Improved markerless gait kinematics measurement using a biomechanically-aware algorithm with subject-specific geometric modeling
•An algorithm to improve kinematics accuracy in markerless gait analysis is presented.•This algorithm refines AI-driven skeletons in a subject-specific geometric manner.•It preserves skeleton links’ length during walking, using intra-frame modelization.•It benefits from gait phases information in be...
        Saved in:
      
    
          | Published in | Measurement : journal of the International Measurement Confederation Vol. 234; p. 114857 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier Ltd
    
        01.07.2024
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0263-2241 1873-412X 1873-412X  | 
| DOI | 10.1016/j.measurement.2024.114857 | 
Cover
| Abstract | •An algorithm to improve kinematics accuracy in markerless gait analysis is presented.•This algorithm refines AI-driven skeletons in a subject-specific geometric manner.•It preserves skeleton links’ length during walking, using intra-frame modelization.•It benefits from gait phases information in between-frames adjustments.•It smooths lower limb joints’ trajectory in between-frames adjustments.
Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower accuracy compared to gold-standard systems. Hence, in this research, a novel approach is presented to improve the lower limb kinematics accuracy in markerless gait analysis. This approach refines the 3D lower-limb skeletons obtained by AI-based pose estimation algorithms in a subject-specific geometric manner, preserves skeleton links’ length, benefits from gait phases information that adds biomechanical awareness to the algorithm, and utilizes an embedded trajectory smoothing. Validation of the proposed method shows that it reduces 12.6–43.5 % of root mean square error (RMSE) and significantly improves kinematic curves’ similarity to the gold-standard ones. Results also prove the feasibility of more accurate lower limb kinematics calculation using a single (2.02–7.57° RMSE) or dual RGB-D camera (1.66–7.25° RMSE). Development of such algorithms could result in requirement of fewer cameras that deliver comparable or even superior measurement accuracy compared to multi-camera approaches. | 
    
|---|---|
| AbstractList | Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower accuracy compared to gold-standard systems. Hence, in this research, a novel approach is presented to improve the lower limb kinematics accuracy in markerless gait analysis. This approach refines the 3D lower-limb skeletons obtained by AI-based pose estimation algorithms in a subject-specific geometric manner, preserves skeleton links’ length, benefits from gait phases information that adds biomechanical awareness to the algorithm, and utilizes an embedded trajectory smoothing. Validation of the proposed method shows that it reduces 12.6%-43.5% of root mean square error (RMSE) and significantly improves kinematic curves’ similarity to the gold-standard ones. Results also prove the feasibility of more accurate lower limb kinematics calculation using a single (2.02°-7.57° RMSE) or dual RGB-D camera (1.66°-7.25° RMSE). Development of such algorithms could result in requirement of fewer cameras that deliver comparable or even superior measurement accuracy compared to multi-camera approaches. •An algorithm to improve kinematics accuracy in markerless gait analysis is presented.•This algorithm refines AI-driven skeletons in a subject-specific geometric manner.•It preserves skeleton links’ length during walking, using intra-frame modelization.•It benefits from gait phases information in between-frames adjustments.•It smooths lower limb joints’ trajectory in between-frames adjustments. Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower accuracy compared to gold-standard systems. Hence, in this research, a novel approach is presented to improve the lower limb kinematics accuracy in markerless gait analysis. This approach refines the 3D lower-limb skeletons obtained by AI-based pose estimation algorithms in a subject-specific geometric manner, preserves skeleton links’ length, benefits from gait phases information that adds biomechanical awareness to the algorithm, and utilizes an embedded trajectory smoothing. Validation of the proposed method shows that it reduces 12.6–43.5 % of root mean square error (RMSE) and significantly improves kinematic curves’ similarity to the gold-standard ones. Results also prove the feasibility of more accurate lower limb kinematics calculation using a single (2.02–7.57° RMSE) or dual RGB-D camera (1.66–7.25° RMSE). Development of such algorithms could result in requirement of fewer cameras that deliver comparable or even superior measurement accuracy compared to multi-camera approaches.  | 
    
| ArticleNumber | 114857 | 
    
| Author | Hatamzadeh, Mehran Zory, Raphael Busé, Laurent Turcot, Katia  | 
    
| Author_xml | – sequence: 1 givenname: Mehran orcidid: 0000-0002-5183-4801 surname: Hatamzadeh fullname: Hatamzadeh, Mehran email: mehran.hatamzadeh@inria.fr organization: Université Côte d’Azur, LAMHESS, Nice, France – sequence: 2 givenname: Laurent orcidid: 0009-0005-6528-7027 surname: Busé fullname: Busé, Laurent organization: Université Côte d’Azur, Inria, Sophia Antipolis, France – sequence: 3 givenname: Katia orcidid: 0000-0003-2649-3459 surname: Turcot fullname: Turcot, Katia organization: Université Laval, Department of Kinesiology, Faculty of Medicine, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Quebec, Canada – sequence: 4 givenname: Raphael orcidid: 0000-0003-3566-3229 surname: Zory fullname: Zory, Raphael organization: Université Côte d’Azur, LAMHESS, Nice, France  | 
    
| BackLink | https://hal.science/hal-04574589$$DView record in HAL | 
    
| BookMark | eNqVkUFvGyEQhVGVSnXS_gd67GFdYFmW7aWKrLaJZKmXVuoNsTBr4-yCBdiWb_npxdpIiXpKL4DQe9_MvLlGVz54QOgjJUtKqPi8W06g0yHCBD4vGWF8SSmXTfsGLahs64pT9ucKLQgTdcUYp-_QdUo7QoioO7FAj_fTPoYjWDzp-ABxhJTwRruMH5yHSWdnEn5RAh-S8xusce_CBGarvTN6HM-VPukIWI-bEF3eTvhUTpwO_Q5MrtIejBucwRsorhzLawoWxoJ6j94Oekzw4em-Qb-_f_u1uqvWP3_cr27XleFE5GoAbWzXS2glmKYfOsmtFgIkE4LVXVPXsmt4Y9vBct4z6OsiZ7azUnPekr6-QV9m7sHv9flUelb76MrQZ0WJumSpdurFoOqSpZqzLOZPs3mrn21BO3V3u1aXP8KbljeyO9Ki7WatiSGlCMN_1fn6j9e4XHYQfI7aja8irGYClCyPDqJKxoE3YF0sm1A2uFdQ_gKTZMFc | 
    
| CitedBy_id | crossref_primary_10_1109_TIM_2025_3547477 | 
    
| Cites_doi | 10.1016/j.cviu.2015.05.006 10.3390/s19112604 10.3390/s21196530 10.1016/j.cag.2011.09.001 10.1109/TBME.2023.3275775 10.3390/s19071660 10.1016/j.gaitpost.2021.04.005 10.1002/rob.22313 10.3390/s23084100 10.1371/journal.pone.0279697 10.1016/j.cag.2017.11.008 10.1016/j.jbiomech.2015.02.051 10.1016/j.jbiomech.2020.109718 10.3390/s21051684 10.3390/s22041661 10.1016/j.gaitpost.2016.10.001 10.1016/j.jbiomech.2021.110665 10.1016/j.jbiomech.2022.111358 10.1016/j.cviu.2016.09.002 10.1109/TPAMI.2019.2929257 10.1109/JSEN.2021.3081188 10.3390/s23010348 10.1109/TPAMI.1987.4767965 10.1016/j.gaitpost.2015.05.002 10.3390/s22072712 10.1016/j.jbiomech.2023.111793 10.1016/0167-9457(89)90020-1 10.1016/j.medengphy.2017.03.007 10.3390/s140304189 10.1016/j.cviu.2006.10.016 10.3390/s23249799 10.3390/s23042232 10.3390/s22052011 10.1016/j.medengphy.2014.07.007 10.1016/j.gaitpost.2010.02.009 10.1016/j.jbiomech.2019.03.008 10.1016/j.jbiomech.2013.07.031 10.1016/j.jbiomech.2021.110460 10.1109/ACCESS.2023.3340622 10.1038/s41467-020-17807-z 10.3390/s20185104 10.1109/IJCB.2011.6117582 10.1016/j.gaitpost.2008.09.003 10.1016/0021-9290(90)90054-7 10.1016/j.jbiomech.2024.112027 10.1016/j.jbiomech.2015.05.021 10.1016/j.gaitpost.2022.08.008 10.1016/j.jbiomech.2023.111801 10.1016/j.jbiomech.2006.02.003 10.3390/s19224929 10.3390/s21020414  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Attribution  | 
    
| Copyright_xml | – notice: 2024 – notice: Attribution  | 
    
| DBID | AAYXX CITATION 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1016/j.measurement.2024.114857 | 
    
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Physics Computer Science  | 
    
| EISSN | 1873-412X | 
    
| ExternalDocumentID | oai:HAL:hal-04574589v1 10_1016_j_measurement_2024_114857 S0263224124007425  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 1XC VOOES ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c406t-feacd9b8e78ec5bf984da66e826623953389545d7fd44b2eb3cd92d9d8a4470b3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0263-2241 1873-412X  | 
    
| IngestDate | Sun Oct 26 04:17:22 EDT 2025 Tue Oct 14 20:51:55 EDT 2025 Thu Apr 24 23:08:14 EDT 2025 Wed Oct 01 01:37:50 EDT 2025 Sat Jun 01 15:42:35 EDT 2024  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Markerless gait analysis Refined pose estimation Improved kinematics Geometric lower limb model Stance phase constraints RGB-D camera  | 
    
| Language | English | 
    
| License | Attribution: http://creativecommons.org/licenses/by cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-feacd9b8e78ec5bf984da66e826623953389545d7fd44b2eb3cd92d9d8a4470b3 | 
    
| ORCID | 0000-0003-2649-3459 0000-0002-5183-4801 0000-0003-3566-3229 0009-0005-6528-7027  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.science/hal-04574589 | 
    
| ParticipantIDs | unpaywall_primary_10_1016_j_measurement_2024_114857 hal_primary_oai_HAL_hal_04574589v1 crossref_primary_10_1016_j_measurement_2024_114857 crossref_citationtrail_10_1016_j_measurement_2024_114857 elsevier_sciencedirect_doi_10_1016_j_measurement_2024_114857  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | July 2024 2024-07-00 2024-07  | 
    
| PublicationDateYYYYMMDD | 2024-07-01 | 
    
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Measurement : journal of the International Measurement Confederation | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier Ltd Elsevier  | 
    
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier  | 
    
| References | Zhu, Boukhennoufa, Liew, Gao (b0290) 2023; 10 Cronin (b0135) 2021; 123 Sandau, Koblauch, Moeslund, Aanæs (b0195) 2014; 36 Guffanti, Brunete, Hernando, Álvarez (b0240) 2024 Kanko, Laende, Davis, Selbie (b0010) 2021; 127 Harrington, Zavatsky, Lawson, Yuan (b0180) 2007; 40 Young, Mason, Morris, Stuart (b0315) 2023; 23 G. Ariyanto, M.S. Nixon, Model-based 3D gait biometrics, 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, (2011) 1-7. doi: 10.1109/IJCB.2011.6117582. Pataky, Robinson, Vanrenterghem (b0215) 2013; 46 Wang, Su, Lu, Jung (b0285) 2024; 165 Sarbolandi, Lefloch, Kolb (b0085) 2015; 139 Colyer, Evans, Cosker, Salo (b0060) 2018; 4 Mentiplay, Perraton, Bower, Pua (b0050) 2015; 48 Perez-Sala, Escalera, Angulo, Gonzàlez (b0090) 2014; 14 Wang, Yu (b0200) 2011; 35 Martini, Boldo, Aldegheri, Valè (b0130) 2022; 225 Zago, Luzzago, Marangoni, Cecco (b0070) 2020; 8 Cheng, Chen, Martin, Wu (b0105) 2018; 71 Poppe (b0100) 2007; 108 D’Antonio, Taborri, Mileti, Rossi (b0305) 2021; 21 Wang, Tan, Zhen, Xu (b0125) 2021; 210 Mehdizadeh, Nabavi, Sabo, Arora (b0015) 2021; 8 Xu, An, Jia, Yue (b0065) 2021; 21 Foo, Chang, Ang (b0110) 2022; 22 Vilas-Boas, Rocha, Choupina, Cardoso (b0040) 2019; 19 Li, Si, Weinmann, Klein (b0160) 2019; 19 Shin, Li, Halilaj (b0310) 2023; 70 Yoon, Jung, Jung, Kim (b0075) 2021; 21 Parati, Gallotta, De Maria, Pirola (b0295) 2023; 23 Jun, Lee, Lee, Lee (b0165) 2023; 10 Vásquez, Maas, List, Schütz (b0320) 2023; 23 Pagnon, Domalain, Reveret (b0150) 2021; 21 Kidziński, Yang, Hicks, Rajagopal (b0120) 2020; 11 Albert, Owolabi, Gebel, Brahms (b0245) 2020; 20 Yeung, Yang, Cheng, Du (b0235) 2021; 87 Horsak, Eichmann, Lauer, Prock (b0035) 2023; 159 Bell, Brand, Pedersen (b0170) 1989; 8 Ferrari, Cutti, Cappello (b0210) 2010; 31 Eltoukhy, Oh, Kuenze, Signorile (b0270) 2017; 51 Cao, Hidalgo, Simon, Wei (b0185) 2019; 43 Balta, Figari, Paolini, Pantzar-Castilla (b0275) 2023; 11 Chakraborty, Nandy, Yamaguchi, Bonnet (b0020) 2020; 104 T.C. Pataky, J. Vanrenterghem, M.A. Robinson, Zero-vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis, J. Biomech. 48 (7) (2015) 1277–1285. doi: 10.1016/j.jbiomech.2015.02.051. Sarafianos, Boteanu, Ionescu, Kakadiaris (b0115) 2016; 152 Moro, Marchesi, Hesse, Odone (b0055) 2022; 22 Ma, Mithraratne, Wilson, Wang (b0255) 2019; 19 Bertram, Kruger, Rohling, Jelusic (b0250) 2023; 18 Ripic, Nienhuis, Signorile, Best (b0140) 2023; 159 Ma, Sheng, Hart, Zhang (b0230) 2020 Uhlrich, Falisse, Kidziński, Muccini (b0145) 2023; 19 Vilas-Boas, Choupina, Rocha, Fernandes (b0045) 2019; 87 Ino, Samukawa, Ishida, Wada (b0280) 2023; 23 Arun, Huang, Blostein (b0190) 1987; 9 Pagnon, Domalain, Reveret (b0155) 2022; 22 Dunn, Kennerley, Murrell-Smith, Webster (b0025) 2023; 26 Sheng, Chen, Cheng, Zhang (b0080) 2024; 225 D’Antonio, Taborri, Palermo, Rossi (b0300) 2020 Washabaugh, Shanmugam, Ranganathan, Krishnan (b0225) 2022; 97 Xu, McGorry, Chou, Lin (b0260) 2015; 42 Eltoukhy, Kuenze, Oh, Jacopetti (b0265) 2017; 44 McGinley, Baker, Wolfe, Morris (b0005) 2009; 29 Nocedal, Wright (b0205) 2006 Hatamzadeh, Busé, Chorin, Alliez (b0030) 2022; 145 Bell, Pedersen, Brand (b0175) 1990; 23 Li (10.1016/j.measurement.2024.114857_b0160) 2019; 19 McGinley (10.1016/j.measurement.2024.114857_b0005) 2009; 29 10.1016/j.measurement.2024.114857_b0095 Cheng (10.1016/j.measurement.2024.114857_b0105) 2018; 71 Eltoukhy (10.1016/j.measurement.2024.114857_b0270) 2017; 51 Bell (10.1016/j.measurement.2024.114857_b0170) 1989; 8 Albert (10.1016/j.measurement.2024.114857_b0245) 2020; 20 Pagnon (10.1016/j.measurement.2024.114857_b0155) 2022; 22 Eltoukhy (10.1016/j.measurement.2024.114857_b0265) 2017; 44 Wang (10.1016/j.measurement.2024.114857_b0285) 2024; 165 Nocedal (10.1016/j.measurement.2024.114857_b0205) 2006 Balta (10.1016/j.measurement.2024.114857_b0275) 2023; 11 Pataky (10.1016/j.measurement.2024.114857_b0215) 2013; 46 D’Antonio (10.1016/j.measurement.2024.114857_b0300) 2020 Zhu (10.1016/j.measurement.2024.114857_b0290) 2023; 10 Dunn (10.1016/j.measurement.2024.114857_b0025) 2023; 26 Ma (10.1016/j.measurement.2024.114857_b0230) 2020 Guffanti (10.1016/j.measurement.2024.114857_b0240) 2024 Mehdizadeh (10.1016/j.measurement.2024.114857_b0015) 2021; 8 Washabaugh (10.1016/j.measurement.2024.114857_b0225) 2022; 97 Xu (10.1016/j.measurement.2024.114857_b0260) 2015; 42 Sarafianos (10.1016/j.measurement.2024.114857_b0115) 2016; 152 Young (10.1016/j.measurement.2024.114857_b0315) 2023; 23 Sarbolandi (10.1016/j.measurement.2024.114857_b0085) 2015; 139 Kanko (10.1016/j.measurement.2024.114857_b0010) 2021; 127 Ferrari (10.1016/j.measurement.2024.114857_b0210) 2010; 31 Pagnon (10.1016/j.measurement.2024.114857_b0150) 2021; 21 Zago (10.1016/j.measurement.2024.114857_b0070) 2020; 8 D’Antonio (10.1016/j.measurement.2024.114857_b0305) 2021; 21 Chakraborty (10.1016/j.measurement.2024.114857_b0020) 2020; 104 Mentiplay (10.1016/j.measurement.2024.114857_b0050) 2015; 48 Poppe (10.1016/j.measurement.2024.114857_b0100) 2007; 108 Martini (10.1016/j.measurement.2024.114857_b0130) 2022; 225 Wang (10.1016/j.measurement.2024.114857_b0125) 2021; 210 Arun (10.1016/j.measurement.2024.114857_b0190) 1987; 9 Foo (10.1016/j.measurement.2024.114857_b0110) 2022; 22 Vásquez (10.1016/j.measurement.2024.114857_b0320) 2023; 23 Perez-Sala (10.1016/j.measurement.2024.114857_b0090) 2014; 14 Shin (10.1016/j.measurement.2024.114857_b0310) 2023; 70 Sandau (10.1016/j.measurement.2024.114857_b0195) 2014; 36 Bertram (10.1016/j.measurement.2024.114857_b0250) 2023; 18 Vilas-Boas (10.1016/j.measurement.2024.114857_b0040) 2019; 19 Moro (10.1016/j.measurement.2024.114857_b0055) 2022; 22 Horsak (10.1016/j.measurement.2024.114857_b0035) 2023; 159 Vilas-Boas (10.1016/j.measurement.2024.114857_b0045) 2019; 87 Bell (10.1016/j.measurement.2024.114857_b0175) 1990; 23 Xu (10.1016/j.measurement.2024.114857_b0065) 2021; 21 Ino (10.1016/j.measurement.2024.114857_b0280) 2023; 23 Wang (10.1016/j.measurement.2024.114857_b0200) 2011; 35 10.1016/j.measurement.2024.114857_b0220 Cronin (10.1016/j.measurement.2024.114857_b0135) 2021; 123 Yeung (10.1016/j.measurement.2024.114857_b0235) 2021; 87 Sheng (10.1016/j.measurement.2024.114857_b0080) 2024; 225 Parati (10.1016/j.measurement.2024.114857_b0295) 2023; 23 Hatamzadeh (10.1016/j.measurement.2024.114857_b0030) 2022; 145 Uhlrich (10.1016/j.measurement.2024.114857_b0145) 2023; 19 Kidziński (10.1016/j.measurement.2024.114857_b0120) 2020; 11 Yoon (10.1016/j.measurement.2024.114857_b0075) 2021; 21 Ma (10.1016/j.measurement.2024.114857_b0255) 2019; 19 Colyer (10.1016/j.measurement.2024.114857_b0060) 2018; 4 Jun (10.1016/j.measurement.2024.114857_b0165) 2023; 10 Cao (10.1016/j.measurement.2024.114857_b0185) 2019; 43 Ripic (10.1016/j.measurement.2024.114857_b0140) 2023; 159 Harrington (10.1016/j.measurement.2024.114857_b0180) 2007; 40  | 
    
| References_xml | – volume: 22 start-page: 1661 year: 2022 ident: b0110 article-title: Real-time foot tracking and gait evaluation with geometric modeling publication-title: J. Sensors – volume: 70 start-page: 3082 year: 2023 end-page: 3092 ident: b0310 article-title: Markerless motion tracking with noisy video and IMU data publication-title: IEEE Trans. Biomed. Eng. – volume: 108 start-page: 4 year: 2007 end-page: 18 ident: b0100 article-title: Vision-based human motion analysis: An overview publication-title: J. Comput. Vis. Image Underst. – volume: 9 start-page: 698 year: 1987 end-page: 700 ident: b0190 article-title: Least-squares fitting of two 3-D point sets publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 14 start-page: 4189 year: 2014 end-page: 4210 ident: b0090 article-title: A survey on model based approaches for 2D and 3D visual human pose recovery publication-title: J. Sensors – volume: 21 start-page: 1684 year: 2021 ident: b0065 article-title: A review: Point cloud-based 3D human joints estimation publication-title: J. Sensors – volume: 145 year: 2022 ident: b0030 article-title: A kinematic-geometric model based on ankles’ depth trajectory in frontal plane for gait analysis using a single RGB-D camera publication-title: J. Biomech. – volume: 19 start-page: 4929 year: 2019 ident: b0040 article-title: Validation of a single RGB-D camera for gait assessment of polyneuropathy patients publication-title: J. Sensors – volume: 165 year: 2024 ident: b0285 article-title: Markerless gait analysis through a single camera and computer vision publication-title: J. Biomech. – volume: 225 year: 2022 ident: b0130 article-title: Enabling gait analysis in the telemedicine practice through portable and accurate 3D human pose estimation publication-title: J. Comput. Methods Programs Biomed. – volume: 23 start-page: 348 year: 2023 ident: b0320 article-title: A framework for analytical validation of inertial-sensor-based knee kinematics using a six-degrees-of-freedom joint simulator publication-title: J. Sensors. – volume: 8 year: 2021 ident: b0015 article-title: Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions publication-title: J. NeuroEngineering Rehab. – volume: 23 start-page: 9799 year: 2023 ident: b0280 article-title: Validity of AI-based gait analysis for simultaneous measurement of bilateral lower limb kinematics using a single video camera publication-title: J. Sensors – volume: 43 start-page: 172 year: 2019 end-page: 186 ident: b0185 article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 23 start-page: 4100 year: 2023 ident: b0315 article-title: IoT-Enabled gait assessment: The next step for habitual monitoring publication-title: J. Sensors – volume: 152 start-page: 1 year: 2016 end-page: 20 ident: b0115 article-title: 3D human pose estimation: A review of the literature and analysis of covariates publication-title: J. Comput. Vis. Image Underst. – volume: 23 start-page: 617 year: 1990 end-page: 621 ident: b0175 article-title: A comparison of the accuracy of several hip center location prediction methods publication-title: J. Biomech. – volume: 21 start-page: 17064 year: 2021 end-page: 17075 ident: b0305 article-title: Validation of a 3D markerless system for gait analysis based on OpenPose and two RGB webcams publication-title: IEEE Sens. J. – volume: 48 start-page: 2166 year: 2015 end-page: 2170 ident: b0050 article-title: Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables publication-title: J. Biomech. – volume: 8 start-page: 2296 year: 2020 end-page: 4185 ident: b0070 article-title: 3D Tracking of human motion using visual skeletonization and stereoscopic vision publication-title: J. Front. Bioeng. Biotechnol. – volume: 210 year: 2021 ident: b0125 article-title: Deep 3D human pose estimation: A review publication-title: J. Comput. Vis. Image Underst. – volume: 23 start-page: 2232 year: 2023 ident: b0295 article-title: Video-based goniometer applications for measuring knee joint angles during walking in neurological patients: a validity, reliability and usability study publication-title: J. Sensors – volume: 139 start-page: 1 year: 2015 end-page: 20 ident: b0085 article-title: Kinect range sensing: Structured-light versus Time-of-Flight Kinect publication-title: J. Comput. Vis. Image Underst. – volume: 11 start-page: 144377 year: 2023 end-page: 144393 ident: b0275 article-title: A model-based markerless protocol for clinical gait analysis based on a single RGB-depth camera: concurrent validation on patients with cerebral palsy publication-title: IEEE Access – volume: 42 start-page: 145 year: 2015 end-page: 151 ident: b0260 article-title: Accuracy of the Microsoft Kinect publication-title: J. Gait Posture – volume: 104 year: 2020 ident: b0020 article-title: Accuracy of image data stream of a markerless motion capture system in determining the local dynamic stability and joint kinematics of human gait publication-title: J. Biomech. – volume: 22 start-page: 2712 year: 2022 ident: b0155 article-title: Pose2Sim: An end-to-end workflow for 3D markerless sports kinematics—part 2: Accuracy publication-title: J. Sensors – volume: 87 start-page: 19 year: 2021 end-page: 26 ident: b0235 article-title: Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2 publication-title: J. Gait Posture – volume: 87 start-page: 189 year: 2019 end-page: 196 ident: b0045 article-title: Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait publication-title: J. Biomech. – reference: G. Ariyanto, M.S. Nixon, Model-based 3D gait biometrics, 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, (2011) 1-7. doi: 10.1109/IJCB.2011.6117582. – reference: T.C. Pataky, J. Vanrenterghem, M.A. Robinson, Zero-vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis, J. Biomech. 48 (7) (2015) 1277–1285. doi: 10.1016/j.jbiomech.2015.02.051. – volume: 44 start-page: 1 year: 2017 end-page: 7 ident: b0265 article-title: Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease publication-title: J. Med. Eng. Phys. – start-page: 1201 year: 2020 end-page: 1206 ident: b0230 article-title: The validity of a dual Azure Kinect-based motion capture system for gait analysis: a preliminary study publication-title: 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) – volume: 21 start-page: 6530 year: 2021 ident: b0150 article-title: Pose2Sim: An end-to-end workflow for 3D markerless sports kinematics—part 1: Robustness publication-title: J. Sensors – volume: 51 start-page: 77 year: 2017 end-page: 83 ident: b0270 article-title: Improved kinect-based spatiotemporal and kinematic treadmill gait assessment publication-title: J. Gait Posture – volume: 19 start-page: 2604 year: 2019 ident: b0160 article-title: Constraint-based optimized human skeleton extraction from single-depth camera publication-title: J. Sensors – volume: 20 start-page: 5104 year: 2020 ident: b0245 article-title: Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study publication-title: J. Sensors – volume: 71 start-page: 88 year: 2018 end-page: 100 ident: b0105 article-title: Parametric modeling of 3D human body shape—A survey publication-title: J. Comput. Graph. – volume: 29 start-page: 360 year: 2009 end-page: 369 ident: b0005 article-title: The reliability of three-dimensional kinematic gait measurements: A systematic review publication-title: J. Gait Posture – volume: 225 year: 2024 ident: b0080 article-title: A markless 3D human motion data acquisition method based on the binocular stereo vision and lightweight Open Pose algorithm publication-title: J. Measure. – volume: 97 start-page: 188 year: 2022 end-page: 195 ident: b0225 article-title: Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics publication-title: J. Gait Posture – volume: 35 start-page: 1035 year: 2011 end-page: 1050 ident: b0200 article-title: Quadratic curve and surface fitting via squared distance minimization publication-title: J. Comput. Graphics – year: 2020 ident: b0300 article-title: A markerless system for gait analysis based on OpenPose library publication-title: IEEE International Instrumentation and Measurement Technology Conference (I2MTC) – volume: 19 year: 2023 ident: b0145 article-title: OpenCap: Human movement dynamics from smartphone videos publication-title: J. plus Comput. Biol. – volume: 21 start-page: 414 year: 2021 ident: b0075 article-title: Development and validation of 2D-LiDAR-based gait analysis instrument and algorithm publication-title: J. Sensors – volume: 159 year: 2023 ident: b0140 article-title: A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait publication-title: J. Biomech. – volume: 10 start-page: 653 year: 2023 ident: b0290 article-title: Monocular 3D Human Pose Markerless Systems for Gait Assessment publication-title: J. Bioeng. – volume: 26 year: 2023 ident: b0025 article-title: Application of video frame interpolation to markerless, single-camera gait analysis, Journal of publication-title: Sports Eng. – volume: 40 start-page: 595 year: 2007 end-page: 602 ident: b0180 article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging publication-title: J. Biomech. – start-page: 529 year: 2006 end-page: 562 ident: b0205 publication-title: Sequential Quadratic Programming, Numerical optimization – volume: 127 year: 2021 ident: b0010 article-title: Concurrent assessment of gait kinematics using marker-based and markerless motion capture publication-title: J. Biomech. – volume: 11 start-page: 4054 year: 2020 ident: b0120 article-title: Deep neural networks enable quantitative movement analysis using single-camera videos publication-title: J. Nature Commun. – volume: 18 start-page: e0279697 year: 2023 ident: b0250 article-title: Accuracy and repeatability of the Microsoft Azure Kinect for clinical measurement of motor function publication-title: J. PLoS ONE – volume: 159 year: 2023 ident: b0035 article-title: Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait publication-title: J. Biomech. – volume: 22 start-page: 2011 year: 2022 ident: b0055 article-title: Markerless vs. marker-based gait analysis: A proof of concept study publication-title: J. Sensors. – volume: 123 year: 2021 ident: b0135 article-title: Using deep neural networks for kinematic analysis: Challenges and opportunities publication-title: J. Biomech. – year: 2024 ident: b0240 article-title: Robotics-driven gait analysis: Assessing Azure Kinect's performance in in-lab versus in-corridor environments publication-title: J. Field Rob. – volume: 19 start-page: 1660 year: 2019 ident: b0255 article-title: The validity and reliability of a Kinect v2-based gait analysis system for children with cerebral palsy publication-title: J. Sensors – volume: 10 start-page: 1133 year: 2023 ident: b0165 article-title: Hybrid deep neural network framework combining skeleton and gait features for pathological gait recognition publication-title: J. Bioeng. – volume: 46 start-page: 2394 year: 2013 end-page: 2401 ident: b0215 article-title: Vector field statistical analysis of kinematic and force trajectories publication-title: J. Biomech. – volume: 8 start-page: 3 year: 1989 end-page: 16 ident: b0170 article-title: Prediction of hip joint centre location from external landmarks publication-title: J. Human Movement Sci. – volume: 4 year: 2018 ident: b0060 article-title: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system publication-title: J. Sports Med. – Open – volume: 31 start-page: 540 year: 2010 end-page: 542 ident: b0210 article-title: A new formulation of the coefficient of multiple correlation to assess the similarity of waveforms measured synchronously by different motion analysis protocols publication-title: J. Gait Posture – volume: 36 start-page: 1168 year: 2014 end-page: 1175 ident: b0195 article-title: Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane publication-title: J. Med. Eng. Phys. – volume: 139 start-page: 1 year: 2015 ident: 10.1016/j.measurement.2024.114857_b0085 article-title: Kinect range sensing: Structured-light versus Time-of-Flight Kinect publication-title: J. Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2015.05.006 – start-page: 1201 year: 2020 ident: 10.1016/j.measurement.2024.114857_b0230 article-title: The validity of a dual Azure Kinect-based motion capture system for gait analysis: a preliminary study – volume: 19 start-page: 2604 issue: 11 year: 2019 ident: 10.1016/j.measurement.2024.114857_b0160 article-title: Constraint-based optimized human skeleton extraction from single-depth camera publication-title: J. Sensors doi: 10.3390/s19112604 – volume: 21 start-page: 6530 issue: 19 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0150 article-title: Pose2Sim: An end-to-end workflow for 3D markerless sports kinematics—part 1: Robustness publication-title: J. Sensors doi: 10.3390/s21196530 – volume: 35 start-page: 1035 issue: 6 year: 2011 ident: 10.1016/j.measurement.2024.114857_b0200 article-title: Quadratic curve and surface fitting via squared distance minimization publication-title: J. Comput. Graphics doi: 10.1016/j.cag.2011.09.001 – volume: 70 start-page: 3082 issue: 11 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0310 article-title: Markerless motion tracking with noisy video and IMU data publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2023.3275775 – volume: 225 year: 2024 ident: 10.1016/j.measurement.2024.114857_b0080 article-title: A markless 3D human motion data acquisition method based on the binocular stereo vision and lightweight Open Pose algorithm publication-title: J. Measure. – volume: 19 start-page: 1660 issue: 7 year: 2019 ident: 10.1016/j.measurement.2024.114857_b0255 article-title: The validity and reliability of a Kinect v2-based gait analysis system for children with cerebral palsy publication-title: J. Sensors doi: 10.3390/s19071660 – volume: 87 start-page: 19 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0235 article-title: Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2 publication-title: J. Gait Posture doi: 10.1016/j.gaitpost.2021.04.005 – year: 2024 ident: 10.1016/j.measurement.2024.114857_b0240 article-title: Robotics-driven gait analysis: Assessing Azure Kinect's performance in in-lab versus in-corridor environments publication-title: J. Field Rob. doi: 10.1002/rob.22313 – volume: 23 start-page: 4100 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0315 article-title: IoT-Enabled gait assessment: The next step for habitual monitoring publication-title: J. Sensors doi: 10.3390/s23084100 – volume: 18 start-page: e0279697 issue: 1 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0250 article-title: Accuracy and repeatability of the Microsoft Azure Kinect for clinical measurement of motor function publication-title: J. PLoS ONE doi: 10.1371/journal.pone.0279697 – volume: 71 start-page: 88 year: 2018 ident: 10.1016/j.measurement.2024.114857_b0105 article-title: Parametric modeling of 3D human body shape—A survey publication-title: J. Comput. Graph. doi: 10.1016/j.cag.2017.11.008 – ident: 10.1016/j.measurement.2024.114857_b0220 doi: 10.1016/j.jbiomech.2015.02.051 – volume: 104 year: 2020 ident: 10.1016/j.measurement.2024.114857_b0020 article-title: Accuracy of image data stream of a markerless motion capture system in determining the local dynamic stability and joint kinematics of human gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2020.109718 – volume: 21 start-page: 1684 issue: 5 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0065 article-title: A review: Point cloud-based 3D human joints estimation publication-title: J. Sensors doi: 10.3390/s21051684 – volume: 22 start-page: 1661 issue: 4 year: 2022 ident: 10.1016/j.measurement.2024.114857_b0110 article-title: Real-time foot tracking and gait evaluation with geometric modeling publication-title: J. Sensors doi: 10.3390/s22041661 – volume: 51 start-page: 77 year: 2017 ident: 10.1016/j.measurement.2024.114857_b0270 article-title: Improved kinect-based spatiotemporal and kinematic treadmill gait assessment publication-title: J. Gait Posture doi: 10.1016/j.gaitpost.2016.10.001 – volume: 127 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0010 article-title: Concurrent assessment of gait kinematics using marker-based and markerless motion capture publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110665 – volume: 145 year: 2022 ident: 10.1016/j.measurement.2024.114857_b0030 article-title: A kinematic-geometric model based on ankles’ depth trajectory in frontal plane for gait analysis using a single RGB-D camera publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2022.111358 – volume: 152 start-page: 1 year: 2016 ident: 10.1016/j.measurement.2024.114857_b0115 article-title: 3D human pose estimation: A review of the literature and analysis of covariates publication-title: J. Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2016.09.002 – start-page: 529 year: 2006 ident: 10.1016/j.measurement.2024.114857_b0205 – volume: 19 issue: 10 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0145 article-title: OpenCap: Human movement dynamics from smartphone videos publication-title: J. plus Comput. Biol. – volume: 43 start-page: 172 issue: 1 year: 2019 ident: 10.1016/j.measurement.2024.114857_b0185 article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2019.2929257 – volume: 21 start-page: 17064 issue: 15 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0305 article-title: Validation of a 3D markerless system for gait analysis based on OpenPose and two RGB webcams publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2021.3081188 – volume: 23 start-page: 348 issue: 1 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0320 article-title: A framework for analytical validation of inertial-sensor-based knee kinematics using a six-degrees-of-freedom joint simulator publication-title: J. Sensors. doi: 10.3390/s23010348 – volume: 9 start-page: 698 issue: 5 year: 1987 ident: 10.1016/j.measurement.2024.114857_b0190 article-title: Least-squares fitting of two 3-D point sets publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1987.4767965 – volume: 26 issue: 22 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0025 article-title: Application of video frame interpolation to markerless, single-camera gait analysis, Journal of publication-title: Sports Eng. – volume: 42 start-page: 145 issue: 2 year: 2015 ident: 10.1016/j.measurement.2024.114857_b0260 article-title: Accuracy of the Microsoft KinectTM for measuring gait parameters during treadmill walking publication-title: J. Gait Posture doi: 10.1016/j.gaitpost.2015.05.002 – volume: 22 start-page: 2712 issue: 7 year: 2022 ident: 10.1016/j.measurement.2024.114857_b0155 article-title: Pose2Sim: An end-to-end workflow for 3D markerless sports kinematics—part 2: Accuracy publication-title: J. Sensors doi: 10.3390/s22072712 – volume: 159 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0140 article-title: A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2023.111793 – volume: 8 start-page: 3 issue: 1 year: 1989 ident: 10.1016/j.measurement.2024.114857_b0170 article-title: Prediction of hip joint centre location from external landmarks publication-title: J. Human Movement Sci. doi: 10.1016/0167-9457(89)90020-1 – volume: 210 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0125 article-title: Deep 3D human pose estimation: A review publication-title: J. Comput. Vis. Image Underst. – volume: 44 start-page: 1 year: 2017 ident: 10.1016/j.measurement.2024.114857_b0265 article-title: Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease publication-title: J. Med. Eng. Phys. doi: 10.1016/j.medengphy.2017.03.007 – volume: 14 start-page: 4189 issue: 3 year: 2014 ident: 10.1016/j.measurement.2024.114857_b0090 article-title: A survey on model based approaches for 2D and 3D visual human pose recovery publication-title: J. Sensors doi: 10.3390/s140304189 – volume: 108 start-page: 4 issue: 1–2 year: 2007 ident: 10.1016/j.measurement.2024.114857_b0100 article-title: Vision-based human motion analysis: An overview publication-title: J. Comput. Vis. Image Underst. doi: 10.1016/j.cviu.2006.10.016 – volume: 23 start-page: 9799 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0280 article-title: Validity of AI-based gait analysis for simultaneous measurement of bilateral lower limb kinematics using a single video camera publication-title: J. Sensors doi: 10.3390/s23249799 – volume: 23 start-page: 2232 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0295 article-title: Video-based goniometer applications for measuring knee joint angles during walking in neurological patients: a validity, reliability and usability study publication-title: J. Sensors doi: 10.3390/s23042232 – volume: 22 start-page: 2011 issue: 5 year: 2022 ident: 10.1016/j.measurement.2024.114857_b0055 article-title: Markerless vs. marker-based gait analysis: A proof of concept study publication-title: J. Sensors. doi: 10.3390/s22052011 – volume: 36 start-page: 1168 issue: 9 year: 2014 ident: 10.1016/j.measurement.2024.114857_b0195 article-title: Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane publication-title: J. Med. Eng. Phys. doi: 10.1016/j.medengphy.2014.07.007 – volume: 31 start-page: 540 issue: 4 year: 2010 ident: 10.1016/j.measurement.2024.114857_b0210 article-title: A new formulation of the coefficient of multiple correlation to assess the similarity of waveforms measured synchronously by different motion analysis protocols publication-title: J. Gait Posture doi: 10.1016/j.gaitpost.2010.02.009 – volume: 87 start-page: 189 year: 2019 ident: 10.1016/j.measurement.2024.114857_b0045 article-title: Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2019.03.008 – volume: 46 start-page: 2394 issue: 14 year: 2013 ident: 10.1016/j.measurement.2024.114857_b0215 article-title: Vector field statistical analysis of kinematic and force trajectories publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2013.07.031 – volume: 123 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0135 article-title: Using deep neural networks for kinematic analysis: Challenges and opportunities publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2021.110460 – volume: 11 start-page: 144377 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0275 article-title: A model-based markerless protocol for clinical gait analysis based on a single RGB-depth camera: concurrent validation on patients with cerebral palsy publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3340622 – volume: 11 start-page: 4054 year: 2020 ident: 10.1016/j.measurement.2024.114857_b0120 article-title: Deep neural networks enable quantitative movement analysis using single-camera videos publication-title: J. Nature Commun. doi: 10.1038/s41467-020-17807-z – volume: 20 start-page: 5104 issue: 18 year: 2020 ident: 10.1016/j.measurement.2024.114857_b0245 article-title: Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study publication-title: J. Sensors doi: 10.3390/s20185104 – ident: 10.1016/j.measurement.2024.114857_b0095 doi: 10.1109/IJCB.2011.6117582 – volume: 29 start-page: 360 issue: 3 year: 2009 ident: 10.1016/j.measurement.2024.114857_b0005 article-title: The reliability of three-dimensional kinematic gait measurements: A systematic review publication-title: J. Gait Posture doi: 10.1016/j.gaitpost.2008.09.003 – volume: 8 issue: 139 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0015 article-title: Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions publication-title: J. NeuroEngineering Rehab. – volume: 4 issue: 24 year: 2018 ident: 10.1016/j.measurement.2024.114857_b0060 article-title: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system publication-title: J. Sports Med. – Open – volume: 23 start-page: 617 issue: 6 year: 1990 ident: 10.1016/j.measurement.2024.114857_b0175 article-title: A comparison of the accuracy of several hip center location prediction methods publication-title: J. Biomech. doi: 10.1016/0021-9290(90)90054-7 – volume: 165 year: 2024 ident: 10.1016/j.measurement.2024.114857_b0285 article-title: Markerless gait analysis through a single camera and computer vision publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2024.112027 – volume: 10 start-page: 653 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0290 article-title: Monocular 3D Human Pose Markerless Systems for Gait Assessment publication-title: J. Bioeng. – volume: 8 start-page: 2296 year: 2020 ident: 10.1016/j.measurement.2024.114857_b0070 article-title: 3D Tracking of human motion using visual skeletonization and stereoscopic vision publication-title: J. Front. Bioeng. Biotechnol. – volume: 48 start-page: 2166 issue: 10 year: 2015 ident: 10.1016/j.measurement.2024.114857_b0050 article-title: Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2015.05.021 – volume: 225 year: 2022 ident: 10.1016/j.measurement.2024.114857_b0130 article-title: Enabling gait analysis in the telemedicine practice through portable and accurate 3D human pose estimation publication-title: J. Comput. Methods Programs Biomed. – volume: 97 start-page: 188 year: 2022 ident: 10.1016/j.measurement.2024.114857_b0225 article-title: Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics publication-title: J. Gait Posture doi: 10.1016/j.gaitpost.2022.08.008 – volume: 159 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0035 article-title: Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2023.111801 – volume: 40 start-page: 595 issue: 3 year: 2007 ident: 10.1016/j.measurement.2024.114857_b0180 article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.02.003 – volume: 10 start-page: 1133 issue: 10 year: 2023 ident: 10.1016/j.measurement.2024.114857_b0165 article-title: Hybrid deep neural network framework combining skeleton and gait features for pathological gait recognition publication-title: J. Bioeng. – volume: 19 start-page: 4929 issue: 22 year: 2019 ident: 10.1016/j.measurement.2024.114857_b0040 article-title: Validation of a single RGB-D camera for gait assessment of polyneuropathy patients publication-title: J. Sensors doi: 10.3390/s19224929 – year: 2020 ident: 10.1016/j.measurement.2024.114857_b0300 article-title: A markerless system for gait analysis based on OpenPose library publication-title: IEEE International Instrumentation and Measurement Technology Conference (I2MTC) – volume: 21 start-page: 414 issue: 2 year: 2021 ident: 10.1016/j.measurement.2024.114857_b0075 article-title: Development and validation of 2D-LiDAR-based gait analysis instrument and algorithm publication-title: J. Sensors doi: 10.3390/s21020414  | 
    
| SSID | ssj0006396 | 
    
| Score | 2.3907516 | 
    
| Snippet | •An algorithm to improve kinematics accuracy in markerless gait analysis is presented.•This algorithm refines AI-driven skeletons in a subject-specific... Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower accuracy compared to gold-standard systems. Hence, in...  | 
    
| SourceID | unpaywall hal crossref elsevier  | 
    
| SourceType | Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 114857 | 
    
| SubjectTerms | Biomechanics Computational Geometry Computer Science Computer Vision and Pattern Recognition Geometric lower limb model Improved kinematics Markerless gait analysis Mechanics Physics Refined pose estimation RGB-D camera Stance phase constraints  | 
    
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_alG3sYe26jWZsRSt7VWkU2ZJgL2GshFFKHxZIn4wsyUlXJy2x09I97U_fnT_SUMYIezNGZ1u-s-7Dv_sJ4LNDO9DSGR47o7i0XnFje45rh77HCO1iX7F9nsfDkfw-jsZbwNpemClGnM3aT8ccIw4lI222YSeOMNruwM7o_GJwWZdO-pw8EOVUWvW57Inxc_j0COGaPZbZMBMUkohxNTmiv7ug7SlhIV8s57f24d7m-ZqjOd2tAY9FxU9I-JLr42WZHrtfT9gb_zWHPXjVRJlsUJvFa9gK8314ucY9uA_PKuynK97A77qwEDybEVaH_r4XbGKvSnaNwytK14KtTZIRVn7CLKta96lzmBSdP3B7bxeB2Xxys7gqpzNGNV5WLFMq9XBq6SRYEpsElKJ9AVi1Cw9e6i2MTr_9-DrkzcYM3KH_L3mGq7U3qQ5KBxelmdHS2zgOmKpgNEWAVW0wMvMq81KmAvN1HC688dpKqU7S_jvozG_m4QCYjYUMyogsVZm0xLQTTIhsD2UzfyJCF3Srq8Q1rOW0eUaetPC0n8naG0hIzUmt5i6IlehtTd2xidCX1iCSRod1bJGgi9lE_Ag1vrodcXcPB2cJnWut4K7Xhf7KxjZ_svf_JfUBOuViGT5i5FSmh83H8wdVIh1x priority: 102 providerName: Unpaywall  | 
    
| Title | Improved markerless gait kinematics measurement using a biomechanically-aware algorithm with subject-specific geometric modeling | 
    
| URI | https://dx.doi.org/10.1016/j.measurement.2024.114857 https://hal.science/hal-04574589  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 234 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 1873-412X databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 1873-412X databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 1873-412X databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 1873-412X databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-412X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006396 issn: 1873-412X databaseCode: AKRWK dateStart: 19830101 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xEPt4QIMxrQyQQbx6bV03sSVeKgTqYKqQtkrwFDm2U7qlpWrTIV4m_nTukvQDiYdKe4pi-ZKT7fjOl9_9DuDE4jpQ0moeWB1yaVzItalbrizaHi2UDVzO9tkJ2l15edO8WYOzWS4MwSrLvb_Y0_PdumyplqNZHfX71Z81ohoXVD2Z7KCgRHMpQ6pi8O3fAuaBFjgo4iwNTr3fwtEC4zVYxOHwqCgkMecqslSv26g3dwSWfDcdjszjg0nTJUt08RG2SheStQott2HND3fgwxKx4A5s5sBOO_kET0XUwDs2ICAO_VqfsJ7pZ-wPds_5WidsSUFGQPgeMyzPy6e0YJrF9JGbBzP2zKS9-3E_uxswCuCyyTSmOA6nfE3CHLGeRyki_Wd5iR181C50L85_nbV5WXWBWzTuGU9wK3Y6Vj5U3jbjRCvpTBB4PIegq0RoVKXR7XJh4qSMBR7Gsbtw2imDw1-LG59hfXg_9F-AmUBIH2qRxGEiDdHoeO2bpo6yiasJXwE1G-fIlpTkVBkjjWbYs9_R0ghENEVRMUUVEHPRUcHLsYrQ6WwyoxeLLEL7sYr4MS6A-euImLvd-hFRGzrGoWwq_bdegcZ8fayu2d7_afYV3tNdASPeh_VsPPUH6Cxl8WH-NRzCRuv7VbuD127nunX7DL12GsY | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7ahmDjgGCAVn4axNW0dZ3YlrhME1OBsgubtJvl2E5XSLuqTZl2QfzpvJekP5A4VOKa-CWW34u_55fPnwHeeYwDLb3hqTeKSxcUN67rufaIPUZon4ZK7fMs7V_Iz5fJ5Q6cLPfCEK2ymfvrOb2arZsr7WY029PRqP2tQ1Ljgk5PJhwUyS7ckYlQtAJ7_2vN80AITutCS49T83vwZk3yGq8LcbhWFJKkczVB1b9BaveK2JL7i8nU3d64otiAotOH8KDJIdlx3c1HsBMnh3B_Q1nwEO5WzE4_fwy_67JBDGxMTBz6tz5nQzcq2Q9sXgm2ztlGBxkx4YfMsWpjPu0LJjcWt9zduFlkrhhez0bl1ZhRBZfNFxkVcjht2CTSERtGtCLVf1adsYOPegIXpx_PT_q8OXaBe0T3kuc4FweT6ah09EmWGy2DS9OICxHMlYiOqg3mXUHlQcpM4Gocm4tggnZSqk7Wewp7k-tJPALmUiGjMiLPVC4d6ehEExPXRds8dERsgV6Os_WNJjkdjVHYJfnsu90YAUsusrWLWiBWptNamGMbow9LZ9q_oswigGxj_hYDYPU6UubuHw8sXcPMWMlEm5_dFvRW8bF9z579X89ew37__OvADj6dfXkOB3Sn5hS_gL1ytogvMXMqs1fVl_EHPsgaqw | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_alG3sYe26jWZsRSt7VWkU2ZJgL2GshFFKHxZIn4wsyUlXJy2x09I97U_fnT_SUMYIezNGZ1u-s-7Dv_sJ4LNDO9DSGR47o7i0XnFje45rh77HCO1iX7F9nsfDkfw-jsZbwNpemClGnM3aT8ccIw4lI222YSeOMNruwM7o_GJwWZdO-pw8EOVUWvW57Inxc_j0COGaPZbZMBMUkohxNTmiv7ug7SlhIV8s57f24d7m-ZqjOd2tAY9FxU9I-JLr42WZHrtfT9gb_zWHPXjVRJlsUJvFa9gK8314ucY9uA_PKuynK97A77qwEDybEVaH_r4XbGKvSnaNwytK14KtTZIRVn7CLKta96lzmBSdP3B7bxeB2Xxys7gqpzNGNV5WLFMq9XBq6SRYEpsElKJ9AVi1Cw9e6i2MTr_9-DrkzcYM3KH_L3mGq7U3qQ5KBxelmdHS2zgOmKpgNEWAVW0wMvMq81KmAvN1HC688dpKqU7S_jvozG_m4QCYjYUMyogsVZm0xLQTTIhsD2UzfyJCF3Srq8Q1rOW0eUaetPC0n8naG0hIzUmt5i6IlehtTd2xidCX1iCSRod1bJGgi9lE_Ag1vrodcXcPB2cJnWut4K7Xhf7KxjZ_svf_JfUBOuViGT5i5FSmh83H8wdVIh1x | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+markerless+gait+kinematics+measurement+using+a+biomechanically-aware+algorithm+with+subject-specific+geometric+modeling&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Hatamzadeh%2C+Mehran&rft.au=Bus%C3%A9%2C+Laurent&rft.au=Turcot%2C+Katia&rft.au=Zory%2C+Raphael&rft.date=2024-07-01&rft.issn=0263-2241&rft.volume=234&rft.spage=114857&rft_id=info:doi/10.1016%2Fj.measurement.2024.114857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2024_114857 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |