Improved markerless gait kinematics measurement using a biomechanically-aware algorithm with subject-specific geometric modeling

•An algorithm to improve kinematics accuracy in markerless gait analysis is presented.•This algorithm refines AI-driven skeletons in a subject-specific geometric manner.•It preserves skeleton links’ length during walking, using intra-frame modelization.•It benefits from gait phases information in be...

Full description

Saved in:
Bibliographic Details
Published inMeasurement : journal of the International Measurement Confederation Vol. 234; p. 114857
Main Authors Hatamzadeh, Mehran, Busé, Laurent, Turcot, Katia, Zory, Raphael
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2024
Elsevier
Subjects
Online AccessGet full text
ISSN0263-2241
1873-412X
1873-412X
DOI10.1016/j.measurement.2024.114857

Cover

Abstract •An algorithm to improve kinematics accuracy in markerless gait analysis is presented.•This algorithm refines AI-driven skeletons in a subject-specific geometric manner.•It preserves skeleton links’ length during walking, using intra-frame modelization.•It benefits from gait phases information in between-frames adjustments.•It smooths lower limb joints’ trajectory in between-frames adjustments. Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower accuracy compared to gold-standard systems. Hence, in this research, a novel approach is presented to improve the lower limb kinematics accuracy in markerless gait analysis. This approach refines the 3D lower-limb skeletons obtained by AI-based pose estimation algorithms in a subject-specific geometric manner, preserves skeleton links’ length, benefits from gait phases information that adds biomechanical awareness to the algorithm, and utilizes an embedded trajectory smoothing. Validation of the proposed method shows that it reduces 12.6–43.5 % of root mean square error (RMSE) and significantly improves kinematic curves’ similarity to the gold-standard ones. Results also prove the feasibility of more accurate lower limb kinematics calculation using a single (2.02–7.57° RMSE) or dual RGB-D camera (1.66–7.25° RMSE). Development of such algorithms could result in requirement of fewer cameras that deliver comparable or even superior measurement accuracy compared to multi-camera approaches.
AbstractList Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower accuracy compared to gold-standard systems. Hence, in this research, a novel approach is presented to improve the lower limb kinematics accuracy in markerless gait analysis. This approach refines the 3D lower-limb skeletons obtained by AI-based pose estimation algorithms in a subject-specific geometric manner, preserves skeleton links’ length, benefits from gait phases information that adds biomechanical awareness to the algorithm, and utilizes an embedded trajectory smoothing. Validation of the proposed method shows that it reduces 12.6%-43.5% of root mean square error (RMSE) and significantly improves kinematic curves’ similarity to the gold-standard ones. Results also prove the feasibility of more accurate lower limb kinematics calculation using a single (2.02°-7.57° RMSE) or dual RGB-D camera (1.66°-7.25° RMSE). Development of such algorithms could result in requirement of fewer cameras that deliver comparable or even superior measurement accuracy compared to multi-camera approaches.
•An algorithm to improve kinematics accuracy in markerless gait analysis is presented.•This algorithm refines AI-driven skeletons in a subject-specific geometric manner.•It preserves skeleton links’ length during walking, using intra-frame modelization.•It benefits from gait phases information in between-frames adjustments.•It smooths lower limb joints’ trajectory in between-frames adjustments. Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower accuracy compared to gold-standard systems. Hence, in this research, a novel approach is presented to improve the lower limb kinematics accuracy in markerless gait analysis. This approach refines the 3D lower-limb skeletons obtained by AI-based pose estimation algorithms in a subject-specific geometric manner, preserves skeleton links’ length, benefits from gait phases information that adds biomechanical awareness to the algorithm, and utilizes an embedded trajectory smoothing. Validation of the proposed method shows that it reduces 12.6–43.5 % of root mean square error (RMSE) and significantly improves kinematic curves’ similarity to the gold-standard ones. Results also prove the feasibility of more accurate lower limb kinematics calculation using a single (2.02–7.57° RMSE) or dual RGB-D camera (1.66–7.25° RMSE). Development of such algorithms could result in requirement of fewer cameras that deliver comparable or even superior measurement accuracy compared to multi-camera approaches.
ArticleNumber 114857
Author Hatamzadeh, Mehran
Zory, Raphael
Busé, Laurent
Turcot, Katia
Author_xml – sequence: 1
  givenname: Mehran
  orcidid: 0000-0002-5183-4801
  surname: Hatamzadeh
  fullname: Hatamzadeh, Mehran
  email: mehran.hatamzadeh@inria.fr
  organization: Université Côte d’Azur, LAMHESS, Nice, France
– sequence: 2
  givenname: Laurent
  orcidid: 0009-0005-6528-7027
  surname: Busé
  fullname: Busé, Laurent
  organization: Université Côte d’Azur, Inria, Sophia Antipolis, France
– sequence: 3
  givenname: Katia
  orcidid: 0000-0003-2649-3459
  surname: Turcot
  fullname: Turcot, Katia
  organization: Université Laval, Department of Kinesiology, Faculty of Medicine, Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale (Cirris), Quebec, Canada
– sequence: 4
  givenname: Raphael
  orcidid: 0000-0003-3566-3229
  surname: Zory
  fullname: Zory, Raphael
  organization: Université Côte d’Azur, LAMHESS, Nice, France
BackLink https://hal.science/hal-04574589$$DView record in HAL
BookMark eNqVkUFvGyEQhVGVSnXS_gd67GFdYFmW7aWKrLaJZKmXVuoNsTBr4-yCBdiWb_npxdpIiXpKL4DQe9_MvLlGVz54QOgjJUtKqPi8W06g0yHCBD4vGWF8SSmXTfsGLahs64pT9ucKLQgTdcUYp-_QdUo7QoioO7FAj_fTPoYjWDzp-ABxhJTwRruMH5yHSWdnEn5RAh-S8xusce_CBGarvTN6HM-VPukIWI-bEF3eTvhUTpwO_Q5MrtIejBucwRsorhzLawoWxoJ6j94Oekzw4em-Qb-_f_u1uqvWP3_cr27XleFE5GoAbWzXS2glmKYfOsmtFgIkE4LVXVPXsmt4Y9vBct4z6OsiZ7azUnPekr6-QV9m7sHv9flUelb76MrQZ0WJumSpdurFoOqSpZqzLOZPs3mrn21BO3V3u1aXP8KbljeyO9Ki7WatiSGlCMN_1fn6j9e4XHYQfI7aja8irGYClCyPDqJKxoE3YF0sm1A2uFdQ_gKTZMFc
CitedBy_id crossref_primary_10_1109_TIM_2025_3547477
Cites_doi 10.1016/j.cviu.2015.05.006
10.3390/s19112604
10.3390/s21196530
10.1016/j.cag.2011.09.001
10.1109/TBME.2023.3275775
10.3390/s19071660
10.1016/j.gaitpost.2021.04.005
10.1002/rob.22313
10.3390/s23084100
10.1371/journal.pone.0279697
10.1016/j.cag.2017.11.008
10.1016/j.jbiomech.2015.02.051
10.1016/j.jbiomech.2020.109718
10.3390/s21051684
10.3390/s22041661
10.1016/j.gaitpost.2016.10.001
10.1016/j.jbiomech.2021.110665
10.1016/j.jbiomech.2022.111358
10.1016/j.cviu.2016.09.002
10.1109/TPAMI.2019.2929257
10.1109/JSEN.2021.3081188
10.3390/s23010348
10.1109/TPAMI.1987.4767965
10.1016/j.gaitpost.2015.05.002
10.3390/s22072712
10.1016/j.jbiomech.2023.111793
10.1016/0167-9457(89)90020-1
10.1016/j.medengphy.2017.03.007
10.3390/s140304189
10.1016/j.cviu.2006.10.016
10.3390/s23249799
10.3390/s23042232
10.3390/s22052011
10.1016/j.medengphy.2014.07.007
10.1016/j.gaitpost.2010.02.009
10.1016/j.jbiomech.2019.03.008
10.1016/j.jbiomech.2013.07.031
10.1016/j.jbiomech.2021.110460
10.1109/ACCESS.2023.3340622
10.1038/s41467-020-17807-z
10.3390/s20185104
10.1109/IJCB.2011.6117582
10.1016/j.gaitpost.2008.09.003
10.1016/0021-9290(90)90054-7
10.1016/j.jbiomech.2024.112027
10.1016/j.jbiomech.2015.05.021
10.1016/j.gaitpost.2022.08.008
10.1016/j.jbiomech.2023.111801
10.1016/j.jbiomech.2006.02.003
10.3390/s19224929
10.3390/s21020414
ContentType Journal Article
Copyright 2024
Attribution
Copyright_xml – notice: 2024
– notice: Attribution
DBID AAYXX
CITATION
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.measurement.2024.114857
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
Computer Science
EISSN 1873-412X
ExternalDocumentID oai:HAL:hal-04574589v1
10_1016_j_measurement_2024_114857
S0263224124007425
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-feacd9b8e78ec5bf984da66e826623953389545d7fd44b2eb3cd92d9d8a4470b3
IEDL.DBID .~1
ISSN 0263-2241
1873-412X
IngestDate Sun Oct 26 04:17:22 EDT 2025
Tue Oct 14 20:51:55 EDT 2025
Thu Apr 24 23:08:14 EDT 2025
Wed Oct 01 01:37:50 EDT 2025
Sat Jun 01 15:42:35 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Markerless gait analysis
Refined pose estimation
Improved kinematics
Geometric lower limb model
Stance phase constraints
RGB-D camera
Language English
License Attribution: http://creativecommons.org/licenses/by
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-feacd9b8e78ec5bf984da66e826623953389545d7fd44b2eb3cd92d9d8a4470b3
ORCID 0000-0003-2649-3459
0000-0002-5183-4801
0000-0003-3566-3229
0009-0005-6528-7027
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.science/hal-04574589
ParticipantIDs unpaywall_primary_10_1016_j_measurement_2024_114857
hal_primary_oai_HAL_hal_04574589v1
crossref_primary_10_1016_j_measurement_2024_114857
crossref_citationtrail_10_1016_j_measurement_2024_114857
elsevier_sciencedirect_doi_10_1016_j_measurement_2024_114857
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-07
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2024
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Zhu, Boukhennoufa, Liew, Gao (b0290) 2023; 10
Cronin (b0135) 2021; 123
Sandau, Koblauch, Moeslund, Aanæs (b0195) 2014; 36
Guffanti, Brunete, Hernando, Álvarez (b0240) 2024
Kanko, Laende, Davis, Selbie (b0010) 2021; 127
Harrington, Zavatsky, Lawson, Yuan (b0180) 2007; 40
Young, Mason, Morris, Stuart (b0315) 2023; 23
G. Ariyanto, M.S. Nixon, Model-based 3D gait biometrics, 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, (2011) 1-7. doi: 10.1109/IJCB.2011.6117582.
Pataky, Robinson, Vanrenterghem (b0215) 2013; 46
Wang, Su, Lu, Jung (b0285) 2024; 165
Sarbolandi, Lefloch, Kolb (b0085) 2015; 139
Colyer, Evans, Cosker, Salo (b0060) 2018; 4
Mentiplay, Perraton, Bower, Pua (b0050) 2015; 48
Perez-Sala, Escalera, Angulo, Gonzàlez (b0090) 2014; 14
Wang, Yu (b0200) 2011; 35
Martini, Boldo, Aldegheri, Valè (b0130) 2022; 225
Zago, Luzzago, Marangoni, Cecco (b0070) 2020; 8
Cheng, Chen, Martin, Wu (b0105) 2018; 71
Poppe (b0100) 2007; 108
D’Antonio, Taborri, Mileti, Rossi (b0305) 2021; 21
Wang, Tan, Zhen, Xu (b0125) 2021; 210
Mehdizadeh, Nabavi, Sabo, Arora (b0015) 2021; 8
Xu, An, Jia, Yue (b0065) 2021; 21
Foo, Chang, Ang (b0110) 2022; 22
Vilas-Boas, Rocha, Choupina, Cardoso (b0040) 2019; 19
Li, Si, Weinmann, Klein (b0160) 2019; 19
Shin, Li, Halilaj (b0310) 2023; 70
Yoon, Jung, Jung, Kim (b0075) 2021; 21
Parati, Gallotta, De Maria, Pirola (b0295) 2023; 23
Jun, Lee, Lee, Lee (b0165) 2023; 10
Vásquez, Maas, List, Schütz (b0320) 2023; 23
Pagnon, Domalain, Reveret (b0150) 2021; 21
Kidziński, Yang, Hicks, Rajagopal (b0120) 2020; 11
Albert, Owolabi, Gebel, Brahms (b0245) 2020; 20
Yeung, Yang, Cheng, Du (b0235) 2021; 87
Horsak, Eichmann, Lauer, Prock (b0035) 2023; 159
Bell, Brand, Pedersen (b0170) 1989; 8
Ferrari, Cutti, Cappello (b0210) 2010; 31
Eltoukhy, Oh, Kuenze, Signorile (b0270) 2017; 51
Cao, Hidalgo, Simon, Wei (b0185) 2019; 43
Balta, Figari, Paolini, Pantzar-Castilla (b0275) 2023; 11
Chakraborty, Nandy, Yamaguchi, Bonnet (b0020) 2020; 104
T.C. Pataky, J. Vanrenterghem, M.A. Robinson, Zero-vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis, J. Biomech. 48 (7) (2015) 1277–1285. doi: 10.1016/j.jbiomech.2015.02.051.
Sarafianos, Boteanu, Ionescu, Kakadiaris (b0115) 2016; 152
Moro, Marchesi, Hesse, Odone (b0055) 2022; 22
Ma, Mithraratne, Wilson, Wang (b0255) 2019; 19
Bertram, Kruger, Rohling, Jelusic (b0250) 2023; 18
Ripic, Nienhuis, Signorile, Best (b0140) 2023; 159
Ma, Sheng, Hart, Zhang (b0230) 2020
Uhlrich, Falisse, Kidziński, Muccini (b0145) 2023; 19
Vilas-Boas, Choupina, Rocha, Fernandes (b0045) 2019; 87
Ino, Samukawa, Ishida, Wada (b0280) 2023; 23
Arun, Huang, Blostein (b0190) 1987; 9
Pagnon, Domalain, Reveret (b0155) 2022; 22
Dunn, Kennerley, Murrell-Smith, Webster (b0025) 2023; 26
Sheng, Chen, Cheng, Zhang (b0080) 2024; 225
D’Antonio, Taborri, Palermo, Rossi (b0300) 2020
Washabaugh, Shanmugam, Ranganathan, Krishnan (b0225) 2022; 97
Xu, McGorry, Chou, Lin (b0260) 2015; 42
Eltoukhy, Kuenze, Oh, Jacopetti (b0265) 2017; 44
McGinley, Baker, Wolfe, Morris (b0005) 2009; 29
Nocedal, Wright (b0205) 2006
Hatamzadeh, Busé, Chorin, Alliez (b0030) 2022; 145
Bell, Pedersen, Brand (b0175) 1990; 23
Li (10.1016/j.measurement.2024.114857_b0160) 2019; 19
McGinley (10.1016/j.measurement.2024.114857_b0005) 2009; 29
10.1016/j.measurement.2024.114857_b0095
Cheng (10.1016/j.measurement.2024.114857_b0105) 2018; 71
Eltoukhy (10.1016/j.measurement.2024.114857_b0270) 2017; 51
Bell (10.1016/j.measurement.2024.114857_b0170) 1989; 8
Albert (10.1016/j.measurement.2024.114857_b0245) 2020; 20
Pagnon (10.1016/j.measurement.2024.114857_b0155) 2022; 22
Eltoukhy (10.1016/j.measurement.2024.114857_b0265) 2017; 44
Wang (10.1016/j.measurement.2024.114857_b0285) 2024; 165
Nocedal (10.1016/j.measurement.2024.114857_b0205) 2006
Balta (10.1016/j.measurement.2024.114857_b0275) 2023; 11
Pataky (10.1016/j.measurement.2024.114857_b0215) 2013; 46
D’Antonio (10.1016/j.measurement.2024.114857_b0300) 2020
Zhu (10.1016/j.measurement.2024.114857_b0290) 2023; 10
Dunn (10.1016/j.measurement.2024.114857_b0025) 2023; 26
Ma (10.1016/j.measurement.2024.114857_b0230) 2020
Guffanti (10.1016/j.measurement.2024.114857_b0240) 2024
Mehdizadeh (10.1016/j.measurement.2024.114857_b0015) 2021; 8
Washabaugh (10.1016/j.measurement.2024.114857_b0225) 2022; 97
Xu (10.1016/j.measurement.2024.114857_b0260) 2015; 42
Sarafianos (10.1016/j.measurement.2024.114857_b0115) 2016; 152
Young (10.1016/j.measurement.2024.114857_b0315) 2023; 23
Sarbolandi (10.1016/j.measurement.2024.114857_b0085) 2015; 139
Kanko (10.1016/j.measurement.2024.114857_b0010) 2021; 127
Ferrari (10.1016/j.measurement.2024.114857_b0210) 2010; 31
Pagnon (10.1016/j.measurement.2024.114857_b0150) 2021; 21
Zago (10.1016/j.measurement.2024.114857_b0070) 2020; 8
D’Antonio (10.1016/j.measurement.2024.114857_b0305) 2021; 21
Chakraborty (10.1016/j.measurement.2024.114857_b0020) 2020; 104
Mentiplay (10.1016/j.measurement.2024.114857_b0050) 2015; 48
Poppe (10.1016/j.measurement.2024.114857_b0100) 2007; 108
Martini (10.1016/j.measurement.2024.114857_b0130) 2022; 225
Wang (10.1016/j.measurement.2024.114857_b0125) 2021; 210
Arun (10.1016/j.measurement.2024.114857_b0190) 1987; 9
Foo (10.1016/j.measurement.2024.114857_b0110) 2022; 22
Vásquez (10.1016/j.measurement.2024.114857_b0320) 2023; 23
Perez-Sala (10.1016/j.measurement.2024.114857_b0090) 2014; 14
Shin (10.1016/j.measurement.2024.114857_b0310) 2023; 70
Sandau (10.1016/j.measurement.2024.114857_b0195) 2014; 36
Bertram (10.1016/j.measurement.2024.114857_b0250) 2023; 18
Vilas-Boas (10.1016/j.measurement.2024.114857_b0040) 2019; 19
Moro (10.1016/j.measurement.2024.114857_b0055) 2022; 22
Horsak (10.1016/j.measurement.2024.114857_b0035) 2023; 159
Vilas-Boas (10.1016/j.measurement.2024.114857_b0045) 2019; 87
Bell (10.1016/j.measurement.2024.114857_b0175) 1990; 23
Xu (10.1016/j.measurement.2024.114857_b0065) 2021; 21
Ino (10.1016/j.measurement.2024.114857_b0280) 2023; 23
Wang (10.1016/j.measurement.2024.114857_b0200) 2011; 35
10.1016/j.measurement.2024.114857_b0220
Cronin (10.1016/j.measurement.2024.114857_b0135) 2021; 123
Yeung (10.1016/j.measurement.2024.114857_b0235) 2021; 87
Sheng (10.1016/j.measurement.2024.114857_b0080) 2024; 225
Parati (10.1016/j.measurement.2024.114857_b0295) 2023; 23
Hatamzadeh (10.1016/j.measurement.2024.114857_b0030) 2022; 145
Uhlrich (10.1016/j.measurement.2024.114857_b0145) 2023; 19
Kidziński (10.1016/j.measurement.2024.114857_b0120) 2020; 11
Yoon (10.1016/j.measurement.2024.114857_b0075) 2021; 21
Ma (10.1016/j.measurement.2024.114857_b0255) 2019; 19
Colyer (10.1016/j.measurement.2024.114857_b0060) 2018; 4
Jun (10.1016/j.measurement.2024.114857_b0165) 2023; 10
Cao (10.1016/j.measurement.2024.114857_b0185) 2019; 43
Ripic (10.1016/j.measurement.2024.114857_b0140) 2023; 159
Harrington (10.1016/j.measurement.2024.114857_b0180) 2007; 40
References_xml – volume: 22
  start-page: 1661
  year: 2022
  ident: b0110
  article-title: Real-time foot tracking and gait evaluation with geometric modeling
  publication-title: J. Sensors
– volume: 70
  start-page: 3082
  year: 2023
  end-page: 3092
  ident: b0310
  article-title: Markerless motion tracking with noisy video and IMU data
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 108
  start-page: 4
  year: 2007
  end-page: 18
  ident: b0100
  article-title: Vision-based human motion analysis: An overview
  publication-title: J. Comput. Vis. Image Underst.
– volume: 9
  start-page: 698
  year: 1987
  end-page: 700
  ident: b0190
  article-title: Least-squares fitting of two 3-D point sets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 14
  start-page: 4189
  year: 2014
  end-page: 4210
  ident: b0090
  article-title: A survey on model based approaches for 2D and 3D visual human pose recovery
  publication-title: J. Sensors
– volume: 21
  start-page: 1684
  year: 2021
  ident: b0065
  article-title: A review: Point cloud-based 3D human joints estimation
  publication-title: J. Sensors
– volume: 145
  year: 2022
  ident: b0030
  article-title: A kinematic-geometric model based on ankles’ depth trajectory in frontal plane for gait analysis using a single RGB-D camera
  publication-title: J. Biomech.
– volume: 19
  start-page: 4929
  year: 2019
  ident: b0040
  article-title: Validation of a single RGB-D camera for gait assessment of polyneuropathy patients
  publication-title: J. Sensors
– volume: 165
  year: 2024
  ident: b0285
  article-title: Markerless gait analysis through a single camera and computer vision
  publication-title: J. Biomech.
– volume: 225
  year: 2022
  ident: b0130
  article-title: Enabling gait analysis in the telemedicine practice through portable and accurate 3D human pose estimation
  publication-title: J. Comput. Methods Programs Biomed.
– volume: 23
  start-page: 348
  year: 2023
  ident: b0320
  article-title: A framework for analytical validation of inertial-sensor-based knee kinematics using a six-degrees-of-freedom joint simulator
  publication-title: J. Sensors.
– volume: 8
  year: 2021
  ident: b0015
  article-title: Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions
  publication-title: J. NeuroEngineering Rehab.
– volume: 23
  start-page: 9799
  year: 2023
  ident: b0280
  article-title: Validity of AI-based gait analysis for simultaneous measurement of bilateral lower limb kinematics using a single video camera
  publication-title: J. Sensors
– volume: 43
  start-page: 172
  year: 2019
  end-page: 186
  ident: b0185
  article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 23
  start-page: 4100
  year: 2023
  ident: b0315
  article-title: IoT-Enabled gait assessment: The next step for habitual monitoring
  publication-title: J. Sensors
– volume: 152
  start-page: 1
  year: 2016
  end-page: 20
  ident: b0115
  article-title: 3D human pose estimation: A review of the literature and analysis of covariates
  publication-title: J. Comput. Vis. Image Underst.
– volume: 23
  start-page: 617
  year: 1990
  end-page: 621
  ident: b0175
  article-title: A comparison of the accuracy of several hip center location prediction methods
  publication-title: J. Biomech.
– volume: 21
  start-page: 17064
  year: 2021
  end-page: 17075
  ident: b0305
  article-title: Validation of a 3D markerless system for gait analysis based on OpenPose and two RGB webcams
  publication-title: IEEE Sens. J.
– volume: 48
  start-page: 2166
  year: 2015
  end-page: 2170
  ident: b0050
  article-title: Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables
  publication-title: J. Biomech.
– volume: 8
  start-page: 2296
  year: 2020
  end-page: 4185
  ident: b0070
  article-title: 3D Tracking of human motion using visual skeletonization and stereoscopic vision
  publication-title: J. Front. Bioeng. Biotechnol.
– volume: 210
  year: 2021
  ident: b0125
  article-title: Deep 3D human pose estimation: A review
  publication-title: J. Comput. Vis. Image Underst.
– volume: 23
  start-page: 2232
  year: 2023
  ident: b0295
  article-title: Video-based goniometer applications for measuring knee joint angles during walking in neurological patients: a validity, reliability and usability study
  publication-title: J. Sensors
– volume: 139
  start-page: 1
  year: 2015
  end-page: 20
  ident: b0085
  article-title: Kinect range sensing: Structured-light versus Time-of-Flight Kinect
  publication-title: J. Comput. Vis. Image Underst.
– volume: 11
  start-page: 144377
  year: 2023
  end-page: 144393
  ident: b0275
  article-title: A model-based markerless protocol for clinical gait analysis based on a single RGB-depth camera: concurrent validation on patients with cerebral palsy
  publication-title: IEEE Access
– volume: 42
  start-page: 145
  year: 2015
  end-page: 151
  ident: b0260
  article-title: Accuracy of the Microsoft Kinect
  publication-title: J. Gait Posture
– volume: 104
  year: 2020
  ident: b0020
  article-title: Accuracy of image data stream of a markerless motion capture system in determining the local dynamic stability and joint kinematics of human gait
  publication-title: J. Biomech.
– volume: 22
  start-page: 2712
  year: 2022
  ident: b0155
  article-title: Pose2Sim: An end-to-end workflow for 3D markerless sports kinematics—part 2: Accuracy
  publication-title: J. Sensors
– volume: 87
  start-page: 19
  year: 2021
  end-page: 26
  ident: b0235
  article-title: Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2
  publication-title: J. Gait Posture
– volume: 87
  start-page: 189
  year: 2019
  end-page: 196
  ident: b0045
  article-title: Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait
  publication-title: J. Biomech.
– reference: G. Ariyanto, M.S. Nixon, Model-based 3D gait biometrics, 2011 International Joint Conference on Biometrics (IJCB), Washington, DC, USA, (2011) 1-7. doi: 10.1109/IJCB.2011.6117582.
– reference: T.C. Pataky, J. Vanrenterghem, M.A. Robinson, Zero-vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis, J. Biomech. 48 (7) (2015) 1277–1285. doi: 10.1016/j.jbiomech.2015.02.051.
– volume: 44
  start-page: 1
  year: 2017
  end-page: 7
  ident: b0265
  article-title: Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease
  publication-title: J. Med. Eng. Phys.
– start-page: 1201
  year: 2020
  end-page: 1206
  ident: b0230
  article-title: The validity of a dual Azure Kinect-based motion capture system for gait analysis: a preliminary study
  publication-title: 2020 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC)
– volume: 21
  start-page: 6530
  year: 2021
  ident: b0150
  article-title: Pose2Sim: An end-to-end workflow for 3D markerless sports kinematics—part 1: Robustness
  publication-title: J. Sensors
– volume: 51
  start-page: 77
  year: 2017
  end-page: 83
  ident: b0270
  article-title: Improved kinect-based spatiotemporal and kinematic treadmill gait assessment
  publication-title: J. Gait Posture
– volume: 19
  start-page: 2604
  year: 2019
  ident: b0160
  article-title: Constraint-based optimized human skeleton extraction from single-depth camera
  publication-title: J. Sensors
– volume: 20
  start-page: 5104
  year: 2020
  ident: b0245
  article-title: Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study
  publication-title: J. Sensors
– volume: 71
  start-page: 88
  year: 2018
  end-page: 100
  ident: b0105
  article-title: Parametric modeling of 3D human body shape—A survey
  publication-title: J. Comput. Graph.
– volume: 29
  start-page: 360
  year: 2009
  end-page: 369
  ident: b0005
  article-title: The reliability of three-dimensional kinematic gait measurements: A systematic review
  publication-title: J. Gait Posture
– volume: 225
  year: 2024
  ident: b0080
  article-title: A markless 3D human motion data acquisition method based on the binocular stereo vision and lightweight Open Pose algorithm
  publication-title: J. Measure.
– volume: 97
  start-page: 188
  year: 2022
  end-page: 195
  ident: b0225
  article-title: Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics
  publication-title: J. Gait Posture
– volume: 35
  start-page: 1035
  year: 2011
  end-page: 1050
  ident: b0200
  article-title: Quadratic curve and surface fitting via squared distance minimization
  publication-title: J. Comput. Graphics
– year: 2020
  ident: b0300
  article-title: A markerless system for gait analysis based on OpenPose library
  publication-title: IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
– volume: 19
  year: 2023
  ident: b0145
  article-title: OpenCap: Human movement dynamics from smartphone videos
  publication-title: J. plus Comput. Biol.
– volume: 21
  start-page: 414
  year: 2021
  ident: b0075
  article-title: Development and validation of 2D-LiDAR-based gait analysis instrument and algorithm
  publication-title: J. Sensors
– volume: 159
  year: 2023
  ident: b0140
  article-title: A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait
  publication-title: J. Biomech.
– volume: 10
  start-page: 653
  year: 2023
  ident: b0290
  article-title: Monocular 3D Human Pose Markerless Systems for Gait Assessment
  publication-title: J. Bioeng.
– volume: 26
  year: 2023
  ident: b0025
  article-title: Application of video frame interpolation to markerless, single-camera gait analysis, Journal of
  publication-title: Sports Eng.
– volume: 40
  start-page: 595
  year: 2007
  end-page: 602
  ident: b0180
  article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging
  publication-title: J. Biomech.
– start-page: 529
  year: 2006
  end-page: 562
  ident: b0205
  publication-title: Sequential Quadratic Programming, Numerical optimization
– volume: 127
  year: 2021
  ident: b0010
  article-title: Concurrent assessment of gait kinematics using marker-based and markerless motion capture
  publication-title: J. Biomech.
– volume: 11
  start-page: 4054
  year: 2020
  ident: b0120
  article-title: Deep neural networks enable quantitative movement analysis using single-camera videos
  publication-title: J. Nature Commun.
– volume: 18
  start-page: e0279697
  year: 2023
  ident: b0250
  article-title: Accuracy and repeatability of the Microsoft Azure Kinect for clinical measurement of motor function
  publication-title: J. PLoS ONE
– volume: 159
  year: 2023
  ident: b0035
  article-title: Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait
  publication-title: J. Biomech.
– volume: 22
  start-page: 2011
  year: 2022
  ident: b0055
  article-title: Markerless vs. marker-based gait analysis: A proof of concept study
  publication-title: J. Sensors.
– volume: 123
  year: 2021
  ident: b0135
  article-title: Using deep neural networks for kinematic analysis: Challenges and opportunities
  publication-title: J. Biomech.
– year: 2024
  ident: b0240
  article-title: Robotics-driven gait analysis: Assessing Azure Kinect's performance in in-lab versus in-corridor environments
  publication-title: J. Field Rob.
– volume: 19
  start-page: 1660
  year: 2019
  ident: b0255
  article-title: The validity and reliability of a Kinect v2-based gait analysis system for children with cerebral palsy
  publication-title: J. Sensors
– volume: 10
  start-page: 1133
  year: 2023
  ident: b0165
  article-title: Hybrid deep neural network framework combining skeleton and gait features for pathological gait recognition
  publication-title: J. Bioeng.
– volume: 46
  start-page: 2394
  year: 2013
  end-page: 2401
  ident: b0215
  article-title: Vector field statistical analysis of kinematic and force trajectories
  publication-title: J. Biomech.
– volume: 8
  start-page: 3
  year: 1989
  end-page: 16
  ident: b0170
  article-title: Prediction of hip joint centre location from external landmarks
  publication-title: J. Human Movement Sci.
– volume: 4
  year: 2018
  ident: b0060
  article-title: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system
  publication-title: J. Sports Med. – Open
– volume: 31
  start-page: 540
  year: 2010
  end-page: 542
  ident: b0210
  article-title: A new formulation of the coefficient of multiple correlation to assess the similarity of waveforms measured synchronously by different motion analysis protocols
  publication-title: J. Gait Posture
– volume: 36
  start-page: 1168
  year: 2014
  end-page: 1175
  ident: b0195
  article-title: Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane
  publication-title: J. Med. Eng. Phys.
– volume: 139
  start-page: 1
  year: 2015
  ident: 10.1016/j.measurement.2024.114857_b0085
  article-title: Kinect range sensing: Structured-light versus Time-of-Flight Kinect
  publication-title: J. Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2015.05.006
– start-page: 1201
  year: 2020
  ident: 10.1016/j.measurement.2024.114857_b0230
  article-title: The validity of a dual Azure Kinect-based motion capture system for gait analysis: a preliminary study
– volume: 19
  start-page: 2604
  issue: 11
  year: 2019
  ident: 10.1016/j.measurement.2024.114857_b0160
  article-title: Constraint-based optimized human skeleton extraction from single-depth camera
  publication-title: J. Sensors
  doi: 10.3390/s19112604
– volume: 21
  start-page: 6530
  issue: 19
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0150
  article-title: Pose2Sim: An end-to-end workflow for 3D markerless sports kinematics—part 1: Robustness
  publication-title: J. Sensors
  doi: 10.3390/s21196530
– volume: 35
  start-page: 1035
  issue: 6
  year: 2011
  ident: 10.1016/j.measurement.2024.114857_b0200
  article-title: Quadratic curve and surface fitting via squared distance minimization
  publication-title: J. Comput. Graphics
  doi: 10.1016/j.cag.2011.09.001
– volume: 70
  start-page: 3082
  issue: 11
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0310
  article-title: Markerless motion tracking with noisy video and IMU data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2023.3275775
– volume: 225
  year: 2024
  ident: 10.1016/j.measurement.2024.114857_b0080
  article-title: A markless 3D human motion data acquisition method based on the binocular stereo vision and lightweight Open Pose algorithm
  publication-title: J. Measure.
– volume: 19
  start-page: 1660
  issue: 7
  year: 2019
  ident: 10.1016/j.measurement.2024.114857_b0255
  article-title: The validity and reliability of a Kinect v2-based gait analysis system for children with cerebral palsy
  publication-title: J. Sensors
  doi: 10.3390/s19071660
– volume: 87
  start-page: 19
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0235
  article-title: Effects of camera viewing angles on tracking kinematic gait patterns using Azure Kinect, Kinect v2 and Orbbec Astra Pro v2
  publication-title: J. Gait Posture
  doi: 10.1016/j.gaitpost.2021.04.005
– year: 2024
  ident: 10.1016/j.measurement.2024.114857_b0240
  article-title: Robotics-driven gait analysis: Assessing Azure Kinect's performance in in-lab versus in-corridor environments
  publication-title: J. Field Rob.
  doi: 10.1002/rob.22313
– volume: 23
  start-page: 4100
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0315
  article-title: IoT-Enabled gait assessment: The next step for habitual monitoring
  publication-title: J. Sensors
  doi: 10.3390/s23084100
– volume: 18
  start-page: e0279697
  issue: 1
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0250
  article-title: Accuracy and repeatability of the Microsoft Azure Kinect for clinical measurement of motor function
  publication-title: J. PLoS ONE
  doi: 10.1371/journal.pone.0279697
– volume: 71
  start-page: 88
  year: 2018
  ident: 10.1016/j.measurement.2024.114857_b0105
  article-title: Parametric modeling of 3D human body shape—A survey
  publication-title: J. Comput. Graph.
  doi: 10.1016/j.cag.2017.11.008
– ident: 10.1016/j.measurement.2024.114857_b0220
  doi: 10.1016/j.jbiomech.2015.02.051
– volume: 104
  year: 2020
  ident: 10.1016/j.measurement.2024.114857_b0020
  article-title: Accuracy of image data stream of a markerless motion capture system in determining the local dynamic stability and joint kinematics of human gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2020.109718
– volume: 21
  start-page: 1684
  issue: 5
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0065
  article-title: A review: Point cloud-based 3D human joints estimation
  publication-title: J. Sensors
  doi: 10.3390/s21051684
– volume: 22
  start-page: 1661
  issue: 4
  year: 2022
  ident: 10.1016/j.measurement.2024.114857_b0110
  article-title: Real-time foot tracking and gait evaluation with geometric modeling
  publication-title: J. Sensors
  doi: 10.3390/s22041661
– volume: 51
  start-page: 77
  year: 2017
  ident: 10.1016/j.measurement.2024.114857_b0270
  article-title: Improved kinect-based spatiotemporal and kinematic treadmill gait assessment
  publication-title: J. Gait Posture
  doi: 10.1016/j.gaitpost.2016.10.001
– volume: 127
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0010
  article-title: Concurrent assessment of gait kinematics using marker-based and markerless motion capture
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110665
– volume: 145
  year: 2022
  ident: 10.1016/j.measurement.2024.114857_b0030
  article-title: A kinematic-geometric model based on ankles’ depth trajectory in frontal plane for gait analysis using a single RGB-D camera
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2022.111358
– volume: 152
  start-page: 1
  year: 2016
  ident: 10.1016/j.measurement.2024.114857_b0115
  article-title: 3D human pose estimation: A review of the literature and analysis of covariates
  publication-title: J. Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2016.09.002
– start-page: 529
  year: 2006
  ident: 10.1016/j.measurement.2024.114857_b0205
– volume: 19
  issue: 10
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0145
  article-title: OpenCap: Human movement dynamics from smartphone videos
  publication-title: J. plus Comput. Biol.
– volume: 43
  start-page: 172
  issue: 1
  year: 2019
  ident: 10.1016/j.measurement.2024.114857_b0185
  article-title: OpenPose: Realtime multi-person 2D pose estimation using part affinity fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2019.2929257
– volume: 21
  start-page: 17064
  issue: 15
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0305
  article-title: Validation of a 3D markerless system for gait analysis based on OpenPose and two RGB webcams
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3081188
– volume: 23
  start-page: 348
  issue: 1
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0320
  article-title: A framework for analytical validation of inertial-sensor-based knee kinematics using a six-degrees-of-freedom joint simulator
  publication-title: J. Sensors.
  doi: 10.3390/s23010348
– volume: 9
  start-page: 698
  issue: 5
  year: 1987
  ident: 10.1016/j.measurement.2024.114857_b0190
  article-title: Least-squares fitting of two 3-D point sets
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1987.4767965
– volume: 26
  issue: 22
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0025
  article-title: Application of video frame interpolation to markerless, single-camera gait analysis, Journal of
  publication-title: Sports Eng.
– volume: 42
  start-page: 145
  issue: 2
  year: 2015
  ident: 10.1016/j.measurement.2024.114857_b0260
  article-title: Accuracy of the Microsoft KinectTM for measuring gait parameters during treadmill walking
  publication-title: J. Gait Posture
  doi: 10.1016/j.gaitpost.2015.05.002
– volume: 22
  start-page: 2712
  issue: 7
  year: 2022
  ident: 10.1016/j.measurement.2024.114857_b0155
  article-title: Pose2Sim: An end-to-end workflow for 3D markerless sports kinematics—part 2: Accuracy
  publication-title: J. Sensors
  doi: 10.3390/s22072712
– volume: 159
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0140
  article-title: A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2023.111793
– volume: 8
  start-page: 3
  issue: 1
  year: 1989
  ident: 10.1016/j.measurement.2024.114857_b0170
  article-title: Prediction of hip joint centre location from external landmarks
  publication-title: J. Human Movement Sci.
  doi: 10.1016/0167-9457(89)90020-1
– volume: 210
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0125
  article-title: Deep 3D human pose estimation: A review
  publication-title: J. Comput. Vis. Image Underst.
– volume: 44
  start-page: 1
  year: 2017
  ident: 10.1016/j.measurement.2024.114857_b0265
  article-title: Microsoft Kinect can distinguish differences in over-ground gait between older persons with and without Parkinson's disease
  publication-title: J. Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2017.03.007
– volume: 14
  start-page: 4189
  issue: 3
  year: 2014
  ident: 10.1016/j.measurement.2024.114857_b0090
  article-title: A survey on model based approaches for 2D and 3D visual human pose recovery
  publication-title: J. Sensors
  doi: 10.3390/s140304189
– volume: 108
  start-page: 4
  issue: 1–2
  year: 2007
  ident: 10.1016/j.measurement.2024.114857_b0100
  article-title: Vision-based human motion analysis: An overview
  publication-title: J. Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2006.10.016
– volume: 23
  start-page: 9799
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0280
  article-title: Validity of AI-based gait analysis for simultaneous measurement of bilateral lower limb kinematics using a single video camera
  publication-title: J. Sensors
  doi: 10.3390/s23249799
– volume: 23
  start-page: 2232
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0295
  article-title: Video-based goniometer applications for measuring knee joint angles during walking in neurological patients: a validity, reliability and usability study
  publication-title: J. Sensors
  doi: 10.3390/s23042232
– volume: 22
  start-page: 2011
  issue: 5
  year: 2022
  ident: 10.1016/j.measurement.2024.114857_b0055
  article-title: Markerless vs. marker-based gait analysis: A proof of concept study
  publication-title: J. Sensors.
  doi: 10.3390/s22052011
– volume: 36
  start-page: 1168
  issue: 9
  year: 2014
  ident: 10.1016/j.measurement.2024.114857_b0195
  article-title: Markerless motion capture can provide reliable 3D gait kinematics in the sagittal and frontal plane
  publication-title: J. Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2014.07.007
– volume: 31
  start-page: 540
  issue: 4
  year: 2010
  ident: 10.1016/j.measurement.2024.114857_b0210
  article-title: A new formulation of the coefficient of multiple correlation to assess the similarity of waveforms measured synchronously by different motion analysis protocols
  publication-title: J. Gait Posture
  doi: 10.1016/j.gaitpost.2010.02.009
– volume: 87
  start-page: 189
  year: 2019
  ident: 10.1016/j.measurement.2024.114857_b0045
  article-title: Full-body motion assessment: Concurrent validation of two body tracking depth sensors versus a gold standard system during gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.03.008
– volume: 46
  start-page: 2394
  issue: 14
  year: 2013
  ident: 10.1016/j.measurement.2024.114857_b0215
  article-title: Vector field statistical analysis of kinematic and force trajectories
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2013.07.031
– volume: 123
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0135
  article-title: Using deep neural networks for kinematic analysis: Challenges and opportunities
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2021.110460
– volume: 11
  start-page: 144377
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0275
  article-title: A model-based markerless protocol for clinical gait analysis based on a single RGB-depth camera: concurrent validation on patients with cerebral palsy
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3340622
– volume: 11
  start-page: 4054
  year: 2020
  ident: 10.1016/j.measurement.2024.114857_b0120
  article-title: Deep neural networks enable quantitative movement analysis using single-camera videos
  publication-title: J. Nature Commun.
  doi: 10.1038/s41467-020-17807-z
– volume: 20
  start-page: 5104
  issue: 18
  year: 2020
  ident: 10.1016/j.measurement.2024.114857_b0245
  article-title: Evaluation of the pose tracking performance of the azure kinect and kinect v2 for gait analysis in comparison with a gold standard: A pilot study
  publication-title: J. Sensors
  doi: 10.3390/s20185104
– ident: 10.1016/j.measurement.2024.114857_b0095
  doi: 10.1109/IJCB.2011.6117582
– volume: 29
  start-page: 360
  issue: 3
  year: 2009
  ident: 10.1016/j.measurement.2024.114857_b0005
  article-title: The reliability of three-dimensional kinematic gait measurements: A systematic review
  publication-title: J. Gait Posture
  doi: 10.1016/j.gaitpost.2008.09.003
– volume: 8
  issue: 139
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0015
  article-title: Concurrent validity of human pose tracking in video for measuring gait parameters in older adults: a preliminary analysis with multiple trackers, viewing angles, and walking directions
  publication-title: J. NeuroEngineering Rehab.
– volume: 4
  issue: 24
  year: 2018
  ident: 10.1016/j.measurement.2024.114857_b0060
  article-title: A review of the evolution of vision-based motion analysis and the integration of advanced computer vision methods towards developing a markerless system
  publication-title: J. Sports Med. – Open
– volume: 23
  start-page: 617
  issue: 6
  year: 1990
  ident: 10.1016/j.measurement.2024.114857_b0175
  article-title: A comparison of the accuracy of several hip center location prediction methods
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(90)90054-7
– volume: 165
  year: 2024
  ident: 10.1016/j.measurement.2024.114857_b0285
  article-title: Markerless gait analysis through a single camera and computer vision
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2024.112027
– volume: 10
  start-page: 653
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0290
  article-title: Monocular 3D Human Pose Markerless Systems for Gait Assessment
  publication-title: J. Bioeng.
– volume: 8
  start-page: 2296
  year: 2020
  ident: 10.1016/j.measurement.2024.114857_b0070
  article-title: 3D Tracking of human motion using visual skeletonization and stereoscopic vision
  publication-title: J. Front. Bioeng. Biotechnol.
– volume: 48
  start-page: 2166
  issue: 10
  year: 2015
  ident: 10.1016/j.measurement.2024.114857_b0050
  article-title: Gait assessment using the Microsoft Xbox One Kinect: Concurrent validity and inter-day reliability of spatiotemporal and kinematic variables
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2015.05.021
– volume: 225
  year: 2022
  ident: 10.1016/j.measurement.2024.114857_b0130
  article-title: Enabling gait analysis in the telemedicine practice through portable and accurate 3D human pose estimation
  publication-title: J. Comput. Methods Programs Biomed.
– volume: 97
  start-page: 188
  year: 2022
  ident: 10.1016/j.measurement.2024.114857_b0225
  article-title: Comparing the accuracy of open-source pose estimation methods for measuring gait kinematics
  publication-title: J. Gait Posture
  doi: 10.1016/j.gaitpost.2022.08.008
– volume: 159
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0035
  article-title: Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2023.111801
– volume: 40
  start-page: 595
  issue: 3
  year: 2007
  ident: 10.1016/j.measurement.2024.114857_b0180
  article-title: Prediction of the hip joint centre in adults, children, and patients with cerebral palsy based on magnetic resonance imaging
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.02.003
– volume: 10
  start-page: 1133
  issue: 10
  year: 2023
  ident: 10.1016/j.measurement.2024.114857_b0165
  article-title: Hybrid deep neural network framework combining skeleton and gait features for pathological gait recognition
  publication-title: J. Bioeng.
– volume: 19
  start-page: 4929
  issue: 22
  year: 2019
  ident: 10.1016/j.measurement.2024.114857_b0040
  article-title: Validation of a single RGB-D camera for gait assessment of polyneuropathy patients
  publication-title: J. Sensors
  doi: 10.3390/s19224929
– year: 2020
  ident: 10.1016/j.measurement.2024.114857_b0300
  article-title: A markerless system for gait analysis based on OpenPose library
  publication-title: IEEE International Instrumentation and Measurement Technology Conference (I2MTC)
– volume: 21
  start-page: 414
  issue: 2
  year: 2021
  ident: 10.1016/j.measurement.2024.114857_b0075
  article-title: Development and validation of 2D-LiDAR-based gait analysis instrument and algorithm
  publication-title: J. Sensors
  doi: 10.3390/s21020414
SSID ssj0006396
Score 2.3907516
Snippet •An algorithm to improve kinematics accuracy in markerless gait analysis is presented.•This algorithm refines AI-driven skeletons in a subject-specific...
Despite the advancements in developing markerless gait analysis systems, they still demonstrate lower accuracy compared to gold-standard systems. Hence, in...
SourceID unpaywall
hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 114857
SubjectTerms Biomechanics
Computational Geometry
Computer Science
Computer Vision and Pattern Recognition
Geometric lower limb model
Improved kinematics
Markerless gait analysis
Mechanics
Physics
Refined pose estimation
RGB-D camera
Stance phase constraints
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_alG3sYe26jWZsRSt7VWkU2ZJgL2GshFFKHxZIn4wsyUlXJy2x09I97U_fnT_SUMYIezNGZ1u-s-7Dv_sJ4LNDO9DSGR47o7i0XnFje45rh77HCO1iX7F9nsfDkfw-jsZbwNpemClGnM3aT8ccIw4lI222YSeOMNruwM7o_GJwWZdO-pw8EOVUWvW57Inxc_j0COGaPZbZMBMUkohxNTmiv7ug7SlhIV8s57f24d7m-ZqjOd2tAY9FxU9I-JLr42WZHrtfT9gb_zWHPXjVRJlsUJvFa9gK8314ucY9uA_PKuynK97A77qwEDybEVaH_r4XbGKvSnaNwytK14KtTZIRVn7CLKta96lzmBSdP3B7bxeB2Xxys7gqpzNGNV5WLFMq9XBq6SRYEpsElKJ9AVi1Cw9e6i2MTr_9-DrkzcYM3KH_L3mGq7U3qQ5KBxelmdHS2zgOmKpgNEWAVW0wMvMq81KmAvN1HC688dpKqU7S_jvozG_m4QCYjYUMyogsVZm0xLQTTIhsD2UzfyJCF3Srq8Q1rOW0eUaetPC0n8naG0hIzUmt5i6IlehtTd2xidCX1iCSRod1bJGgi9lE_Ag1vrodcXcPB2cJnWut4K7Xhf7KxjZ_svf_JfUBOuViGT5i5FSmh83H8wdVIh1x
  priority: 102
  providerName: Unpaywall
Title Improved markerless gait kinematics measurement using a biomechanically-aware algorithm with subject-specific geometric modeling
URI https://dx.doi.org/10.1016/j.measurement.2024.114857
https://hal.science/hal-04574589
UnpaywallVersion submittedVersion
Volume 234
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 1873-412X
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 1873-412X
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 1873-412X
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 1873-412X
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006396
  issn: 1873-412X
  databaseCode: AKRWK
  dateStart: 19830101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED8xEPt4QIMxrQyQQbx6bV03sSVeKgTqYKqQtkrwFDm2U7qlpWrTIV4m_nTukvQDiYdKe4pi-ZKT7fjOl9_9DuDE4jpQ0moeWB1yaVzItalbrizaHi2UDVzO9tkJ2l15edO8WYOzWS4MwSrLvb_Y0_PdumyplqNZHfX71Z81ohoXVD2Z7KCgRHMpQ6pi8O3fAuaBFjgo4iwNTr3fwtEC4zVYxOHwqCgkMecqslSv26g3dwSWfDcdjszjg0nTJUt08RG2SheStQott2HND3fgwxKx4A5s5sBOO_kET0XUwDs2ICAO_VqfsJ7pZ-wPds_5WidsSUFGQPgeMyzPy6e0YJrF9JGbBzP2zKS9-3E_uxswCuCyyTSmOA6nfE3CHLGeRyki_Wd5iR181C50L85_nbV5WXWBWzTuGU9wK3Y6Vj5U3jbjRCvpTBB4PIegq0RoVKXR7XJh4qSMBR7Gsbtw2imDw1-LG59hfXg_9F-AmUBIH2qRxGEiDdHoeO2bpo6yiasJXwE1G-fIlpTkVBkjjWbYs9_R0ghENEVRMUUVEHPRUcHLsYrQ6WwyoxeLLEL7sYr4MS6A-euImLvd-hFRGzrGoWwq_bdegcZ8fayu2d7_afYV3tNdASPeh_VsPPUH6Cxl8WH-NRzCRuv7VbuD127nunX7DL12GsY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Pb9MwFH7ahmDjgGCAVn4axNW0dZ3YlrhME1OBsgubtJvl2E5XSLuqTZl2QfzpvJekP5A4VOKa-CWW34u_55fPnwHeeYwDLb3hqTeKSxcUN67rufaIPUZon4ZK7fMs7V_Iz5fJ5Q6cLPfCEK2ymfvrOb2arZsr7WY029PRqP2tQ1Ljgk5PJhwUyS7ckYlQtAJ7_2vN80AITutCS49T83vwZk3yGq8LcbhWFJKkczVB1b9BaveK2JL7i8nU3d64otiAotOH8KDJIdlx3c1HsBMnh3B_Q1nwEO5WzE4_fwy_67JBDGxMTBz6tz5nQzcq2Q9sXgm2ztlGBxkx4YfMsWpjPu0LJjcWt9zduFlkrhhez0bl1ZhRBZfNFxkVcjht2CTSERtGtCLVf1adsYOPegIXpx_PT_q8OXaBe0T3kuc4FweT6ah09EmWGy2DS9OICxHMlYiOqg3mXUHlQcpM4Gocm4tggnZSqk7Wewp7k-tJPALmUiGjMiLPVC4d6ehEExPXRds8dERsgV6Os_WNJjkdjVHYJfnsu90YAUsusrWLWiBWptNamGMbow9LZ9q_oswigGxj_hYDYPU6UubuHw8sXcPMWMlEm5_dFvRW8bF9z579X89ew37__OvADj6dfXkOB3Sn5hS_gL1ytogvMXMqs1fVl_EHPsgaqw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_alG3sYe26jWZsRSt7VWkU2ZJgL2GshFFKHxZIn4wsyUlXJy2x09I97U_fnT_SUMYIezNGZ1u-s-7Dv_sJ4LNDO9DSGR47o7i0XnFje45rh77HCO1iX7F9nsfDkfw-jsZbwNpemClGnM3aT8ccIw4lI222YSeOMNruwM7o_GJwWZdO-pw8EOVUWvW57Inxc_j0COGaPZbZMBMUkohxNTmiv7ug7SlhIV8s57f24d7m-ZqjOd2tAY9FxU9I-JLr42WZHrtfT9gb_zWHPXjVRJlsUJvFa9gK8314ucY9uA_PKuynK97A77qwEDybEVaH_r4XbGKvSnaNwytK14KtTZIRVn7CLKta96lzmBSdP3B7bxeB2Xxys7gqpzNGNV5WLFMq9XBq6SRYEpsElKJ9AVi1Cw9e6i2MTr_9-DrkzcYM3KH_L3mGq7U3qQ5KBxelmdHS2zgOmKpgNEWAVW0wMvMq81KmAvN1HC688dpKqU7S_jvozG_m4QCYjYUMyogsVZm0xLQTTIhsD2UzfyJCF3Srq8Q1rOW0eUaetPC0n8naG0hIzUmt5i6IlehtTd2xidCX1iCSRod1bJGgi9lE_Ag1vrodcXcPB2cJnWut4K7Xhf7KxjZ_svf_JfUBOuViGT5i5FSmh83H8wdVIh1x
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+markerless+gait+kinematics+measurement+using+a+biomechanically-aware+algorithm+with+subject-specific+geometric+modeling&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Hatamzadeh%2C+Mehran&rft.au=Bus%C3%A9%2C+Laurent&rft.au=Turcot%2C+Katia&rft.au=Zory%2C+Raphael&rft.date=2024-07-01&rft.issn=0263-2241&rft.volume=234&rft.spage=114857&rft_id=info:doi/10.1016%2Fj.measurement.2024.114857&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2024_114857
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon