Vehicle State and Road Adhesion Coefficient Joint Estimation Based on High-Order Cubature Kalman Algorithm

With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A nonlinear seven degrees of freedom vehicle estimation model and a tire estimation model are established. A vehicle driving state estimator and a...

Full description

Saved in:
Bibliographic Details
Published inApplied sciences Vol. 13; no. 19; p. 10734
Main Authors Quan, Lingxiao, Chang, Ronglei, Guo, Changhong
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text
ISSN2076-3417
2076-3417
DOI10.3390/app131910734

Cover

Abstract With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A nonlinear seven degrees of freedom vehicle estimation model and a tire estimation model are established. A vehicle driving state estimator and a road adhesion coefficient estimator based on the generalized high-order cubature Kalman filter (GHCKF) algorithm are designed. The vehicle state estimator combines the vehicle model and the tire model to calculate the vehicle state parameters, provides the state parameters for the road adhesion coefficient estimator, and realizes the real-time estimation of the road adhesion coefficient. The exponential fading memory adaptive algorithm is used to update the measurement noise variance, and we upgrade the GHCKF to the adaptive generalized high-order cubature Kalman filter (AGHCKF), which estimates the vehicle state and road adhesion coefficient. The typical working conditions using the double GHCKF/AGHCKF estimation algorithm were simulated and analyzed. Then, high-and low-speed driving experiments based on typical working conditions were carried out. An integrated navigation system (INS), global positioning system (GPS), and real-time kinematic positioning (RTK) were used to collect the real-time data of the vehicle, and compare them with the estimated values of the joint estimator, to verify the feasibility of the vehicle-state–road-adhesion-coefficient joint estimator. We compared a high-order GHCKF algorithm, high-order improved AGHCKF algorithm, and a cubature Kalman filter (CKF) algorithm, and the simulation and experimental results show that the joint estimator using the CKF, GHCKF, and AGHCKF algorithms can realize the real-time estimation of the vehicle state and the road adhesion coefficient. The AGHCKF algorithm shows the best effectiveness and robustness of the three algorithms.
AbstractList With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A nonlinear seven degrees of freedom vehicle estimation model and a tire estimation model are established. A vehicle driving state estimator and a road adhesion coefficient estimator based on the generalized high-order cubature Kalman filter (GHCKF) algorithm are designed. The vehicle state estimator combines the vehicle model and the tire model to calculate the vehicle state parameters, provides the state parameters for the road adhesion coefficient estimator, and realizes the real-time estimation of the road adhesion coefficient. The exponential fading memory adaptive algorithm is used to update the measurement noise variance, and we upgrade the GHCKF to the adaptive generalized high-order cubature Kalman filter (AGHCKF), which estimates the vehicle state and road adhesion coefficient. The typical working conditions using the double GHCKF/AGHCKF estimation algorithm were simulated and analyzed. Then, high-and low-speed driving experiments based on typical working conditions were carried out. An integrated navigation system (INS), global positioning system (GPS), and real-time kinematic positioning (RTK) were used to collect the real-time data of the vehicle, and compare them with the estimated values of the joint estimator, to verify the feasibility of the vehicle-state–road-adhesion-coefficient joint estimator. We compared a high-order GHCKF algorithm, high-order improved AGHCKF algorithm, and a cubature Kalman filter (CKF) algorithm, and the simulation and experimental results show that the joint estimator using the CKF, GHCKF, and AGHCKF algorithms can realize the real-time estimation of the vehicle state and the road adhesion coefficient. The AGHCKF algorithm shows the best effectiveness and robustness of the three algorithms.
Audience Academic
Author Guo, Changhong
Chang, Ronglei
Quan, Lingxiao
Author_xml – sequence: 1
  givenname: Lingxiao
  surname: Quan
  fullname: Quan, Lingxiao
– sequence: 2
  givenname: Ronglei
  surname: Chang
  fullname: Chang, Ronglei
– sequence: 3
  givenname: Changhong
  surname: Guo
  fullname: Guo, Changhong
BookMark eNqFUcFq3DAQNSWFpmlu-QBBr3UqWbIkH7dL0iQNBJo0VzOWRrtavJYry5T8fbVxCaEUKoE0jN48vZn3vjgawoBFccboOecN_QzjyDhrGFVcvCmOK6pkyQVTR6_id8XpNO1oXg3jmtHjYveIW296JPcJEhIYLPkewJKV3eLkw0DWAZ3zxuOQyE3w-byYkt9DOjx-gQktycGV32zLu2gxkvXcQZojkm_Q72Egq34Tok_b_YfirYN-wtM_90nx4_LiYX1V3t59vV6vbksjqEyl452pK8saqAQyraXUEhXrXGWVrK1xjdBWS6M7XQkmVCPr2mBlWN2JTkvgJ8X1wmsD7NoxZrHxqQ3g2-dEiJsWYjo03aJFTgE76ywVUGutuBS1QhC0o6ZTmatcuOZhhKdf0PcvhIy2h7m3r-ee8R8X_BjDzxmn1O7CHIfcbltpJYVuqG4y6nxBbSCL8IMLKYLJ2-Lem2yr8zm_Uoplj6r6QPtpKTAxTFNE9z8V1V9w49OzY_kf3_-76DdKW7Hx
CitedBy_id crossref_primary_10_3390_s23218960
crossref_primary_10_3390_app14156803
crossref_primary_10_3390_electronics14020383
crossref_primary_10_1177_01423312241274008
crossref_primary_10_3390_sym16070792
crossref_primary_10_4271_10_09_03_0022
crossref_primary_10_1109_ACCESS_2024_3388419
crossref_primary_10_1177_00202940241293598
Cites_doi 10.1016/j.ast.2019.105441
10.3390/e25030453
10.3901/JME.2019.22.093
10.1016/j.proeng.2017.04.383
10.3901/JME.2021.20.181
10.1016/j.dt.2020.06.006
10.3901/JME.2019.22.103
10.1109/TSP.2010.2056923
10.1109/TIE.2017.2774771
10.1049/iet-its.2019.0458
10.1155/2019/1056269
10.1016/j.ymssp.2022.109162
10.1109/TSMC.2020.3020562
10.1002/asjc.926
10.1007/BF02162032
10.1109/TAC.2009.2019800
10.3901/JME.2019.22.080
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/app131910734
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Open Access Full Text
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ : Directory of Open Access Journals [open access]
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Databases
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_ede30aebdfd04a588736457ea40b0cb7
10.3390/app131910734
A771810254
10_3390_app131910734
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-f3bc52d19a24e1886686e71bf2d765dcf948d86c8b8241479655ce2c15b4b86a3
IEDL.DBID DOA
ISSN 2076-3417
IngestDate Tue Oct 14 19:03:35 EDT 2025
Sun Oct 26 03:04:36 EDT 2025
Mon Jun 30 03:41:02 EDT 2025
Mon Oct 20 17:18:41 EDT 2025
Thu Oct 16 04:37:21 EDT 2025
Thu Apr 24 22:56:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-f3bc52d19a24e1886686e71bf2d765dcf948d86c8b8241479655ce2c15b4b86a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/ede30aebdfd04a588736457ea40b0cb7
PQID 2876489089
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_ede30aebdfd04a588736457ea40b0cb7
unpaywall_primary_10_3390_app131910734
proquest_journals_2876489089
gale_infotracacademiconefile_A771810254
crossref_primary_10_3390_app131910734
crossref_citationtrail_10_3390_app131910734
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xing (ref_14) 2020; 52
Wang (ref_5) 2020; 52
Yan (ref_26) 2020; 10
Zhang (ref_30) 2021; 46
Liu (ref_25) 2015; 51
Wu (ref_16) 2015; 64
Zhang (ref_15) 2021; 57
Zhang (ref_21) 2017; 53
ref_17
Qiu (ref_27) 2021; 41
Zhang (ref_33) 2014; 16
Huang (ref_8) 2019; 2019
Peng (ref_32) 2018; 54
Ping (ref_3) 2019; 55
Cheng (ref_6) 2017; 65
Ge (ref_36) 2018; 43
(ref_28) 2017; 187
Li (ref_22) 2021; 35
Zhu (ref_2) 2016; 38
Zheng (ref_29) 2012; 9
Cha (ref_1) 2023; 45
Zhang (ref_4) 2022; 18
Jin (ref_9) 2019; 55
Chen (ref_18) 2022; 176
Li (ref_7) 2022; 54
Hao (ref_24) 2019; 34
Liu (ref_34) 2019; 95
Arasaratnam (ref_11) 2009; 54
Wang (ref_13) 2019; 55
Mcnamee (ref_19) 1967; 10
Yang (ref_35) 2021; 22
Su (ref_20) 2019; 40
Dugoff (ref_31) 1970; 79
Arasaratnam (ref_12) 2010; 58
Jin (ref_10) 2020; 14
Qin (ref_23) 2018; 3
References_xml – volume: 3
  start-page: 88
  year: 2018
  ident: ref_23
  article-title: Huber-based robust generalized high-degree cubature Kalman filter
  publication-title: Control Decis.
– volume: 95
  start-page: 105441
  year: 2019
  ident: ref_34
  article-title: Maximum correntropy generalized high-degree cubature Kalman filter with application to the attitude determination system of missile
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2019.105441
– volume: 34
  start-page: 2105
  year: 2019
  ident: ref_24
  article-title: Reduced high-degree strong tracking cubature Kalman filter and its application in inte-grated navigation system
  publication-title: Control Decis.
– ident: ref_17
  doi: 10.3390/e25030453
– volume: 55
  start-page: 93
  year: 2019
  ident: ref_9
  article-title: Combined state and parameter observation of distributed drive electric vehicle via dual unscented Kalman filter
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2019.22.093
– volume: 187
  start-page: 335
  year: 2017
  ident: ref_28
  article-title: Magic formula tyre model application for a tyre-ice interaction
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2017.04.383
– volume: 79
  start-page: 1219
  year: 1970
  ident: ref_31
  article-title: An analysis of tire action properties and their influence on vehicle dynamic performance
  publication-title: SAE Trans.
– volume: 45
  start-page: 1010
  year: 2023
  ident: ref_1
  article-title: Vehicle trajectory tracking control based on road surface attachment coefficient estimation
  publication-title: Automot. Eng.
– volume: 57
  start-page: 181
  year: 2021
  ident: ref_15
  article-title: Robust adaptive SCKF-based target state tracking for intelligent vehicles
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2021.20.181
– volume: 22
  start-page: 42
  year: 2021
  ident: ref_35
  article-title: Adaptive Cubature Kalman Filter Based on Unknown Noise Covariance
  publication-title: J. Air Force Eng. Univ.
– volume: 18
  start-page: 119
  year: 2022
  ident: ref_4
  article-title: Driving force coordinated control of an 8x8 in-wheel motor drive vehicle with tire-road friction coefficient identification
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2020.06.006
– volume: 55
  start-page: 103
  year: 2019
  ident: ref_13
  article-title: Tire lateral forces and sideslip angle estimation for distributed drive electric vehicle using noise adaptive cubature Kalman filter
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2019.22.103
– volume: 10
  start-page: 200
  year: 2020
  ident: ref_26
  article-title: The linear three-degree-of-freedom vehicle model based on Simulink simula-tion
  publication-title: Intell. Comput. Appl.
– volume: 52
  start-page: 445
  year: 2020
  ident: ref_14
  article-title: Vehicle state estimation based on adaptive volumetric particle filtering
  publication-title: J. Nanjing Univ. Aeronaut. Astronaut.
– volume: 46
  start-page: 1523
  year: 2021
  ident: ref_30
  article-title: Estimation of vehicle sideslip angle based on Dugoff tire model
  publication-title: J. Guangxi Univ.
– volume: 43
  start-page: 3792
  year: 2018
  ident: ref_36
  article-title: Real-time Reduction of Magnetic Noise Associated with Ocean Waves via Sage-Husa lgorithm for Towed Overhauser Marine Geomagnetic Sensor
  publication-title: Earth Sci.
– volume: 53
  start-page: 263
  year: 2017
  ident: ref_21
  article-title: High-degree cubature Kalman filter with colored measurement niose and its application
  publication-title: Comput. Eng. Appl.
– volume: 51
  start-page: 207
  year: 2015
  ident: ref_25
  article-title: A more general class of cubature Kalman filters
  publication-title: Comput. Eng. Appl.
– volume: 41
  start-page: 607
  year: 2021
  ident: ref_27
  article-title: Calculation Method of Tire Longitudinal Slip Characteristic Parameters Based on Magic Formula
  publication-title: Tire Ind.
– volume: 58
  start-page: 4977
  year: 2010
  ident: ref_12
  article-title: Cubature Kalman filtering for continuous-discrete systems: Theory and simulations
  publication-title: IEEE T Signal Process
  doi: 10.1109/TSP.2010.2056923
– volume: 38
  start-page: 446
  year: 2016
  ident: ref_2
  article-title: Vehicle longitudinal collision warning strategy based on road adhesive coefficient estimation
  publication-title: Automot. Eng.
– volume: 65
  start-page: 5754
  year: 2017
  ident: ref_6
  article-title: Fusion algorithm design based on adaptive SCKF and integral correction for side-slip angle observation
  publication-title: IEEE Trans. Industr. Electr.
  doi: 10.1109/TIE.2017.2774771
– volume: 54
  start-page: 1853
  year: 2022
  ident: ref_7
  article-title: Dynamic joint estimation of vehicle sideslip angle and road adhesion coefficient based on DRBF-EKF algorithm
  publication-title: Chin. J. Theor. Appl. Mech.
– volume: 14
  start-page: 412
  year: 2020
  ident: ref_10
  article-title: Online estimation of inertial parameter for lightweight electric vehicle using dual unscented Kalman filter approach
  publication-title: IET Intell. Transp. Syst.
  doi: 10.1049/iet-its.2019.0458
– volume: 2019
  start-page: 1056269
  year: 2019
  ident: ref_8
  article-title: Calculation algorithm of tire-road friction coefficient based on limited-memory adaptive extended Kalman filter
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2019/1056269
– volume: 9
  start-page: 16
  year: 2012
  ident: ref_29
  article-title: Simulation analysis of tire dynamic based on “Magic Formula”
  publication-title: Mach. Electron.
– volume: 176
  start-page: 109162
  year: 2022
  ident: ref_18
  article-title: Longitudinal-lateral-cooperative estimation algorithm for vehicle dynamics states based on adaptive square root cubature Kalman filter and similarity-principle
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2022.109162
– volume: 52
  start-page: 1451
  year: 2020
  ident: ref_5
  article-title: Estimation of sideslip angle and tire cornering stiffness using fuzzy adaptive robust cubature Kalman filter
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2020.3020562
– volume: 40
  start-page: 1313
  year: 2019
  ident: ref_20
  article-title: Performance Evaluation of HCKF and Its Application in Transfer Alignment
  publication-title: J. Astronaut.
– volume: 16
  start-page: 1501
  year: 2014
  ident: ref_33
  article-title: A New Derivation of the Cubature Kalman Filters
  publication-title: Asian J. Control
  doi: 10.1002/asjc.926
– volume: 10
  start-page: 327
  year: 1967
  ident: ref_19
  article-title: Construction of fully symmetric numerical integration formulas
  publication-title: Numer. Mathmatik
  doi: 10.1007/BF02162032
– volume: 54
  start-page: 1254
  year: 2009
  ident: ref_11
  article-title: Cubature Kalman filters
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2009.2019800
– volume: 55
  start-page: 80
  year: 2019
  ident: ref_3
  article-title: Tire-road friction coefficient estimators for 4 WID electric vehicles on diverse road conditions
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2019.22.080
– volume: 35
  start-page: 79
  year: 2021
  ident: ref_22
  article-title: Improved adaptive ADMCC-HCKF algorithm and application in SINS/CNS/GNSS integrated navigation
  publication-title: J. Electron. Meas. Instrum.
– volume: 64
  start-page: 456
  year: 2015
  ident: ref_16
  article-title: Robust cubature Kalman filter target tracking algorithm based on genernalized M-estiamtion
  publication-title: Acta Phys. Sin.
– volume: 54
  start-page: 46
  year: 2018
  ident: ref_32
  article-title: Adaptive generalized high-degree Cubature Kalman Filter based on target tracking
  publication-title: Comput. Eng. Appl.
SSID ssj0000913810
Score 2.3389964
Snippet With regard to the rear-drive in-wheel motor vehicle, this paper studies the joint estimation method for the vehicle state and road adhesion coefficient. A...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 10734
SubjectTerms Accuracy
AGHCKF
Algorithms
Electronics in navigation
GHCKF
joint estimation
road adhesion coefficient estimator
Simulation
the exponential fading memory
vehicle state estimator
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9AA9IFpAmBa0B55CVv1YrzcHhJIoVVVEQBVFvVn7bECunbaJEP-eGT9CEKIXy7J2LXvnuTOz3wC8sNp5nSR5aCxFqzxXodQJD32c-8Rn3KWWAvqfZuL4jJ-cZ-dbMOvPwlBZZa8TG0Vta0Mx8kP07AWXlKX6sLgKqWsUZVf7Fhqqa61g3zcQY3dgOyFkrAFsj6ezL6frqAuhYMo4aivgU9zvU544RjbEXVDK_7JNDYT_v4p6B-6uqoX69VOV5YYlOnoA9zsXko1amu_Clqv2YGcDWHAPdjuRvWFvOlzptw_hxzc3pxmscTCZqiw7rZVlIzt3FDNjk9o1gBJoh9hJ_R2vU1QA7dlGNkZzZxneUGVI-JkQO9lkpRtcUPZRlZeqYqPyApdsOb98BGdH06-T47BrtRAatOjL0KfaZImNhyrhLpZSCClcHmuf2Fxk1vghl1YKI7VEk8_zocgy4xITZ5prKVT6GAZVXbknwBQaOBslOhJecYkOkMLp3hk-1GqofBzAu36RC9PhkFM7jLLA_QiRpNgkSQAv16MXLf7Gf8aNiV7rMYSa3Tyory-KTggLZ10aKaettxFXGepXSsLmTvFIR0bnAbwmahck2_hJRnVHFPDHCCWrGOVoyWPCDwjgoGeIohP6m-IPiwbwas0kt37209vfsw_3qL19Wzx4AIPl9co9QydoqZ93nP0bi0EGkQ
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLage4A9DDZAdAzkB65CWWPHcZwnlFWbpiEGQhTBU-TrWsiSqhcQ_HqOE7cqIBASL1EU2YktH3_nO_bJZ4QeGmWdojSLtPGrVY7JSCjKIkcyR13KbGL8gv6rc346Ymcf0lU24TykVUIoPmlBmkKQHQHMZgOSDEgOMzxL2GBq3IsvYTGJ8DwVwHg4u4q2eAp0vIe2Rudvio_-ULlV9S7hPYHw3m8LE7C69k0_uaJWsf93XN5G15b1VH77Kqtqw_Gc3EBq1eQu3-Tz4XKhDvX3X9Qc_6tPN9FOoKW46OxoF12x9R7a3hAr3EO7AQbm-GnQqn52C316b8e-Bm5JK5a1wW8baXBhxtZ_Bg8b24pUgG_DZ80ErscAKt3_kvgIXKjBcOOzTaLXXgUUD5eq1RrFL2V1KWtcVBfNbLIYX95Go5Pjd8PTKBzfEGlgCYvIJUqn1JBcUmaJEJwLbjOiHDUZT412ORNGcC2UABrBspynqbZUk1QxJbhM7qBe3dT2LsISnKaJqYq5k0wAqZJQ3VnNciVz6UgfPV-NZKmDtrk_YqMqIcbx415ujnsfPVqXnnaaHn8od-SNYl3GK3G3D5rZRRkmdmmNTWJplXEmZjIFzPYbu5mVLFaxVlkfPfEmVXq8gCZpGX57gI555a2yyIAdEK9J0EcHK6srA5DMSwhoORN-c7aPHq8t8a_N3v_XgvfQdQqUrUtNPEC9xWxp7wPFWqgHYRL9ABHPHuI
  priority: 102
  providerName: Unpaywall
Title Vehicle State and Road Adhesion Coefficient Joint Estimation Based on High-Order Cubature Kalman Algorithm
URI https://www.proquest.com/docview/2876489089
https://www.mdpi.com/2076-3417/13/19/10734/pdf?version=1695802064
https://doaj.org/article/ede30aebdfd04a588736457ea40b0cb7
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ : Directory of Open Access Journals [open access]
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Databases
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: 8FG
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BOUAPiBYQgbLygadQRB6O4xyzq12qIpaqYlE5RX6yRWm2aneF-PfMJOkqCAEXLlESOZLjmfE3Y4-_AXhmtfM6SfLQWFqt8lyFUic89HHuE59xl1pa0P8wF4cLfnSanQ5KfVFOWEcP3A3cW2ddGimnrbcRVxnaBG2c5U7xSEdGt-fII1kMgql2Di5ioq7qMt1TjOtpPzhGdcNoJ-W_YFBL1f_7hLwLtzfNhfrxXdX1AHFm9-Bu7yqysuviHtxwzT7sDggE92GvN80r9qrnj359H759dkv6grWOJFONZScrZVlpl47Wxthk5VriCMQbdrQ6w-sUDb07w8jGCGuW4Q1lgIQfiZmTTTa65f9k71V9rhpW1l9Xl2fr5fkDWMymnyaHYV9SITSI3OvQp9pkiY0LlXAXSymEFC6PtU9sLjJrfMGllcJILRHaeV6ILDMuMXGmuZZCpQ9hp1k17hEwhUBmo0RHwisu0dFR-Ll3hhdaFcrHAby5HuTK9HzjVPairjDuIJFUQ5EE8Hzb-qLj2fhDuzHJa9uG2LHbF6gzVa8z1b90JoCXJO2KbBi7ZFR_FAF_jNiwqjJHxI6JJyCAg2uFqHrjvqowyBRc0oZpAC-2SvLXbj_-H91-Aneo2H2XSngAO-vLjXuKLtFaj-CmnL0bwa3xdH58MmptAZ8W8-Pyy0-rWQ3A
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfG9jD2gNgAURjgB8aHUETiOInzMKG2dOrWraBpm_YW_LmCuqSsrab9c_xt3KVuKULsbS9RFNmW4zvfne98vyPktVHWKcayQBv0VjkuA6EYD1yUOeYSbmODDv2jfto95QfnyfkK-TXPhcFrlXOZWAtqU2n0kX8Eyz7lAqNUn0Y_A6wahdHVeQkN6UsrmN0aYswndvTszTUc4ca7-5-B3juM7XVO2t3AVxkINCizSeBipRNmolwybiMh0lSkNouUYyZLE6NdzoURqRZKgLbjWZ4mibZMR4niSqQyhnHvkTUe8xwOf2utTv_r8cLLg6ibIgpnN-7jOA8xLh0B28OpK-Z_6cK6ZMC_imGDrE_Lkby5lsPhkubbe0geeJOVNmc8tklWbLlFNpaADLfIphcRY_rO41i_f0R-nNkB9qC1QUtlaehxJQ1tmoFFHx1tV7YGsAC9Rw-q7_DsgMCZ5VLSFqhXQ-EFb6IEXxAhlLanqsYhpT05vJQlbQ4vgESTweVjcnoni_6ErJZVaZ8SKkGhmpCpMHWSCzC4JHR3VvNcyVy6qEE-zBe50B73HMtvDAs4_yBJimWSNMjOovVohvfxn3YtpNeiDaJ01x-qq4vCb_rCGhuH0irjTMhlAvIcg76ZlTxUoVZZg7xFahcoS2BKWvqUCPgxROUqmhlYDhHiFTTI9pwhCi9kxsWfLdEgbxZMcuu0n90-ziuy3j05OiwO9_u95-Q-A4NudnFxm6xOrqb2BRhgE_XSczkl3-56Y_0GWbpCyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NIQF7QGyAKAzwA-NDKFriOInzgFDXrewDBkIM7S34cwV1SVlbTfvX-Ou4S9JShNjbXqIosi3Hd747351_B_DMauc151lgLHmrvFCB1FwEPso894lwsSWH_ofDdPdI7B8nx0vwa3YXhtIqZzKxFtS2MuQj30TLPhWSolSbvk2L-LTdfzv6GVAFKYq0zsppNCxy4C7O8fg2frO3jbTe4Ly_86W3G7QVBgKDimwS-FibhNsoV1y4SMo0lanLIu25zdLEGp8LaWVqpJao6USWp0liHDdRooWWqYpx3GtwPSMUd7ql3n839-8Q3qaMwibXPo7zkCLSETI8nrdi8ZcWrIsF_KsSVuDmtBypi3M1HC7ovP4duN0aq6zbcNcqLLlyDVYWIAzXYLUVDmP2skWwfnUXfnx1A-rBalOWqdKyz5WyrGsHjrxzrFe5GroCNR7br77jcwdFTXOLkm2hYrUMXygHJfhI2KCsN9U1Aik7UMNTVbLu8AQJMhmc3oOjK1ny-7BcVqV7AEyhKrUh12HqlZBoains7p0RuVa58lEHXs8WuTAt4jkV3hgWePIhkhSLJOnAxrz1qEH6-E-7LaLXvA3hc9cfqrOTot3uhbMuDpXT1ttQqAQlOYV7M6dEqEOjsw68IGoXJEVwSka1lyHwxwiPq-hmaDNEhFTQgfUZQxSteBkXfzZDB57PmeTSaT-8fJyncAO3U_F-7_DgEdziaMk1GYvrsDw5m7rHaHlN9JOaxRl8u-o99RuBT0Bl
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bb9MwFLage4A9DDZAdAzkB65CWWPHcZwnlFWbpiEGQhTBU-TrWsiSqhcQ_HqOE7cqIBASL1EU2YktH3_nO_bJZ4QeGmWdojSLtPGrVY7JSCjKIkcyR13KbGL8gv6rc346Ymcf0lU24TykVUIoPmlBmkKQHQHMZgOSDEgOMzxL2GBq3IsvYTGJ8DwVwHg4u4q2eAp0vIe2Rudvio_-ULlV9S7hPYHw3m8LE7C69k0_uaJWsf93XN5G15b1VH77Kqtqw_Gc3EBq1eQu3-Tz4XKhDvX3X9Qc_6tPN9FOoKW46OxoF12x9R7a3hAr3EO7AQbm-GnQqn52C316b8e-Bm5JK5a1wW8baXBhxtZ_Bg8b24pUgG_DZ80ErscAKt3_kvgIXKjBcOOzTaLXXgUUD5eq1RrFL2V1KWtcVBfNbLIYX95Go5Pjd8PTKBzfEGlgCYvIJUqn1JBcUmaJEJwLbjOiHDUZT412ORNGcC2UABrBspynqbZUk1QxJbhM7qBe3dT2LsISnKaJqYq5k0wAqZJQ3VnNciVz6UgfPV-NZKmDtrk_YqMqIcbx415ujnsfPVqXnnaaHn8od-SNYl3GK3G3D5rZRRkmdmmNTWJplXEmZjIFzPYbu5mVLFaxVlkfPfEmVXq8gCZpGX57gI555a2yyIAdEK9J0EcHK6srA5DMSwhoORN-c7aPHq8t8a_N3v_XgvfQdQqUrUtNPEC9xWxp7wPFWqgHYRL9ABHPHuI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicle+State+and+Road+Adhesion+Coefficient+Joint+Estimation+Based+on+High-Order+Cubature+Kalman+Algorithm&rft.jtitle=Applied+sciences&rft.au=Lingxiao+Quan&rft.au=Ronglei+Chang&rft.au=Changhong+Guo&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=13&rft.issue=19&rft.spage=10734&rft_id=info:doi/10.3390%2Fapp131910734&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ede30aebdfd04a588736457ea40b0cb7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon