Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data
Introduction Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant...
Saved in:
| Published in | Metabolomics Vol. 15; no. 10; pp. 134 - 9 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
Springer US
01.10.2019
Springer Nature B.V Springer Verlag |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1573-3882 1573-3890 1573-3890 |
| DOI | 10.1007/s11306-019-1598-y |
Cover
| Abstract | Introduction
Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure.
Objective
The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data.
Methods
This tool was based on the
mbpls
function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions.
Results
To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes.
Conclusion
In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method. |
|---|---|
| AbstractList | IntroductionMetabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure.ObjectiveThe present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data.MethodsThis tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions.ResultsTo illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes.ConclusionIn particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method. Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure.INTRODUCTIONMetabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure.The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data.OBJECTIVEThe present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data.This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions.METHODSThis tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions.To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes.RESULTSTo illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes.In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method.CONCLUSIONIn particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method. Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure. The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data. This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions. To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes. In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method. INTRODUCTION: Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure. OBJECTIVE: The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data. METHODS: This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions. RESULTS: To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes. CONCLUSION: In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method. Introduction Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of biological systems. In particular, to investigate relations between environmental factors, phenotypes and metabolism, discriminant statistical analyses are generally performed separately on metabolomic datasets, complemented by associations with metadata. Another relevant strategy is to simultaneously analyse thematic data blocks by a multi-block partial least squares discriminant analysis (MBPLSDA) allowing determining the importance of variables and blocks in discriminating groups of subjects, taking into account data structure. Objective The present objective was to develop a full open-source standalone tool, allowing all steps of MBPLSDA for the joint analysis of metabolomic and epidemiological data. Methods This tool was based on the mbpls function of the ade4 R package, enriched with functionalities, including some dedicated to discriminant analysis. Provided indicators help to determine the optimal number of components, to check the MBPLSDA model validity, and to evaluate the variability of its parameters and predictions. Results To illustrate the potential of this tool, MBPLSDA was applied to a real case study involving metabolomics, nutritional and clinical data from a human cohort. The availability of different functionalities in a single R package allowed optimizing parameters for an efficient joint analysis of metabolomics and epidemiological data to obtain new insights into multidimensional phenotypes. Conclusion In particular, we highlighted the impact of filtering the metabolomic variables beforehand, and the relevance of a MBPLSDA approach in comparison to a standard PLS discriminant analysis method. |
| ArticleNumber | 134 |
| Author | Pétéra, Mélanie Comte, Blandine Brandolini-Bunlon, Marion Pujos-Guillot, Estelle Gaudreau, Pierrette Bougeard, Stéphanie |
| Author_xml | – sequence: 1 givenname: Marion orcidid: 0000-0003-0131-8216 surname: Brandolini-Bunlon fullname: Brandolini-Bunlon, Marion email: marion.brandolini-bunlon@inra.fr organization: Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont – sequence: 2 givenname: Mélanie surname: Pétéra fullname: Pétéra, Mélanie organization: Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont – sequence: 3 givenname: Pierrette surname: Gaudreau fullname: Gaudreau, Pierrette organization: Centre de Recherche du Centre hospitalier de l’Université de Montréal, Département de médecine, Université de Montréal – sequence: 4 givenname: Blandine surname: Comte fullname: Comte, Blandine organization: Université Clermont Auvergne, INRA, UNH – sequence: 5 givenname: Stéphanie surname: Bougeard fullname: Bougeard, Stéphanie organization: Anses – sequence: 6 givenname: Estelle surname: Pujos-Guillot fullname: Pujos-Guillot, Estelle organization: Université Clermont Auvergne, INRA, UNH, Plateforme d’Exploration du Métabolisme, MetaboHUB Clermont, Université Clermont Auvergne, INRA, UNH |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31583480$$D View this record in MEDLINE/PubMed https://hal.science/hal-02308942$$DView record in HAL |
| BookMark | eNp9kc1u1DAUhS1URH_gAdigSGxgEbiOncReVhVQpEEgAWvLjm9aD0482E6leXs8pC2oEqxsHX3n2PeeU3I0hxkJeU7hDQXo3yZKGXQ1UFnTVop6_4ic0LZnNRMSju7vojkmpyltATiXPTwhx4y2gnEBJ8R-Wnx2tfFh-FF92XytrEtDdJOb9ZwrPWu_Ty5VY4hVvsZqG9zfchirCbM2wYfJDUW3Fe6cxckV5coN2ldWZ_2UPB61T_js9jwj39-_-3ZxWW8-f_h4cb6pBw5drkfZoTTIRAdgTGtQUsoFtYJ3kje97UaLmnXYiR6ZAaSitaDbwZoeOB0kOyOv19xr7dWuTKHjXgXt1OX5Rh00aBiIknVDC_tqZXcx_FwwZTWVydF7PWNYkiok5Y2UEgr68gG6DUssO_hNQds0jegL9eKWWsyE9v79u10XoF-BIYaUIo5qcFlnF-YctfOKgjq0qtZWVWlVHVpV--KkD5x34f_zNKsnFXa-wvjn0_82_QLJmLNs |
| CitedBy_id | crossref_primary_10_3390_metabo11060407 crossref_primary_10_1002_mrc_5350 crossref_primary_10_1093_gigascience_giae005 crossref_primary_10_3389_fcimb_2024_1366192 crossref_primary_10_2174_1386207325666220215144847 crossref_primary_10_5802_crchim_276 |
| Cites_doi | 10.1371/journal.pcbi.1005752 10.1007/s11306-007-0099-6 10.1002/cem.785 10.1093/bib/bbl009 10.2174/138920006777697918 10.1016/j.cbpa.2013.06.015 10.1002/cem.1392 10.1089/rej.2007.0596 10.1186/1471-2105-9-504 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S 10.18637/jss.v022.i04 10.1007/s11306-013-0598-6 10.1016/j.aca.2015.02.012 10.1093/bioinformatics/btu813 10.1089/omi.2014.0062 10.1007/978-1-4614-6849-3 10.1021/acs.jproteome.7b00116 10.1111/j.2517-6161.1974.tb00994.x 10.1201/9780429246593 10.1101/067611 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media, LLC, part of Springer Nature 2019 Metabolomics is a copyright of Springer, (2019). All Rights Reserved. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer Science+Business Media, LLC, part of Springer Nature 2019 – notice: Metabolomics is a copyright of Springer, (2019). All Rights Reserved. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC |
| DOI | 10.1007/s11306-019-1598-y |
| DatabaseName | CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection (Proquest) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological science database ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | ProQuest Central Student MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Computer Science |
| EISSN | 1573-3890 |
| EndPage | 9 |
| ExternalDocumentID | oai:HAL:hal-02308942v1 31583480 10_1007_s11306_019_1598_y |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Agence Nationale de la Recherche grantid: ANR-INBS-0010 funderid: http://dx.doi.org/10.13039/501100001665 |
| GroupedDBID | --- -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 203 29M 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 53G 5VS 67N 67Z 6NX 7X7 8FE 8FH 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHFT ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACDTI ACGFO ACGFS ACHSB ACHXU ACIHN ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACUHS ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEAQA AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBNVY BDATZ BENPR BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EJD EN4 ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HLICF HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAK LK8 LLZTM LMP M4Y M7P MA- N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9I O9J OAM P2P PF0 PQQKQ PROAC PT4 Q2X QOR QOS R89 R9I RIG ROL RPX RSV S16 S1Z S27 S3A S3B SAP SBL SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SZN T13 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z82 Z83 Z87 ZMTXR ZOVNA ~A9 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO NPM 7XB 8FK AZQEC DWQXO GNUQQ K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 1XC |
| ID | FETCH-LOGICAL-c406t-f96e9be38600bb5be911481d8469427d6fdea36e687e3b0e185d0a5cdb7041c93 |
| IEDL.DBID | AGYKE |
| ISSN | 1573-3882 1573-3890 |
| IngestDate | Tue Oct 14 20:32:38 EDT 2025 Thu Sep 04 15:33:15 EDT 2025 Tue Oct 07 06:05:31 EDT 2025 Mon Jul 21 06:06:41 EDT 2025 Wed Oct 01 02:40:50 EDT 2025 Thu Apr 24 23:06:48 EDT 2025 Fri Feb 21 02:37:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Multi-block Metabolomics Multiblock PLS discriminant analysis Discrimination Epidemiology |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-f96e9be38600bb5be911481d8469427d6fdea36e687e3b0e185d0a5cdb7041c93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0131-8216 0000-0002-1779-6901 0009-0002-4729-5355 0000-0002-4693-5712 0000-0002-4662-6581 |
| PMID | 31583480 |
| PQID | 2300522287 |
| PQPubID | 326279 |
| PageCount | 9 |
| ParticipantIDs | hal_primary_oai_HAL_hal_02308942v1 proquest_miscellaneous_2301429990 proquest_journals_2300522287 pubmed_primary_31583480 crossref_citationtrail_10_1007_s11306_019_1598_y crossref_primary_10_1007_s11306_019_1598_y springer_journals_10_1007_s11306_019_1598_y |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-10-01 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: 2019-10-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States – name: Heidelberg |
| PublicationSubtitle | An Official Journal of the Metabolomics Society |
| PublicationTitle | Metabolomics |
| PublicationTitleAbbrev | Metabolomics |
| PublicationTitleAlternate | Metabolomics |
| PublicationYear | 2019 |
| Publisher | Springer US Springer Nature B.V Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V – name: Springer Verlag |
| References | Westerhuis, Hoefsloot, Smit, Vis, Smilde, van Velzen, van Duijnhoven, van Dorsten (CR22) 2008; 4 Ackermann, Hale, Duffin (CR1) 2006; 7 Stone (CR20) 1974; 36 Dray, Dufour (CR5) 2007; 22 Westerhuis, Kourti, Macgregor (CR23) 1998; 12 CR18 Bougeard, Dray (CR3) 2018; 86 Bougeard, Qannari, Rose (CR4) 2011; 25 Giacomoni, Le Corguille, Monsoor, Landi, Pericard, Petera, Duperier, Tremblay-Franco, Martin, Jacob, Goulitquer, Thevenot, Caron (CR8) 2015; 31 CR13 Tautenhahn, Bottcher, Neumann (CR21) 2008; 9 CR24 Saporta (CR17) 2006 Steuer (CR19) 2006; 7 Saccenti, Hoefsloot, Smilde, Westerhuis, Hendriks (CR16) 2014; 10 Efron, Tibshirani (CR6) 1994 Pujos-Guillot, Brandolini, Petera, Grissa, Joly, Lyan, Herquelot, Czernichow, Zins, Goldberg, Comte (CR12) 2017; 16 Kuhn, Johnson (CR11) 2013 Rohart, Gautier, Singh, Le Cao (CR15) 2017; 13 Ramautar, Berger, van der Greef, Hankemeier (CR14) 2013; 17 Barker, Rayens (CR2) 2003; 17 Gunther, Shin, Ng, McMaster, McManus, Keown, Tebbutt, Le Cao (CR10) 2014; 18 Gaudreau, Morais, Shatenstein, Gray-Donald, Khalil, Dionne (CR7) 2007; 10 Gromski, Muhamadali, Ellis, Xu, Correa, Turner, Goodacre (CR9) 2015; 879 F Giacomoni (1598_CR8) 2015; 31 OP Gunther (1598_CR10) 2014; 18 R Tautenhahn (1598_CR21) 2008; 9 M Stone (1598_CR20) 1974; 36 R Ramautar (1598_CR14) 2013; 17 R Steuer (1598_CR19) 2006; 7 JA Westerhuis (1598_CR22) 2008; 4 1598_CR13 1598_CR24 M Barker (1598_CR2) 2003; 17 P Gaudreau (1598_CR7) 2007; 10 M Kuhn (1598_CR11) 2013 S Bougeard (1598_CR3) 2018; 86 S Bougeard (1598_CR4) 2011; 25 B Efron (1598_CR6) 1994 F Rohart (1598_CR15) 2017; 13 G Saporta (1598_CR17) 2006 BL Ackermann (1598_CR1) 2006; 7 E Saccenti (1598_CR16) 2014; 10 JA Westerhuis (1598_CR23) 1998; 12 1598_CR18 E Pujos-Guillot (1598_CR12) 2017; 16 S Dray (1598_CR5) 2007; 22 PS Gromski (1598_CR9) 2015; 879 |
| References_xml | – volume: 13 start-page: e1005752 year: 2017 ident: CR15 article-title: mixOmics: An R package for ‘omics feature selection and multiple data integration publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1005752 – ident: CR18 – volume: 4 start-page: 81 year: 2008 end-page: 89 ident: CR22 article-title: Assessment of PLSDA cross validation publication-title: Metabolomics doi: 10.1007/s11306-007-0099-6 – volume: 17 start-page: 166 year: 2003 end-page: 173 ident: CR2 article-title: Partial least squares for discrimination publication-title: Journal of Chemometrics doi: 10.1002/cem.785 – volume: 7 start-page: 151 year: 2006 end-page: 158 ident: CR19 article-title: Review on the analysis and interpretation of correlations in metabolomic data publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbl009 – volume: 7 start-page: 525 year: 2006 end-page: 539 ident: CR1 article-title: The role of mass spectrometry in biomarker discovery and measurement publication-title: Current Drug Metabolism doi: 10.2174/138920006777697918 – volume: 17 start-page: 841 year: 2013 end-page: 846 ident: CR14 article-title: Human metabolomics: Strategies to understand biology publication-title: Current Opinion in Chemical Biology doi: 10.1016/j.cbpa.2013.06.015 – volume: 25 start-page: 467 year: 2011 end-page: 475 ident: CR4 article-title: Multiblock redundancy analysis: Interpretation tools and application in epidemiology publication-title: Journal of Chemometrics doi: 10.1002/cem.1392 – volume: 36 start-page: 111 year: 1974 end-page: 147 ident: CR20 article-title: Cross-validatory choice and assessment of statistical predictions publication-title: Journal of the Royal Statistical Society B – volume: 10 start-page: 377 year: 2007 end-page: 386 ident: CR7 article-title: Nutrition as a determinant of successful aging: description of the Quebec longitudinal study Nuage and results from cross-sectional pilot studies publication-title: Rejuvenation Research doi: 10.1089/rej.2007.0596 – ident: CR13 – volume: 9 start-page: 504 year: 2008 ident: CR21 article-title: Highly sensitive feature detection for high resolution LC/MS publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-504 – volume: 12 start-page: 301 year: 1998 end-page: 321 ident: CR23 article-title: Analysis of multiblock and hierarchical PCA and PLS models publication-title: Journal of Chemometrics doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S – volume: 22 start-page: 1 year: 2007 end-page: 20 ident: CR5 article-title: The ade4 package: Implementing the duality diagram for ecologists publication-title: Journal of Statistical Software doi: 10.18637/jss.v022.i04 – volume: 10 start-page: 361 year: 2014 end-page: 374 ident: CR16 article-title: Reflections on univariate and multivariate analysis of metabolomics data publication-title: Metabolomics doi: 10.1007/s11306-013-0598-6 – volume: 879 start-page: 10 year: 2015 end-page: 23 ident: CR9 article-title: A tutorial review: Metabolomics and partial least squares-discriminant analysis—A marriage of convenience or a shotgun wedding publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2015.02.012 – volume: 86 start-page: 1 year: 2018 end-page: 18 ident: CR3 article-title: Supervised multiblock analysis in R with the ade4 package publication-title: Journal of Statistical Sofware – volume: 31 start-page: 1493 year: 2015 end-page: 1495 ident: CR8 article-title: Workflow4Metabolomics: A collaborative research infrastructure for computational metabolomics publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu813 – ident: CR24 – year: 2006 ident: CR17 publication-title: Probabilités, analyse de données et statistiques – year: 1994 ident: CR6 publication-title: An introduction to the bootstrap – volume: 18 start-page: 682 year: 2014 end-page: 695 ident: CR10 article-title: Novel multivariate methods for integration of genomics and proteomics data: Applications in a kidney transplant rejection study publication-title: OMICS: A Journal of Integrative Biology doi: 10.1089/omi.2014.0062 – year: 2013 ident: CR11 publication-title: Applied predictive modeling doi: 10.1007/978-1-4614-6849-3 – volume: 16 start-page: 2262 year: 2017 end-page: 2272 ident: CR12 article-title: Systems metabolomics for prediction of metabolic syndrome publication-title: Journal of Proteome Research doi: 10.1021/acs.jproteome.7b00116 – ident: 1598_CR24 – volume: 31 start-page: 1493 year: 2015 ident: 1598_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu813 – volume: 13 start-page: e1005752 year: 2017 ident: 1598_CR15 publication-title: PLoS Computational Biology doi: 10.1371/journal.pcbi.1005752 – volume: 10 start-page: 377 year: 2007 ident: 1598_CR7 publication-title: Rejuvenation Research doi: 10.1089/rej.2007.0596 – volume: 86 start-page: 1 year: 2018 ident: 1598_CR3 publication-title: Journal of Statistical Sofware – volume: 17 start-page: 166 year: 2003 ident: 1598_CR2 publication-title: Journal of Chemometrics doi: 10.1002/cem.785 – volume: 16 start-page: 2262 year: 2017 ident: 1598_CR12 publication-title: Journal of Proteome Research doi: 10.1021/acs.jproteome.7b00116 – volume-title: Applied predictive modeling year: 2013 ident: 1598_CR11 doi: 10.1007/978-1-4614-6849-3 – volume: 10 start-page: 361 year: 2014 ident: 1598_CR16 publication-title: Metabolomics doi: 10.1007/s11306-013-0598-6 – volume: 7 start-page: 525 year: 2006 ident: 1598_CR1 publication-title: Current Drug Metabolism doi: 10.2174/138920006777697918 – volume: 18 start-page: 682 year: 2014 ident: 1598_CR10 publication-title: OMICS: A Journal of Integrative Biology doi: 10.1089/omi.2014.0062 – volume: 17 start-page: 841 year: 2013 ident: 1598_CR14 publication-title: Current Opinion in Chemical Biology doi: 10.1016/j.cbpa.2013.06.015 – volume: 36 start-page: 111 year: 1974 ident: 1598_CR20 publication-title: Journal of the Royal Statistical Society B doi: 10.1111/j.2517-6161.1974.tb00994.x – ident: 1598_CR13 – volume: 879 start-page: 10 year: 2015 ident: 1598_CR9 publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2015.02.012 – volume: 9 start-page: 504 year: 2008 ident: 1598_CR21 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-9-504 – volume: 12 start-page: 301 year: 1998 ident: 1598_CR23 publication-title: Journal of Chemometrics doi: 10.1002/(SICI)1099-128X(199809/10)12:5<301::AID-CEM515>3.0.CO;2-S – volume-title: An introduction to the bootstrap year: 1994 ident: 1598_CR6 doi: 10.1201/9780429246593 – volume: 25 start-page: 467 year: 2011 ident: 1598_CR4 publication-title: Journal of Chemometrics doi: 10.1002/cem.1392 – volume-title: Probabilités, analyse de données et statistiques year: 2006 ident: 1598_CR17 – ident: 1598_CR18 doi: 10.1101/067611 – volume: 7 start-page: 151 year: 2006 ident: 1598_CR19 publication-title: Briefings in Bioinformatics doi: 10.1093/bib/bbl009 – volume: 4 start-page: 81 year: 2008 ident: 1598_CR22 publication-title: Metabolomics doi: 10.1007/s11306-007-0099-6 – volume: 22 start-page: 1 year: 2007 ident: 1598_CR5 publication-title: Journal of Statistical Software doi: 10.18637/jss.v022.i04 |
| SSID | ssj0044970 |
| Score | 2.2723672 |
| Snippet | Introduction
Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich... Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich knowledge of... IntroductionMetabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich... INTRODUCTION: Metabolomics is a powerful phenotyping tool in nutrition and health research, generating complex data that need dedicated treatments to enrich... |
| SourceID | hal proquest pubmed crossref springer |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 134 |
| SubjectTerms | Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Computer Science Developmental Biology Discriminant analysis Environmental factors Epidemiology Food and Nutrition Life Sciences Metabolomics Molecular Medicine Operating Systems Phenotypes Phenotyping Software/Database Statistical analysis |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB612wsXRFsegYIMQhxAFklsJ_EBoS1qtUJlVQGVeovieKICbVJoirT_nhlvsguqqHKzncTJjD3feF4AL9EgNiS5JHWjZAQubV472Xg0Se102jg-h_w0z2Yn-uOpOd2A-RgLw26V454YNmrf1XxG_jblvOp8XJG_v_wpuWoUW1fHEhrVUFrBvwspxjZhK-XMWBPY2j-YH38e92atbSgfl5hcSUXgcrRzhmA62s5Zu7aSRHwhF_9Iqs0z9pO8CUJvGFCDXDq8B3cHQCmmSw7Yhg1sd2B32pIyfbEQr0Rw8Qxn57vgQ7itdCTAfojjoy-CY3KXdb3aXlRDfhJBOFYQLhTfu29_N3eNuMCemOacI5mp3Qtc15dlYgv2N70PJ4cHXz_M5FBmQdYkzXvZ2AytQ1UQ9nHOOLSsIyWekInVae4zolulMsyKHJWLkSS8jytTe5fHOqmtegCTtmvxEYiqQEKcpOE5uggqOkJDRjtT1EobVHkE8fhLy3rIQc6lMM7LdfZkpkJJVCiZCuUigterWy6XCThuG_yC6LQax6mzZ9OjkttY1yroe34nEeyNZCyHBXtVrtkrguerblpqbD-pWuyuw5iExbeNI3i4JP_qVSoxhdIF9bwZ-WH98P_O9_HtU3kCd9LAj-w7uAeT_tc1PiUM1LtnA2P_Aat2AcI priority: 102 providerName: ProQuest |
| Title | Multi-block PLS discriminant analysis for the joint analysis of metabolomic and epidemiological data |
| URI | https://link.springer.com/article/10.1007/s11306-019-1598-y https://www.ncbi.nlm.nih.gov/pubmed/31583480 https://www.proquest.com/docview/2300522287 https://www.proquest.com/docview/2301429990 https://hal.science/hal-02308942 |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-3890 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: ABDBF dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-3890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: AFBBN dateStart: 20050301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-3890 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: AGYKE dateStart: 20050101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-3890 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0044970 issn: 1573-3882 databaseCode: U2A dateStart: 20050302 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED_R7oUXYAxYYUwGIR5AnpLYzsdjmDoqGNMEq1Seoji5CNiWIpYidX_97pykBQZIUx4i2Y7jj7Pvd_Z9ALxAg1gR55KUjZIRuEyiwsqqROMXVgeV5XPID0fhZKrfzcyss-O-6LXd-ytJt1Ovjd1ou2XpN5HEgmO5HMCGc7c1hI307ef3434D1jpxMeJ8EympCEH2l5l_q-Q3djT4wsqQ15HmtVtSx3wO7sJJ3-xW5-R0b9HYveLyD4-ON-zXPbjTgVGRttSzCbewvg9baU2C-PlSvBROPdSdu29B6Ux1pSXmdyqODz8JtudtY4LVjcg73yaCMLAgTCm-zb_-mjyvxDk2RHBnbAVN6aXAdWxaJhTBuqoPYHowPtmfyC5EgywICTSySkJMLKqYcJO1xmLC8pVfEqpJdBCVIc15rkIM4wiV9ZDQQenlpiht5Gm_SNRDGNbzGrdB5DESWiXp0NJDMNMSkjLamrhQ2qCKRuD1M5UVnf9yDqNxlq09L_NIZjSSGY9kthzBq9Un31vnHf8r_Jymf1WO3W5P0sOM01hOi6k_P_0R7PTUkXWL_SIL2OU_n6RRG5-tsmmZ8t1LXuN84cr4zPoTbwSPWqpa_Ur5JlY6ppzXPYWsK_9nex_fqPQTuB04EmM1xB0YNj8W-JTgVGN3YRDNot1uEdH7zfjo-COlToP0ChqeGO0 |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAXRCmPlAIGAQeQRRLbeRwqtECrLd2uKmil3tI4mQhomxSaUu2f47cx4012QRW9VXuznayTmfj7xp4HwAs0iBUhl6RulMzAZRoXVlYlmqCwOqws70PujKPhvv50YA4W4HcfC8Nulf2a6Bbqsil4j_xtyHnVebsifnf6Q3LVKD5d7Uto5F1phXLdpRjrAju2cXJBJtzZ-tZHkvfLMNzc2PswlF2VAVkQmLWySiNMLaqEoN9aYzFlEyEoCZhTHcZlRNPOVYRREqOyPhLAlX5uitLGvg4KTsZEELCklU7J-Ft6vzHe_dxjgaY2F5JpYiUVkdn-XNUF7xF8sDWfSqIUiZz8g4w3vrJf5mXSe-nA1uHg5h243RFYMZhq3DIsYH0XVgY1Ge8nE_FKOJdSt1e_AqUL75WWAPNI7I6-CI4BntYRq1uRd_lQBPFmQTxUfG--_d3cVOIEW1LSY46cpvZS4LyeLSuXYP_We7B_LS_8PizWTY0PQeQJEsMli9LSj6ipJfZltDVJobRBFXvg9680K7qc51x64zibZ2tmKWQkhYylkE08eD275HSa8OOqwc9JTrNxnKp7OBhl3Ma2XULP8yvwYK0XY9YtEGfZXJ09eDbrpk-bz2vyGptzNyZgupD6HjyYin_2VyowidIJ9bzp9WF-8__Od_XqqTyFm8O9nVE22hpvP4JbodNN9ltcg8X25zk-Jv7V2iedkgs4vO7v6g963j6a |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiEuCCiPQAGDgAPIahLHSXxAaEVZbelSVYJKewtxMhGPNik0Be1f49cx4zwWVNFbtTfbu-tkxv6-secB8BQ1YkXIJakbJTNwaZLCyqpEHRQ2CivL55Dv9-LZQfRuoRdr8HuIhWG3ymFPdBt12RR8Rr4Vcl51Pq5ItqreLWJ_e_r6-LvkClJ80zqU0-hUZBeXv8h8O3m1s02yfhaG07cf38xkX2FAFgRkraxMjMaiSgn2rdUWDZsHQUmgbKIwKWOacq5ijNMElfWRwK30c12UNvGjoOBETLT9X06UMuxOmCxGYy-KjCtUF-hESUU0drhRdWF7BBxsxxtJZCKVy38w8dJn9sg8S3fPXNU6BJxeh2s9dRWTTtduwBrWN2FjUpPZfrQUz4VzJnWn9BtQusBeaQkqv4n9-QfB0b9dBbG6FXmfCUUQYxbEQMXX5svfzU0ljrAl9TzkmGlqLwWuKtmyWgn2bL0FBxfyum_Det3UeBdEniJxW7IlLX2IlFriXTqyOi1UpFElHvjDK82KPts5F904zFZ5mlkKGUkhYylkSw9ejF857lJ9nDf4CclpHMdJumeTecZtbNWl9Dw_Aw82BzFm_dZwkq0U2YPHYzctar6pyWtsTt2YgImC8T2404l__CsV6FRFKfW8HPRh9eP_ne-986fyCK7QasrmO3u79-Fq6FSTHRY3Yb39cYoPiHi19qHTcAGfLnpJ_QGsITw0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-block+PLS+discriminant+analysis+for+the+joint+analysis+of+metabolomic+and+epidemiological+data&rft.jtitle=Metabolomics&rft.au=Brandolini-Bunlon%2C+Marion&rft.au=P%C3%A9t%C3%A9ra%2C+M%C3%A9lanie&rft.au=Gaudreau%2C+Pierrette&rft.au=Comte%2C+Blandine&rft.date=2019-10-01&rft.issn=1573-3890&rft.eissn=1573-3890&rft.volume=15&rft.issue=10&rft.spage=134&rft_id=info:doi/10.1007%2Fs11306-019-1598-y&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1573-3882&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1573-3882&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1573-3882&client=summon |