A Comparative Analysis of the Bayesian Regularization and Levenberg–Marquardt Training Algorithms in Neural Networks for Small Datasets: A Metrics Prediction of Neolithic Laminar Artefacts
This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reas...
Saved in:
| Published in | Information (Basel) Vol. 15; no. 5; p. 270 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.05.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2078-2489 2078-2489 |
| DOI | 10.3390/info15050270 |
Cover
| Abstract | This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reasons, such as ritual, use wear, or post-depositional processes. The archaeological artifacts, specifically laminar blanks (so-called blades), come from different sites located in the Southern Levant that belong to the Pre-Pottery B Neolithic (PPNB) (10,100/9500–400 cal B.P.). This paper shows the entire procedure of the analysis, from its normalization of the dataset to its comparative analysis and overfitting problem resolution. |
|---|---|
| AbstractList | This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reasons, such as ritual, use wear, or post-depositional processes. The archaeological artifacts, specifically laminar blanks (so-called blades), come from different sites located in the Southern Levant that belong to the Pre-Pottery B Neolithic (PPNB) (10,100/9500–400 cal B.P.). This paper shows the entire procedure of the analysis, from its normalization of the dataset to its comparative analysis and overfitting problem resolution. |
| Audience | Academic |
| Author | Mangini, Fabio Mastrogiuseppe, Marco Troiano, Maurizio Nobile, Eugenio Frezza, Fabrizio Conati Barbaro, Cecilia |
| Author_xml | – sequence: 1 givenname: Maurizio orcidid: 0000-0003-0912-3173 surname: Troiano fullname: Troiano, Maurizio – sequence: 2 givenname: Eugenio orcidid: 0009-0006-5297-7966 surname: Nobile fullname: Nobile, Eugenio – sequence: 3 givenname: Fabio orcidid: 0000-0001-5474-8952 surname: Mangini fullname: Mangini, Fabio – sequence: 4 givenname: Marco surname: Mastrogiuseppe fullname: Mastrogiuseppe, Marco – sequence: 5 givenname: Cecilia surname: Conati Barbaro fullname: Conati Barbaro, Cecilia – sequence: 6 givenname: Fabrizio orcidid: 0000-0001-9457-7617 surname: Frezza fullname: Frezza, Fabrizio |
| BookMark | eNqFUstu1DAUjVCRKKU7PsASW6Y4dhI77MKUR6VpQVDW0U18nXpI7KnttBpW_AP_w8fwJbgzCFUICXtxratzzj3yuY-zA-ssZtnTnJ5wXtMXxmqXl7SkTNAH2SGjQi5YIeuDe-9H2XEIa5qOELKQ-WH2oyFLN23AQzQ3SBoL4zaYQJwm8QrJK9hiMGDJRxzmEbz5mnDOErCKrPAGbYd--Pnt-zn46xm8iuTSg7HGDqQZB-dNvJoCMZZc4OxhTCXeOv8lEO08-TTBOJJTiBAwhpekIecYvekD-eBRmX43KRm5QDcmIdOTFUzGgieNj6ihj-FJ9lDDGPD4dz3KPr95fbl8t1i9f3u2bFaLvqBVXGghpRRYoaylZMBFJ2mvRa55R0GLrqJMF12pCqqgwLorGFO0FipHWnWSVfwoO9vrKgfrduPNBH7bOjDtruH80IKPph-xrYpS1MjqulOqAF3KTlVdpXPOC8Ugr5PWYq812w1sb9Mf_BHMaXuXZXs_y4R_tsdvvLueMcR27Wafggotp2VdMi5YnlAne9QAycSdQPTQp6twMn1aFW1SvxF1yeucM54Iz_eE3rsQPOr_uWB_wXsTd8uQ5pjx36Rf5UjTbg |
| CitedBy_id | crossref_primary_10_3390_photonics11090867 crossref_primary_10_3390_electronics13142752 crossref_primary_10_1016_j_rineng_2024_103328 crossref_primary_10_5334_jcaa_163 crossref_primary_10_1038_s41598_024_77184_1 crossref_primary_10_1142_S0218271825500117 |
| Cites_doi | 10.1002/arp.1763 10.3390/heritage4010008 10.1017/CBO9781139026314 10.30861/9781407307305 10.2307/j.ctv1dc9jtv 10.1016/j.jas.2019.104998 10.1016/S0893-6080(98)00116-6 10.1080/14697688.2019.1633014 10.1016/j.jas.2022.105610 10.1017/CBO9780511804779 10.1016/j.jas.2021.105433 10.1109/EMS.2012.56 10.1017/aap.2022.35 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/info15050270 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2078-2489 |
| ExternalDocumentID | oai_doaj_org_article_64579e299bdd4af58bd6b6f1334d2a19 10.3390/info15050270 A795391323 10_3390_info15050270 |
| GeographicLocations | United Kingdom |
| GeographicLocations_xml | – name: United Kingdom |
| GroupedDBID | .4I 5VS 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABUWG ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 MK~ ML~ MODMG M~E OK1 P2P P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC XH6 3V. 7SC 7XB 8AL 8FD 8FK JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c406t-f78887e6e89882a37b80cf71f3b0af7b602f4b5d40da4e9b422d097d1e06b8263 |
| IEDL.DBID | DOA |
| ISSN | 2078-2489 |
| IngestDate | Fri Oct 03 12:50:48 EDT 2025 Sun Oct 26 02:38:51 EDT 2025 Fri Jul 25 03:44:02 EDT 2025 Mon Oct 20 17:00:21 EDT 2025 Thu Oct 16 04:44:17 EDT 2025 Thu Apr 24 23:12:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 5 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-f78887e6e89882a37b80cf71f3b0af7b602f4b5d40da4e9b422d097d1e06b8263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9457-7617 0000-0001-5474-8952 0000-0003-0912-3173 0009-0006-5297-7966 |
| OpenAccessLink | https://doaj.org/article/64579e299bdd4af58bd6b6f1334d2a19 |
| PQID | 3059523721 |
| PQPubID | 2032384 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_64579e299bdd4af58bd6b6f1334d2a19 unpaywall_primary_10_3390_info15050270 proquest_journals_3059523721 gale_infotracacademiconefile_A795391323 crossref_primary_10_3390_info15050270 crossref_citationtrail_10_3390_info15050270 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Information (Basel) |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Qian (ref_13) 1999; 12 Guyot (ref_1) 2021; 4 Caspari (ref_3) 2019; 110 Eberl (ref_8) 2023; 11 ref_14 Gualandi (ref_9) 2021; 4 ref_11 Nobile (ref_17) 2022; 46 Saipraneeth (ref_10) 2021; 99 Sapna (ref_12) 2012; 2 ref_19 Sariev (ref_18) 2020; 20 Scotland (ref_2) 2018; 26 ref_16 Davis (ref_4) 2021; 132 ref_15 Cole (ref_7) 2022; 143 Sarris (ref_5) 2020; 27 Trier (ref_6) 2021; 95 |
| References_xml | – volume: 27 start-page: 107 year: 2020 ident: ref_5 article-title: Deep learning based automated analysis of archaeo-geophysical images publication-title: Archaeol. Prospect. doi: 10.1002/arp.1763 – volume: 4 start-page: 140 year: 2021 ident: ref_9 article-title: An Open System for Collection and Automatic Recognition of Pottery through Neural Network Algorithms publication-title: Heritage doi: 10.3390/heritage4010008 – ident: ref_15 doi: 10.1017/CBO9781139026314 – ident: ref_16 doi: 10.30861/9781407307305 – ident: ref_14 doi: 10.2307/j.ctv1dc9jtv – volume: 110 start-page: 104998 year: 2019 ident: ref_3 article-title: Convolutional neural networks for archaeological site detection—Finding “princely” tombs publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2019.104998 – volume: 12 start-page: 145 year: 1999 ident: ref_13 article-title: On the momentum term in gradient descent learning algorithms publication-title: Neural Netw. doi: 10.1016/S0893-6080(98)00116-6 – volume: 20 start-page: 311 year: 2020 ident: ref_18 article-title: Bayesian regularized artificial neural networks for the estimation of the probability of default publication-title: Quant. Financ. doi: 10.1080/14697688.2019.1633014 – volume: 143 start-page: 105610 year: 2022 ident: ref_7 article-title: Evaluating statistical models for establishing morphometric taxonomic identifications and a new approach using Random Forest publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2022.105610 – volume: 4 start-page: 1 year: 2021 ident: ref_1 article-title: Combined Detection and Segmentation of Archeological Structures from LiDAR Data Using a Deep Learning Approach publication-title: J. Comput. Appl. Archaeol. – ident: ref_11 doi: 10.1017/CBO9780511804779 – volume: 132 start-page: 105433 year: 2021 ident: ref_4 article-title: Deep Learning Reveals Extent of Archaic Native American Shell-Ring Building Practices publication-title: J. Archaeol. Sci. doi: 10.1016/j.jas.2021.105433 – volume: 46 start-page: 7 year: 2022 ident: ref_17 article-title: The Standardisation of the PPNB Lithic Industry from Er-Rahib publication-title: Orig. Rev. Prehistory Protohistory Anc. Civiliz. – volume: 26 start-page: 165 year: 2018 ident: ref_2 article-title: Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography publication-title: Archaeol. Prospect. – ident: ref_19 doi: 10.1109/EMS.2012.56 – volume: 95 start-page: 102241 year: 2021 ident: ref_6 article-title: Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 99 start-page: 92 year: 2021 ident: ref_10 article-title: A Bayesian regularization-backpropagation neural network model for peeling computations publication-title: J. Adhes. – volume: 11 start-page: 152 year: 2023 ident: ref_8 article-title: Machine Learning–Based Identification of Lithic Microdebitage publication-title: Adv. Archaeol. Pract. doi: 10.1017/aap.2022.35 – volume: 2 start-page: 393 year: 2012 ident: ref_12 article-title: Backpropagation Learning Algorithm Based on Levenberg Marquardt Algorithm publication-title: Comput. Sci. Inf. Technol. |
| SSID | ssj0000778481 |
| Score | 2.3644688 |
| Snippet | This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 270 |
| SubjectTerms | Algorithms archaeological data Archaeology Artificial intelligence Back propagation Back propagation networks Bayesian analysis Bayesian regularization Comparative analysis Datasets Historic artifacts Levenberg–Marquardt Machine learning Mean square errors metrics prediction neural network Neural networks Pottery Protection and preservation Regularization Regularization methods Rites, ceremonies and celebrations Stone Age training algorithms |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JatxAEG2c8SHxIWTFSpxQhyyHIKylJY0CIWgcGxM8wjg2-CZ6tQ1jzViSCb7lH_I_-Zh8Saq0jCeE-CqaVrWqurqeuuoVY29CnqDnV9y12vNcLlLuSsWVq4X0ZSTGKfepUHiax_sn_OtpdLrG8qEWhtIqB5_YOmo9V_SPfBvtMkXQhIDl8-LKpa5RdLs6tNAQfWsF_amlGLvH1gNixhqx9clufni0_OviJQnxx3cZ8CHi_W3SIwZFEcIz76-zqaXw_9dRb7D71-VC3HwXs9nKSbT3iD3sQ0jIOp0_ZmumfMI2VogFn7JfGezc0nrDwDwCcwsY8MFE3BgqnoSjthN91ddigig1HBClEyV9_f7xcyqqKzKhBo77ThKQzc7wqzTnlzVclEDUHihK3uWS14ARMHy7RJnhi2jwfGzqj5DBlLp2qRoOK7oVat-EguSGUu_OLxQcCMrHqWhFhgot6mfsZG_3eGff7Ts1uAoDgsa1BKQTE5txihG7CBM59pRNfBtKT9hExl5guYw097TgJpU8CLSXJto3XiwR4ITP2aicl2aTAU5kfD-0GDoEPJYKvbWNcFqlwtiasXTYh0FHheppzKmbxqxAOEMaLVY16rC3y9GLjr7jP-MmpO7lGCLdbh_Mq7Oi38NFzKMkNXh-S625QKmkjmVsEeVzHQg_ddh7MpZ2YhRJib7CARdGJFtFlqRRmCL8Dx22NdhT0fuMuri1cIe9W9rYnWK_uHuel-xBgDuxy8_cYqOmujavMIZq5Ot-Y_wBTwUf0g priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5BeoAe-EcECtoDPwfk2utd21kuyC1UFWqiChqpnKz9bSNSJ9gOqJx4B96Hh-FJmLU3IYBAiGu02cw6n2e-sWe-QeghZRl4fsUCq6MoYIKzQCqmAi0kkYkYcEZco_BwlO6P2avj5Ng_cKt9WSWk4pPWSccQv4KYDXhIkjAJ4ywK59o-_-CfJJEM4j9xbxIuoo00AS7eQxvj0WH-1k2UW363q3ankNuH7j8DApRAKhb9FIdauf7fnfImurQo5-L8o5hO16LO3lVULO3tik3ebS8aua0-_SLl-P8HuoaueEKK8w5B19EFU95Am2syhTfR1xzv_hAJx0sdEzyzGOgj3hHnxrVi4tftXPvKd3ZiUWp84ASiXAnZt89fhqJ67wDZ4CM_lwLn05NZNWlOz2o8KbETCgFTRl1leo2BT-M3Z3BV8AvRQLRt6mc4x0M3A0zV-LBy75jaXwJDRsYV8p1OFD4Qrrqncicyrm2jvoXGey-PdvcDP_chUEAvmsC6tDwzqRlw4P-CZnIQKZsRS2UkbCbTKLZMJppFWjDDJYtjHfFMExOlEtIlehv1yllp7iAMGxlCqAUiErNUKvD9NoFtlaKpNQPZR0-XKCiUF0V3szmmBSRHDjPFOmb66NFq9bwTA_nDuh0HqNUaJ-HdfjCrTgrvEYqUJRk3wAak1kyAVVKnMrWEUqZjQXgfPXFwbDcGk5Tw_RJwMCfZVeQZTygnNKZ9tLVEbOE9UF2AH-dJTCHB76PHKxT_1ey7_7rwHrocwx3e1X1uoV5TLcx94GaNfOBvwO8SJDdC priority: 102 providerName: Unpaywall |
| Title | A Comparative Analysis of the Bayesian Regularization and Levenberg–Marquardt Training Algorithms in Neural Networks for Small Datasets: A Metrics Prediction of Neolithic Laminar Artefacts |
| URI | https://www.proquest.com/docview/3059523721 https://www.mdpi.com/2078-2489/15/5/270/pdf?version=1715410116 https://doaj.org/article/64579e299bdd4af58bd6b6f1334d2a19 |
| UnpaywallVersion | publishedVersion |
| Volume | 15 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: DOA dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: ABDBF dateStart: 20111201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: ADMLS dateStart: 20111201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2078-2489 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000778481 issn: 2078-2489 databaseCode: 8FG dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOUAPFU9hWqI98Dggq36sH8vNaRsqlERR20jlZO2TRkqdYrtCvfEf-D_8GH4JM7YTjBBw4WTZWq1nPbOz88kz3xDyImQJeH7FXKs9z2WCM1cqplwtpC8jkXLmY6HwZBofz9n78-i81-oLc8JaeuD2w-3HLEq4AacptWbCRqnUsYwtQCumA9EQfgZeyntgqvHBSYI88W2mewi4fh_1BcFPBDDM--UMaqj6f3fI2-TudXElbj6L5bJ34ozuk50uVKRZK-IDcssUD8l2j0DwEfmW0YOf9N10zTBCV5ZCYEeH4sZgkSQ9aTrOl13NJRWFpmOkbsLkru9fvk5E-QlNpaZnXccImi0_rspFfXFZ0UVBkcIDRJm2OeMVhUiXnl6CzPRQ1HAO1tVbmtEJdudSFZ2V-PeneRMIMjWYYnexUHQsMO-mxBUZLKioHpP56Ojs4NjtOjK4Cg7-2rUImBMTm5RDZC7CRKaesolvQ-kJm8jYCyyTkWaeFsxwyYJAezzRvvFiCUAmfEK2ilVhnhIKExnfDy2ECAGLpQKvDMrlqVJhbE0qHfJmraNcdXTl2DVjmQNsQY3mfY065OVm9FVL0_GHcUNU92YMkms3D8Dk8s7k8n-ZnENeo7E0E4NISnSVDLAwJNPKs4RHIQeYHzpkb21Peecbqhw8LAf4D9DbIa82NvZXsZ_9D7F3yb0A9mWbrblHtury2jyHiKqWA3I7Hb0bkDvZ4WR8Ctfh0XR2Mmi2FNzNp7Psww-JBSfT |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5ROFAOVZ-qW9ruobSHysL2ru1sJVQlPBRKEiEaJG5mXwak4ATbCOXW_9D_w4_pL-mMY4dUVblxjVaTsWZ2HvbM9xHykfEYIr_mbmo8z-VScFdprl0jla9C2RLcx0Xh_iDqHvPvJ-HJErltdmFwrLKJiVWgNmON78g3wS8FNE3QsHybXLnIGoVfVxsKDVlTK5itCmKsXuw4sNMbaOGKrf0dsPdGEOztDre7bs0y4GpIZqWbYhMY28i2BFSbksWq5ek09lOmPJnGKvKClKvQcM9IboXiQWA8ERvfepGC4pyB3EdkhTMuoPlb6ewODo_mb3m8OEa8-tnEPWPC20S_gSIshHbQ-ysXVpQB_yaGNbJ6nU3k9EaORguZb-8peVKXrLQ987FnZMlmz8naApDhC3Lbptt3MOK0QTqh45RCgUk7cmpxWZMeVcz3eb37SWVmaA8hpHDI7PfPX32ZX6HLlnRYM1fQ9ugMrFCeXxb0IqMIJQKqDGaz6wWFipv-uASd6Y4sIR-XxVfapn1kCdMFPczxK1T1T6DIwOKo3_mFpj2J8z85PpHFxY7iJTl-EJu9IsvZOLOvCQVB1vdZCqVKwCOlITukIYjVmkWpbSmHfGlslOgaNh3ZO0YJtE9o0WTRog7ZmJ-ezOBC_nOug-aen0GQ7-qHcX6W1DEjiXgYCwv1gjKGS9BKmUhFqc8YN4H0hUM-o7NUgkElLeuNCngwBPVK2rEImfBZwByy3vhTUseoIrm7UQ75NPexe9V-c7-cD2S1O-z3kt7-4OAteRxAFJjNhq6T5TK_tu-gfivV-_qSUHL60PfyDyl9XFI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgE9IJ4iUGAPFA7Iiu1d2zESQm5DaGkSVdBKvZl9tpVSJ7VdVbnxH_g3HPgx_BJm_EiDEL31aq3GY8_bnvmGkFeMR-D5FXesdl2Hi5g7UnHlaCE9GYhezD0cFB6Nw-0D_vkwOFwhP9tZGGyrbH1i5aj1VOE38i7oZQxFExQsXdu0Rez1Bx9mZw5ukMI_re06jVpFds38Asq34v1OH2S94fuDj_tb206zYcBREMhKx2IBGJnQ9GLINAWLZM9VNvIsk66wkQxd33IZaO5qwU0sue9rN460Z9xQQmLOgO4NcjNCFHecUh98WnzfcaMIkerrXnvGYreLGgPpVwCFoPtXFKyWBfwbEtbI7fNsJuYXYjJZinmDe-Ruk6zSpNau-2TFZA_I2hKE4UPyK6FblwDitMU4oVNLIbWkm2JucEyTfql23ufN1CcVmaZDBI_C9rLf33-MRH6GylrS_WZnBU0mR_DOy-PTgp5kFEFEgJVx3bVeUMi16ddT4Jn2RQmRuCze0YSOcD-YKuhejv-fqjsBI2ODTX7HJ4oOBXb-5PhEBkc6ikfk4Fok9pisZtPMPCEUCBnPYxaSFJ-HUkFcsAGQVYqF1vRkh7xtZZSqBjAd93ZMUiicUKLpskQ7ZGNxelYDhfzn3CaKe3EG4b2rC9P8KG28RRryIIoNZApSay6AK6lDGVqPMa594cUd8gaVpSIMLCnRzFLAgyGcV5pEccBij_msQ9ZbfUob71Skl7bUIa8XOnYl20-vpvOS3AJrTIc7491n5I4P5l83ha6T1TI_N88hcSvli8pCKPl23Sb5B7O6Wew |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5BeoAe-EcECtoDPwfk2utd21kuyC1UFWqiChqpnKz9bSNSJ9gOqJx4B96Hh-FJmLU3IYBAiGu02cw6n2e-sWe-QeghZRl4fsUCq6MoYIKzQCqmAi0kkYkYcEZco_BwlO6P2avj5Ng_cKt9WSWk4pPWSccQv4KYDXhIkjAJ4ywK59o-_-CfJJEM4j9xbxIuoo00AS7eQxvj0WH-1k2UW363q3ankNuH7j8DApRAKhb9FIdauf7fnfImurQo5-L8o5hO16LO3lVULO3tik3ebS8aua0-_SLl-P8HuoaueEKK8w5B19EFU95Am2syhTfR1xzv_hAJx0sdEzyzGOgj3hHnxrVi4tftXPvKd3ZiUWp84ASiXAnZt89fhqJ67wDZ4CM_lwLn05NZNWlOz2o8KbETCgFTRl1leo2BT-M3Z3BV8AvRQLRt6mc4x0M3A0zV-LBy75jaXwJDRsYV8p1OFD4Qrrqncicyrm2jvoXGey-PdvcDP_chUEAvmsC6tDwzqRlw4P-CZnIQKZsRS2UkbCbTKLZMJppFWjDDJYtjHfFMExOlEtIlehv1yllp7iAMGxlCqAUiErNUKvD9NoFtlaKpNQPZR0-XKCiUF0V3szmmBSRHDjPFOmb66NFq9bwTA_nDuh0HqNUaJ-HdfjCrTgrvEYqUJRk3wAak1kyAVVKnMrWEUqZjQXgfPXFwbDcGk5Tw_RJwMCfZVeQZTygnNKZ9tLVEbOE9UF2AH-dJTCHB76PHKxT_1ey7_7rwHrocwx3e1X1uoV5TLcx94GaNfOBvwO8SJDdC |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Analysis+of+the+Bayesian+Regularization+and+Levenberg%E2%80%93Marquardt+Training+Algorithms+in+Neural+Networks+for+Small+Datasets%3A+A+Metrics+Prediction+of+Neolithic+Laminar+Artefacts&rft.jtitle=Information+%28Basel%29&rft.au=Maurizio+Troiano&rft.au=Eugenio+Nobile&rft.au=Fabio+Mangini&rft.au=Marco+Mastrogiuseppe&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=15&rft.issue=5&rft.spage=270&rft_id=info:doi/10.3390%2Finfo15050270&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64579e299bdd4af58bd6b6f1334d2a19 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon |