Vehicle State and Road Adhesion Coefficient Joint Estimation Based on High-Order Cubature Kalman Algorithm
With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A nonlinear seven degrees of freedom vehicle estimation model and a tire estimation model are established. A vehicle driving state estimator and a...
        Saved in:
      
    
          | Published in | Applied sciences Vol. 13; no. 19; p. 10734 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2076-3417 2076-3417  | 
| DOI | 10.3390/app131910734 | 
Cover
| Abstract | With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A nonlinear seven degrees of freedom vehicle estimation model and a tire estimation model are established. A vehicle driving state estimator and a road adhesion coefficient estimator based on the generalized high-order cubature Kalman filter (GHCKF) algorithm are designed. The vehicle state estimator combines the vehicle model and the tire model to calculate the vehicle state parameters, provides the state parameters for the road adhesion coefficient estimator, and realizes the real-time estimation of the road adhesion coefficient. The exponential fading memory adaptive algorithm is used to update the measurement noise variance, and we upgrade the GHCKF to the adaptive generalized high-order cubature Kalman filter (AGHCKF), which estimates the vehicle state and road adhesion coefficient. The typical working conditions using the double GHCKF/AGHCKF estimation algorithm were simulated and analyzed. Then, high-and low-speed driving experiments based on typical working conditions were carried out. An integrated navigation system (INS), global positioning system (GPS), and real-time kinematic positioning (RTK) were used to collect the real-time data of the vehicle, and compare them with the estimated values of the joint estimator, to verify the feasibility of the vehicle-state–road-adhesion-coefficient joint estimator. We compared a high-order GHCKF algorithm, high-order improved AGHCKF algorithm, and a cubature Kalman filter (CKF) algorithm, and the simulation and experimental results show that the joint estimator using the CKF, GHCKF, and AGHCKF algorithms can realize the real-time estimation of the vehicle state and the road adhesion coefficient. The AGHCKF algorithm shows the best effectiveness and robustness of the three algorithms. | 
    
|---|---|
| AbstractList | With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A nonlinear seven degrees of freedom vehicle estimation model and a tire estimation model are established. A vehicle driving state estimator and a road adhesion coefficient estimator based on the generalized high-order cubature Kalman filter (GHCKF) algorithm are designed. The vehicle state estimator combines the vehicle model and the tire model to calculate the vehicle state parameters, provides the state parameters for the road adhesion coefficient estimator, and realizes the real-time estimation of the road adhesion coefficient. The exponential fading memory adaptive algorithm is used to update the measurement noise variance, and we upgrade the GHCKF to the adaptive generalized high-order cubature Kalman filter (AGHCKF), which estimates the vehicle state and road adhesion coefficient. The typical working conditions using the double GHCKF/AGHCKF estimation algorithm were simulated and analyzed. Then, high-and low-speed driving experiments based on typical working conditions were carried out. An integrated navigation system (INS), global positioning system (GPS), and real-time kinematic positioning (RTK) were used to collect the real-time data of the vehicle, and compare them with the estimated values of the joint estimator, to verify the feasibility of the vehicle-state–road-adhesion-coefficient joint estimator. We compared a high-order GHCKF algorithm, high-order improved AGHCKF algorithm, and a cubature Kalman filter (CKF) algorithm, and the simulation and experimental results show that the joint estimator using the CKF, GHCKF, and AGHCKF algorithms can realize the real-time estimation of the vehicle state and the road adhesion coefficient. The AGHCKF algorithm shows the best effectiveness and robustness of the three algorithms. | 
    
| Audience | Academic | 
    
| Author | Guo, Changhong Chang, Ronglei Quan, Lingxiao  | 
    
| Author_xml | – sequence: 1 givenname: Lingxiao surname: Quan fullname: Quan, Lingxiao – sequence: 2 givenname: Ronglei surname: Chang fullname: Chang, Ronglei – sequence: 3 givenname: Changhong surname: Guo fullname: Guo, Changhong  | 
    
| BookMark | eNqFUcFq3DAQNSWFpmlu-QBBr3UqWbIkH7dL0iQNBJo0VzOWRrtavJYry5T8fbVxCaEUKoE0jN48vZn3vjgawoBFccboOecN_QzjyDhrGFVcvCmOK6pkyQVTR6_id8XpNO1oXg3jmtHjYveIW296JPcJEhIYLPkewJKV3eLkw0DWAZ3zxuOQyE3w-byYkt9DOjx-gQktycGV32zLu2gxkvXcQZojkm_Q72Egq34Tok_b_YfirYN-wtM_90nx4_LiYX1V3t59vV6vbksjqEyl452pK8saqAQyraXUEhXrXGWVrK1xjdBWS6M7XQkmVCPr2mBlWN2JTkvgJ8X1wmsD7NoxZrHxqQ3g2-dEiJsWYjo03aJFTgE76ywVUGutuBS1QhC0o6ZTmatcuOZhhKdf0PcvhIy2h7m3r-ee8R8X_BjDzxmn1O7CHIfcbltpJYVuqG4y6nxBbSCL8IMLKYLJ2-Lem2yr8zm_Uoplj6r6QPtpKTAxTFNE9z8V1V9w49OzY_kf3_-76DdKW7Hx | 
    
| CitedBy_id | crossref_primary_10_3390_s23218960 crossref_primary_10_3390_app14156803 crossref_primary_10_3390_electronics14020383 crossref_primary_10_1177_01423312241274008 crossref_primary_10_3390_sym16070792 crossref_primary_10_4271_10_09_03_0022 crossref_primary_10_1109_ACCESS_2024_3388419 crossref_primary_10_1177_00202940241293598  | 
    
| Cites_doi | 10.1016/j.ast.2019.105441 10.3390/e25030453 10.3901/JME.2019.22.093 10.1016/j.proeng.2017.04.383 10.3901/JME.2021.20.181 10.1016/j.dt.2020.06.006 10.3901/JME.2019.22.103 10.1109/TSP.2010.2056923 10.1109/TIE.2017.2774771 10.1049/iet-its.2019.0458 10.1155/2019/1056269 10.1016/j.ymssp.2022.109162 10.1109/TSMC.2020.3020562 10.1002/asjc.926 10.1007/BF02162032 10.1109/TAC.2009.2019800 10.3901/JME.2019.22.080  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/app131910734 | 
    
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Open Access Full Text  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ : Directory of Open Access Journals [open access] url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Databases url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Sciences (General)  | 
    
| EISSN | 2076-3417 | 
    
| ExternalDocumentID | oai_doaj_org_article_ede30aebdfd04a588736457ea40b0cb7 10.3390/app131910734 A771810254 10_3390_app131910734  | 
    
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c406t-f3bc52d19a24e1886686e71bf2d765dcf948d86c8b8241479655ce2c15b4b86a3 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2076-3417 | 
    
| IngestDate | Tue Oct 14 19:03:35 EDT 2025 Sun Oct 26 03:04:36 EDT 2025 Mon Jun 30 03:41:02 EDT 2025 Mon Oct 20 17:18:41 EDT 2025 Thu Oct 16 04:37:21 EDT 2025 Thu Apr 24 22:56:26 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 19 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-f3bc52d19a24e1886686e71bf2d765dcf948d86c8b8241479655ce2c15b4b86a3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| OpenAccessLink | https://doaj.org/article/ede30aebdfd04a588736457ea40b0cb7 | 
    
| PQID | 2876489089 | 
    
| PQPubID | 2032433 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_ede30aebdfd04a588736457ea40b0cb7 unpaywall_primary_10_3390_app131910734 proquest_journals_2876489089 gale_infotracacademiconefile_A771810254 crossref_primary_10_3390_app131910734 crossref_citationtrail_10_3390_app131910734  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-01 | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Applied sciences | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Xing (ref_14) 2020; 52 Wang (ref_5) 2020; 52 Yan (ref_26) 2020; 10 Zhang (ref_30) 2021; 46 Liu (ref_25) 2015; 51 Wu (ref_16) 2015; 64 Zhang (ref_15) 2021; 57 Zhang (ref_21) 2017; 53 ref_17 Qiu (ref_27) 2021; 41 Zhang (ref_33) 2014; 16 Huang (ref_8) 2019; 2019 Peng (ref_32) 2018; 54 Ping (ref_3) 2019; 55 Cheng (ref_6) 2017; 65 Ge (ref_36) 2018; 43 (ref_28) 2017; 187 Li (ref_22) 2021; 35 Zhu (ref_2) 2016; 38 Zheng (ref_29) 2012; 9 Cha (ref_1) 2023; 45 Zhang (ref_4) 2022; 18 Jin (ref_9) 2019; 55 Chen (ref_18) 2022; 176 Li (ref_7) 2022; 54 Hao (ref_24) 2019; 34 Liu (ref_34) 2019; 95 Arasaratnam (ref_11) 2009; 54 Wang (ref_13) 2019; 55 Mcnamee (ref_19) 1967; 10 Yang (ref_35) 2021; 22 Su (ref_20) 2019; 40 Dugoff (ref_31) 1970; 79 Arasaratnam (ref_12) 2010; 58 Jin (ref_10) 2020; 14 Qin (ref_23) 2018; 3  | 
    
| References_xml | – volume: 3 start-page: 88 year: 2018 ident: ref_23 article-title: Huber-based robust generalized high-degree cubature Kalman filter publication-title: Control Decis. – volume: 95 start-page: 105441 year: 2019 ident: ref_34 article-title: Maximum correntropy generalized high-degree cubature Kalman filter with application to the attitude determination system of missile publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2019.105441 – volume: 34 start-page: 2105 year: 2019 ident: ref_24 article-title: Reduced high-degree strong tracking cubature Kalman filter and its application in inte-grated navigation system publication-title: Control Decis. – ident: ref_17 doi: 10.3390/e25030453 – volume: 55 start-page: 93 year: 2019 ident: ref_9 article-title: Combined state and parameter observation of distributed drive electric vehicle via dual unscented Kalman filter publication-title: J. Mech. Eng. doi: 10.3901/JME.2019.22.093 – volume: 187 start-page: 335 year: 2017 ident: ref_28 article-title: Magic formula tyre model application for a tyre-ice interaction publication-title: Procedia Eng. doi: 10.1016/j.proeng.2017.04.383 – volume: 79 start-page: 1219 year: 1970 ident: ref_31 article-title: An analysis of tire action properties and their influence on vehicle dynamic performance publication-title: SAE Trans. – volume: 45 start-page: 1010 year: 2023 ident: ref_1 article-title: Vehicle trajectory tracking control based on road surface attachment coefficient estimation publication-title: Automot. Eng. – volume: 57 start-page: 181 year: 2021 ident: ref_15 article-title: Robust adaptive SCKF-based target state tracking for intelligent vehicles publication-title: J. Mech. Eng. doi: 10.3901/JME.2021.20.181 – volume: 22 start-page: 42 year: 2021 ident: ref_35 article-title: Adaptive Cubature Kalman Filter Based on Unknown Noise Covariance publication-title: J. Air Force Eng. Univ. – volume: 18 start-page: 119 year: 2022 ident: ref_4 article-title: Driving force coordinated control of an 8x8 in-wheel motor drive vehicle with tire-road friction coefficient identification publication-title: Def. Technol. doi: 10.1016/j.dt.2020.06.006 – volume: 55 start-page: 103 year: 2019 ident: ref_13 article-title: Tire lateral forces and sideslip angle estimation for distributed drive electric vehicle using noise adaptive cubature Kalman filter publication-title: J. Mech. Eng. doi: 10.3901/JME.2019.22.103 – volume: 10 start-page: 200 year: 2020 ident: ref_26 article-title: The linear three-degree-of-freedom vehicle model based on Simulink simula-tion publication-title: Intell. Comput. Appl. – volume: 52 start-page: 445 year: 2020 ident: ref_14 article-title: Vehicle state estimation based on adaptive volumetric particle filtering publication-title: J. Nanjing Univ. Aeronaut. Astronaut. – volume: 46 start-page: 1523 year: 2021 ident: ref_30 article-title: Estimation of vehicle sideslip angle based on Dugoff tire model publication-title: J. Guangxi Univ. – volume: 43 start-page: 3792 year: 2018 ident: ref_36 article-title: Real-time Reduction of Magnetic Noise Associated with Ocean Waves via Sage-Husa lgorithm for Towed Overhauser Marine Geomagnetic Sensor publication-title: Earth Sci. – volume: 53 start-page: 263 year: 2017 ident: ref_21 article-title: High-degree cubature Kalman filter with colored measurement niose and its application publication-title: Comput. Eng. Appl. – volume: 51 start-page: 207 year: 2015 ident: ref_25 article-title: A more general class of cubature Kalman filters publication-title: Comput. Eng. Appl. – volume: 41 start-page: 607 year: 2021 ident: ref_27 article-title: Calculation Method of Tire Longitudinal Slip Characteristic Parameters Based on Magic Formula publication-title: Tire Ind. – volume: 58 start-page: 4977 year: 2010 ident: ref_12 article-title: Cubature Kalman filtering for continuous-discrete systems: Theory and simulations publication-title: IEEE T Signal Process doi: 10.1109/TSP.2010.2056923 – volume: 38 start-page: 446 year: 2016 ident: ref_2 article-title: Vehicle longitudinal collision warning strategy based on road adhesive coefficient estimation publication-title: Automot. Eng. – volume: 65 start-page: 5754 year: 2017 ident: ref_6 article-title: Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation publication-title: IEEE Trans. Industr. Electr. doi: 10.1109/TIE.2017.2774771 – volume: 54 start-page: 1853 year: 2022 ident: ref_7 article-title: Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient based on DRBF-EKF algorithm publication-title: Chin. J. Theor. Appl. Mech. – volume: 14 start-page: 412 year: 2020 ident: ref_10 article-title: Online estimation of inertial parameter for lightweight electric vehicle using dual unscented Kalman filter approach publication-title: IET Intell. Transp. Syst. doi: 10.1049/iet-its.2019.0458 – volume: 2019 start-page: 1056269 year: 2019 ident: ref_8 article-title: Calculation algorithm of tire-road friction coefficient based on limited-memory adaptive extended Kalman filter publication-title: Math. Probl. Eng. doi: 10.1155/2019/1056269 – volume: 9 start-page: 16 year: 2012 ident: ref_29 article-title: Simulation analysis of tire dynamic based on “Magic Formula” publication-title: Mach. Electron. – volume: 176 start-page: 109162 year: 2022 ident: ref_18 article-title: Longitudinal-lateral-cooperative estimation algorithm for vehicle dynamics states based on adaptive square root cubature Kalman filter and similarity-principle publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2022.109162 – volume: 52 start-page: 1451 year: 2020 ident: ref_5 article-title: Estimation of sideslip angle and tire cornering stiffness using fuzzy adaptive robust cubature Kalman filter publication-title: IEEE Trans. Syst. Man Cybern. doi: 10.1109/TSMC.2020.3020562 – volume: 40 start-page: 1313 year: 2019 ident: ref_20 article-title: Performance Evaluation of HCKF and Its Application in Transfer Alignment publication-title: J. Astronaut. – volume: 16 start-page: 1501 year: 2014 ident: ref_33 article-title: A New Derivation of the Cubature Kalman Filters publication-title: Asian J. Control doi: 10.1002/asjc.926 – volume: 10 start-page: 327 year: 1967 ident: ref_19 article-title: Construction of fully symmetric numerical integration formulas publication-title: Numer. Mathmatik doi: 10.1007/BF02162032 – volume: 54 start-page: 1254 year: 2009 ident: ref_11 article-title: Cubature Kalman filters publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2009.2019800 – volume: 55 start-page: 80 year: 2019 ident: ref_3 article-title: Tire-road friction coefficient estimators for 4 WID electric vehicles on diverse road conditions publication-title: J. Mech. Eng. doi: 10.3901/JME.2019.22.080 – volume: 35 start-page: 79 year: 2021 ident: ref_22 article-title: Improved adaptive ADMCC-HCKF algorithm and application in SINS/CNS/GNSS integrated navigation publication-title: J. Electron. Meas. Instrum. – volume: 64 start-page: 456 year: 2015 ident: ref_16 article-title: Robust cubature Kalman filter target tracking algorithm based on genernalized M-estiamtion publication-title: Acta Phys. Sin. – volume: 54 start-page: 46 year: 2018 ident: ref_32 article-title: Adaptive generalized high-degree Cubature Kalman Filter based on target tracking publication-title: Comput. Eng. Appl.  | 
    
| SSID | ssj0000913810 | 
    
| Score | 2.3389964 | 
    
| Snippet | With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 10734 | 
    
| SubjectTerms | Accuracy AGHCKF Algorithms Electronics in navigation GHCKF joint estimation road adhesion coefficient estimator Simulation the exponential fading memory vehicle state estimator  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AA9IFpAmBa0B55CVv1YrzcHhJIoVVVEQBVFvVn7bECunbaJEP-eGT9CEKIXy7J2LXvnuTOz3wC8sNp5nSR5aCxFqzxXodQJD32c-8Rn3KWWAvqfZuL4jJ-cZ-dbMOvPwlBZZa8TG0Vta0Mx8kP07AWXlKX6sLgKqWsUZVf7Fhqqa61g3zcQY3dgOyFkrAFsj6ezL6frqAuhYMo4aivgU9zvU544RjbEXVDK_7JNDYT_v4p6B-6uqoX69VOV5YYlOnoA9zsXko1amu_Clqv2YGcDWHAPdjuRvWFvOlzptw_hxzc3pxmscTCZqiw7rZVlIzt3FDNjk9o1gBJoh9hJ_R2vU1QA7dlGNkZzZxneUGVI-JkQO9lkpRtcUPZRlZeqYqPyApdsOb98BGdH06-T47BrtRAatOjL0KfaZImNhyrhLpZSCClcHmuf2Fxk1vghl1YKI7VEk8_zocgy4xITZ5prKVT6GAZVXbknwBQaOBslOhJecYkOkMLp3hk-1GqofBzAu36RC9PhkFM7jLLA_QiRpNgkSQAv16MXLf7Gf8aNiV7rMYSa3Tyory-KTggLZ10aKaettxFXGepXSsLmTvFIR0bnAbwmahck2_hJRnVHFPDHCCWrGOVoyWPCDwjgoGeIohP6m-IPiwbwas0kt37209vfsw_3qL19Wzx4AIPl9co9QydoqZ93nP0bi0EGkQ priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLage4A9DDZAdAzkB65CWWPHcZwnlFWbpiEGQhTBU-TrWsiSqhcQ_HqOE7cqIBASL1EU2YktH3_nO_bJZ4QeGmWdojSLtPGrVY7JSCjKIkcyR13KbGL8gv6rc346Ymcf0lU24TykVUIoPmlBmkKQHQHMZgOSDEgOMzxL2GBq3IsvYTGJ8DwVwHg4u4q2eAp0vIe2Rudvio_-ULlV9S7hPYHw3m8LE7C69k0_uaJWsf93XN5G15b1VH77Kqtqw_Gc3EBq1eQu3-Tz4XKhDvX3X9Qc_6tPN9FOoKW46OxoF12x9R7a3hAr3EO7AQbm-GnQqn52C316b8e-Bm5JK5a1wW8baXBhxtZ_Bg8b24pUgG_DZ80ErscAKt3_kvgIXKjBcOOzTaLXXgUUD5eq1RrFL2V1KWtcVBfNbLIYX95Go5Pjd8PTKBzfEGlgCYvIJUqn1JBcUmaJEJwLbjOiHDUZT412ORNGcC2UABrBspynqbZUk1QxJbhM7qBe3dT2LsISnKaJqYq5k0wAqZJQ3VnNciVz6UgfPV-NZKmDtrk_YqMqIcbx415ujnsfPVqXnnaaHn8od-SNYl3GK3G3D5rZRRkmdmmNTWJplXEmZjIFzPYbu5mVLFaxVlkfPfEmVXq8gCZpGX57gI555a2yyIAdEK9J0EcHK6srA5DMSwhoORN-c7aPHq8t8a_N3v_XgvfQdQqUrUtNPEC9xWxp7wPFWqgHYRL9ABHPHuI priority: 102 providerName: Unpaywall  | 
    
| Title | Vehicle State and Road Adhesion Coefficient Joint Estimation Based on High-Order Cubature Kalman Algorithm | 
    
| URI | https://www.proquest.com/docview/2876489089 https://www.mdpi.com/2076-3417/13/19/10734/pdf?version=1695802064 https://doaj.org/article/ede30aebdfd04a588736457ea40b0cb7  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 13 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ : Directory of Open Access Journals [open access] customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Databases customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: 8FG dateStart: 20110101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOUAPiBYQgbLygadQRB6O4xyzq12qIpaqYlE5RX6yRWm2aneF-PfMJOkqCAEXLlESOZLjmfE3Y4-_AXhmtfM6SfLQWFqt8lyFUic89HHuE59xl1pa0P8wF4cLfnSanQ5KfVFOWEcP3A3cW2ddGimnrbcRVxnaBG2c5U7xSEdGt-fII1kMgql2Di5ioq7qMt1TjOtpPzhGdcNoJ-W_YFBL1f_7hLwLtzfNhfrxXdX1AHFm9-Bu7yqysuviHtxwzT7sDggE92GvN80r9qrnj359H759dkv6grWOJFONZScrZVlpl47Wxthk5VriCMQbdrQ6w-sUDb07w8jGCGuW4Q1lgIQfiZmTTTa65f9k71V9rhpW1l9Xl2fr5fkDWMymnyaHYV9SITSI3OvQp9pkiY0LlXAXSymEFC6PtU9sLjJrfMGllcJILRHaeV6ILDMuMXGmuZZCpQ9hp1k17hEwhUBmo0RHwisu0dFR-Ll3hhdaFcrHAby5HuTK9HzjVPairjDuIJFUQ5EE8Hzb-qLj2fhDuzHJa9uG2LHbF6gzVa8z1b90JoCXJO2KbBi7ZFR_FAF_jNiwqjJHxI6JJyCAg2uFqHrjvqowyBRc0oZpAC-2SvLXbj_-H91-Aneo2H2XSngAO-vLjXuKLtFaj-CmnL0bwa3xdH58MmptAZ8W8-Pyy0-rWQ3A | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jD2gNgAURjgB8aHUETiOInzMKG2dOrWraBpm_YW_LmCuqSsrab9c_xt3KVuKULsbS9RFNmW4zvfne98vyPktVHWKcayQBv0VjkuA6EYD1yUOeYSbmODDv2jfto95QfnyfkK-TXPhcFrlXOZWAtqU2n0kX8Eyz7lAqNUn0Y_A6wahdHVeQkN6UsrmN0aYswndvTszTUc4ca7-5-B3juM7XVO2t3AVxkINCizSeBipRNmolwybiMh0lSkNouUYyZLE6NdzoURqRZKgLbjWZ4mibZMR4niSqQyhnHvkTUe8xwOf2utTv_r8cLLg6ibIgpnN-7jOA8xLh0B28OpK-Z_6cK6ZMC_imGDrE_Lkby5lsPhkubbe0geeJOVNmc8tklWbLlFNpaADLfIphcRY_rO41i_f0R-nNkB9qC1QUtlaehxJQ1tmoFFHx1tV7YGsAC9Rw-q7_DsgMCZ5VLSFqhXQ-EFb6IEXxAhlLanqsYhpT05vJQlbQ4vgESTweVjcnoni_6ErJZVaZ8SKkGhmpCpMHWSCzC4JHR3VvNcyVy6qEE-zBe50B73HMtvDAs4_yBJimWSNMjOovVohvfxn3YtpNeiDaJ01x-qq4vCb_rCGhuH0irjTMhlAvIcg76ZlTxUoVZZg7xFahcoS2BKWvqUCPgxROUqmhlYDhHiFTTI9pwhCi9kxsWfLdEgbxZMcuu0n90-ziuy3j05OiwO9_u95-Q-A4NudnFxm6xOrqb2BRhgE_XSczkl3-56Y_0GWbpCyw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQF7QGyAKAzwA-NDKFriOInzgFDXrewDBkIM7S34cwV1SVlbTfvX-Ou4S9JShNjbXqIosi3Hd747351_B_DMauc151lgLHmrvFCB1FwEPso894lwsSWH_ofDdPdI7B8nx0vwa3YXhtIqZzKxFtS2MuQj30TLPhWSolSbvk2L-LTdfzv6GVAFKYq0zsppNCxy4C7O8fg2frO3jbTe4Ly_86W3G7QVBgKDimwS-FibhNsoV1y4SMo0lanLIu25zdLEGp8LaWVqpJao6USWp0liHDdRooWWqYpx3GtwPSMUd7ql3n839-8Q3qaMwibXPo7zkCLSETI8nrdi8ZcWrIsF_KsSVuDmtBypi3M1HC7ovP4duN0aq6zbcNcqLLlyDVYWIAzXYLUVDmP2skWwfnUXfnx1A-rBalOWqdKyz5WyrGsHjrxzrFe5GroCNR7br77jcwdFTXOLkm2hYrUMXygHJfhI2KCsN9U1Aik7UMNTVbLu8AQJMhmc3oOjK1ny-7BcVqV7AEyhKrUh12HqlZBoains7p0RuVa58lEHXs8WuTAt4jkV3hgWePIhkhSLJOnAxrz1qEH6-E-7LaLXvA3hc9cfqrOTot3uhbMuDpXT1ttQqAQlOYV7M6dEqEOjsw68IGoXJEVwSka1lyHwxwiPq-hmaDNEhFTQgfUZQxSteBkXfzZDB57PmeTSaT-8fJyncAO3U_F-7_DgEdziaMk1GYvrsDw5m7rHaHlN9JOaxRl8u-o99RuBT0Bl | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLage4A9DDZAdAzkB65CWWPHcZwnlFWbpiEGQhTBU-TrWsiSqhcQ_HqOE7cqIBASL1EU2YktH3_nO_bJZ4QeGmWdojSLtPGrVY7JSCjKIkcyR13KbGL8gv6rc346Ymcf0lU24TykVUIoPmlBmkKQHQHMZgOSDEgOMzxL2GBq3IsvYTGJ8DwVwHg4u4q2eAp0vIe2Rudvio_-ULlV9S7hPYHw3m8LE7C69k0_uaJWsf93XN5G15b1VH77Kqtqw_Gc3EBq1eQu3-Tz4XKhDvX3X9Qc_6tPN9FOoKW46OxoF12x9R7a3hAr3EO7AQbm-GnQqn52C316b8e-Bm5JK5a1wW8baXBhxtZ_Bg8b24pUgG_DZ80ErscAKt3_kvgIXKjBcOOzTaLXXgUUD5eq1RrFL2V1KWtcVBfNbLIYX95Go5Pjd8PTKBzfEGlgCYvIJUqn1JBcUmaJEJwLbjOiHDUZT412ORNGcC2UABrBspynqbZUk1QxJbhM7qBe3dT2LsISnKaJqYq5k0wAqZJQ3VnNciVz6UgfPV-NZKmDtrk_YqMqIcbx415ujnsfPVqXnnaaHn8od-SNYl3GK3G3D5rZRRkmdmmNTWJplXEmZjIFzPYbu5mVLFaxVlkfPfEmVXq8gCZpGX57gI555a2yyIAdEK9J0EcHK6srA5DMSwhoORN-c7aPHq8t8a_N3v_XgvfQdQqUrUtNPEC9xWxp7wPFWqgHYRL9ABHPHuI | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicle+State+and+Road+Adhesion+Coefficient+Joint+Estimation+Based+on+High-Order+Cubature+Kalman+Algorithm&rft.jtitle=Applied+sciences&rft.au=Lingxiao+Quan&rft.au=Ronglei+Chang&rft.au=Changhong+Guo&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=19&rft.spage=10734&rft_id=info:doi/10.3390%2Fapp131910734&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ede30aebdfd04a588736457ea40b0cb7 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |