A Comparative Analysis of the Bayesian Regularization and Levenberg–Marquardt Training Algorithms in Neural Networks for Small Datasets: A Metrics Prediction of Neolithic Laminar Artefacts

This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reas...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 15; no. 5; p. 270
Main Authors Troiano, Maurizio, Nobile, Eugenio, Mangini, Fabio, Mastrogiuseppe, Marco, Conati Barbaro, Cecilia, Frezza, Fabrizio
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.05.2024
Subjects
Online AccessGet full text
ISSN2078-2489
2078-2489
DOI10.3390/info15050270

Cover

Abstract This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reasons, such as ritual, use wear, or post-depositional processes. The archaeological artifacts, specifically laminar blanks (so-called blades), come from different sites located in the Southern Levant that belong to the Pre-Pottery B Neolithic (PPNB) (10,100/9500–400 cal B.P.). This paper shows the entire procedure of the analysis, from its normalization of the dataset to its comparative analysis and overfitting problem resolution.
AbstractList This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks for the metrics prediction of damaged archaeological artifacts, of which the state of conservation is often fragmented due to different reasons, such as ritual, use wear, or post-depositional processes. The archaeological artifacts, specifically laminar blanks (so-called blades), come from different sites located in the Southern Levant that belong to the Pre-Pottery B Neolithic (PPNB) (10,100/9500–400 cal B.P.). This paper shows the entire procedure of the analysis, from its normalization of the dataset to its comparative analysis and overfitting problem resolution.
Audience Academic
Author Mangini, Fabio
Mastrogiuseppe, Marco
Troiano, Maurizio
Nobile, Eugenio
Frezza, Fabrizio
Conati Barbaro, Cecilia
Author_xml – sequence: 1
  givenname: Maurizio
  orcidid: 0000-0003-0912-3173
  surname: Troiano
  fullname: Troiano, Maurizio
– sequence: 2
  givenname: Eugenio
  orcidid: 0009-0006-5297-7966
  surname: Nobile
  fullname: Nobile, Eugenio
– sequence: 3
  givenname: Fabio
  orcidid: 0000-0001-5474-8952
  surname: Mangini
  fullname: Mangini, Fabio
– sequence: 4
  givenname: Marco
  surname: Mastrogiuseppe
  fullname: Mastrogiuseppe, Marco
– sequence: 5
  givenname: Cecilia
  surname: Conati Barbaro
  fullname: Conati Barbaro, Cecilia
– sequence: 6
  givenname: Fabrizio
  orcidid: 0000-0001-9457-7617
  surname: Frezza
  fullname: Frezza, Fabrizio
BookMark eNqFUstu1DAUjVCRKKU7PsASW6Y4dhI77MKUR6VpQVDW0U18nXpI7KnttBpW_AP_w8fwJbgzCFUICXtxratzzj3yuY-zA-ssZtnTnJ5wXtMXxmqXl7SkTNAH2SGjQi5YIeuDe-9H2XEIa5qOELKQ-WH2oyFLN23AQzQ3SBoL4zaYQJwm8QrJK9hiMGDJRxzmEbz5mnDOErCKrPAGbYd--Pnt-zn46xm8iuTSg7HGDqQZB-dNvJoCMZZc4OxhTCXeOv8lEO08-TTBOJJTiBAwhpekIecYvekD-eBRmX43KRm5QDcmIdOTFUzGgieNj6ihj-FJ9lDDGPD4dz3KPr95fbl8t1i9f3u2bFaLvqBVXGghpRRYoaylZMBFJ2mvRa55R0GLrqJMF12pCqqgwLorGFO0FipHWnWSVfwoO9vrKgfrduPNBH7bOjDtruH80IKPph-xrYpS1MjqulOqAF3KTlVdpXPOC8Ugr5PWYq812w1sb9Mf_BHMaXuXZXs_y4R_tsdvvLueMcR27Wafggotp2VdMi5YnlAne9QAycSdQPTQp6twMn1aFW1SvxF1yeucM54Iz_eE3rsQPOr_uWB_wXsTd8uQ5pjx36Rf5UjTbg
CitedBy_id crossref_primary_10_3390_photonics11090867
crossref_primary_10_3390_electronics13142752
crossref_primary_10_1016_j_rineng_2024_103328
crossref_primary_10_5334_jcaa_163
crossref_primary_10_1038_s41598_024_77184_1
crossref_primary_10_1142_S0218271825500117
Cites_doi 10.1002/arp.1763
10.3390/heritage4010008
10.1017/CBO9781139026314
10.30861/9781407307305
10.2307/j.ctv1dc9jtv
10.1016/j.jas.2019.104998
10.1016/S0893-6080(98)00116-6
10.1080/14697688.2019.1633014
10.1016/j.jas.2022.105610
10.1017/CBO9780511804779
10.1016/j.jas.2021.105433
10.1109/EMS.2012.56
10.1017/aap.2022.35
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/info15050270
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_64579e299bdd4af58bd6b6f1334d2a19
10.3390/info15050270
A795391323
10_3390_info15050270
GeographicLocations United Kingdom
GeographicLocations_xml – name: United Kingdom
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
XH6
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-f78887e6e89882a37b80cf71f3b0af7b602f4b5d40da4e9b422d097d1e06b8263
IEDL.DBID DOA
ISSN 2078-2489
IngestDate Fri Oct 03 12:50:48 EDT 2025
Sun Oct 26 02:38:51 EDT 2025
Fri Jul 25 03:44:02 EDT 2025
Mon Oct 20 17:00:21 EDT 2025
Thu Oct 16 04:44:17 EDT 2025
Thu Apr 24 23:12:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-f78887e6e89882a37b80cf71f3b0af7b602f4b5d40da4e9b422d097d1e06b8263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9457-7617
0000-0001-5474-8952
0000-0003-0912-3173
0009-0006-5297-7966
OpenAccessLink https://doaj.org/article/64579e299bdd4af58bd6b6f1334d2a19
PQID 3059523721
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_64579e299bdd4af58bd6b6f1334d2a19
unpaywall_primary_10_3390_info15050270
proquest_journals_3059523721
gale_infotracacademiconefile_A795391323
crossref_primary_10_3390_info15050270
crossref_citationtrail_10_3390_info15050270
PublicationCentury 2000
PublicationDate 2024-05-01
PublicationDateYYYYMMDD 2024-05-01
PublicationDate_xml – month: 05
  year: 2024
  text: 2024-05-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Qian (ref_13) 1999; 12
Guyot (ref_1) 2021; 4
Caspari (ref_3) 2019; 110
Eberl (ref_8) 2023; 11
ref_14
Gualandi (ref_9) 2021; 4
ref_11
Nobile (ref_17) 2022; 46
Saipraneeth (ref_10) 2021; 99
Sapna (ref_12) 2012; 2
ref_19
Sariev (ref_18) 2020; 20
Scotland (ref_2) 2018; 26
ref_16
Davis (ref_4) 2021; 132
ref_15
Cole (ref_7) 2022; 143
Sarris (ref_5) 2020; 27
Trier (ref_6) 2021; 95
References_xml – volume: 27
  start-page: 107
  year: 2020
  ident: ref_5
  article-title: Deep learning based automated analysis of archaeo-geophysical images
  publication-title: Archaeol. Prospect.
  doi: 10.1002/arp.1763
– volume: 4
  start-page: 140
  year: 2021
  ident: ref_9
  article-title: An Open System for Collection and Automatic Recognition of Pottery through Neural Network Algorithms
  publication-title: Heritage
  doi: 10.3390/heritage4010008
– ident: ref_15
  doi: 10.1017/CBO9781139026314
– ident: ref_16
  doi: 10.30861/9781407307305
– ident: ref_14
  doi: 10.2307/j.ctv1dc9jtv
– volume: 110
  start-page: 104998
  year: 2019
  ident: ref_3
  article-title: Convolutional neural networks for archaeological site detection—Finding “princely” tombs
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2019.104998
– volume: 12
  start-page: 145
  year: 1999
  ident: ref_13
  article-title: On the momentum term in gradient descent learning algorithms
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(98)00116-6
– volume: 20
  start-page: 311
  year: 2020
  ident: ref_18
  article-title: Bayesian regularized artificial neural networks for the estimation of the probability of default
  publication-title: Quant. Financ.
  doi: 10.1080/14697688.2019.1633014
– volume: 143
  start-page: 105610
  year: 2022
  ident: ref_7
  article-title: Evaluating statistical models for establishing morphometric taxonomic identifications and a new approach using Random Forest
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2022.105610
– volume: 4
  start-page: 1
  year: 2021
  ident: ref_1
  article-title: Combined Detection and Segmentation of Archeological Structures from LiDAR Data Using a Deep Learning Approach
  publication-title: J. Comput. Appl. Archaeol.
– ident: ref_11
  doi: 10.1017/CBO9780511804779
– volume: 132
  start-page: 105433
  year: 2021
  ident: ref_4
  article-title: Deep Learning Reveals Extent of Archaic Native American Shell-Ring Building Practices
  publication-title: J. Archaeol. Sci.
  doi: 10.1016/j.jas.2021.105433
– volume: 46
  start-page: 7
  year: 2022
  ident: ref_17
  article-title: The Standardisation of the PPNB Lithic Industry from Er-Rahib
  publication-title: Orig. Rev. Prehistory Protohistory Anc. Civiliz.
– volume: 26
  start-page: 165
  year: 2018
  ident: ref_2
  article-title: Using deep neural networks on airborne laser scanning data: Results from a case study of semi-automatic mapping of archaeological topography
  publication-title: Archaeol. Prospect.
– ident: ref_19
  doi: 10.1109/EMS.2012.56
– volume: 95
  start-page: 102241
  year: 2021
  ident: ref_6
  article-title: Automated mapping of cultural heritage in Norway from airborne lidar data using faster R-CNN
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 99
  start-page: 92
  year: 2021
  ident: ref_10
  article-title: A Bayesian regularization-backpropagation neural network model for peeling computations
  publication-title: J. Adhes.
– volume: 11
  start-page: 152
  year: 2023
  ident: ref_8
  article-title: Machine Learning–Based Identification of Lithic Microdebitage
  publication-title: Adv. Archaeol. Pract.
  doi: 10.1017/aap.2022.35
– volume: 2
  start-page: 393
  year: 2012
  ident: ref_12
  article-title: Backpropagation Learning Algorithm Based on Levenberg Marquardt Algorithm
  publication-title: Comput. Sci. Inf. Technol.
SSID ssj0000778481
Score 2.3644688
Snippet This study aims to present a comparative analysis of the Bayesian regularization backpropagation and Levenberg–Marquardt training algorithms in neural networks...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 270
SubjectTerms Algorithms
archaeological data
Archaeology
Artificial intelligence
Back propagation
Back propagation networks
Bayesian analysis
Bayesian regularization
Comparative analysis
Datasets
Historic artifacts
Levenberg–Marquardt
Machine learning
Mean square errors
metrics prediction
neural network
Neural networks
Pottery
Protection and preservation
Regularization
Regularization methods
Rites, ceremonies and celebrations
Stone Age
training algorithms
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3JatxAEG2c8SHxIWTFSpxQhyyHIKylJY0CIWgcGxM8wjg2-CZ6tQ1jzViSCb7lH_I_-Zh8Saq0jCeE-CqaVrWqurqeuuoVY29CnqDnV9y12vNcLlLuSsWVq4X0ZSTGKfepUHiax_sn_OtpdLrG8qEWhtIqB5_YOmo9V_SPfBvtMkXQhIDl8-LKpa5RdLs6tNAQfWsF_amlGLvH1gNixhqx9clufni0_OviJQnxx3cZ8CHi_W3SIwZFEcIz76-zqaXw_9dRb7D71-VC3HwXs9nKSbT3iD3sQ0jIOp0_ZmumfMI2VogFn7JfGezc0nrDwDwCcwsY8MFE3BgqnoSjthN91ddigig1HBClEyV9_f7xcyqqKzKhBo77ThKQzc7wqzTnlzVclEDUHihK3uWS14ARMHy7RJnhi2jwfGzqj5DBlLp2qRoOK7oVat-EguSGUu_OLxQcCMrHqWhFhgot6mfsZG_3eGff7Ts1uAoDgsa1BKQTE5txihG7CBM59pRNfBtKT9hExl5guYw097TgJpU8CLSXJto3XiwR4ITP2aicl2aTAU5kfD-0GDoEPJYKvbWNcFqlwtiasXTYh0FHheppzKmbxqxAOEMaLVY16rC3y9GLjr7jP-MmpO7lGCLdbh_Mq7Oi38NFzKMkNXh-S625QKmkjmVsEeVzHQg_ddh7MpZ2YhRJib7CARdGJFtFlqRRmCL8Dx22NdhT0fuMuri1cIe9W9rYnWK_uHuel-xBgDuxy8_cYqOmujavMIZq5Ot-Y_wBTwUf0g
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5BeoAe-EcECtoDPwfk2utd21kuyC1UFWqiChqpnKz9bSNSJ9gOqJx4B96Hh-FJmLU3IYBAiGu02cw6n2e-sWe-QeghZRl4fsUCq6MoYIKzQCqmAi0kkYkYcEZco_BwlO6P2avj5Ng_cKt9WSWk4pPWSccQv4KYDXhIkjAJ4ywK59o-_-CfJJEM4j9xbxIuoo00AS7eQxvj0WH-1k2UW363q3ankNuH7j8DApRAKhb9FIdauf7fnfImurQo5-L8o5hO16LO3lVULO3tik3ebS8aua0-_SLl-P8HuoaueEKK8w5B19EFU95Am2syhTfR1xzv_hAJx0sdEzyzGOgj3hHnxrVi4tftXPvKd3ZiUWp84ASiXAnZt89fhqJ67wDZ4CM_lwLn05NZNWlOz2o8KbETCgFTRl1leo2BT-M3Z3BV8AvRQLRt6mc4x0M3A0zV-LBy75jaXwJDRsYV8p1OFD4Qrrqncicyrm2jvoXGey-PdvcDP_chUEAvmsC6tDwzqRlw4P-CZnIQKZsRS2UkbCbTKLZMJppFWjDDJYtjHfFMExOlEtIlehv1yllp7iAMGxlCqAUiErNUKvD9NoFtlaKpNQPZR0-XKCiUF0V3szmmBSRHDjPFOmb66NFq9bwTA_nDuh0HqNUaJ-HdfjCrTgrvEYqUJRk3wAak1kyAVVKnMrWEUqZjQXgfPXFwbDcGk5Tw_RJwMCfZVeQZTygnNKZ9tLVEbOE9UF2AH-dJTCHB76PHKxT_1ey7_7rwHrocwx3e1X1uoV5TLcx94GaNfOBvwO8SJDdC
  priority: 102
  providerName: Unpaywall
Title A Comparative Analysis of the Bayesian Regularization and Levenberg–Marquardt Training Algorithms in Neural Networks for Small Datasets: A Metrics Prediction of Neolithic Laminar Artefacts
URI https://www.proquest.com/docview/3059523721
https://www.mdpi.com/2078-2489/15/5/270/pdf?version=1715410116
https://doaj.org/article/64579e299bdd4af58bd6b6f1334d2a19
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: DOA
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: ABDBF
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: ADMLS
  dateStart: 20111201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2078-2489
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000778481
  issn: 2078-2489
  databaseCode: 8FG
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BOUAPFU9hWqI98Dggq36sH8vNaRsqlERR20jlZO2TRkqdYrtCvfEf-D_8GH4JM7YTjBBw4WTZWq1nPbOz88kz3xDyImQJeH7FXKs9z2WCM1cqplwtpC8jkXLmY6HwZBofz9n78-i81-oLc8JaeuD2w-3HLEq4AacptWbCRqnUsYwtQCumA9EQfgZeyntgqvHBSYI88W2mewi4fh_1BcFPBDDM--UMaqj6f3fI2-TudXElbj6L5bJ34ozuk50uVKRZK-IDcssUD8l2j0DwEfmW0YOf9N10zTBCV5ZCYEeH4sZgkSQ9aTrOl13NJRWFpmOkbsLkru9fvk5E-QlNpaZnXccImi0_rspFfXFZ0UVBkcIDRJm2OeMVhUiXnl6CzPRQ1HAO1tVbmtEJdudSFZ2V-PeneRMIMjWYYnexUHQsMO-mxBUZLKioHpP56Ojs4NjtOjK4Cg7-2rUImBMTm5RDZC7CRKaesolvQ-kJm8jYCyyTkWaeFsxwyYJAezzRvvFiCUAmfEK2ilVhnhIKExnfDy2ECAGLpQKvDMrlqVJhbE0qHfJmraNcdXTl2DVjmQNsQY3mfY065OVm9FVL0_GHcUNU92YMkms3D8Dk8s7k8n-ZnENeo7E0E4NISnSVDLAwJNPKs4RHIQeYHzpkb21Peecbqhw8LAf4D9DbIa82NvZXsZ_9D7F3yb0A9mWbrblHtury2jyHiKqWA3I7Hb0bkDvZ4WR8Ctfh0XR2Mmi2FNzNp7Psww-JBSfT
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5ROFAOVZ-qW9ruobSHysL2ru1sJVQlPBRKEiEaJG5mXwak4ATbCOXW_9D_w4_pL-mMY4dUVblxjVaTsWZ2HvbM9xHykfEYIr_mbmo8z-VScFdprl0jla9C2RLcx0Xh_iDqHvPvJ-HJErltdmFwrLKJiVWgNmON78g3wS8FNE3QsHybXLnIGoVfVxsKDVlTK5itCmKsXuw4sNMbaOGKrf0dsPdGEOztDre7bs0y4GpIZqWbYhMY28i2BFSbksWq5ek09lOmPJnGKvKClKvQcM9IboXiQWA8ERvfepGC4pyB3EdkhTMuoPlb6ewODo_mb3m8OEa8-tnEPWPC20S_gSIshHbQ-ysXVpQB_yaGNbJ6nU3k9EaORguZb-8peVKXrLQ987FnZMlmz8naApDhC3Lbptt3MOK0QTqh45RCgUk7cmpxWZMeVcz3eb37SWVmaA8hpHDI7PfPX32ZX6HLlnRYM1fQ9ugMrFCeXxb0IqMIJQKqDGaz6wWFipv-uASd6Y4sIR-XxVfapn1kCdMFPczxK1T1T6DIwOKo3_mFpj2J8z85PpHFxY7iJTl-EJu9IsvZOLOvCQVB1vdZCqVKwCOlITukIYjVmkWpbSmHfGlslOgaNh3ZO0YJtE9o0WTRog7ZmJ-ezOBC_nOug-aen0GQ7-qHcX6W1DEjiXgYCwv1gjKGS9BKmUhFqc8YN4H0hUM-o7NUgkElLeuNCngwBPVK2rEImfBZwByy3vhTUseoIrm7UQ75NPexe9V-c7-cD2S1O-z3kt7-4OAteRxAFJjNhq6T5TK_tu-gfivV-_qSUHL60PfyDyl9XFI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIgE9IJ4iUGAPFA7Iiu1d2zESQm5DaGkSVdBKvZl9tpVSJ7VdVbnxH_g3HPgx_BJm_EiDEL31aq3GY8_bnvmGkFeMR-D5FXesdl2Hi5g7UnHlaCE9GYhezD0cFB6Nw-0D_vkwOFwhP9tZGGyrbH1i5aj1VOE38i7oZQxFExQsXdu0Rez1Bx9mZw5ukMI_re06jVpFds38Asq34v1OH2S94fuDj_tb206zYcBREMhKx2IBGJnQ9GLINAWLZM9VNvIsk66wkQxd33IZaO5qwU0sue9rN460Z9xQQmLOgO4NcjNCFHecUh98WnzfcaMIkerrXnvGYreLGgPpVwCFoPtXFKyWBfwbEtbI7fNsJuYXYjJZinmDe-Ruk6zSpNau-2TFZA_I2hKE4UPyK6FblwDitMU4oVNLIbWkm2JucEyTfql23ufN1CcVmaZDBI_C9rLf33-MRH6GylrS_WZnBU0mR_DOy-PTgp5kFEFEgJVx3bVeUMi16ddT4Jn2RQmRuCze0YSOcD-YKuhejv-fqjsBI2ODTX7HJ4oOBXb-5PhEBkc6ikfk4Fok9pisZtPMPCEUCBnPYxaSFJ-HUkFcsAGQVYqF1vRkh7xtZZSqBjAd93ZMUiicUKLpskQ7ZGNxelYDhfzn3CaKe3EG4b2rC9P8KG28RRryIIoNZApSay6AK6lDGVqPMa594cUd8gaVpSIMLCnRzFLAgyGcV5pEccBij_msQ9ZbfUob71Skl7bUIa8XOnYl20-vpvOS3AJrTIc7491n5I4P5l83ha6T1TI_N88hcSvli8pCKPl23Sb5B7O6Wew
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEF5BeoAe-EcECtoDPwfk2utd21kuyC1UFWqiChqpnKz9bSNSJ9gOqJx4B96Hh-FJmLU3IYBAiGu02cw6n2e-sWe-QeghZRl4fsUCq6MoYIKzQCqmAi0kkYkYcEZco_BwlO6P2avj5Ng_cKt9WSWk4pPWSccQv4KYDXhIkjAJ4ywK59o-_-CfJJEM4j9xbxIuoo00AS7eQxvj0WH-1k2UW363q3ankNuH7j8DApRAKhb9FIdauf7fnfImurQo5-L8o5hO16LO3lVULO3tik3ebS8aua0-_SLl-P8HuoaueEKK8w5B19EFU95Am2syhTfR1xzv_hAJx0sdEzyzGOgj3hHnxrVi4tftXPvKd3ZiUWp84ASiXAnZt89fhqJ67wDZ4CM_lwLn05NZNWlOz2o8KbETCgFTRl1leo2BT-M3Z3BV8AvRQLRt6mc4x0M3A0zV-LBy75jaXwJDRsYV8p1OFD4Qrrqncicyrm2jvoXGey-PdvcDP_chUEAvmsC6tDwzqRlw4P-CZnIQKZsRS2UkbCbTKLZMJppFWjDDJYtjHfFMExOlEtIlehv1yllp7iAMGxlCqAUiErNUKvD9NoFtlaKpNQPZR0-XKCiUF0V3szmmBSRHDjPFOmb66NFq9bwTA_nDuh0HqNUaJ-HdfjCrTgrvEYqUJRk3wAak1kyAVVKnMrWEUqZjQXgfPXFwbDcGk5Tw_RJwMCfZVeQZTygnNKZ9tLVEbOE9UF2AH-dJTCHB76PHKxT_1ey7_7rwHrocwx3e1X1uoV5TLcx94GaNfOBvwO8SJDdC
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comparative+Analysis+of+the+Bayesian+Regularization+and+Levenberg%E2%80%93Marquardt+Training+Algorithms+in+Neural+Networks+for+Small+Datasets%3A+A+Metrics+Prediction+of+Neolithic+Laminar+Artefacts&rft.jtitle=Information+%28Basel%29&rft.au=Maurizio+Troiano&rft.au=Eugenio+Nobile&rft.au=Fabio+Mangini&rft.au=Marco+Mastrogiuseppe&rft.date=2024-05-01&rft.pub=MDPI+AG&rft.eissn=2078-2489&rft.volume=15&rft.issue=5&rft.spage=270&rft_id=info:doi/10.3390%2Finfo15050270&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_64579e299bdd4af58bd6b6f1334d2a19
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon