Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies

Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic and health impact worldwide; it is essential to develop new mathematical models to study not only the dynamics o...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 7; pp. 15499 - 15535
Main Authors Hanif, Asma, Butt, Azhar Iqbal Kashif
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023791

Cover

Abstract Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic and health impact worldwide; it is essential to develop new mathematical models to study not only the dynamics of the disease but also to suggest cost-effective mechanisms to control disease. In this paper, we design modified facts about the dynamics of this disease more realistically by formulating a new basic $ S_hE_hI_hR_h $ host population and $ S_vI_v $ vector population integer order model, later converting it into a fractional-order model with the help of the well-known Atangana-Baleanu derivative. In this design, we introduce two more compartments, such as the treatment compartment $ T_h $, and the protected traveler compartment $ P_h $ in the host population to produce $ S_hE_hI_hT_hR_hP_h $. We present some observational results by investigating the model for the existence of a unique solution as well as by proving the positivity and boundedness of the solution. We compute reproduction number $ \mathcal{R}_{0} $ by using a next-generation matrix method to estimate the contagious behavior of the infected humans by the disease. In addition, we prove that disease free and endemic equilibrium points are locally and globally stable with restriction to reproduction number $ \mathcal{R}_{0} $. The second goal of this article is to formulate an optimal control problem to study the effect of the control strategy. We implement the Toufik-Atangana scheme for the first time to solve both of the state and adjoint fractional differential equations with the ABC derivative operator. The numerical results show that the fractional order and the different constant treatment rates affect the dynamics of the disease. With an increase in the fractional order and the treatment rate, exposed and infected humans, as well as the infected mosquitoes, decrease. However, the optimal control analysis reveals that the implemented optimal control strategy is very effective for disease control.
AbstractList Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic and health impact worldwide; it is essential to develop new mathematical models to study not only the dynamics of the disease but also to suggest cost-effective mechanisms to control disease. In this paper, we design modified facts about the dynamics of this disease more realistically by formulating a new basic $ S_hE_hI_hR_h $ host population and $ S_vI_v $ vector population integer order model, later converting it into a fractional-order model with the help of the well-known Atangana-Baleanu derivative. In this design, we introduce two more compartments, such as the treatment compartment $ T_h $, and the protected traveler compartment $ P_h $ in the host population to produce $ S_hE_hI_hT_hR_hP_h $. We present some observational results by investigating the model for the existence of a unique solution as well as by proving the positivity and boundedness of the solution. We compute reproduction number $ \mathcal{R}_{0} $ by using a next-generation matrix method to estimate the contagious behavior of the infected humans by the disease. In addition, we prove that disease free and endemic equilibrium points are locally and globally stable with restriction to reproduction number $ \mathcal{R}_{0} $. The second goal of this article is to formulate an optimal control problem to study the effect of the control strategy. We implement the Toufik-Atangana scheme for the first time to solve both of the state and adjoint fractional differential equations with the ABC derivative operator. The numerical results show that the fractional order and the different constant treatment rates affect the dynamics of the disease. With an increase in the fractional order and the treatment rate, exposed and infected humans, as well as the infected mosquitoes, decrease. However, the optimal control analysis reveals that the implemented optimal control strategy is very effective for disease control.
Author Hanif, Asma
Butt, Azhar Iqbal Kashif
Author_xml – sequence: 1
  givenname: Asma
  surname: Hanif
  fullname: Hanif, Asma
  organization: Department of Mathematics, Government College University, Lahore 54000, Pakistan
– sequence: 2
  givenname: Azhar Iqbal Kashif
  surname: Butt
  fullname: Butt, Azhar Iqbal Kashif
  organization: Department of Mathematics, Government College University, Lahore 54000, Pakistan, Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
BookMark eNqFkNtKAzEQhoMoWGvvfIB9ALfmtKfLWjwUCt7U62U2mbQp26RkU0vf3q0tIiLIXMwwfPMzfDfk0nmHhNwxOhaVkA8biKsxp1wUFbsgAy4LkeZVWV7-mK_JqOvWlFLOuOSFHJDFJIJbgoP0EVoEt0tMABWtd9Am-uBgY1WXeJNodMsdJgY_MCR7G1eJ30a76SnlXQy-TboYIOLSYndLrgy0HY7OfUjen58W09d0_vYym07mqZI0j6nhpa6UNIyagqHqK2NZjhrLJteNKgSjMkfVFCXFBmXDDYLRVLMMUKIQYkhmp1ztYV1vQ_9OONQebP218GFZQ4hWtVjzTNIStMx41UhaFCBzJlkjK65LyQXts9JT1s5t4bCHtv0OZLQ-Gq6Phuuz4Z6_P_Eq-K4LaP7D-S9c2QhHz7012_599Al_I5Gb
CitedBy_id crossref_primary_10_1002_oca_3093
crossref_primary_10_3390_math11224600
crossref_primary_10_1016_j_sciaf_2024_e02500
crossref_primary_10_1007_s11071_023_09234_8
crossref_primary_10_3390_fractalfract7070515
crossref_primary_10_1038_s41598_024_80218_3
crossref_primary_10_1016_j_padiff_2024_101055
crossref_primary_10_1007_s40435_024_01501_9
crossref_primary_10_1016_j_rico_2024_100406
crossref_primary_10_1080_07391102_2023_2248262
crossref_primary_10_3390_fractalfract8010018
crossref_primary_10_1002_hsr2_70276
crossref_primary_10_1002_mma_9482
crossref_primary_10_1016_j_cam_2024_116256
crossref_primary_10_1007_s40808_024_02232_8
crossref_primary_10_3934_math_20241565
crossref_primary_10_1016_j_rinp_2023_106929
crossref_primary_10_1016_j_heliyon_2024_e33822
crossref_primary_10_1007_s40808_024_02278_8
crossref_primary_10_3390_sym15091773
crossref_primary_10_1007_s10958_025_07608_4
crossref_primary_10_3934_math_2024251
crossref_primary_10_1007_s11071_024_09932_x
crossref_primary_10_1155_2024_3855146
crossref_primary_10_3390_math11091978
crossref_primary_10_1140_epjp_s13360_023_04690_y
Cites_doi 10.2298/TSCI160111018A
10.1016/j.chaos.2016.02.012
10.4236/am.2013.48A020
10.1103/PhysRevE.95.022409
10.1016/j.chaos.2018.09.039
10.1086/315215
10.1016/j.aej.2021.04.070
10.1177/01423312221085049
10.1002/mma.2928
10.21236/ADA031020
10.1016/j.physa.2022.127809
10.1080/17513758.2011.628700
10.1140/epjp/s13360-021-01360-9
10.1140/epjp/s13360-020-00683-3
10.1016/j.rinp.2021.104919
10.3934/dcdss.2022154
10.1016/j.health.2022.100114
10.3934/dcdss.2020055
10.12785/pfda/010201
10.1201/9781420011418
10.1155/2022/7036825
10.3390/e23050610
10.3390/sym15020380
10.12785/pfda/010202
10.1016/j.cnsns.2014.12.013
10.1098/rsta.2010.0278
10.1016/j.chaos.2018.09.001
10.1007/978-3-642-14574-2
10.1515/em-2020-0046
10.1002/mma.3811
10.1007/s11071-012-0475-2
10.1016/j.aej.2020.02.033
10.1155/2022/6502598
10.1016/j.chaos.2022.111821
10.3934/math.2023382
10.1016/j.chaos.2019.109536
10.1016/j.aej.2020.02.022
10.3390/e21030303
10.3390/fractalfract7020189
10.1016/j.chaos.2019.109478
10.1016/j.cnsns.2017.12.003
10.1016/j.scitotenv.2017.11.326
10.1016/j.rinp.2022.105189
10.1002/oca.2483
ContentType Journal Article
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2023791
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 15535
ExternalDocumentID oai_doaj_org_article_25408ad4529b4077a46141b492d84230
10.3934/math.2023791
10_3934_math_2023791
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-f28d9c4f10f71ecece5156ede8b6dbc731046ecb780ebe4b2feafd0d15ae4e333
IEDL.DBID UNPAY
ISSN 2473-6988
IngestDate Wed Aug 27 01:29:44 EDT 2025
Mon Sep 15 10:03:22 EDT 2025
Thu Apr 24 22:52:27 EDT 2025
Tue Jul 01 03:57:02 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-f28d9c4f10f71ecece5156ede8b6dbc731046ecb780ebe4b2feafd0d15ae4e333
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2023791
PageCount 37
ParticipantIDs doaj_primary_oai_doaj_org_article_25408ad4529b4077a46141b492d84230
unpaywall_primary_10_3934_math_2023791
crossref_primary_10_3934_math_2023791
crossref_citationtrail_10_3934_math_2023791
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2023
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2023791-37
key-10.3934/math.2023791-38
key-10.3934/math.2023791-39
key-10.3934/math.2023791-40
key-10.3934/math.2023791-41
key-10.3934/math.2023791-42
key-10.3934/math.2023791-43
key-10.3934/math.2023791-44
key-10.3934/math.2023791-45
key-10.3934/math.2023791-46
key-10.3934/math.2023791-47
key-10.3934/math.2023791-48
key-10.3934/math.2023791-49
key-10.3934/math.2023791-50
key-10.3934/math.2023791-51
key-10.3934/math.2023791-52
key-10.3934/math.2023791-53
key-10.3934/math.2023791-10
key-10.3934/math.2023791-54
key-10.3934/math.2023791-11
key-10.3934/math.2023791-55
key-10.3934/math.2023791-12
key-10.3934/math.2023791-56
key-10.3934/math.2023791-13
key-10.3934/math.2023791-57
key-10.3934/math.2023791-14
key-10.3934/math.2023791-58
key-10.3934/math.2023791-15
key-10.3934/math.2023791-59
key-10.3934/math.2023791-16
key-10.3934/math.2023791-17
key-10.3934/math.2023791-18
key-10.3934/math.2023791-19
key-10.3934/math.2023791-2
key-10.3934/math.2023791-3
key-10.3934/math.2023791-1
key-10.3934/math.2023791-8
key-10.3934/math.2023791-20
key-10.3934/math.2023791-9
key-10.3934/math.2023791-21
key-10.3934/math.2023791-6
key-10.3934/math.2023791-22
key-10.3934/math.2023791-7
key-10.3934/math.2023791-23
key-10.3934/math.2023791-4
key-10.3934/math.2023791-24
key-10.3934/math.2023791-5
key-10.3934/math.2023791-25
key-10.3934/math.2023791-26
key-10.3934/math.2023791-27
key-10.3934/math.2023791-28
key-10.3934/math.2023791-29
key-10.3934/math.2023791-30
key-10.3934/math.2023791-31
key-10.3934/math.2023791-32
key-10.3934/math.2023791-33
key-10.3934/math.2023791-34
key-10.3934/math.2023791-35
key-10.3934/math.2023791-36
References_xml – ident: key-10.3934/math.2023791-32
  doi: 10.2298/TSCI160111018A
– ident: key-10.3934/math.2023791-47
  doi: 10.1016/j.chaos.2016.02.012
– ident: key-10.3934/math.2023791-11
  doi: 10.4236/am.2013.48A020
– ident: key-10.3934/math.2023791-17
  doi: 10.1103/PhysRevE.95.022409
– ident: key-10.3934/math.2023791-19
  doi: 10.1016/j.chaos.2018.09.039
– ident: key-10.3934/math.2023791-35
– ident: key-10.3934/math.2023791-50
– ident: key-10.3934/math.2023791-1
  doi: 10.1086/315215
– ident: key-10.3934/math.2023791-44
  doi: 10.1016/j.aej.2021.04.070
– ident: key-10.3934/math.2023791-14
  doi: 10.1177/01423312221085049
– ident: key-10.3934/math.2023791-55
  doi: 10.1002/mma.2928
– ident: key-10.3934/math.2023791-59
  doi: 10.21236/ADA031020
– ident: key-10.3934/math.2023791-26
  doi: 10.1016/j.physa.2022.127809
– ident: key-10.3934/math.2023791-25
– ident: key-10.3934/math.2023791-3
– ident: key-10.3934/math.2023791-43
  doi: 10.1080/17513758.2011.628700
– ident: key-10.3934/math.2023791-51
  doi: 10.1140/epjp/s13360-021-01360-9
– ident: key-10.3934/math.2023791-52
  doi: 10.1140/epjp/s13360-020-00683-3
– ident: key-10.3934/math.2023791-7
– ident: key-10.3934/math.2023791-48
– ident: key-10.3934/math.2023791-13
  doi: 10.1016/j.rinp.2021.104919
– ident: key-10.3934/math.2023791-15
  doi: 10.3934/dcdss.2022154
– ident: key-10.3934/math.2023791-31
  doi: 10.1016/j.health.2022.100114
– ident: key-10.3934/math.2023791-36
  doi: 10.3934/dcdss.2020055
– ident: key-10.3934/math.2023791-29
  doi: 10.12785/pfda/010201
– ident: key-10.3934/math.2023791-56
  doi: 10.1201/9781420011418
– ident: key-10.3934/math.2023791-23
  doi: 10.1155/2022/7036825
– ident: key-10.3934/math.2023791-41
  doi: 10.3390/e23050610
– ident: key-10.3934/math.2023791-53
– ident: key-10.3934/math.2023791-30
  doi: 10.3390/sym15020380
– ident: key-10.3934/math.2023791-39
  doi: 10.12785/pfda/010202
– ident: key-10.3934/math.2023791-58
  doi: 10.1016/j.cnsns.2014.12.013
– ident: key-10.3934/math.2023791-8
  doi: 10.1098/rsta.2010.0278
– ident: key-10.3934/math.2023791-20
  doi: 10.1016/j.chaos.2018.09.001
– ident: key-10.3934/math.2023791-16
  doi: 10.1007/978-3-642-14574-2
– ident: key-10.3934/math.2023791-10
– ident: key-10.3934/math.2023791-4
  doi: 10.1515/em-2020-0046
– ident: key-10.3934/math.2023791-57
  doi: 10.1002/mma.3811
– ident: key-10.3934/math.2023791-18
  doi: 10.1007/s11071-012-0475-2
– ident: key-10.3934/math.2023791-42
– ident: key-10.3934/math.2023791-54
  doi: 10.1016/j.aej.2020.02.033
– ident: key-10.3934/math.2023791-24
  doi: 10.1155/2022/6502598
– ident: key-10.3934/math.2023791-27
– ident: key-10.3934/math.2023791-40
  doi: 10.1016/j.chaos.2022.111821
– ident: key-10.3934/math.2023791-9
– ident: key-10.3934/math.2023791-5
– ident: key-10.3934/math.2023791-33
  doi: 10.3934/math.2023382
– ident: key-10.3934/math.2023791-21
  doi: 10.1016/j.chaos.2019.109536
– ident: key-10.3934/math.2023791-37
  doi: 10.1016/j.aej.2020.02.022
– ident: key-10.3934/math.2023791-38
  doi: 10.3390/e21030303
– ident: key-10.3934/math.2023791-28
  doi: 10.3390/fractalfract7020189
– ident: key-10.3934/math.2023791-45
– ident: key-10.3934/math.2023791-22
  doi: 10.1016/j.chaos.2019.109478
– ident: key-10.3934/math.2023791-46
  doi: 10.1016/j.cnsns.2017.12.003
– ident: key-10.3934/math.2023791-2
  doi: 10.1016/j.scitotenv.2017.11.326
– ident: key-10.3934/math.2023791-34
  doi: 10.1016/j.rinp.2022.105189
– ident: key-10.3934/math.2023791-12
  doi: 10.1002/oca.2483
– ident: key-10.3934/math.2023791-6
– ident: key-10.3934/math.2023791-49
SSID ssj0002124274
Score 2.3667676
Snippet Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 15499
SubjectTerms atangana-baleanu derivative
dengue fever
optimal control
stability analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF-iAeIrykgdgQVGT2LGTsUVUFVKZWqlbZMfnLiWt2kSIf885SaMuwIKyRec4urPu7vPZ3xHyIAAXRpAxTwpfIkBJYi-GSHrWmjDQJgg1d3eHJ-9iPONv82i-1-rLnQmr6YFrxfURwPixMq4-qBF8SMUxoASaJ6GJMRWo0DqGsT0w5XwwOmSOeKs-6c4SxvuY_7naQ8gqOs69GFRR9XfJYZmv1denWi734svohBw3iSEd1D90Sg4gPyPdScuquj0n0wFmcguVK2-Ibl3lJbWb-l4CDjR1a_ktXVmKvmRRArWA65S6nVa6Qs_wgVLNyXS6LXYUERdkNnqdvoy9piuCl2HwLTwbxibJuA18KwPI8MGURICBWAujM8lc1RYyLWMfDcR1aEFZ45sgUsCBMXZJOvkqhytCIRI6s1yBbxhXPFImEYYLjGtS-SCgR553ekqzhjLcda5YpggdnFZTp9W00WqPPLbS65oq4we5oVN5K-MIrqsXaPa0MXv6l9l75Kk12K-zXf_HbDfkyH2u3nq5JZ1iU8IdJiOFvq_W3TfgENwJ
  priority: 102
  providerName: Directory of Open Access Journals
Title Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies
URI https://doi.org/10.3934/math.2023791
https://doaj.org/article/25408ad4529b4077a46141b492d84230
UnpaywallVersion publishedVersion
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaK9LD2sG7rhmbdAh26XQZ3tiVL8jEZUhQDWuzQANnJ0IPqYalTNDaG9tePip2g27AHfDEMCjZIWfwoih8BTiTSxMgcT5RMFQUopU40FioJweeZ9VluRawdvriU5zPxeV7Md-BkUwvzKH_PSy4-EmyLKYOcq1iivitjGmkAu7PLL-OvsW-cUDyRpdbdmfbfhvzkbdak_PvwpK1vzf13s1g88iRnBzDdfEN3gOTbadvYU_fwCz3jvz7yGTztoSQbd7Z_DjtYv4D9iy0P6-oQrsaE_a5NbZIJOQJTtyzcdZUMNNB3zehXbBkYrT7XLbKANLNZ3JtlS1pLbkiqP8vOVs2GVOIlzM6mV5_Ok76PQuLIXTdJyLUvnQhZGlSGji4CMRI9aiu9dYrHPC86q3RKJhU2D2iCT31WGBTIOX8Fg3pZ4xEwLKR1QRhMPRdGFMaX0gtJnlCZFCUO4cNG35XrScZjr4tFRcFG1FUVdVX1uhrCu630bUeu8Qe5STTdViZSYq8fkBGq_g-rKNJNtfExkWwpSlVGEPLIrChzrwkzpkN4vzX8X9_2-n8Fj2Ev3nUbMm9g0Ny1-JYgSmNH69B-1M_TH4OL5W0
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6h5VA4lJZSdSmtfKBcUGgSO7ZzXCrQqhKoB1aCU-THmEOXLGITIfj1HW-yKwrqQ7lE0ViJZhzPNx7PNwD7EmliZI4nSqaKApRSJxoLlYTg88z6LLci1g6fncvxRHy_LC7XYH9ZC_Mkf89LLr4SbIspg5yrWKK-LmMaaQDrk_Mfo6vYN04onshS6-5M-4shv3mbBSn_Jrxq61vzcG-m0yee5HQLTpbf0B0g-XnUNvbIPT6jZ_zXR76B1z2UZKPO9m9hDett2Dxb8bDO38HFiLDftalNckyOwNQtC3ddJQMN9F0z-jmbBUarz3WLLCDNbBb3ZtmM1pIbkurPsrN5sySV2IHJ6cnFt3HS91FIHLnrJgm59qUTIUuDytDRRSBGokdtpbdO8ZjnRWeVTsmkwuYBTfCpzwqDAjnn72FQz2r8AAwLaV0QBlPPhRGF8aX0QpInVCZFiUM4XOq7cj3JeOx1Ma0o2Ii6qqKuql5XQ_iykr7tyDX-IHccTbeSiZTYiwdkhKr_wyqKdFNtfEwkW4pSlRGEPDIrytxrwozpEA5Whv_r23b_V_AjbMS7bkNmDwbNXYufCKI09nM_Q38BKH3keA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atangana-Baleanu+fractional+dynamics+of+dengue+fever+with+optimal+control+strategies&rft.jtitle=AIMS+mathematics&rft.au=Hanif%2C+Asma&rft.au=Butt%2C+Azhar+Iqbal+Kashif&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=7&rft.spage=15499&rft.epage=15535&rft_id=info:doi/10.3934%2Fmath.2023791&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon