArLZXmgX4JbZqQb7czidC4zX5Cnk3YJz-72U_L58uLT5mp18_7d9WZ9szIS2rwSoLuBjQ2D3tT9hBw1GM6lELIbcBy4HgaAbhyHwTTTYHTdN5IDti30ME0oTsnrw9xdDD8XTFnNNhl0TnsMS1K8r2WpwmRf0Fd36DLMOKpdtLOOt-pfkgLwA2BiSCnidI8wUPv0aqv26dU-vQKuSvoidQ8kY_PfBCWUdY-rbw8qlkC_LEaVjEVvcLTla7Iag31cP3-gG2e9Ndr9wNv_yX8ARl6zMg
CitedBy_id crossref_primary_10_1016_j_ynirp_2024_100215
Cites_doi 10.1161/01.STR.27.8.1304
10.5566/ias.v28.p93-102
10.1161/STROKEAHA.120.032243
10.1161/STROKEAHA.119.026561
10.1109/34.295913
10.1161/STROKEAHA.110.607861
10.1007/s13311-010-0003-3
10.1056/NEJMra1814259
10.1111/j.1468-1331.2011.03395.x
10.3174/ajnr.A5256
10.1161/STROKEAHA.112.654970
10.1097/RCT.0b013e318245c1fa
10.1007/s11548-012-0670-0
10.1089/neu.2010.1558
10.1007/s11760-012-0298-0
10.3390/data5010014
10.1177/096228029900800204
10.1111/j.1747-4949.2010.00579.x
10.1007/s11548-011-0664-3
10.3389/fnins.2020.541817
10.1161/01.STR.24.7.987
10.1161/STROKEAHA.116.013779
10.1038/s41598-020-76459-7
10.3390/electronics11152460
10.1097/RLI.0b013e31828d8403
10.1186/s12880-021-00657-6
ContentType Journal Article
Copyright 2024 Elsevier Inc.
Copyright © 2024 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2024 Elsevier Inc.
– notice: Copyright © 2024 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.wneu.2024.02.135
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 1878-8769
EndPage e834
ExternalDocumentID 38453009
10_1016_j_wneu_2024_02_135
S1878875024003486
Genre Journal Article
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQQT
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
EBS
EFJIC
EFKBS
EFLBG
EJD
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OQ-
OZT
P-8
P-9
PC.
PG~
Q38
ROL
SCC
SDF
SDP
SEL
SES
SPCBC
SSH
SSN
SSZ
T5K
Z5R
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c407t-30a8b1d6109c59fe2ea0c2243348bedb2abb008ddbbc6fbca596420e77090ffe3
IEDL.DBID .~1
ISSN 1878-8750
1878-8769
IngestDate Thu Oct 02 05:09:05 EDT 2025
Mon Jul 21 06:05:23 EDT 2025
Thu Apr 24 23:04:04 EDT 2025
Wed Oct 01 06:06:12 EDT 2025
Sat Jul 05 17:10:47 EDT 2025
Tue Oct 14 19:35:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Automated image analysis software
CCC
Hematoma quantification
EDH
ICC
Imaging detection
IQR
HU
ICH
CT
SDH
DICOM
AHD
Noncontrast computed tomography
Non-contrast computed tomography
Imaging Detection
Language English
License Copyright © 2024 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c407t-30a8b1d6109c59fe2ea0c2243348bedb2abb008ddbbc6fbca596420e77090ffe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2537-3279
0000-0002-2971-3632
PMID 38453009
PQID 2954769149
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2954769149
pubmed_primary_38453009
crossref_primary_10_1016_j_wneu_2024_02_135
crossref_citationtrail_10_1016_j_wneu_2024_02_135
elsevier_sciencedirect_doi_10_1016_j_wneu_2024_02_135
elsevier_clinicalkey_doi_10_1016_j_wneu_2024_02_135
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle World neurosurgery
PublicationTitleAlternate World Neurosurg
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Adams, Bischof (bib9) 1994; 16
Bhadauria, Dewal (bib10) 2014; 8
Kim, Gean (bib1) 2011; 8
Bland, Altman (bib15) 1999; 8
Jacobs, Beems, van der Vliet, Diaz-Arrastia, Borm, Vos (bib4) 2011; 28
Arab, Chinda, Medvedev (bib25) 2020; 10
Toikkanen, Kwon, Lee (bib8) 2021
Mohammed, Senan, Al-Mekhlafi (bib14) 2022; 11
Bullock, Chesnut, Ghajar (bib2) 2006; 58
KN, Hu, Morgan, Hanley, Nowinski (bib28) 2012; 36
Ironside, Chen, Mutasa (bib5) 2019; 50
Belaid, Mourou (bib12) 2009; 28
Li, Zhang, Hu, Li, Jia, Wu (bib30) 2012; 7
Scherer, Cordes, Younsi (bib19) 2016; 47
Prakash, Zhou, Morgan, Hanley, Nowinski (bib27) 2012; 7
Kosior, Idris, Dowlatshahi (bib20) 2011; 6
Broderick, Brott, Duldner, Tomsick, Huster (bib3) 1993; 24
Dowlatshahi, Kosior, Idris (bib21) 2012; 43
Divani, Majidi, Luo (bib23) 2011; 42
Zhou, Wan, Zhang (bib11) 2022; 13
Hssayeni, Croock, Salman, Al-khafaji, Yahya, Ghoraani (bib7) 2020; 5
Nowinski, Gupta, Qian (bib29) 2013; 48
Rajkomar, Dean, Kohane (bib26) 2019; 380
Demšar, Curk, Erjavec (bib16) 2013; 14
Volbers, Staykov, Wagner (bib17) 2011; 18
Yu, Yu, Li, Ma, Hu, Wang (bib24) 2022; 53
Wang, Song, Liu (bib13) 2021; 21
Xu, Zhang, Zhou (bib6) 2021; 14
Xue, Vegunta, Zwart (bib18) 2017; 38
Kothari, Brott, Broderick (bib22) 1996; 27
Xu (10.1016/j.wneu.2024.02.135_bib6) 2021; 14
Yu (10.1016/j.wneu.2024.02.135_bib24) 2022; 53
Bullock (10.1016/j.wneu.2024.02.135_bib2) 2006; 58
Kosior (10.1016/j.wneu.2024.02.135_bib20) 2011; 6
KN (10.1016/j.wneu.2024.02.135_bib28) 2012; 36
Arab (10.1016/j.wneu.2024.02.135_bib25) 2020; 10
Nowinski (10.1016/j.wneu.2024.02.135_bib29) 2013; 48
Kothari (10.1016/j.wneu.2024.02.135_bib22) 1996; 27
Prakash (10.1016/j.wneu.2024.02.135_bib27) 2012; 7
Li (10.1016/j.wneu.2024.02.135_bib30) 2012; 7
Belaid (10.1016/j.wneu.2024.02.135_bib12) 2009; 28
Divani (10.1016/j.wneu.2024.02.135_bib23) 2011; 42
Broderick (10.1016/j.wneu.2024.02.135_bib3) 1993; 24
Kim (10.1016/j.wneu.2024.02.135_bib1) 2011; 8
Zhou (10.1016/j.wneu.2024.02.135_bib11) 2022; 13
Hssayeni (10.1016/j.wneu.2024.02.135_bib7) 2020; 5
Mohammed (10.1016/j.wneu.2024.02.135_bib14) 2022; 11
Demšar (10.1016/j.wneu.2024.02.135_bib16) 2013; 14
Toikkanen (10.1016/j.wneu.2024.02.135_bib8) 2021
Wang (10.1016/j.wneu.2024.02.135_bib13) 2021; 21
Volbers (10.1016/j.wneu.2024.02.135_bib17) 2011; 18
Xue (10.1016/j.wneu.2024.02.135_bib18) 2017; 38
Bhadauria (10.1016/j.wneu.2024.02.135_bib10) 2014; 8
Ironside (10.1016/j.wneu.2024.02.135_bib5) 2019; 50
Dowlatshahi (10.1016/j.wneu.2024.02.135_bib21) 2012; 43
Adams (10.1016/j.wneu.2024.02.135_bib9) 1994; 16
Bland (10.1016/j.wneu.2024.02.135_bib15) 1999; 8
Scherer (10.1016/j.wneu.2024.02.135_bib19) 2016; 47
Rajkomar (10.1016/j.wneu.2024.02.135_bib26) 2019; 380
Jacobs (10.1016/j.wneu.2024.02.135_bib4) 2011; 28
References_xml – volume: 10
  year: 2020
  ident: bib25
  article-title: A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT
  publication-title: Sci Rep
– volume: 48
  start-page: 661
  year: 2013
  end-page: 670
  ident: bib29
  article-title: Automatic detection, localization, and volume estimation of ischemic infarcts in noncontrast computed tomographic scans: method and preliminary results
  publication-title: Invest Radiol
– volume: 24
  start-page: 987
  year: 1993
  end-page: 993
  ident: bib3
  article-title: Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality
  publication-title: Stroke
– volume: 50
  start-page: 3416
  year: 2019
  end-page: 3423
  ident: bib5
  article-title: Fully automated segmentation algorithm for hematoma volumetric analysis in spontaneous intracerebral hemorrhage
  publication-title: Stroke
– volume: 8
  start-page: 357
  year: 2014
  end-page: 364
  ident: bib10
  article-title: Intracranial hemorrhage detection using spatial fuzzy c-mean and region-based active contour on brain CT imaging
  publication-title: Signal, Image and Video Processing
– volume: 58
  start-page: S7
  year: 2006
  end-page: 15
  ident: bib2
  article-title: Surgical management of acute epidural hematomas
  publication-title: Neurosurgery
– volume: 5
  start-page: 14
  year: 2020
  ident: bib7
  article-title: Intracranial hemorrhage segmentation using a deep convolutional model
  publication-title: Data
– volume: 28
  start-page: 93
  year: 2009
  end-page: 102
  ident: bib12
  article-title: Image segmentation: a watershed transformation algorithm
  publication-title: Image Anal Stereol
– volume: 8
  start-page: 135
  year: 1999
  end-page: 160
  ident: bib15
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat Methods Med Res
– start-page: 400
  year: 2021
  end-page: 409
  ident: bib8
  article-title: ReSGAN: Intracranial hemorrhage segmentation with residuals of synthetic brain CT scans
  publication-title: Medical Image Computing and Computer Assisted Intervention–MICCAI 2021: 24th International Conference, Strasbourg, France, September 27–October 1, 2021, Proceedings, Part I 24
– volume: 6
  start-page: 302
  year: 2011
  end-page: 305
  ident: bib20
  article-title: Quantomo: validation of a computer-assisted methodology for the volumetric analysis of intracerebral haemorrhage
  publication-title: Int J Stroke
– volume: 380
  start-page: 1347
  year: 2019
  end-page: 1358
  ident: bib26
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
– volume: 53
  start-page: 167
  year: 2022
  end-page: 176
  ident: bib24
  article-title: A robust deep learning segmentation method for hematoma volumetric detection in intracerebral hemorrhage
  publication-title: Stroke
– volume: 47
  start-page: 2776
  year: 2016
  end-page: 2782
  ident: bib19
  article-title: Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage
  publication-title: Stroke
– volume: 8
  start-page: 39
  year: 2011
  end-page: 53
  ident: bib1
  article-title: Imaging for the diagnosis and management of traumatic brain injury
  publication-title: Neurotherapeutics
– volume: 28
  start-page: 203
  year: 2011
  end-page: 215
  ident: bib4
  article-title: Computed tomography and outcome in moderate and severe traumatic brain injury: hematoma volume and midline shift revisited
  publication-title: J Neurotrauma
– volume: 36
  start-page: 109
  year: 2012
  end-page: 120
  ident: bib28
  article-title: Comparison of 3-segmentation techniques for intraventricular and intracerebral hemorrhages in unenhanced computed tomography scans
  publication-title: J Comput Assist Tomogr
– volume: 18
  start-page: 1323
  year: 2011
  end-page: 1328
  ident: bib17
  article-title: Semi-automatic volumetric assessment of perihemorrhagic edema with computed tomography
  publication-title: Eur J Neurol
– volume: 27
  start-page: 1304
  year: 1996
  end-page: 1305
  ident: bib22
  article-title: The ABCs of measuring intracerebral hemorrhage volumes
  publication-title: Stroke
– volume: 7
  start-page: 785
  year: 2012
  end-page: 798
  ident: bib27
  article-title: Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique
  publication-title: Int J Comput Assist Radiol Surg
– volume: 11
  start-page: 2460
  year: 2022
  ident: bib14
  article-title: Multi-method diagnosis of CT images for rapid detection of intracranial hemorrhages based on deep and hybrid learning
  publication-title: Electronics
– volume: 13
  year: 2022
  ident: bib11
  article-title: Segmentation of spontaneous intracerebral hemorrhage on CT with a region growing method based on watershed preprocessing
  publication-title: Front Neurol
– volume: 38
  start-page: 1536
  year: 2017
  end-page: 1542
  ident: bib18
  article-title: Retrospective validation of a computer-assisted quantification model of intracerebral hemorrhage volume on accuracy, precision, and acquisition time, compared with standard ABC/2 manual volume calculation
  publication-title: Am J Neuroradiol
– volume: 14
  start-page: 2349
  year: 2013
  end-page: 2353
  ident: bib16
  article-title: Orange: data mining toolbox in Python
  publication-title: the Journal of machine Learning research
– volume: 7
  start-page: 507
  year: 2012
  end-page: 516
  ident: bib30
  article-title: Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans
  publication-title: Int J Comput Assist Radiol Surg
– volume: 16
  start-page: 641
  year: 1994
  end-page: 647
  ident: bib9
  article-title: Seeded region growing
  publication-title: IEEE Trans Pattern Anal Mach Intell
– volume: 42
  start-page: 1569
  year: 2011
  end-page: 1574
  ident: bib23
  article-title: The ABCs of accurate volumetric measurement of cerebral hematoma
  publication-title: Stroke
– volume: 14
  year: 2021
  ident: bib6
  article-title: Deep network for the automatic segmentation and quantification of intracranial hemorrhage on CT
  publication-title: Front Neurosci
– volume: 43
  start-page: 1961
  year: 2012
  end-page: 1963
  ident: bib21
  article-title: Planimetric hematoma measurement in patients with intraventricular hemorrhage: is total volume a preferred target for reliable analysis?
  publication-title: Stroke
– volume: 21
  start-page: 1
  year: 2021
  end-page: 9
  ident: bib13
  article-title: Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement
  publication-title: BMC Med Imag
– volume: 27
  start-page: 1304
  year: 1996
  ident: 10.1016/j.wneu.2024.02.135_bib22
  article-title: The ABCs of measuring intracerebral hemorrhage volumes
  publication-title: Stroke
  doi: 10.1161/01.STR.27.8.1304
– volume: 28
  start-page: 93
  year: 2009
  ident: 10.1016/j.wneu.2024.02.135_bib12
  article-title: Image segmentation: a watershed transformation algorithm
  publication-title: Image Anal Stereol
  doi: 10.5566/ias.v28.p93-102
– volume: 53
  start-page: 167
  year: 2022
  ident: 10.1016/j.wneu.2024.02.135_bib24
  article-title: A robust deep learning segmentation method for hematoma volumetric detection in intracerebral hemorrhage
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.120.032243
– volume: 13
  year: 2022
  ident: 10.1016/j.wneu.2024.02.135_bib11
  article-title: Segmentation of spontaneous intracerebral hemorrhage on CT with a region growing method based on watershed preprocessing
  publication-title: Front Neurol
– volume: 50
  start-page: 3416
  year: 2019
  ident: 10.1016/j.wneu.2024.02.135_bib5
  article-title: Fully automated segmentation algorithm for hematoma volumetric analysis in spontaneous intracerebral hemorrhage
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.119.026561
– volume: 16
  start-page: 641
  year: 1994
  ident: 10.1016/j.wneu.2024.02.135_bib9
  article-title: Seeded region growing
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/34.295913
– volume: 42
  start-page: 1569
  year: 2011
  ident: 10.1016/j.wneu.2024.02.135_bib23
  article-title: The ABCs of accurate volumetric measurement of cerebral hematoma
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.607861
– volume: 8
  start-page: 39
  year: 2011
  ident: 10.1016/j.wneu.2024.02.135_bib1
  article-title: Imaging for the diagnosis and management of traumatic brain injury
  publication-title: Neurotherapeutics
  doi: 10.1007/s13311-010-0003-3
– volume: 380
  start-page: 1347
  year: 2019
  ident: 10.1016/j.wneu.2024.02.135_bib26
  article-title: Machine learning in medicine
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1814259
– start-page: 400
  year: 2021
  ident: 10.1016/j.wneu.2024.02.135_bib8
  article-title: ReSGAN: Intracranial hemorrhage segmentation with residuals of synthetic brain CT scans
– volume: 18
  start-page: 1323
  year: 2011
  ident: 10.1016/j.wneu.2024.02.135_bib17
  article-title: Semi-automatic volumetric assessment of perihemorrhagic edema with computed tomography
  publication-title: Eur J Neurol
  doi: 10.1111/j.1468-1331.2011.03395.x
– volume: 38
  start-page: 1536
  year: 2017
  ident: 10.1016/j.wneu.2024.02.135_bib18
  article-title: Retrospective validation of a computer-assisted quantification model of intracerebral hemorrhage volume on accuracy, precision, and acquisition time, compared with standard ABC/2 manual volume calculation
  publication-title: Am J Neuroradiol
  doi: 10.3174/ajnr.A5256
– volume: 43
  start-page: 1961
  year: 2012
  ident: 10.1016/j.wneu.2024.02.135_bib21
  article-title: Planimetric hematoma measurement in patients with intraventricular hemorrhage: is total volume a preferred target for reliable analysis?
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.112.654970
– volume: 36
  start-page: 109
  year: 2012
  ident: 10.1016/j.wneu.2024.02.135_bib28
  article-title: Comparison of 3-segmentation techniques for intraventricular and intracerebral hemorrhages in unenhanced computed tomography scans
  publication-title: J Comput Assist Tomogr
  doi: 10.1097/RCT.0b013e318245c1fa
– volume: 7
  start-page: 785
  year: 2012
  ident: 10.1016/j.wneu.2024.02.135_bib27
  article-title: Segmentation and quantification of intra-ventricular/cerebral hemorrhage in CT scans by modified distance regularized level set evolution technique
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-012-0670-0
– volume: 28
  start-page: 203
  year: 2011
  ident: 10.1016/j.wneu.2024.02.135_bib4
  article-title: Computed tomography and outcome in moderate and severe traumatic brain injury: hematoma volume and midline shift revisited
  publication-title: J Neurotrauma
  doi: 10.1089/neu.2010.1558
– volume: 8
  start-page: 357
  year: 2014
  ident: 10.1016/j.wneu.2024.02.135_bib10
  article-title: Intracranial hemorrhage detection using spatial fuzzy c-mean and region-based active contour on brain CT imaging
  publication-title: Signal, Image and Video Processing
  doi: 10.1007/s11760-012-0298-0
– volume: 58
  start-page: S7
  issue: 3 Suppl
  year: 2006
  ident: 10.1016/j.wneu.2024.02.135_bib2
  article-title: Surgical management of acute epidural hematomas
  publication-title: Neurosurgery
– volume: 5
  start-page: 14
  year: 2020
  ident: 10.1016/j.wneu.2024.02.135_bib7
  article-title: Intracranial hemorrhage segmentation using a deep convolutional model
  publication-title: Data
  doi: 10.3390/data5010014
– volume: 8
  start-page: 135
  year: 1999
  ident: 10.1016/j.wneu.2024.02.135_bib15
  article-title: Measuring agreement in method comparison studies
  publication-title: Stat Methods Med Res
  doi: 10.1177/096228029900800204
– volume: 6
  start-page: 302
  year: 2011
  ident: 10.1016/j.wneu.2024.02.135_bib20
  article-title: Quantomo: validation of a computer-assisted methodology for the volumetric analysis of intracerebral haemorrhage
  publication-title: Int J Stroke
  doi: 10.1111/j.1747-4949.2010.00579.x
– volume: 7
  start-page: 507
  year: 2012
  ident: 10.1016/j.wneu.2024.02.135_bib30
  article-title: Automatic subarachnoid space segmentation and hemorrhage detection in clinical head CT scans
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-011-0664-3
– volume: 14
  year: 2021
  ident: 10.1016/j.wneu.2024.02.135_bib6
  article-title: Deep network for the automatic segmentation and quantification of intracranial hemorrhage on CT
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2020.541817
– volume: 24
  start-page: 987
  year: 1993
  ident: 10.1016/j.wneu.2024.02.135_bib3
  article-title: Volume of intracerebral hemorrhage. A powerful and easy-to-use predictor of 30-day mortality
  publication-title: Stroke
  doi: 10.1161/01.STR.24.7.987
– volume: 47
  start-page: 2776
  year: 2016
  ident: 10.1016/j.wneu.2024.02.135_bib19
  article-title: Development and validation of an automatic segmentation algorithm for quantification of intracerebral hemorrhage
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.116.013779
– volume: 10
  year: 2020
  ident: 10.1016/j.wneu.2024.02.135_bib25
  article-title: A fast and fully-automated deep-learning approach for accurate hemorrhage segmentation and volume quantification in non-contrast whole-head CT
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-76459-7
– volume: 11
  start-page: 2460
  year: 2022
  ident: 10.1016/j.wneu.2024.02.135_bib14
  article-title: Multi-method diagnosis of CT images for rapid detection of intracranial hemorrhages based on deep and hybrid learning
  publication-title: Electronics
  doi: 10.3390/electronics11152460
– volume: 48
  start-page: 661
  year: 2013
  ident: 10.1016/j.wneu.2024.02.135_bib29
  article-title: Automatic detection, localization, and volume estimation of ischemic infarcts in noncontrast computed tomographic scans: method and preliminary results
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0b013e31828d8403
– volume: 21
  start-page: 1
  year: 2021
  ident: 10.1016/j.wneu.2024.02.135_bib13
  article-title: Efficiency of a deep learning-based artificial intelligence diagnostic system in spontaneous intracerebral hemorrhage volume measurement
  publication-title: BMC Med Imag
  doi: 10.1186/s12880-021-00657-6
– volume: 14
  start-page: 2349
  year: 2013
  ident: 10.1016/j.wneu.2024.02.135_bib16
  article-title: Orange: data mining toolbox in Python
  publication-title: the Journal of machine Learning research
SSID ssj0000314873
Score 2.4042215
Snippet Intracranial hemorrhage (ICH) is a severe condition that requires rapid diagnosis and treatment. Automated methods for calculating ICH volumes can reduce human...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e827
SubjectTerms Automated image analysis software
Hematoma quantification
ICH
Imaging detection
Noncontrast computed tomography
Title Precision and Speed at Your Fingertips: An Automated Intracranial Hematoma Volume Calculation
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1878875024003486
https://dx.doi.org/10.1016/j.wneu.2024.02.135
https://www.ncbi.nlm.nih.gov/pubmed/38453009
https://www.proquest.com/docview/2954769149
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier Freedom Collection
  customDbUrl:
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: ACRLP
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: .~1
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: AIKHN
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1878-8769
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000314873
  issn: 1878-8750
  databaseCode: AKRWK
  dateStart: 20100101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvXgRxVd9sYI3id1089geS7G0iiJUpRdZ9hWolLTUFG_-dmeSTUHwAR6T7JBkdnYeuzPfEHKRWphkYXWgjciCyKZhoITiAZ7Z6LibQeCC-x1398nwKbqZxJMG6de1MJhW6XV_pdNLbe3vtD0324vptD0OBWbCxQjSxXgkEHY7ilLsYnD1Ea73WRCeXZQHzTg-QAJfO1Oleb3nbgVhYidC6M6w7Pr2rX36yf8s7dBgm2x5B5L2qm_cIQ2X75KXh6XvlUNVbul4ATaJqoLCWl7SQblzV0zhz2kvp71VMQc3FQaMcGPXgLECGaRDBG-FB_S51Fe0r2bGt_baI0-D68f-MPCNEwID8VkRcKaEDi0iqRvgt-s4xQzYaqy61c7qjtKw2oS1Wpsk00bFXQhDmEtT1mVZ5vg-aebz3B0SGiKkXKJjpgyPNKKVOaZSbXUKy0vxpEXCml3SeFRxbG4xk3X62KtEFktksWQdCSxukcs1zaLC1Ph1NK9nQdbVoqDfJKj8X6niNdUXefqT7ryeaAkLDU9PVO7mqzeJB6Jp0oWIskUOKglYfz0XUczBWz3651uPySZeVYmUJ6RZLFfuFJydQp-V0nxGNnqj2-H9JzPZ_Xw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8QwEA4eD_oiitd6RvBN6qZNj-zjsrisJ4IHvkjIVViR7rJ28c3f7kybLgge4GvToelkMkcy8w0hx5mFRRZWB9qIPIhtFgZKKB7gnY1OOjkELnjecX2TDh7ii6fkaY70mloYTKv0ur_W6ZW29k_anpvt8XDYvgsFZsIlCNLFeCzSebIYJ1GGEdjpRzg7aEF8dlHdNCNBgBS-eKbO83ov3BTixChG7M6wavv2rYH6yQGtDFF_lax4D5J260mukTlXrJPn24lvlkNVYendGIwSVSWFzTyh_erorhzCr9NuQbvTcgR-Krxwjie7BqwVCCEdIHorDNDHSmHRnno1vrfXBnnon933BoHvnBAYCNDKgDMldGgRSt0Aw13kFDNgrLHsVjurI6VhuwlrtTZpro1KOhCHMJdlrMPy3PFNslCMCrdNaIiYcqlOmDI81ghX5pjKtNUZ7C_F0xYJG3ZJ42HFsbvFq2zyx14kslgiiyWLJLC4RU5mNOMaVOPXt3mzCrIpFwUFJ0Hn_0qVzKi-CNSfdEfNQkvYaXh9ogo3mr5JvBHN0g6ElC2yVUvAbPZcxAkHd3Xnn189JEuD--sreXV-c7lLlnGkzqrcIwvlZOr2wfMp9UEl2Z8Hnv8R
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precision+and+Speed+at+Your+Fingertips%3A+An+Automated+Intracranial+Hematoma+Volume+Calculation&rft.jtitle=World+neurosurgery&rft.au=Khademolhosseini%2C+Sepehr&rft.au=Habibzadeh%2C+Adrina&rft.au=Zoghi%2C+Sina&rft.au=Taheri%2C+Reza&rft.date=2024-05-01&rft.issn=1878-8769&rft.eissn=1878-8769&rft.volume=185&rft.spage=e827&rft_id=info:doi/10.1016%2Fj.wneu.2024.02.135&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1878-8750&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1878-8750&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1878-8750&client=summon