Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data

Introduction Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant...

Full description

Saved in:
Bibliographic Details
Published inMetabolomics Vol. 15; no. 10; pp. 134 - 9
Main Authors Brandolini-Bunlon, Marion, Pétéra, Mélanie, Gaudreau, Pierrette, Comte, Blandine, Bougeard, Stéphanie, Pujos-Guillot, Estelle
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2019
Springer Nature B.V
Springer Verlag
Subjects
Online AccessGet full text
ISSN1573-3882
1573-3890
1573-3890
DOI10.1007/s11306-019-1598-y

Cover

Abstract Introduction Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure. Objective The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data. Methods This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions. Results To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes. Conclusion In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method.
AbstractList IntroductionMetabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure.ObjectiveThe present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data.MethodsThis tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions.ResultsTo illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes.ConclusionIn particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method.
Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure.INTRODUCTIONMetabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure.The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data.OBJECTIVEThe present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data.This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions.METHODSThis tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions.To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes.RESULTSTo illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes.In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method.CONCLUSIONIn particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method.
Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure. The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data. This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions. To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes. In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method.
INTRODUCTION: Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure. OBJECTIVE: The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data. METHODS: This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions. RESULTS: To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes. CONCLUSION: In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method.
Introduction Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure. Objective The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data. Methods This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions. Results To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes. Conclusion In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method.
ArticleNumber 134
Author Pétéra, Mélanie
Comte, Blandine
Brandolini-Bunlon, Marion
Pujos-Guillot, Estelle
Gaudreau, Pierrette
Bougeard, Stéphanie
Author_xml – sequence: 1
  givenname: Marion
  orcidid: 0000-0003-0131-8216
  surname: Brandolini-Bunlon
  fullname: Brandolini-Bunlon, Marion
  email: marion.brandolini-bunlon@inra.fr
  organization: Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont
– sequence: 2
  givenname: Mélanie
  surname: Pétéra
  fullname: Pétéra, Mélanie
  organization: Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont
– sequence: 3
  givenname: Pierrette
  surname: Gaudreau
  fullname: Gaudreau, Pierrette
  organization: Centre de Recherche du Centre hospitalier de l’Université de Montréal, Département de médecine, Université de Montréal
– sequence: 4
  givenname: Blandine
  surname: Comte
  fullname: Comte, Blandine
  organization: Université Clermont Auvergne, INRA, UNH
– sequence: 5
  givenname: Stéphanie
  surname: Bougeard
  fullname: Bougeard, Stéphanie
  organization: Anses
– sequence: 6
  givenname: Estelle
  surname: Pujos-Guillot
  fullname: Pujos-Guillot, Estelle
  organization: Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, Université Clermont Auvergne, INRA, UNH
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31583480$$D View this record in MEDLINE/PubMed
https://hal.science/hal-02308942$$DView record in HAL
BookMark eNp9kc1u1DAUhS1URH_gAdigSGxgEbiOncReVhVQpEEgAWvLjm9aD0482E6leXs8pC2oEqxsHX3n2PeeU3I0hxkJeU7hDQXo3yZKGXQ1UFnTVop6_4ic0LZnNRMSju7vojkmpyltATiXPTwhx4y2gnEBJ8R-Wnx2tfFh-FF92XytrEtDdJOb9ZwrPWu_Ty5VY4hVvsZqG9zfchirCbM2wYfJDUW3Fe6cxckV5coN2ldWZ_2UPB61T_js9jwj39-_-3ZxWW8-f_h4cb6pBw5drkfZoTTIRAdgTGtQUsoFtYJ3kje97UaLmnXYiR6ZAaSitaDbwZoeOB0kOyOv19xr7dWuTKHjXgXt1OX5Rh00aBiIknVDC_tqZXcx_FwwZTWVydF7PWNYkiok5Y2UEgr68gG6DUssO_hNQds0jegL9eKWWsyE9v79u10XoF-BIYaUIo5qcFlnF-YctfOKgjq0qtZWVWlVHVpV--KkD5x34f_zNKsnFXa-wvjn0_82_QLJmLNs
CitedBy_id crossref_primary_10_3390_metabo11060407
crossref_primary_10_1002_mrc_5350
crossref_primary_10_1093_gigascience_giae005
crossref_primary_10_3389_fcimb_2024_1366192
crossref_primary_10_2174_1386207325666220215144847
crossref_primary_10_5802_crchim_276
Cites_doi 10.1371/journal.pcbi.1005752
10.1007/s11306-007-0099-6
10.1002/cem.785
10.1093/bib/bbl009
10.2174/138920006777697918
10.1016/j.cbpa.2013.06.015
10.1002/cem.1392
10.1089/rej.2007.0596
10.1186/1471-2105-9-504
10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S
10.18637/jss.v022.i04
10.1007/s11306-013-0598-6
10.1016/j.aca.2015.02.012
10.1093/bioinformatics/btu813
10.1089/omi.2014.0062
10.1007/978-1-4614-6849-3
10.1021/acs.jproteome.7b00116
10.1111/j.2517-6161.1974.tb00994.x
10.1201/9780429246593
10.1101/067611
ContentType Journal Article
Copyright Springer Science+Business Media, LLC, part of Springer Nature 2019
Metabolomics is a copyright of Springer, (2019). All Rights Reserved.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019
– notice: Metabolomics is a copyright of Springer, (2019). All Rights Reserved.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
DOI 10.1007/s11306-019-1598-y
DatabaseName CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection (Proquest)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological science database
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList ProQuest Central Student
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Computer Science
EISSN 1573-3890
EndPage 9
ExternalDocumentID oai:HAL:hal-02308942v1
31583480
10_1007_s11306_019_1598_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Agence Nationale de la Recherche
  grantid: ANR-INBS-0010
  funderid: http://dx.doi.org/10.13039/501100001665
GroupedDBID ---
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
203
29M
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
53G
5VS
67N
67Z
6NX
7X7
8FE
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHFT
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACUHS
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBNVY
BDATZ
BENPR
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EJD
EN4
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HLICF
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAK
LK8
LLZTM
LMP
M4Y
M7P
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9I
O9J
OAM
P2P
PF0
PQQKQ
PROAC
PT4
Q2X
QOR
QOS
R89
R9I
RIG
ROL
RPX
RSV
S16
S1Z
S27
S3A
S3B
SAP
SBL
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SZN
T13
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z82
Z83
Z87
ZMTXR
ZOVNA
~A9
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
NPM
7XB
8FK
AZQEC
DWQXO
GNUQQ
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
1XC
ID FETCH-LOGICAL-c406t-f96e9be38600bb5be911481d8469427d6fdea36e687e3b0e185d0a5cdb7041c93
IEDL.DBID AGYKE
ISSN 1573-3882
1573-3890
IngestDate Tue Oct 14 20:32:38 EDT 2025
Thu Sep 04 15:33:15 EDT 2025
Tue Oct 07 06:05:31 EDT 2025
Mon Jul 21 06:06:41 EDT 2025
Wed Oct 01 02:40:50 EDT 2025
Thu Apr 24 23:06:48 EDT 2025
Fri Feb 21 02:37:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Multi-block
Metabolomics
Multiblock PLS discriminant analysis
Discrimination
Epidemiology
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-f96e9be38600bb5be911481d8469427d6fdea36e687e3b0e185d0a5cdb7041c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0131-8216
0000-0002-1779-6901
0009-0002-4729-5355
0000-0002-4693-5712
0000-0002-4662-6581
PMID 31583480
PQID 2300522287
PQPubID 326279
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_02308942v1
proquest_miscellaneous_2301429990
proquest_journals_2300522287
pubmed_primary_31583480
crossref_citationtrail_10_1007_s11306_019_1598_y
crossref_primary_10_1007_s11306_019_1598_y
springer_journals_10_1007_s11306_019_1598_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-01
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
– name: Heidelberg
PublicationSubtitle An Official Journal of the Metabolomics Society
PublicationTitle Metabolomics
PublicationTitleAbbrev Metabolomics
PublicationTitleAlternate Metabolomics
PublicationYear 2019
Publisher Springer US
Springer Nature B.V
Springer Verlag
Publisher_xml – name: Springer US
– name: Springer Nature B.V
– name: Springer Verlag
References Westerhuis, Hoefsloot, Smit, Vis, Smilde, van Velzen, van Duijnhoven, van Dorsten (CR22) 2008; 4
Ackermann, Hale, Duffin (CR1) 2006; 7
Stone (CR20) 1974; 36
Dray, Dufour (CR5) 2007; 22
Westerhuis, Kourti, Macgregor (CR23) 1998; 12
CR18
Bougeard, Dray (CR3) 2018; 86
Bougeard, Qannari, Rose (CR4) 2011; 25
Giacomoni, Le Corguille, Monsoor, Landi, Pericard, Petera, Duperier, Tremblay-Franco, Martin, Jacob, Goulitquer, Thevenot, Caron (CR8) 2015; 31
CR13
Tautenhahn, Bottcher, Neumann (CR21) 2008; 9
CR24
Saporta (CR17) 2006
Steuer (CR19) 2006; 7
Saccenti, Hoefsloot, Smilde, Westerhuis, Hendriks (CR16) 2014; 10
Efron, Tibshirani (CR6) 1994
Pujos-Guillot, Brandolini, Petera, Grissa, Joly, Lyan, Herquelot, Czernichow, Zins, Goldberg, Comte (CR12) 2017; 16
Kuhn, Johnson (CR11) 2013
Rohart, Gautier, Singh, Le Cao (CR15) 2017; 13
Ramautar, Berger, van der Greef, Hankemeier (CR14) 2013; 17
Barker, Rayens (CR2) 2003; 17
Gunther, Shin, Ng, McMaster, McManus, Keown, Tebbutt, Le Cao (CR10) 2014; 18
Gaudreau, Morais, Shatenstein, Gray-Donald, Khalil, Dionne (CR7) 2007; 10
Gromski, Muhamadali, Ellis, Xu, Correa, Turner, Goodacre (CR9) 2015; 879
F Giacomoni (1598_CR8) 2015; 31
OP Gunther (1598_CR10) 2014; 18
R Tautenhahn (1598_CR21) 2008; 9
M Stone (1598_CR20) 1974; 36
R Ramautar (1598_CR14) 2013; 17
R Steuer (1598_CR19) 2006; 7
JA Westerhuis (1598_CR22) 2008; 4
1598_CR13
1598_CR24
M Barker (1598_CR2) 2003; 17
P Gaudreau (1598_CR7) 2007; 10
M Kuhn (1598_CR11) 2013
S Bougeard (1598_CR3) 2018; 86
S Bougeard (1598_CR4) 2011; 25
B Efron (1598_CR6) 1994
F Rohart (1598_CR15) 2017; 13
G Saporta (1598_CR17) 2006
BL Ackermann (1598_CR1) 2006; 7
E Saccenti (1598_CR16) 2014; 10
JA Westerhuis (1598_CR23) 1998; 12
1598_CR18
E Pujos-Guillot (1598_CR12) 2017; 16
S Dray (1598_CR5) 2007; 22
PS Gromski (1598_CR9) 2015; 879
References_xml – volume: 13
  start-page: e1005752
  year: 2017
  ident: CR15
  article-title: mixOmics: An R package for ‘omics feature selection and multiple data integration
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005752
– ident: CR18
– volume: 4
  start-page: 81
  year: 2008
  end-page: 89
  ident: CR22
  article-title: Assessment of PLSDA cross validation
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0099-6
– volume: 17
  start-page: 166
  year: 2003
  end-page: 173
  ident: CR2
  article-title: Partial least squares for discrimination
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.785
– volume: 7
  start-page: 151
  year: 2006
  end-page: 158
  ident: CR19
  article-title: Review on the analysis and interpretation of correlations in metabolomic data
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbl009
– volume: 7
  start-page: 525
  year: 2006
  end-page: 539
  ident: CR1
  article-title: The role of mass spectrometry in biomarker discovery and measurement
  publication-title: Current Drug Metabolism
  doi: 10.2174/138920006777697918
– volume: 17
  start-page: 841
  year: 2013
  end-page: 846
  ident: CR14
  article-title: Human metabolomics: Strategies to understand biology
  publication-title: Current Opinion in Chemical Biology
  doi: 10.1016/j.cbpa.2013.06.015
– volume: 25
  start-page: 467
  year: 2011
  end-page: 475
  ident: CR4
  article-title: Multiblock redundancy analysis: Interpretation tools and application in epidemiology
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.1392
– volume: 36
  start-page: 111
  year: 1974
  end-page: 147
  ident: CR20
  article-title: Cross-validatory choice and assessment of statistical predictions
  publication-title: Journal of the Royal Statistical Society B
– volume: 10
  start-page: 377
  year: 2007
  end-page: 386
  ident: CR7
  article-title: Nutrition as a determinant of successful aging: description of the Quebec longitudinal study Nuage and results from cross-sectional pilot studies
  publication-title: Rejuvenation Research
  doi: 10.1089/rej.2007.0596
– ident: CR13
– volume: 9
  start-page: 504
  year: 2008
  ident: CR21
  article-title: Highly sensitive feature detection for high resolution LC/MS
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-504
– volume: 12
  start-page: 301
  year: 1998
  end-page: 321
  ident: CR23
  article-title: Analysis of multiblock and hierarchical PCA and PLS models
  publication-title: Journal of Chemometrics
  doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S
– volume: 22
  start-page: 1
  year: 2007
  end-page: 20
  ident: CR5
  article-title: The ade4 package: Implementing the duality diagram for ecologists
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v022.i04
– volume: 10
  start-page: 361
  year: 2014
  end-page: 374
  ident: CR16
  article-title: Reflections on univariate and multivariate analysis of metabolomics data
  publication-title: Metabolomics
  doi: 10.1007/s11306-013-0598-6
– volume: 879
  start-page: 10
  year: 2015
  end-page: 23
  ident: CR9
  article-title: A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2015.02.012
– volume: 86
  start-page: 1
  year: 2018
  end-page: 18
  ident: CR3
  article-title: Supervised multiblock analysis in R with the ade4 package
  publication-title: Journal of Statistical Sofware
– volume: 31
  start-page: 1493
  year: 2015
  end-page: 1495
  ident: CR8
  article-title: Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu813
– ident: CR24
– year: 2006
  ident: CR17
  publication-title: Probabilités, analyse de données et statistiques
– year: 1994
  ident: CR6
  publication-title: An introduction to the bootstrap
– volume: 18
  start-page: 682
  year: 2014
  end-page: 695
  ident: CR10
  article-title: Novel multivariate methods for integration of genomics and proteomics data: Applications in a kidney transplant rejection study
  publication-title: OMICS: A Journal of Integrative Biology
  doi: 10.1089/omi.2014.0062
– year: 2013
  ident: CR11
  publication-title: Applied predictive modeling
  doi: 10.1007/978-1-4614-6849-3
– volume: 16
  start-page: 2262
  year: 2017
  end-page: 2272
  ident: CR12
  article-title: Systems metabolomics for prediction of metabolic syndrome
  publication-title: Journal of Proteome Research
  doi: 10.1021/acs.jproteome.7b00116
– ident: 1598_CR24
– volume: 31
  start-page: 1493
  year: 2015
  ident: 1598_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu813
– volume: 13
  start-page: e1005752
  year: 2017
  ident: 1598_CR15
  publication-title: PLoS Computational Biology
  doi: 10.1371/journal.pcbi.1005752
– volume: 10
  start-page: 377
  year: 2007
  ident: 1598_CR7
  publication-title: Rejuvenation Research
  doi: 10.1089/rej.2007.0596
– volume: 86
  start-page: 1
  year: 2018
  ident: 1598_CR3
  publication-title: Journal of Statistical Sofware
– volume: 17
  start-page: 166
  year: 2003
  ident: 1598_CR2
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.785
– volume: 16
  start-page: 2262
  year: 2017
  ident: 1598_CR12
  publication-title: Journal of Proteome Research
  doi: 10.1021/acs.jproteome.7b00116
– volume-title: Applied predictive modeling
  year: 2013
  ident: 1598_CR11
  doi: 10.1007/978-1-4614-6849-3
– volume: 10
  start-page: 361
  year: 2014
  ident: 1598_CR16
  publication-title: Metabolomics
  doi: 10.1007/s11306-013-0598-6
– volume: 7
  start-page: 525
  year: 2006
  ident: 1598_CR1
  publication-title: Current Drug Metabolism
  doi: 10.2174/138920006777697918
– volume: 18
  start-page: 682
  year: 2014
  ident: 1598_CR10
  publication-title: OMICS: A Journal of Integrative Biology
  doi: 10.1089/omi.2014.0062
– volume: 17
  start-page: 841
  year: 2013
  ident: 1598_CR14
  publication-title: Current Opinion in Chemical Biology
  doi: 10.1016/j.cbpa.2013.06.015
– volume: 36
  start-page: 111
  year: 1974
  ident: 1598_CR20
  publication-title: Journal of the Royal Statistical Society B
  doi: 10.1111/j.2517-6161.1974.tb00994.x
– ident: 1598_CR13
– volume: 879
  start-page: 10
  year: 2015
  ident: 1598_CR9
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2015.02.012
– volume: 9
  start-page: 504
  year: 2008
  ident: 1598_CR21
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-9-504
– volume: 12
  start-page: 301
  year: 1998
  ident: 1598_CR23
  publication-title: Journal of Chemometrics
  doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S
– volume-title: An introduction to the bootstrap
  year: 1994
  ident: 1598_CR6
  doi: 10.1201/9780429246593
– volume: 25
  start-page: 467
  year: 2011
  ident: 1598_CR4
  publication-title: Journal of Chemometrics
  doi: 10.1002/cem.1392
– volume-title: Probabilités, analyse de données et statistiques
  year: 2006
  ident: 1598_CR17
– ident: 1598_CR18
  doi: 10.1101/067611
– volume: 7
  start-page: 151
  year: 2006
  ident: 1598_CR19
  publication-title: Briefings in Bioinformatics
  doi: 10.1093/bib/bbl009
– volume: 4
  start-page: 81
  year: 2008
  ident: 1598_CR22
  publication-title: Metabolomics
  doi: 10.1007/s11306-007-0099-6
– volume: 22
  start-page: 1
  year: 2007
  ident: 1598_CR5
  publication-title: Journal of Statistical Software
  doi: 10.18637/jss.v022.i04
SSID ssj0044970
Score 2.2723672
Snippet Introduction Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich...
Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of...
IntroductionMetabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich...
INTRODUCTION: Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich...
SourceID hal
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 134
SubjectTerms Biochemistry
Biomedical and Life Sciences
Biomedicine
Cell Biology
Computer Science
Developmental Biology
Discriminant analysis
Environmental factors
Epidemiology
Food and Nutrition
Life Sciences
Metabolomics
Molecular Medicine
Operating Systems
Phenotypes
Phenotyping
Software/Database
Statistical analysis
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wsXRFsegYIMQhxAFklsJ_EBoS1qtUJlVQGVeovieKICbVJoirT_nhlvsguqqHKzncTJjD3feF4AL9EgNiS5JHWjZAQubV472Xg0Se102jg-h_w0z2Yn-uOpOd2A-RgLw26V454YNmrf1XxG_jblvOp8XJG_v_wpuWoUW1fHEhrVUFrBvwspxjZhK-XMWBPY2j-YH38e92atbSgfl5hcSUXgcrRzhmA62s5Zu7aSRHwhF_9Iqs0z9pO8CUJvGFCDXDq8B3cHQCmmSw7Yhg1sd2B32pIyfbEQr0Rw8Qxn57vgQ7itdCTAfojjoy-CY3KXdb3aXlRDfhJBOFYQLhTfu29_N3eNuMCemOacI5mp3Qtc15dlYgv2N70PJ4cHXz_M5FBmQdYkzXvZ2AytQ1UQ9nHOOLSsIyWekInVae4zolulMsyKHJWLkSS8jytTe5fHOqmtegCTtmvxEYiqQEKcpOE5uggqOkJDRjtT1EobVHkE8fhLy3rIQc6lMM7LdfZkpkJJVCiZCuUigterWy6XCThuG_yC6LQax6mzZ9OjkttY1yroe34nEeyNZCyHBXtVrtkrguerblpqbD-pWuyuw5iExbeNI3i4JP_qVSoxhdIF9bwZ-WH98P_O9_HtU3kCd9LAj-w7uAeT_tc1PiUM1LtnA2P_Aat2AcI
  priority: 102
  providerName: ProQuest
Title Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data
URI https://link.springer.com/article/10.1007/s11306-019-1598-y
https://www.ncbi.nlm.nih.gov/pubmed/31583480
https://www.proquest.com/docview/2300522287
https://www.proquest.com/docview/2301429990
https://hal.science/hal-02308942
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-3890
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: ABDBF
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: AFBBN
  dateStart: 20050301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: AGYKE
  dateStart: 20050101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-3890
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0044970
  issn: 1573-3882
  databaseCode: U2A
  dateStart: 20050302
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R7oUXYAxYYUwGIR5AnpLYzsdjmDoqGNMEq1Seoji5CNiWIpYidX_97pykBQZIUx4i2Y7jj7Pvd_Z9ALxAg1gR55KUjZIRuEyiwsqqROMXVgeV5XPID0fhZKrfzcyss-O-6LXd-ytJt1Ovjd1ou2XpN5HEgmO5HMCGc7c1hI307ef3434D1jpxMeJ8EympCEH2l5l_q-Q3djT4wsqQ15HmtVtSx3wO7sJJ3-xW5-R0b9HYveLyD4-ON-zXPbjTgVGRttSzCbewvg9baU2C-PlSvBROPdSdu29B6Ux1pSXmdyqODz8JtudtY4LVjcg73yaCMLAgTCm-zb_-mjyvxDk2RHBnbAVN6aXAdWxaJhTBuqoPYHowPtmfyC5EgywICTSySkJMLKqYcJO1xmLC8pVfEqpJdBCVIc15rkIM4wiV9ZDQQenlpiht5Gm_SNRDGNbzGrdB5DESWiXp0NJDMNMSkjLamrhQ2qCKRuD1M5UVnf9yDqNxlq09L_NIZjSSGY9kthzBq9Un31vnHf8r_Jymf1WO3W5P0sOM01hOi6k_P_0R7PTUkXWL_SIL2OU_n6RRG5-tsmmZ8t1LXuN84cr4zPoTbwSPWqpa_Ur5JlY6ppzXPYWsK_9nex_fqPQTuB04EmM1xB0YNj8W-JTgVGN3YRDNot1uEdH7zfjo-COlToP0ChqeGO0
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXRCmPlAIGAQeQRRLbeRwqtECrLd2uKmil3tI4mQhomxSaUu2f47cx4012QRW9VXuznayTmfj7xp4HwAs0iBUhl6RulMzAZRoXVlYlmqCwOqws70PujKPhvv50YA4W4HcfC8Nulf2a6Bbqsil4j_xtyHnVebsifnf6Q3LVKD5d7Uto5F1phXLdpRjrAju2cXJBJtzZ-tZHkvfLMNzc2PswlF2VAVkQmLWySiNMLaqEoN9aYzFlEyEoCZhTHcZlRNPOVYRREqOyPhLAlX5uitLGvg4KTsZEELCklU7J-Ft6vzHe_dxjgaY2F5JpYiUVkdn-XNUF7xF8sDWfSqIUiZz8g4w3vrJf5mXSe-nA1uHg5h243RFYMZhq3DIsYH0XVgY1Ge8nE_FKOJdSt1e_AqUL75WWAPNI7I6-CI4BntYRq1uRd_lQBPFmQTxUfG--_d3cVOIEW1LSY46cpvZS4LyeLSuXYP_We7B_LS_8PizWTY0PQeQJEsMli9LSj6ipJfZltDVJobRBFXvg9680K7qc51x64zibZ2tmKWQkhYylkE08eD275HSa8OOqwc9JTrNxnKp7OBhl3Ma2XULP8yvwYK0XY9YtEGfZXJ09eDbrpk-bz2vyGptzNyZgupD6HjyYin_2VyowidIJ9bzp9WF-8__Od_XqqTyFm8O9nVE22hpvP4JbodNN9ltcg8X25zk-Jv7V2iedkgs4vO7v6g963j6a
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuCCiPQAGDgAPIahLHSXxAaEVZbelSVYJKewtxMhGPNik0Be1f49cx4zwWVNFbtTfbu-tkxv6-secB8BQ1YkXIJakbJTNwaZLCyqpEHRQ2CivL55Dv9-LZQfRuoRdr8HuIhWG3ymFPdBt12RR8Rr4Vcl51Pq5ItqreLWJ_e_r6-LvkClJ80zqU0-hUZBeXv8h8O3m1s02yfhaG07cf38xkX2FAFgRkraxMjMaiSgn2rdUWDZsHQUmgbKIwKWOacq5ijNMElfWRwK30c12UNvGjoOBETLT9X06UMuxOmCxGYy-KjCtUF-hESUU0drhRdWF7BBxsxxtJZCKVy38w8dJn9sg8S3fPXNU6BJxeh2s9dRWTTtduwBrWN2FjUpPZfrQUz4VzJnWn9BtQusBeaQkqv4n9-QfB0b9dBbG6FXmfCUUQYxbEQMXX5svfzU0ljrAl9TzkmGlqLwWuKtmyWgn2bL0FBxfyum_Det3UeBdEniJxW7IlLX2IlFriXTqyOi1UpFElHvjDK82KPts5F904zFZ5mlkKGUkhYylkSw9ejF857lJ9nDf4CclpHMdJumeTecZtbNWl9Dw_Aw82BzFm_dZwkq0U2YPHYzctar6pyWtsTt2YgImC8T2404l__CsV6FRFKfW8HPRh9eP_ne-986fyCK7QasrmO3u79-Fq6FSTHRY3Yb39cYoPiHi19qHTcAGfLnpJ_QGsITw0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-block+PLS+discriminant+analysis+for+the+joint+analysis+of+metabolomic+and+epidemiological+data&rft.jtitle=Metabolomics&rft.au=Brandolini-Bunlon%2C+Marion&rft.au=P%C3%A9t%C3%A9ra%2C+M%C3%A9lanie&rft.au=Gaudreau%2C+Pierrette&rft.au=Comte%2C+Blandine&rft.date=2019-10-01&rft.issn=1573-3890&rft.eissn=1573-3890&rft.volume=15&rft.issue=10&rft.spage=134&rft_id=info:doi/10.1007%2Fs11306-019-1598-y&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-3882&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-3882&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-3882&client=summon