Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies
Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic and health impact worldwide; it is essential to develop new mathematical models to study not only the dynamics o...
Saved in:
Published in | AIMS mathematics Vol. 8; no. 7; pp. 15499 - 15535 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2023791 |
Cover
Abstract | Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic and health impact worldwide; it is essential to develop new mathematical models to study not only the dynamics of the disease but also to suggest cost-effective mechanisms to control disease. In this paper, we design modified facts about the dynamics of this disease more realistically by formulating a new basic $ S_hE_hI_hR_h $ host population and $ S_vI_v $ vector population integer order model, later converting it into a fractional-order model with the help of the well-known Atangana-Baleanu derivative. In this design, we introduce two more compartments, such as the treatment compartment $ T_h $, and the protected traveler compartment $ P_h $ in the host population to produce $ S_hE_hI_hT_hR_hP_h $. We present some observational results by investigating the model for the existence of a unique solution as well as by proving the positivity and boundedness of the solution. We compute reproduction number $ \mathcal{R}_{0} $ by using a next-generation matrix method to estimate the contagious behavior of the infected humans by the disease. In addition, we prove that disease free and endemic equilibrium points are locally and globally stable with restriction to reproduction number $ \mathcal{R}_{0} $. The second goal of this article is to formulate an optimal control problem to study the effect of the control strategy. We implement the Toufik-Atangana scheme for the first time to solve both of the state and adjoint fractional differential equations with the ABC derivative operator. The numerical results show that the fractional order and the different constant treatment rates affect the dynamics of the disease. With an increase in the fractional order and the treatment rate, exposed and infected humans, as well as the infected mosquitoes, decrease. However, the optimal control analysis reveals that the implemented optimal control strategy is very effective for disease control. |
---|---|
AbstractList | Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue fever has a significant economic and health impact worldwide; it is essential to develop new mathematical models to study not only the dynamics of the disease but also to suggest cost-effective mechanisms to control disease. In this paper, we design modified facts about the dynamics of this disease more realistically by formulating a new basic $ S_hE_hI_hR_h $ host population and $ S_vI_v $ vector population integer order model, later converting it into a fractional-order model with the help of the well-known Atangana-Baleanu derivative. In this design, we introduce two more compartments, such as the treatment compartment $ T_h $, and the protected traveler compartment $ P_h $ in the host population to produce $ S_hE_hI_hT_hR_hP_h $. We present some observational results by investigating the model for the existence of a unique solution as well as by proving the positivity and boundedness of the solution. We compute reproduction number $ \mathcal{R}_{0} $ by using a next-generation matrix method to estimate the contagious behavior of the infected humans by the disease. In addition, we prove that disease free and endemic equilibrium points are locally and globally stable with restriction to reproduction number $ \mathcal{R}_{0} $. The second goal of this article is to formulate an optimal control problem to study the effect of the control strategy. We implement the Toufik-Atangana scheme for the first time to solve both of the state and adjoint fractional differential equations with the ABC derivative operator. The numerical results show that the fractional order and the different constant treatment rates affect the dynamics of the disease. With an increase in the fractional order and the treatment rate, exposed and infected humans, as well as the infected mosquitoes, decrease. However, the optimal control analysis reveals that the implemented optimal control strategy is very effective for disease control. |
Author | Hanif, Asma Butt, Azhar Iqbal Kashif |
Author_xml | – sequence: 1 givenname: Asma surname: Hanif fullname: Hanif, Asma organization: Department of Mathematics, Government College University, Lahore 54000, Pakistan – sequence: 2 givenname: Azhar Iqbal Kashif surname: Butt fullname: Butt, Azhar Iqbal Kashif organization: Department of Mathematics, Government College University, Lahore 54000, Pakistan, Department of Mathematics and Statistics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia |
BookMark | eNqFkNtKAzEQhoMoWGvvfIB9ALfmtKfLWjwUCt7U62U2mbQp26RkU0vf3q0tIiLIXMwwfPMzfDfk0nmHhNwxOhaVkA8biKsxp1wUFbsgAy4LkeZVWV7-mK_JqOvWlFLOuOSFHJDFJIJbgoP0EVoEt0tMABWtd9Am-uBgY1WXeJNodMsdJgY_MCR7G1eJ30a76SnlXQy-TboYIOLSYndLrgy0HY7OfUjen58W09d0_vYym07mqZI0j6nhpa6UNIyagqHqK2NZjhrLJteNKgSjMkfVFCXFBmXDDYLRVLMMUKIQYkhmp1ztYV1vQ_9OONQebP218GFZQ4hWtVjzTNIStMx41UhaFCBzJlkjK65LyQXts9JT1s5t4bCHtv0OZLQ-Gq6Phuuz4Z6_P_Eq-K4LaP7D-S9c2QhHz7012_599Al_I5Gb |
CitedBy_id | crossref_primary_10_1002_oca_3093 crossref_primary_10_3390_math11224600 crossref_primary_10_1016_j_sciaf_2024_e02500 crossref_primary_10_1007_s11071_023_09234_8 crossref_primary_10_3390_fractalfract7070515 crossref_primary_10_1038_s41598_024_80218_3 crossref_primary_10_1016_j_padiff_2024_101055 crossref_primary_10_1007_s40435_024_01501_9 crossref_primary_10_1016_j_rico_2024_100406 crossref_primary_10_1080_07391102_2023_2248262 crossref_primary_10_3390_fractalfract8010018 crossref_primary_10_1002_hsr2_70276 crossref_primary_10_1002_mma_9482 crossref_primary_10_1016_j_cam_2024_116256 crossref_primary_10_1007_s40808_024_02232_8 crossref_primary_10_3934_math_20241565 crossref_primary_10_1016_j_rinp_2023_106929 crossref_primary_10_1016_j_heliyon_2024_e33822 crossref_primary_10_1007_s40808_024_02278_8 crossref_primary_10_3390_sym15091773 crossref_primary_10_1007_s10958_025_07608_4 crossref_primary_10_3934_math_2024251 crossref_primary_10_1007_s11071_024_09932_x crossref_primary_10_1155_2024_3855146 crossref_primary_10_3390_math11091978 crossref_primary_10_1140_epjp_s13360_023_04690_y |
Cites_doi | 10.2298/TSCI160111018A 10.1016/j.chaos.2016.02.012 10.4236/am.2013.48A020 10.1103/PhysRevE.95.022409 10.1016/j.chaos.2018.09.039 10.1086/315215 10.1016/j.aej.2021.04.070 10.1177/01423312221085049 10.1002/mma.2928 10.21236/ADA031020 10.1016/j.physa.2022.127809 10.1080/17513758.2011.628700 10.1140/epjp/s13360-021-01360-9 10.1140/epjp/s13360-020-00683-3 10.1016/j.rinp.2021.104919 10.3934/dcdss.2022154 10.1016/j.health.2022.100114 10.3934/dcdss.2020055 10.12785/pfda/010201 10.1201/9781420011418 10.1155/2022/7036825 10.3390/e23050610 10.3390/sym15020380 10.12785/pfda/010202 10.1016/j.cnsns.2014.12.013 10.1098/rsta.2010.0278 10.1016/j.chaos.2018.09.001 10.1007/978-3-642-14574-2 10.1515/em-2020-0046 10.1002/mma.3811 10.1007/s11071-012-0475-2 10.1016/j.aej.2020.02.033 10.1155/2022/6502598 10.1016/j.chaos.2022.111821 10.3934/math.2023382 10.1016/j.chaos.2019.109536 10.1016/j.aej.2020.02.022 10.3390/e21030303 10.3390/fractalfract7020189 10.1016/j.chaos.2019.109478 10.1016/j.cnsns.2017.12.003 10.1016/j.scitotenv.2017.11.326 10.1016/j.rinp.2022.105189 10.1002/oca.2483 |
ContentType | Journal Article |
DBID | AAYXX CITATION ADTOC UNPAY DOA |
DOI | 10.3934/math.2023791 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 15535 |
ExternalDocumentID | oai_doaj_org_article_25408ad4529b4077a46141b492d84230 10.3934/math.2023791 10_3934_math_2023791 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
ID | FETCH-LOGICAL-c406t-f28d9c4f10f71ecece5156ede8b6dbc731046ecb780ebe4b2feafd0d15ae4e333 |
IEDL.DBID | UNPAY |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:29:44 EDT 2025 Mon Sep 15 10:03:22 EDT 2025 Thu Apr 24 22:52:27 EDT 2025 Tue Jul 01 03:57:02 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-f28d9c4f10f71ecece5156ede8b6dbc731046ecb780ebe4b2feafd0d15ae4e333 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3934/math.2023791 |
PageCount | 37 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25408ad4529b4077a46141b492d84230 unpaywall_primary_10_3934_math_2023791 crossref_primary_10_3934_math_2023791 crossref_citationtrail_10_3934_math_2023791 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-01 |
PublicationDateYYYYMMDD | 2023-01-01 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2023 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2023791-37 key-10.3934/math.2023791-38 key-10.3934/math.2023791-39 key-10.3934/math.2023791-40 key-10.3934/math.2023791-41 key-10.3934/math.2023791-42 key-10.3934/math.2023791-43 key-10.3934/math.2023791-44 key-10.3934/math.2023791-45 key-10.3934/math.2023791-46 key-10.3934/math.2023791-47 key-10.3934/math.2023791-48 key-10.3934/math.2023791-49 key-10.3934/math.2023791-50 key-10.3934/math.2023791-51 key-10.3934/math.2023791-52 key-10.3934/math.2023791-53 key-10.3934/math.2023791-10 key-10.3934/math.2023791-54 key-10.3934/math.2023791-11 key-10.3934/math.2023791-55 key-10.3934/math.2023791-12 key-10.3934/math.2023791-56 key-10.3934/math.2023791-13 key-10.3934/math.2023791-57 key-10.3934/math.2023791-14 key-10.3934/math.2023791-58 key-10.3934/math.2023791-15 key-10.3934/math.2023791-59 key-10.3934/math.2023791-16 key-10.3934/math.2023791-17 key-10.3934/math.2023791-18 key-10.3934/math.2023791-19 key-10.3934/math.2023791-2 key-10.3934/math.2023791-3 key-10.3934/math.2023791-1 key-10.3934/math.2023791-8 key-10.3934/math.2023791-20 key-10.3934/math.2023791-9 key-10.3934/math.2023791-21 key-10.3934/math.2023791-6 key-10.3934/math.2023791-22 key-10.3934/math.2023791-7 key-10.3934/math.2023791-23 key-10.3934/math.2023791-4 key-10.3934/math.2023791-24 key-10.3934/math.2023791-5 key-10.3934/math.2023791-25 key-10.3934/math.2023791-26 key-10.3934/math.2023791-27 key-10.3934/math.2023791-28 key-10.3934/math.2023791-29 key-10.3934/math.2023791-30 key-10.3934/math.2023791-31 key-10.3934/math.2023791-32 key-10.3934/math.2023791-33 key-10.3934/math.2023791-34 key-10.3934/math.2023791-35 key-10.3934/math.2023791-36 |
References_xml | – ident: key-10.3934/math.2023791-32 doi: 10.2298/TSCI160111018A – ident: key-10.3934/math.2023791-47 doi: 10.1016/j.chaos.2016.02.012 – ident: key-10.3934/math.2023791-11 doi: 10.4236/am.2013.48A020 – ident: key-10.3934/math.2023791-17 doi: 10.1103/PhysRevE.95.022409 – ident: key-10.3934/math.2023791-19 doi: 10.1016/j.chaos.2018.09.039 – ident: key-10.3934/math.2023791-35 – ident: key-10.3934/math.2023791-50 – ident: key-10.3934/math.2023791-1 doi: 10.1086/315215 – ident: key-10.3934/math.2023791-44 doi: 10.1016/j.aej.2021.04.070 – ident: key-10.3934/math.2023791-14 doi: 10.1177/01423312221085049 – ident: key-10.3934/math.2023791-55 doi: 10.1002/mma.2928 – ident: key-10.3934/math.2023791-59 doi: 10.21236/ADA031020 – ident: key-10.3934/math.2023791-26 doi: 10.1016/j.physa.2022.127809 – ident: key-10.3934/math.2023791-25 – ident: key-10.3934/math.2023791-3 – ident: key-10.3934/math.2023791-43 doi: 10.1080/17513758.2011.628700 – ident: key-10.3934/math.2023791-51 doi: 10.1140/epjp/s13360-021-01360-9 – ident: key-10.3934/math.2023791-52 doi: 10.1140/epjp/s13360-020-00683-3 – ident: key-10.3934/math.2023791-7 – ident: key-10.3934/math.2023791-48 – ident: key-10.3934/math.2023791-13 doi: 10.1016/j.rinp.2021.104919 – ident: key-10.3934/math.2023791-15 doi: 10.3934/dcdss.2022154 – ident: key-10.3934/math.2023791-31 doi: 10.1016/j.health.2022.100114 – ident: key-10.3934/math.2023791-36 doi: 10.3934/dcdss.2020055 – ident: key-10.3934/math.2023791-29 doi: 10.12785/pfda/010201 – ident: key-10.3934/math.2023791-56 doi: 10.1201/9781420011418 – ident: key-10.3934/math.2023791-23 doi: 10.1155/2022/7036825 – ident: key-10.3934/math.2023791-41 doi: 10.3390/e23050610 – ident: key-10.3934/math.2023791-53 – ident: key-10.3934/math.2023791-30 doi: 10.3390/sym15020380 – ident: key-10.3934/math.2023791-39 doi: 10.12785/pfda/010202 – ident: key-10.3934/math.2023791-58 doi: 10.1016/j.cnsns.2014.12.013 – ident: key-10.3934/math.2023791-8 doi: 10.1098/rsta.2010.0278 – ident: key-10.3934/math.2023791-20 doi: 10.1016/j.chaos.2018.09.001 – ident: key-10.3934/math.2023791-16 doi: 10.1007/978-3-642-14574-2 – ident: key-10.3934/math.2023791-10 – ident: key-10.3934/math.2023791-4 doi: 10.1515/em-2020-0046 – ident: key-10.3934/math.2023791-57 doi: 10.1002/mma.3811 – ident: key-10.3934/math.2023791-18 doi: 10.1007/s11071-012-0475-2 – ident: key-10.3934/math.2023791-42 – ident: key-10.3934/math.2023791-54 doi: 10.1016/j.aej.2020.02.033 – ident: key-10.3934/math.2023791-24 doi: 10.1155/2022/6502598 – ident: key-10.3934/math.2023791-27 – ident: key-10.3934/math.2023791-40 doi: 10.1016/j.chaos.2022.111821 – ident: key-10.3934/math.2023791-9 – ident: key-10.3934/math.2023791-5 – ident: key-10.3934/math.2023791-33 doi: 10.3934/math.2023382 – ident: key-10.3934/math.2023791-21 doi: 10.1016/j.chaos.2019.109536 – ident: key-10.3934/math.2023791-37 doi: 10.1016/j.aej.2020.02.022 – ident: key-10.3934/math.2023791-38 doi: 10.3390/e21030303 – ident: key-10.3934/math.2023791-28 doi: 10.3390/fractalfract7020189 – ident: key-10.3934/math.2023791-45 – ident: key-10.3934/math.2023791-22 doi: 10.1016/j.chaos.2019.109478 – ident: key-10.3934/math.2023791-46 doi: 10.1016/j.cnsns.2017.12.003 – ident: key-10.3934/math.2023791-2 doi: 10.1016/j.scitotenv.2017.11.326 – ident: key-10.3934/math.2023791-34 doi: 10.1016/j.rinp.2022.105189 – ident: key-10.3934/math.2023791-12 doi: 10.1002/oca.2483 – ident: key-10.3934/math.2023791-6 – ident: key-10.3934/math.2023791-49 |
SSID | ssj0002124274 |
Score | 2.3667676 |
Snippet | Dengue fever, a vector-borne disease, has affected the whole world in general and the Indian subcontinent in particular for the last three decades. Dengue... |
SourceID | doaj unpaywall crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 15499 |
SubjectTerms | atangana-baleanu derivative dengue fever optimal control stability analysis |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQF-iAeIrykgdgQVGT2LGTsUVUFVKZWqlbZMfnLiWt2kSIf885SaMuwIKyRec4urPu7vPZ3xHyIAAXRpAxTwpfIkBJYi-GSHrWmjDQJgg1d3eHJ-9iPONv82i-1-rLnQmr6YFrxfURwPixMq4-qBF8SMUxoASaJ6GJMRWo0DqGsT0w5XwwOmSOeKs-6c4SxvuY_7naQ8gqOs69GFRR9XfJYZmv1denWi734svohBw3iSEd1D90Sg4gPyPdScuquj0n0wFmcguVK2-Ibl3lJbWb-l4CDjR1a_ktXVmKvmRRArWA65S6nVa6Qs_wgVLNyXS6LXYUERdkNnqdvoy9piuCl2HwLTwbxibJuA18KwPI8MGURICBWAujM8lc1RYyLWMfDcR1aEFZ45sgUsCBMXZJOvkqhytCIRI6s1yBbxhXPFImEYYLjGtS-SCgR553ekqzhjLcda5YpggdnFZTp9W00WqPPLbS65oq4we5oVN5K-MIrqsXaPa0MXv6l9l75Kk12K-zXf_HbDfkyH2u3nq5JZ1iU8IdJiOFvq_W3TfgENwJ priority: 102 providerName: Directory of Open Access Journals |
Title | Atangana-Baleanu fractional dynamics of dengue fever with optimal control strategies |
URI | https://doi.org/10.3934/math.2023791 https://doaj.org/article/25408ad4529b4077a46141b492d84230 |
UnpaywallVersion | publishedVersion |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9swDCaK9LD2sG7rhmbdAh26XQZ3tiVL8jEZUhQDWuzQANnJ0IPqYalTNDaG9tePip2g27AHfDEMCjZIWfwoih8BTiTSxMgcT5RMFQUopU40FioJweeZ9VluRawdvriU5zPxeV7Md-BkUwvzKH_PSy4-EmyLKYOcq1iivitjGmkAu7PLL-OvsW-cUDyRpdbdmfbfhvzkbdak_PvwpK1vzf13s1g88iRnBzDdfEN3gOTbadvYU_fwCz3jvz7yGTztoSQbd7Z_DjtYv4D9iy0P6-oQrsaE_a5NbZIJOQJTtyzcdZUMNNB3zehXbBkYrT7XLbKANLNZ3JtlS1pLbkiqP8vOVs2GVOIlzM6mV5_Ok76PQuLIXTdJyLUvnQhZGlSGji4CMRI9aiu9dYrHPC86q3RKJhU2D2iCT31WGBTIOX8Fg3pZ4xEwLKR1QRhMPRdGFMaX0gtJnlCZFCUO4cNG35XrScZjr4tFRcFG1FUVdVX1uhrCu630bUeu8Qe5STTdViZSYq8fkBGq_g-rKNJNtfExkWwpSlVGEPLIrChzrwkzpkN4vzX8X9_2-n8Fj2Ev3nUbMm9g0Ny1-JYgSmNH69B-1M_TH4OL5W0 |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwEB6h5VA4lJZSdSmtfKBcUGgSO7ZzXCrQqhKoB1aCU-THmEOXLGITIfj1HW-yKwrqQ7lE0ViJZhzPNx7PNwD7EmliZI4nSqaKApRSJxoLlYTg88z6LLci1g6fncvxRHy_LC7XYH9ZC_Mkf89LLr4SbIspg5yrWKK-LmMaaQDrk_Mfo6vYN04onshS6-5M-4shv3mbBSn_Jrxq61vzcG-m0yee5HQLTpbf0B0g-XnUNvbIPT6jZ_zXR76B1z2UZKPO9m9hDett2Dxb8bDO38HFiLDftalNckyOwNQtC3ddJQMN9F0z-jmbBUarz3WLLCDNbBb3ZtmM1pIbkurPsrN5sySV2IHJ6cnFt3HS91FIHLnrJgm59qUTIUuDytDRRSBGokdtpbdO8ZjnRWeVTsmkwuYBTfCpzwqDAjnn72FQz2r8AAwLaV0QBlPPhRGF8aX0QpInVCZFiUM4XOq7cj3JeOx1Ma0o2Ii6qqKuql5XQ_iykr7tyDX-IHccTbeSiZTYiwdkhKr_wyqKdFNtfEwkW4pSlRGEPDIrytxrwozpEA5Whv_r23b_V_AjbMS7bkNmDwbNXYufCKI09nM_Q38BKH3keA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Atangana-Baleanu+fractional+dynamics+of+dengue+fever+with+optimal+control+strategies&rft.jtitle=AIMS+mathematics&rft.au=Hanif%2C+Asma&rft.au=Butt%2C+Azhar+Iqbal+Kashif&rft.date=2023-01-01&rft.issn=2473-6988&rft.eissn=2473-6988&rft.volume=8&rft.issue=7&rft.spage=15499&rft.epage=15535&rft_id=info:doi/10.3934%2Fmath.2023791&rft.externalDBID=n%2Fa&rft.externalDocID=10_3934_math_2023791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |