Manufacturing of PAN or PU Nanofiber Layers/PET Nonwoven Composite as Highly Effective Sound Absorbers

ABSTRACT The main aim of this study was to investigate the usability of polyurethane (PU) and polyacrylonitrile (PAN) nanofibers for improving the sound absorption of conventional polyester nonwovens in wide band of frequencies along with weight and thickness reduction. The effect of nanofiber and n...

Full description

Saved in:
Bibliographic Details
Published inAdvances in polymer technology Vol. 33; no. 4; pp. np - n/a
Main Authors Rabbi, Amir, Bahrambeygi, Hossein, Nasouri, Komeil, Shoushtari, Ahmad Mousavi, Babaei, Mohammad Reza
Format Journal Article
LanguageEnglish
Published Hoboken, NJ Blackwell Publishing Ltd 01.12.2014
Wiley
Subjects
Online AccessGet full text
ISSN0730-6679
1098-2329
DOI10.1002/adv.21425

Cover

Abstract ABSTRACT The main aim of this study was to investigate the usability of polyurethane (PU) and polyacrylonitrile (PAN) nanofibers for improving the sound absorption of conventional polyester nonwovens in wide band of frequencies along with weight and thickness reduction. The effect of nanofiber and nonwoven layers number, nanofiber layers surface density, and the type of nanofiber polymer on the sound absorption was studied. To find the optimum conditions for achieving high sound absorption, response surface methodology was used. The results showed that the sound absorption of composite samples is improved when the nanofiber layer number or its surface density increased. The results also showed that the sound absorption of composites is enhanced by using PAN instead of PU. At a constant surface density, the higher resonant peak, without shifting, was achieved with increasing the nanofiber layers number. Optimization process showed that samples containing PAN nanofiber layers with surface density of 4.72 g/m2 and six nonwoven layers have highest average sound absorption coefficient.
AbstractList The main aim of this study was to investigate the usability of polyurethane (PU) and polyacrylonitrile (PAN) nanofibers for improving the sound absorption of conventional polyester nonwovens in wide band of frequencies along with weight and thickness reduction. The effect of nanofiber and nonwoven layers number, nanofiber layers surface density, and the type of nanofiber polymer on the sound absorption was studied. To find the optimum conditions for achieving high sound absorption, response surface methodology was used. The results showed that the sound absorption of composite samples is improved when the nanofiber layer number or its surface density increased. The results also showed that the sound absorption of composites is enhanced by using PAN instead of PU. At a constant surface density, the higher resonant peak, without shifting, was achieved with increasing the nanofiber layers number. Optimization process showed that samples containing PAN nanofiber layers with surface density of 4.72 g/m 2 and six nonwoven layers have highest average sound absorption coefficient.
The main aim of this study was to investigate the usability of polyurethane (PU) and polyacrylonitrile (PAN) nanofibers for improving the sound absorption of conventional polyester nonwovens in wide band of frequencies along with weight and thickness reduction. The effect of nanofiber and nonwoven layers number, nanofiber layers surface density, and the type of nanofiber polymer on the sound absorption was studied. To find the optimum conditions for achieving high sound absorption, response surface methodology was used. The results showed that the sound absorption of composite samples is improved when the nanofiber layer number or its surface density increased. The results also showed that the sound absorption of composites is enhanced by using PAN instead of PU. At a constant surface density, the higher resonant peak, without shifting, was achieved with increasing the nanofiber layers number. Optimization process showed that samples containing PAN nanofiber layers with surface density of 4.72 g/m super(2) and six nonwoven layers have highest average sound absorption coefficient.
ABSTRACT The main aim of this study was to investigate the usability of polyurethane (PU) and polyacrylonitrile (PAN) nanofibers for improving the sound absorption of conventional polyester nonwovens in wide band of frequencies along with weight and thickness reduction. The effect of nanofiber and nonwoven layers number, nanofiber layers surface density, and the type of nanofiber polymer on the sound absorption was studied. To find the optimum conditions for achieving high sound absorption, response surface methodology was used. The results showed that the sound absorption of composite samples is improved when the nanofiber layer number or its surface density increased. The results also showed that the sound absorption of composites is enhanced by using PAN instead of PU. At a constant surface density, the higher resonant peak, without shifting, was achieved with increasing the nanofiber layers number. Optimization process showed that samples containing PAN nanofiber layers with surface density of 4.72 g/m2 and six nonwoven layers have highest average sound absorption coefficient.
Author Babaei, Mohammad Reza
Rabbi, Amir
Shoushtari, Ahmad Mousavi
Nasouri, Komeil
Bahrambeygi, Hossein
Author_xml – sequence: 1
  givenname: Amir
  surname: Rabbi
  fullname: Rabbi, Amir
  organization: Department of Textile Engineering, AmirKabir University of Technology, 15875-4413, Tehran, Iran
– sequence: 2
  givenname: Hossein
  surname: Bahrambeygi
  fullname: Bahrambeygi, Hossein
  organization: Department of Textile Engineering, AmirKabir University of Technology, 15875-4413, Tehran, Iran
– sequence: 3
  givenname: Komeil
  surname: Nasouri
  fullname: Nasouri, Komeil
  organization: Department of Textile Engineering, AmirKabir University of Technology, 15875-4413, Tehran, Iran
– sequence: 4
  givenname: Ahmad Mousavi
  surname: Shoushtari
  fullname: Shoushtari, Ahmad Mousavi
  email: amousavi@aut.ac.ir
  organization: Department of Textile Engineering, AmirKabir University of Technology, 15875-4413, Tehran, Iran
– sequence: 5
  givenname: Mohammad Reza
  surname: Babaei
  fullname: Babaei, Mohammad Reza
  organization: Department of Textile Engineering, AmirKabir University of Technology, 15875-4413, Tehran, Iran
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=29031164$$DView record in Pascal Francis
BookMark eNp9kEtvEzEURi1UJNLSBf_AGyRYTOPXeGaWUUhbShpS9UF3lmd8XQwTO7VnUvLvOzSlCyRY3c05R1ffPtrzwQNC7yg5ooSwsTabI0YFy1-hESVVmTHOqj00IgUnmZRF9Qbtp_SDEEqF5CNkz7XvrW66Pjp_h4PFy8kCh4iX13ihfbCuhojnegsxjZezK7wI_iFswONpWK1Dch1gnfCpu_vebvHMWmg6twF8GXpv8KROIQ6B9Ba9trpNcPh8D9D18exqeprNv558nk7mWSNIkWelLAyrtQGgjILIgZjhcWPyEgwVNdQFVKbigmpZltRIYa0xlDeFZCURlPID9GHXXcdw30Pq1MqlBtpWewh9UlSyiueiEHxA3z-jOjW6tVH7xiW1jm6l41axinBKpRi4jzuuiSGlCPYFoUT93lwNm6unzQd2_BfbuE53Lvguatf-z3hwLWz_nVaTTzd_jGxnuNTBrxdDx59KFrzI1bfFibq8OWNfbi9u1TF_BEWWozQ
CitedBy_id crossref_primary_10_1177_00405175221084736
crossref_primary_10_1177_1528083720903411
crossref_primary_10_3390_polym9100506
crossref_primary_10_1002_adv_21495
crossref_primary_10_3390_polym17010101
crossref_primary_10_1016_j_conbuildmat_2020_121213
crossref_primary_10_1038_s41598_021_95641_z
crossref_primary_10_3390_nano12071123
crossref_primary_10_1016_j_mtcomm_2023_108013
crossref_primary_10_1016_j_onano_2022_100089
crossref_primary_10_1016_j_apacoust_2019_03_016
crossref_primary_10_1080_00405000_2019_1631075
crossref_primary_10_1177_15280837211039568
crossref_primary_10_1016_j_surfcoat_2021_126957
crossref_primary_10_1002_admi_202002101
crossref_primary_10_1016_j_progpolymsci_2019_01_002
crossref_primary_10_3390_polym16101391
crossref_primary_10_1177_00405175231189889
crossref_primary_10_3390_coatings12081092
crossref_primary_10_1016_j_apmt_2021_101260
crossref_primary_10_1177_00405175211073776
crossref_primary_10_1002_adv_21952
crossref_primary_10_1016_j_jclepro_2018_12_144
crossref_primary_10_1080_00405000_2017_1315793
crossref_primary_10_1080_00405000_2021_1950443
crossref_primary_10_1038_s41467_020_17533_6
crossref_primary_10_1016_j_diamond_2019_04_018
crossref_primary_10_1080_00405000_2022_2131341
crossref_primary_10_1016_j_apacoust_2020_107468
crossref_primary_10_1007_s12221_015_5263_4
crossref_primary_10_1007_s12221_024_00720_3
crossref_primary_10_1088_1361_6528_ac8e73
Cites_doi 10.1002/app.33312
10.1177/0040517507080691
10.1007/s12221-012-1007-x
10.1007/s11831-008-9022-1
10.1016/j.compositesa.2005.10.008
10.1121/1.2932700
10.1177/0040517507084283
10.1016/j.apacoust.2007.02.003
10.1016/j.apacoust.2006.11.008
10.1121/1.3508403
10.1002/app.36726
10.1007/s10965-012-0072-6
10.1016/j.apacoust.2011.09.006
10.1177/0040517508093593
10.1016/j.compscitech.2006.03.012
ContentType Journal Article
Copyright 2014 Wiley Periodicals, Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2014 Wiley Periodicals, Inc.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SR
7TB
7U5
8FD
FR3
JG9
L7M
DOI 10.1002/adv.21425
DatabaseName Istex
CrossRef
Pascal-Francis
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Materials Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1098-2329
EndPage n/a
ExternalDocumentID 29031164
10_1002_adv_21425
ADV21425
ark_67375_WNG_SVJ2KXQX_F
Genre article
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OB
1ZS
23M
24P
31~
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AAZKR
ABCQN
ABEML
ABIJN
ABJCF
ABPVW
ACBWZ
ACCMX
ACGFO
ACGFS
ACIWK
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMLS
ADNMO
AEFGJ
AEGXH
AEIMD
AENEX
AFBPY
AFKRA
AFZJQ
AGQPQ
AGXDD
AIAGR
AIDQK
AIDYY
AIQQE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BSCLL
BY8
CCPQU
CS3
D-E
D-F
D1I
DCZOG
DPXWK
DR1
DR2
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
GYXMG
H.T
H.X
HBH
HCIFZ
HF~
HVGLF
HZ~
IAO
ITC
IX1
J0M
JPC
KB.
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
M6T
MK4
MRFUL
MRSTM
MSFUL
MSSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PALCI
PDBOC
PHGZM
PHGZT
PQGLB
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TUS
UB1
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAHHS
AAJEY
AAYXX
ACCFJ
ADZOD
AEEZP
AEQDE
AIWBW
AJBDE
CITATION
IQODW
PIMPY
7SR
7TB
7U5
8FD
FR3
JG9
L7M
ID FETCH-LOGICAL-c4075-867d2badee121e45e0d073dd58ed14beb7e9d9341a6881d64ffdd13c762804113
IEDL.DBID DR2
ISSN 0730-6679
IngestDate Fri Jul 11 11:33:05 EDT 2025
Wed Apr 02 07:18:35 EDT 2025
Tue Jul 01 04:01:34 EDT 2025
Thu Apr 24 22:57:14 EDT 2025
Wed Aug 20 07:25:06 EDT 2025
Sun Sep 21 06:19:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Ethylene terephthalate polymer
Composite
Synthetic fiber
Sandwich structure
Electrospinning
Nanofiber
Absorptivity
Response surface methodology
Acoustic absorption
Experimental study
Dimension spectrum
Optimization
Acoustic properties
Acrylonitrile polymer
Morphology
Polyurethane
Acoustic baffle
Nanocomposite
Non woven material
Property structure relationship
Manufacturing
Sound absorption
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4075-867d2badee121e45e0d073dd58ed14beb7e9d9341a6881d64ffdd13c762804113
Notes istex:FF7265905673D4232A0FE42BA6ABC54C7BFA3BFE
ArticleID:ADV21425
ark:/67375/WNG-SVJ2KXQX-F
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1629354743
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_1629354743
pascalfrancis_primary_29031164
crossref_primary_10_1002_adv_21425
crossref_citationtrail_10_1002_adv_21425
wiley_primary_10_1002_adv_21425_ADV21425
istex_primary_ark_67375_WNG_SVJ2KXQX_F
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-12-01
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 2014-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Hoboken, NJ
PublicationPlace_xml – name: Hoboken, NJ
PublicationTitle Advances in polymer technology
PublicationTitleAlternate Adv. Polym. Technol
PublicationYear 2014
Publisher Blackwell Publishing Ltd
Wiley
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley
References Kino, N.; Ueno, T. Appl Acoust 2008, 69, 325.
Demir, A.; Tascan, M.; Gumus, T. TUT Text Tech 2009, 5, 34.
Kino, N.; Ueno, T. Appl Acoust 2008, 69, 575.
Gourdon, E.; Jaouen, L. J Acoust Soc Am 2008, 123, 3036.
Luoh, R.; Hahn, H. T. Compos Sci Technol 2006, 66, 2436.
Sagartzazu, X.; Hervella-Nieto, L.; Pagalday, J. M. Arch Comput Method Eng 2008, 15, 311.
Bahrambeygi, H.; Sabetzadeh, N.; Rabbi, A.; Nasouri, K.; Shoushtari, A. M.; Babaei, M. R. J Polym Res 2013, 20, 72.
Jiang, S.; Xu, Y.; Zhang, H.; Branford-White, C.; Yan, X. Appl Acoust 2012, 73, 243.
Rabbi, A.; Bahrambeygi, H.; Shoushtari, A. M.; Nasouri, K. J Eng Fib Fabr 2013, 8, 1.
Nasouri, K.; Bahrambeygi, H.; Rabbi, A.; Shoushtari, A. M.; Kaflou, A. J Appl Polym Sci 2012, 126, 127.
Kalinova, K.; Mikolanda, T. Fib Text 2009, 16, 18.
Ingard, U. Noise Reduction Analysis; Jones & Bartlett Publishers: Sudbury, MA, 2009.
Tascan, M.; Vaughn, E. A. J Eng Fib Fabr 2008, 3, 32.
Chen, Y.; Jiang, N. Text Res J 2009, 79, 213.
Yilmaz, N. D.; Lee, P. B.; Powell, N. B.; Michielsen, S. J Appl Polym Sci 2011, 121, 3055.
Ali, A. A.; El-Hamid, M. A. Compos Part A: Appl Sci 2006, 37, 1681.
Cherng, J. G. Smart Acoustic Material for Automotive Applications 2005, MSc Thesis, University of Michigan-Dearborn, Henry W. Patton Center for Engineering Education and Practice, Dearborn, MI.
Tascan, M.; Vaughn, E. A. Text Res J 2008, 78, 289.
Myers, R. H.; Montgomery, D. C.; Anderson-Cook, C. M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons: NJ, 2009.
Ramis, J.; Alba, J.; Rey, R. D. J Acoust Soc Am 2010, 128, 2366.
Chen, Y.; Jiang, N. Text Res J 2007, 77, 785.
Rabbi, A.; Nasouri, K.; Bahrambeygi, H.; Shoushtari, A. M.; Babaei, M. R. Fiber Polym 2012, 13, 1007.
2009; 79
2010
2010; 128
2006; 66
2013; 20
2006; 37
2009
2008; 69
2008; 15
2008
2008; 78
2005
2008; 3
2009; 5
2008; 123
2012; 126
2012; 13
2013; 8
2007; 77
2009; 16
2011; 121
2012; 73
Kalinova K. (e_1_2_5_20_1) 2009; 16
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_22_1
Rabbi A. (e_1_2_5_24_1) 2013; 8
Ingard U. (e_1_2_5_2_1) 2009
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_19_1
Demir A. (e_1_2_5_21_1) 2009; 5
Myers R. H. (e_1_2_5_25_1) 2009
Cherng J. G. (e_1_2_5_18_1) 2005
Tascan M. (e_1_2_5_7_1) 2008; 3
References_xml – reference: Jiang, S.; Xu, Y.; Zhang, H.; Branford-White, C.; Yan, X. Appl Acoust 2012, 73, 243.
– reference: Luoh, R.; Hahn, H. T. Compos Sci Technol 2006, 66, 2436.
– reference: Nasouri, K.; Bahrambeygi, H.; Rabbi, A.; Shoushtari, A. M.; Kaflou, A. J Appl Polym Sci 2012, 126, 127.
– reference: Ramis, J.; Alba, J.; Rey, R. D. J Acoust Soc Am 2010, 128, 2366.
– reference: Yilmaz, N. D.; Lee, P. B.; Powell, N. B.; Michielsen, S. J Appl Polym Sci 2011, 121, 3055.
– reference: Chen, Y.; Jiang, N. Text Res J 2009, 79, 213.
– reference: Tascan, M.; Vaughn, E. A. J Eng Fib Fabr 2008, 3, 32.
– reference: Kino, N.; Ueno, T. Appl Acoust 2008, 69, 575.
– reference: Kino, N.; Ueno, T. Appl Acoust 2008, 69, 325.
– reference: Chen, Y.; Jiang, N. Text Res J 2007, 77, 785.
– reference: Rabbi, A.; Nasouri, K.; Bahrambeygi, H.; Shoushtari, A. M.; Babaei, M. R. Fiber Polym 2012, 13, 1007.
– reference: Demir, A.; Tascan, M.; Gumus, T. TUT Text Tech 2009, 5, 34.
– reference: Ingard, U. Noise Reduction Analysis; Jones & Bartlett Publishers: Sudbury, MA, 2009.
– reference: Sagartzazu, X.; Hervella-Nieto, L.; Pagalday, J. M. Arch Comput Method Eng 2008, 15, 311.
– reference: Myers, R. H.; Montgomery, D. C.; Anderson-Cook, C. M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments, John Wiley & Sons: NJ, 2009.
– reference: Ali, A. A.; El-Hamid, M. A. Compos Part A: Appl Sci 2006, 37, 1681.
– reference: Tascan, M.; Vaughn, E. A. Text Res J 2008, 78, 289.
– reference: Bahrambeygi, H.; Sabetzadeh, N.; Rabbi, A.; Nasouri, K.; Shoushtari, A. M.; Babaei, M. R. J Polym Res 2013, 20, 72.
– reference: Gourdon, E.; Jaouen, L. J Acoust Soc Am 2008, 123, 3036.
– reference: Rabbi, A.; Bahrambeygi, H.; Shoushtari, A. M.; Nasouri, K. J Eng Fib Fabr 2013, 8, 1.
– reference: Kalinova, K.; Mikolanda, T. Fib Text 2009, 16, 18.
– reference: Cherng, J. G. Smart Acoustic Material for Automotive Applications 2005, MSc Thesis, University of Michigan-Dearborn, Henry W. Patton Center for Engineering Education and Practice, Dearborn, MI.
– year: 2009
– volume: 3
  start-page: 32
  year: 2008
  publication-title: J Eng Fib Fabr
– volume: 77
  start-page: 785
  year: 2007
  publication-title: Text Res J
– year: 2005
– volume: 16
  start-page: 18
  year: 2009
  publication-title: Fib Text
– year: 2008
– volume: 20
  start-page: 72
  year: 2013
  publication-title: J Polym Res
– volume: 13
  start-page: 1007
  year: 2012
  publication-title: Fiber Polym
– volume: 121
  start-page: 3055
  year: 2011
  publication-title: J Appl Polym Sci
– volume: 69
  start-page: 325
  year: 2008
  publication-title: Appl Acoust
– volume: 8
  start-page: 1
  year: 2013
  publication-title: J Eng Fib Fabr
– volume: 37
  start-page: 1681
  year: 2006
  publication-title: Compos Part A: Appl Sci
– volume: 79
  start-page: 213
  year: 2009
  publication-title: Text Res J
– volume: 5
  start-page: 34
  year: 2009
  publication-title: TUT Text Tech
– volume: 78
  start-page: 289
  year: 2008
  publication-title: Text Res J
– volume: 126
  start-page: 127
  year: 2012
  publication-title: J Appl Polym Sci
– volume: 128
  start-page: 2366
  year: 2010
  publication-title: J Acoust Soc Am
– volume: 123
  start-page: 3036
  year: 2008
  publication-title: J Acoust Soc Am
– volume: 69
  start-page: 575
  year: 2008
  publication-title: Appl Acoust
– volume: 15
  start-page: 311
  year: 2008
  publication-title: Arch Comput Method Eng
– volume: 73
  start-page: 243
  year: 2012
  publication-title: Appl Acoust
– volume: 66
  start-page: 2436
  year: 2006
  publication-title: Compos Sci Technol
– year: 2010
– ident: e_1_2_5_9_1
  doi: 10.1002/app.33312
– ident: e_1_2_5_14_1
  doi: 10.1177/0040517507080691
– volume: 3
  start-page: 32
  year: 2008
  ident: e_1_2_5_7_1
  publication-title: J Eng Fib Fabr
– ident: e_1_2_5_23_1
  doi: 10.1007/s12221-012-1007-x
– ident: e_1_2_5_3_1
  doi: 10.1007/s11831-008-9022-1
– ident: e_1_2_5_16_1
  doi: 10.1016/j.compositesa.2005.10.008
– volume: 5
  start-page: 34
  year: 2009
  ident: e_1_2_5_21_1
  publication-title: TUT Text Tech
– volume-title: Smart Acoustic Material for Automotive Applications
  year: 2005
  ident: e_1_2_5_18_1
– volume: 16
  start-page: 18
  year: 2009
  ident: e_1_2_5_20_1
  publication-title: Fib Text
– ident: e_1_2_5_8_1
  doi: 10.1121/1.2932700
– ident: e_1_2_5_10_1
  doi: 10.1177/0040517507084283
– ident: e_1_2_5_4_1
– ident: e_1_2_5_13_1
  doi: 10.1016/j.apacoust.2007.02.003
– ident: e_1_2_5_11_1
  doi: 10.1016/j.apacoust.2006.11.008
– volume-title: Noise Reduction Analysis
  year: 2009
  ident: e_1_2_5_2_1
– ident: e_1_2_5_5_1
– ident: e_1_2_5_6_1
  doi: 10.1121/1.3508403
– ident: e_1_2_5_22_1
  doi: 10.1002/app.36726
– volume: 8
  start-page: 1
  year: 2013
  ident: e_1_2_5_24_1
  publication-title: J Eng Fib Fabr
– ident: e_1_2_5_26_1
  doi: 10.1007/s10965-012-0072-6
– volume-title: Response Surface Methodology: Process and Product Optimization Using Designed Experiments
  year: 2009
  ident: e_1_2_5_25_1
– ident: e_1_2_5_12_1
  doi: 10.1016/j.apacoust.2011.09.006
– ident: e_1_2_5_15_1
  doi: 10.1177/0040517508093593
– ident: e_1_2_5_17_1
  doi: 10.1016/j.compscitech.2006.03.012
– ident: e_1_2_5_19_1
SSID ssj0011463
Score 2.1829298
Snippet ABSTRACT The main aim of this study was to investigate the usability of polyurethane (PU) and polyacrylonitrile (PAN) nanofibers for improving the sound...
The main aim of this study was to investigate the usability of polyurethane (PU) and polyacrylonitrile (PAN) nanofibers for improving the sound absorption of...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage np
SubjectTerms Applied sciences
Composite
Composites
Constants
Density
Exact sciences and technology
Forms of application and semi-finished materials
Nanofiber
Nanostructure
Optimization
Plutonium
Polymer industry, paints, wood
Response surface methodology
Sound
Sound absorption
Surface chemistry
Technology of polymers
Weight reduction
Title Manufacturing of PAN or PU Nanofiber Layers/PET Nonwoven Composite as Highly Effective Sound Absorbers
URI https://api.istex.fr/ark:/67375/WNG-SVJ2KXQX-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fadv.21425
https://www.proquest.com/docview/1629354743
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELem7QUeYONDFEZlEEK8pI0Tx0nEU7WtTGOtCl2hD0iWHdsvmxKUtHzsr99d0oQVgYR4y8M5cc5355-Tu98R8ipxYCeKZR5szqHHQxd6icVTCo9V4LC2M8ba4clUnC742TJa7pC3bS1Mww_RfXBDz6jjNTq40tXwF2moMt8GyBeGBeYsFMibf_yxo47CYtuGgjOEB4s4bVmF_GDYjdzai_ZQrT8wN1JVoB7X9LXYAp634Wu9_4zvky_tzJu0k8vBeqUH2fVvpI7_-Wr75N4Gl9JRY0gHZMfmD8jdW2yFD4mbqHyNhRB1ZSMtHJ2NprQo6WxBIUiDlWpb0nOFIH44O7mg0yL_XkAwpRh0MDnMUlVRzCy5-kkb2mSItXSOnZ3oSFdFCTeoHpHF-OTi6NTbtGnwMjgNRl4iYhNoZaxlAbM8sr4BrRsTJdYwrq2ObWpS2C2VSAAdC-6cMSzMIAwj-RELH5PdvMjtE0I1yzI_NqkPhsW58bVQLs4s0y7IhAlNj7xpF0xmGw5zbKVxJRv25UCC6mStuh552Yl-bYg7_iT0ul71TkKVl5jpFkfy8_SdnH86C94vPyzluEf6W2bRDQhSiIpw5OyRF62dSHBQ_OuiclusK8kEIKqIA1KD2der_vf5SMAi9cXTfxd9Ru4AiONNis0h2V2Va_scgNJK98ne6HhyPu_XnnED2WYPmg
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tuwfgwBtRHotBCHFJm4fzkrhUsKXstlVhW-gFWXZsX3aVoKTl9euZSZqwRSAhbjnYiTOeGX-2Z74BeJZY1BPpZQ4uzoHDAxs4iaFdCo-lbym3M6bc4eksGi_58Spc7cHLNhem4YfoDtzIMmp_TQZOB9KDX6yhUn_pE2FYeAkO6H6OzPL1-448itJtGxLOAD8dxWnLK-T6g67rzmp0QIL9RtGRskIB2aayxQ70vAhg6xVodB0-tWNvAk_O-pu16mc_fqN1_N-fuwHXttCUDRtdugl7Jr8FVy8QFt4GO5X5hnIh6uRGVlg2H85YUbL5kqGfRkVVpmQTSTh-MD9asFmRfy3QnzLyOxQfZpisGAWXnH9nDXMyult2SsWd2FBVRYkvqO7AcnS0eDV2tpUanAw3hKGTRLH2ldTGeL5neGhcjWLXOkyM9rgyKjapTnHBlFGCADni1mrtBRl6YuI_8oK7sJ8XubkHTHlZ5sY6dVG3ONeuiqSNM-Mp62eRDnQPXrQzJrItjTlV0zgXDQGzL1B0ohZdD552TT833B1_avS8nvauhSzPKNgtDsXH2Rtx-uHYP1m9W4lRDw539KLr4KfoGHHX2YMnraIItFG6eJG5KTaV8CIEVSFHsIajr6f97-MRCEfqh_v_3vQxXB4vphMxeTs7eQBXENPxJuLmIeyvy415hLhprQ5r8_gJNHcSIw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VVkL0wBuxBYpBCHHJbh7OS5xW0KX0ES20W_aAZNmxfWmVVMkur1_PTLIJXQQS4pbDOHHGM-PPycw3AC8Si3YivdzBzTlweGADJzF0SuGx9C3VdsZUO3ycRfszfjAP5xvwuquFafkh-g9u5BlNvCYHv9R29Is0VOovQ-ILC6_BFo_wdEWI6GPPHUXVti0HZ4BPjuK0oxVy_VE_dG0z2iK9fqPkSFmjfmzb2GINeV7Fr80GNLkFn7upt3kn58PlQg3zH7-xOv7nu92GmytgysatJd2BDVPche0rdIX3wB7LYkmVEE1pIystm44zVlZsOmMYpdFMlanYkSQUP5runbKsLL6WGE0ZRR3KDjNM1oxSSy6-s5Y3GYMtO6HWTmys6rLCG9T3YTbZO32z76z6NDg5HgdDJ4li7SupjfF8z_DQuBq1rnWYGO1xZVRsUp3idimjBOFxxK3V2gtyjMPEfuQFD2CzKAvzEJjy8tyNdeqiZXGuXRVJG-fGU9bPIx3oAbzqFkzkKxJz6qVxIVr6ZV-g6kSjugE870UvW-aOPwm9bFa9l5DVOaW6xaH4lL0TJ2cH_uH8w1xMBrC7Zhb9AD_FsIhnzgE86-xEoIfSbxdZmHJZCy9CSBVyhGo4-2bV_z4fgWCkudj5d9GncH36diKO3meHj-AGAjrepts8hs1FtTRPEDQt1G7jHD8B9joQ0g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Manufacturing+of+PAN+or+PU+Nanofiber+Layers%2FPET+Nonwoven+Composite+as+Highly+Effective+Sound+Absorbers&rft.jtitle=Advances+in+polymer+technology&rft.au=Rabbi%2C+Amir&rft.au=Bahrambeygi%2C+Hossein&rft.au=Nasouri%2C+Komeil&rft.au=Shoushtari%2C+Ahmad+Mousavi&rft.date=2014-12-01&rft.issn=0730-6679&rft.eissn=1098-2329&rft.volume=33&rft.issue=4&rft.spage=np&rft.epage=np&rft_id=info:doi/10.1002%2Fadv.21425&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0730-6679&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0730-6679&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0730-6679&client=summon