A Path Algorithm for the Fused Lasso Signal Approximator

The Lasso is a very well-known penalized regression model, which adds an L 1 penalty with parameter λ 1 on the coefficients to the squared error loss function. The Fused Lasso extends this model by also putting an L 1 penalty with parameter λ 2 on the difference of neighboring coefficients, assuming...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational and graphical statistics Vol. 19; no. 4; pp. 984 - 1006
Main Author Hoefling, Holger
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 01.12.2010
JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN1061-8600
1537-2715
DOI10.1198/jcgs.2010.09208

Cover

Abstract The Lasso is a very well-known penalized regression model, which adds an L 1 penalty with parameter λ 1 on the coefficients to the squared error loss function. The Fused Lasso extends this model by also putting an L 1 penalty with parameter λ 2 on the difference of neighboring coefficients, assuming there is a natural ordering. In this article, we develop a path algorithm for solving the Fused Lasso Signal Approximator that computes the solutions for all values of λ 1 and λ 2 . We also present an approximate algorithm that has considerable speed advantages for a moderate trade-off in accuracy. In the Online Supplement for this article, we provide proofs and further details for the methods developed in the article.
AbstractList The Lasso is a very well-known penalized regression model, which adds an L 1 penalty with parameter λ 1 on the coefficients to the squared error loss function. The Fused Lasso extends this model by also putting an L 1 penalty with parameter λ 2 on the difference of neighboring coefficients, assuming there is a natural ordering. In this article, we develop a path algorithm for solving the Fused Lasso Signal Approximator that computes the solutions for all values of λ 1 and λ 2 . We also present an approximate algorithm that has considerable speed advantages for a moderate trade-off in accuracy. In the Online Supplement for this article, we provide proofs and further details for the methods developed in the article.
The Lasso is a very well-known penalized regression model, which adds an L^sub 1^ penalty with parameter ...^sub 1^ on the coefficients to the squared error loss function. The Fused Lasso extends this model by also putting an L^sub 1^ penalty with parameter ...^sub 2^ on the difference of neighboring coefficients, assuming there is a natural ordering. This article develops a path algorithm for solving the Fused Lasso Signal Approximator that computes the solutions for all values of ...^sub 1^ and ...^sub 2^. It also presents an approximate algorithm that has considerable speed advantages for a moderate trade-off in accuracy. (ProQuest: ... denotes formulae/symbols omitted.)
The Lasso is a very well-known penalized regression model, which adds an L₁ penalty with parameter λ₁ on the coefficients to the squared error loss function. The Fused Lasso extends this model by also putting an L₁ penalty with parameter λ₂ on the difference of neighboring coefficients, assuming there is a natural ordering. In this article, we develop a path algorithm for solving the Fused Lasso Signal Approximator that computes the solutions for all values of λ₁ and λ₂. We also present an approximate algorithm that has considerable speed advantages for a moderate trade-off in accuracy. In the Online Supplement for this article, we provide proofs and further details for the methods developed in the article.
Author Hoefling, Holger
Author_xml – sequence: 1
  givenname: Holger
  surname: Hoefling
  fullname: Hoefling, Holger
BookMark eNp9kE1LAzEQhoNUsK2ePQmL920nu5uP9VaKVaGgoJ5Dms22WbabmqRo_72pKx4EPc0MM--8M88IDTrbaYQuMUwwLvm0UWs_ySCWUGbAT9AQk5ylGcNkEHOgOOUU4AyNvG8AANOSDRGfJU8ybJJZu7bOhM02qa1LwkYni73XVbKU3tvk2aw72Saz3c7ZD7OVwbpzdFrL1uuL7zhGr4vbl_l9uny8e5jPlqkqgIVoX8MqL4isuCoZU5RiyFUOEleYqkIVq0pjxUHyTFe1JgxDRmstCSs01aXOx-i63xut3_baB9HYvYvXeMGL-FsGJYlD035IOeu907XYuXimOwgM4khHHOmIIx3xRScqyC-FMkEGY7vgpGn_0V31usZHCD82GWGU5LyI_Zu-b7oIcivfrWsrEeShta52slPGi_yv5Z9JT4gO
CitedBy_id crossref_primary_10_1016_j_acha_2017_12_004
crossref_primary_10_1109_TMI_2022_3161828
crossref_primary_10_1177_13694332231218763
crossref_primary_10_1080_10618600_2015_1008638
crossref_primary_10_1016_j_jmva_2017_08_001
crossref_primary_10_1111_insr_12521
crossref_primary_10_1371_journal_pcbi_1006436
crossref_primary_10_1007_s12532_022_00229_x
crossref_primary_10_1111_biom_13632
crossref_primary_10_1080_10618600_2017_1341323
crossref_primary_10_1186_1471_2105_13_205
crossref_primary_10_1093_biomet_asz071
crossref_primary_10_1016_j_chemolab_2015_01_006
crossref_primary_10_1016_j_sigpro_2016_02_015
crossref_primary_10_1016_j_jspi_2018_10_003
crossref_primary_10_1186_s12859_015_0835_2
crossref_primary_10_1007_s42952_021_00128_2
crossref_primary_10_1007_s42952_023_00250_3
crossref_primary_10_1093_bioinformatics_btz529
crossref_primary_10_1177_1176935117690778
crossref_primary_10_1038_s41467_019_09907_2
crossref_primary_10_1214_23_BJPS577
crossref_primary_10_1111_j_1467_9868_2011_00783_x
crossref_primary_10_1007_s10898_021_01013_2
crossref_primary_10_1016_j_eswa_2013_08_095
crossref_primary_10_1080_10618600_2019_1660178
crossref_primary_10_1214_24_EJS2322
crossref_primary_10_1109_LSP_2018_2867800
crossref_primary_10_7465_jkdi_2013_24_5_959
crossref_primary_10_1093_bib_bbab270
crossref_primary_10_1214_17_EJS1270
crossref_primary_10_1007_s11222_024_10513_6
crossref_primary_10_1109_TMI_2019_2918839
crossref_primary_10_1080_10618600_2015_1073155
crossref_primary_10_1214_16_AOAS998
crossref_primary_10_1093_biostatistics_kxy035
crossref_primary_10_1002_sta4_198
crossref_primary_10_1016_j_csda_2015_08_013
crossref_primary_10_1002_qre_2192
crossref_primary_10_1080_10618600_2013_878662
crossref_primary_10_1007_s11071_023_09098_y
crossref_primary_10_1186_s12859_019_2749_x
crossref_primary_10_1214_17_AOS1656
crossref_primary_10_1111_rssb_12033
crossref_primary_10_1080_10618600_2014_948181
crossref_primary_10_1109_LSP_2013_2278339
crossref_primary_10_1214_23_AOS2283
crossref_primary_10_1007_s42081_024_00269_8
crossref_primary_10_1016_j_apm_2024_115694
crossref_primary_10_1214_11_AOS878
crossref_primary_10_1109_TCYB_2018_2845838
crossref_primary_10_1093_jrsssc_qlaf015
crossref_primary_10_1007_s11634_020_00424_5
crossref_primary_10_1631_FITEE_1500148
crossref_primary_10_1016_j_neuroimage_2014_07_033
crossref_primary_10_1214_23_AOS2297
crossref_primary_10_1007_s00180_012_0373_6
crossref_primary_10_1631_FITEE_1601489
crossref_primary_10_1109_LSENS_2018_2884735
crossref_primary_10_1145_3241063
crossref_primary_10_3390_computers13040093
crossref_primary_10_1214_19_EJS1569
crossref_primary_10_1016_j_chemolab_2021_104268
crossref_primary_10_1016_j_jprocont_2016_04_002
crossref_primary_10_1190_geo2015_0151_1
crossref_primary_10_1214_17_EJS1363
crossref_primary_10_1080_00207543_2015_1109723
crossref_primary_10_3892_ijo_2016_3349
crossref_primary_10_1080_10618600_2015_1096789
crossref_primary_10_1016_j_ygeno_2015_07_008
crossref_primary_10_1093_genetics_iyae187
crossref_primary_10_1016_j_csda_2014_05_017
crossref_primary_10_1177_09622802241267355
crossref_primary_10_1214_12_AOAS539
crossref_primary_10_22331_q_2025_03_25_1674
crossref_primary_10_1177_1471082X16652780
crossref_primary_10_1016_j_ejor_2020_09_010
crossref_primary_10_1038_s41467_018_03017_1
crossref_primary_10_1016_j_csda_2022_107581
crossref_primary_10_1016_j_neucom_2022_02_041
crossref_primary_10_1109_TCBB_2016_2599867
crossref_primary_10_1007_s11517_021_02439_2
crossref_primary_10_1111_rssc_12514
crossref_primary_10_1093_bioinformatics_btw485
crossref_primary_10_3389_fgene_2019_00623
crossref_primary_10_1007_s13253_023_00591_w
crossref_primary_10_1016_j_sigpro_2016_03_009
crossref_primary_10_1080_10618600_2017_1328363
crossref_primary_10_1007_s11222_016_9654_1
crossref_primary_10_1049_iet_spr_2018_5011
crossref_primary_10_1016_j_sigpro_2016_07_013
crossref_primary_10_1080_03610918_2013_824096
crossref_primary_10_3390_e23121623
crossref_primary_10_1109_TKDE_2014_2373411
crossref_primary_10_1016_j_cie_2018_09_001
crossref_primary_10_1111_rssb_12226
crossref_primary_10_1016_j_csda_2010_10_021
crossref_primary_10_1371_journal_pcbi_1010758
crossref_primary_10_1016_j_chemolab_2015_09_004
crossref_primary_10_1007_s40305_020_00336_3
crossref_primary_10_1016_j_csda_2023_107908
crossref_primary_10_1109_TCYB_2020_2982445
crossref_primary_10_1111_biom_13004
crossref_primary_10_1142_S0217595923500252
crossref_primary_10_1109_TCBB_2022_3172289
crossref_primary_10_1080_10618600_2018_1442343
crossref_primary_10_1007_s11222_024_10432_6
crossref_primary_10_1145_3432312
crossref_primary_10_1007_s10548_017_0615_6
crossref_primary_10_1109_TGRS_2022_3176936
Cites_doi 10.1109/TSP.2004.840786
10.1214/009053606000001370
10.1111/j.1467-9868.2005.00490.x
10.1111/j.1467-9868.2007.00607.x
10.1214/009053604000000067
10.1093/imanum/20.3.389
10.1111/j.2517-6161.1996.tb02080.x
10.1016/0022-0000(83)90006-5
10.1214/07-AOAS131
ContentType Journal Article
Copyright 2010 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2010
2010 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundat
Copyright American Statistical Association Dec 2010
Copyright_xml – notice: 2010 American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America 2010
– notice: 2010 American Statistical Association, the Institute of Mathematical Statistics, and the Interface Foundat
– notice: Copyright American Statistical Association Dec 2010
DBID AAYXX
CITATION
JQ2
DOI 10.1198/jcgs.2010.09208
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection

DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1537-2715
EndPage 1006
ExternalDocumentID 2247845451
10_1198_jcgs_2010_09208
25765384
10712075
Genre Research Article
Feature
GroupedDBID -~X
.4S
.7F
.DC
.QJ
0BK
0R~
2AX
30N
4.4
5GY
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
AAWIL
ABAWQ
ABBHK
ABCCY
ABFAN
ABFIM
ABJNI
ABLIJ
ABLJU
ABPAQ
ABPEM
ABQDR
ABTAI
ABXSQ
ABXUL
ABXYU
ABYWD
ACDIW
ACGFO
ACGFS
ACHJO
ACIWK
ACMTB
ACTCW
ACTIO
ACTMH
ADCVX
ADGTB
ADODI
ADULT
ADXHL
AEGXH
AELLO
AENEX
AEOZL
AEPSL
AEUPB
AEYOC
AFRVT
AFVYC
AGCQS
AGDLA
AGLNM
AGMYJ
AHDZW
AIAGR
AIHAF
AIJEM
AKBRZ
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
ALRMG
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CS3
D0L
DGEBU
DKSSO
DQDLB
DSRWC
DU5
EBS
ECEWR
EJD
E~A
E~B
F5P
GTTXZ
H13
HQ6
HZ~
H~P
IPSME
J.P
JAA
JAAYA
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
KYCEM
M4Z
MS~
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
RWL
RXW
S-T
SA0
SNACF
TAE
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
UT5
UU3
WZA
XWC
ZGOLN
~S~
ADYSH
AMPGV
07G
29K
AAIKQ
AAKBW
AAYXX
ACAGQ
ACGEE
AEUMN
AGLEN
AGROQ
AHMOU
ALCKM
AMATQ
AMEWO
AMVHM
AMXXU
ARCSS
BCCOT
BPLKW
C06
CITATION
CRFIH
D-I
DMQIW
DWIFK
FEDTE
GIFXF
HF~
HGD
HVGLF
IPNFZ
IVXBP
LJTGL
NUSFT
QCRFL
RNS
TAQ
TFMCV
TOXWX
TUS
UB9
JQ2
ID FETCH-LOGICAL-c407t-27f0b345ad8c977c66103c30a1d16c4c4bde1c80a82edfe571026fea574e6e9e3
ISSN 1061-8600
IngestDate Wed Aug 13 04:27:13 EDT 2025
Wed Oct 01 06:45:40 EDT 2025
Thu Apr 24 23:08:24 EDT 2025
Thu May 29 08:45:23 EDT 2025
Mon Oct 20 23:48:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c407t-27f0b345ad8c977c66103c30a1d16c4c4bde1c80a82edfe571026fea574e6e9e3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
PQID 847152095
PQPubID 29738
PageCount 23
ParticipantIDs crossref_primary_10_1198_jcgs_2010_09208
crossref_citationtrail_10_1198_jcgs_2010_09208
informaworld_taylorfrancis_310_1198_jcgs_2010_09208
jstor_primary_25765384
proquest_journals_847152095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-12-01
PublicationDateYYYYMMDD 2010-12-01
PublicationDate_xml – month: 12
  year: 2010
  text: 2010-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of computational and graphical statistics
PublicationYear 2010
Publisher Taylor & Francis
JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: JCGS Management Committee of the American Statistical Association, Institute of Mathematical Statistics, and Interface Foundation of North America
– name: Taylor & Francis Ltd
References Hastie T. (p_7) 2004; 5
p_4
p_12
p_3
p_13
Tibshirani R. (p_14) 1996; 58
p_15
p_10
p_9
p_11
References_xml – volume: 5
  start-page: 1391
  year: 2004
  ident: p_7
  publication-title: The Journal of Machine Learning Research
– ident: p_11
  doi: 10.1109/TSP.2004.840786
– ident: p_12
  doi: 10.1214/009053606000001370
– ident: p_15
  doi: 10.1111/j.1467-9868.2005.00490.x
– ident: p_10
  doi: 10.1111/j.1467-9868.2007.00607.x
– ident: p_3
  doi: 10.1214/009053604000000067
– ident: p_9
  doi: 10.1093/imanum/20.3.389
– volume: 58
  start-page: 267
  year: 1996
  ident: p_14
  publication-title: Journal of the Royal Statistical Society, Ser. B
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: p_13
  doi: 10.1016/0022-0000(83)90006-5
– ident: p_4
  doi: 10.1214/07-AOAS131
SSID ssj0001697
Score 2.3751125
Snippet The Lasso is a very well-known penalized regression model, which adds an L 1 penalty with parameter λ 1 on the coefficients to the squared error loss function....
The Lasso is a very well-known penalized regression model, which adds an L₁ penalty with parameter λ₁ on the coefficients to the squared error loss function....
The Lasso is a very well-known penalized regression model, which adds an L^sub 1^ penalty with parameter ...^sub 1^ on the coefficients to the squared error...
SourceID proquest
crossref
jstor
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 984
SubjectTerms Accuracy
Algorithms
Approximation
Chromosomes
Coefficients
Comparative genomic hybridization
Componentwise operations
Convex optimization
Datasets
Identifiability
Image reconstruction
Lasso
Lasso, LARS, and L₁ Regularization
Mathematical independent variables
Mathematical models
Mathematical problems
Penalized regression
Regression analysis
Studies
Vertices
Title A Path Algorithm for the Fused Lasso Signal Approximator
URI https://www.tandfonline.com/doi/abs/10.1198/jcgs.2010.09208
https://www.jstor.org/stable/25765384
https://www.proquest.com/docview/847152095
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: AHDZW
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1537-2715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001697
  issn: 1061-8600
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdgXMYBwWCiDJAPTEKaMtLY-fAxglUV6sphqdSb5ThON9Q1g2YS4q_nPSdxU7oh4BJVzmf9e37vZ_t9EPJOqcgIESgvyAXzuIEhlQuuvNIEmukgCpTG9Y7zaTSe8c_zcL7x07XRJXV-qn_eGVfyP6hCG-CKUbL_gKx7KDTAb8AXjoAwHP8K4xQz7F-epMtFBXP8y2vnMzi6XQORnAAxrk4urhbIOFNMHv7j6lo16YXvYqTaVnjoVgdxRd2ms24CJ7Hd5nR2glCZctlWRBlXy0Xr5tuuIOx4Y2Q7xTx6HkWoE8Hke0nkN9snptOTsRfETSSmU6SiJzC8pxVFUwVuV1sLjED4qhfr1sdOBH6yMUzdZvz0ixzNJhOZnc2z7bPWDgMJiRMOTHB4zEY33zysKIY778fsUwP5Q_IoAJ2PhT2YP3V2etiW3un-Xpv4CT7qw2-ftMVZtjLadl6sO5bc0pPsKXnSokjTRkiekQdmdUAen7ukvOsDsn_hMHxOkpSi7FAnOxReR-FqamWHWtmhjezQvuy8ILPRWfZx7LVVNDwNk_UaUCr9nPFQFYkGsq-BkPlMM18Ni2GkueZ5YYY68VUSmKI0IVLOqDQqjLmBcWzYIdlbVSvzktCcF1obHhemVEi8la-E4bnPYhEXUeEPyGnXT1K3Keax0slS2qmmSCR2rMSOlbZjB-S9u-Gmya5y_6Ws3_GytlJbNgIr2b13HVp83NNxfg02ng_IUQeYbEf0WiJTQ7ew8NUfzx6R_c0wek326u-35g1Q0zp_ayXsF6Z_jqY
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB4h9gAc2OUlCuziAwcuKantPCxxqVZbdaGtkACJC7Ic2ymF0iKaSohfjycv8bxwju0k9oy_b6zxNwAHSoVWCKo8mgjmcetcKhFceamlmmkaUqXxvKM_CLuX_OQquFqA4-ouDKZVYgydFkIR-V6Nzo2H0YWHi_joVg9nZVaWoHjT90fgaD7WL2D-oN6HW2VpFYdYXuxwvRT2-WSAN5j0RrG0ylL8sFPn8NP5CdfVhxdZJ3fNeZY09fM7Tcfv_tkvWC15KWkXhrQGC3ayDiv9WtR1tg7LSEwLXecNiNvkzD0k7fFw-jjKbu6J-x3iWpPOfGYN6TlSPiXno2E-KgqXP43uMcDfhMvOv4u_Xa-swuBpF-xlHo1SP2E8UCbWjixqB-g-08xXLdMKNdc8MbalY1_F1JrUBkhZwtSqIOLW2YFlW7A4mU7sNpCEG60tj4xNFRI35StheeKzSEQmNH4DmtU6SF1KlGOljLHMQxURS5wfifMj8_lpwGHd4aFQ5_i6KXu9sDLLD0TSonqJZF_22srXvx4d4zOHEbwBu5VByNLrZxKRHtOKgp1vvWwflroX_Z7s_R-c7sIyrRNn9mAxe5zb347-ZMmf3MpfAN2F_rg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5FqYTSQ1tKI9JS8IEDlw0b2_uwOEW0UYA0igSVekCyvLY3BPJSs5EQvx7PvkSAXHJee3Ztz_ib8Y6_AXitVGiFoMqjiWAet86kEsGVl1qqmaYhVRrPO-7G4fCef3wIHhrwrroLg2mVGEOnBVFEvlejca9NWhi4iN9-19NNmZQlKF70PQrxfxje3_DH9TbcKyurOMDyYgfrJa_PfwTsQNIOYWmVpPjPRp2jz-AUvlbfXSSd_Ohus6Srf_1F6XjgwM7gpPRKSb9Qo6fQsMtzOL6rKV0359BCt7RgdX4GcZ9M3EPSn09Xj7Ps24K40RDXmgy2G2vIyLnkK_J5Ns2lIm35z9kCw_sLuB_cfnk_9MoaDJ52oV7m0Sj1E8YDZWLtXEXt4NxnmvmqZ3qh5ponxvZ07KuYWpPaAB2WMLUqiLh1WmBZG5rL1dI-B5Jwo7XlkbGpQrdN-UpYnvgsEpEJjd-BbrUMUpcE5VgnYy7zQEXEEudH4vzIfH468KbusC64OfY3ZX-uq8zy45C0qF0i2d5e7Xz5a-kYnTmE4B24qvRBlja_kYjzmFQUXB70slfwZHIzkKMP409X0KJ11swLaGaPW3vtfJ8seZnr-G_Gnv1c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Path+Algorithm+for+the+Fused+Lasso+Signal+Approximator&rft.jtitle=Journal+of+computational+and+graphical+statistics&rft.au=Hoefling%2C+Holger&rft.date=2010-12-01&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=1061-8600&rft.eissn=1537-2715&rft.volume=19&rft.issue=4&rft.spage=984&rft_id=info:doi/10.1198%2Fjcgs.2010.09208&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2247845451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-8600&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-8600&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-8600&client=summon