Prospects of nano-lithographic tools for the fabrication of surface-enhanced Raman spectroscopy (SERS) substrates

The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates. While traditional colloidal synthesis methods have commonly been used for SERS substrate fabrication, they lack reproducibility hindering their...

Full description

Saved in:
Bibliographic Details
Published inMicro and Nano Engineering Vol. 23; p. 100267
Main Authors Srivastava, K., Le-The, H., Lozeman, J.J.A., van den Berg, A., van der Stam, W., Odijk, M.
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2024
Elsevier
Subjects
Online AccessGet full text
ISSN2590-0072
2590-0072
DOI10.1016/j.mne.2024.100267

Cover

Abstract The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates. While traditional colloidal synthesis methods have commonly been used for SERS substrate fabrication, they lack reproducibility hindering their usage for many applications. The need for reproducible nanostructures showing high orders of enhancement factors has brought about a shift in the methods one can use to fabricate SERS nanostructures. Lithographic techniques have thus piqued the interest of researchers as a viable option for SERS substrate fabrication. Not only do they offer high enhancement factors and reproducible nanostructures, they also provide the ability to fabricate nanostructures with many different geometries, shapes, sizes and periodicities. Some of the most established lithographic techniques include electron beam lithography, nanosphere lithography, laser interference lithography and many more. This review discusses established lithographic techniques, such as mentioned above, along with other upcoming lithographic techniques to understand the principles and the methodology behind them. A deep understanding of how various parameters can influence the nanostructure fabrication and thereby influence the SERS enhancement is developed. A detailed description of how these nanostructures can be fabricated is also provided for better insight. In addition, strengths and limitations of each method are discussed in detail. Lastly, we also discuss the applicability of SERS substrates for commercial applications comparing the performance of chemical synthesis routes and lithography for SERS substrate fabrication. This review serves as a base to understand the concept and application of SERS from a microfabrication perspective. [Display omitted] •Detailed discussion on fabrication techniques for lithographic surface-enhanced Raman spectroscopy substrates.•Comparative overview of established lithographic techniques for surface-enhanced Raman spectroscopy substrates.•Overview of various fabrication methods for surface-enhanced Raman spectroscopy substrates in a commercial market.•Discussion on alternative and innovative methods for fabrication of surface-enhanced Raman spectroscopy substrates.
AbstractList The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates. While traditional colloidal synthesis methods have commonly been used for SERS substrate fabrication, they lack reproducibility hindering their usage for many applications. The need for reproducible nanostructures showing high orders of enhancement factors has brought about a shift in the methods one can use to fabricate SERS nanostructures. Lithographic techniques have thus piqued the interest of researchers as a viable option for SERS substrate fabrication. Not only do they offer high enhancement factors and reproducible nanostructures, they also provide the ability to fabricate nanostructures with many different geometries, shapes, sizes and periodicities. Some of the most established lithographic techniques include electron beam lithography, nanosphere lithography, laser interference lithography and many more. This review discusses established lithographic techniques, such as mentioned above, along with other upcoming lithographic techniques to understand the principles and the methodology behind them. A deep understanding of how various parameters can influence the nanostructure fabrication and thereby influence the SERS enhancement is developed. A detailed description of how these nanostructures can be fabricated is also provided for better insight. In addition, strengths and limitations of each method are discussed in detail. Lastly, we also discuss the applicability of SERS substrates for commercial applications comparing the performance of chemical synthesis routes and lithography for SERS substrate fabrication. This review serves as a base to understand the concept and application of SERS from a microfabrication perspective.
The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates. While traditional colloidal synthesis methods have commonly been used for SERS substrate fabrication, they lack reproducibility hindering their usage for many applications. The need for reproducible nanostructures showing high orders of enhancement factors has brought about a shift in the methods one can use to fabricate SERS nanostructures. Lithographic techniques have thus piqued the interest of researchers as a viable option for SERS substrate fabrication. Not only do they offer high enhancement factors and reproducible nanostructures, they also provide the ability to fabricate nanostructures with many different geometries, shapes, sizes and periodicities. Some of the most established lithographic techniques include electron beam lithography, nanosphere lithography, laser interference lithography and many more. This review discusses established lithographic techniques, such as mentioned above, along with other upcoming lithographic techniques to understand the principles and the methodology behind them. A deep understanding of how various parameters can influence the nanostructure fabrication and thereby influence the SERS enhancement is developed. A detailed description of how these nanostructures can be fabricated is also provided for better insight. In addition, strengths and limitations of each method are discussed in detail. Lastly, we also discuss the applicability of SERS substrates for commercial applications comparing the performance of chemical synthesis routes and lithography for SERS substrate fabrication. This review serves as a base to understand the concept and application of SERS from a microfabrication perspective. [Display omitted] •Detailed discussion on fabrication techniques for lithographic surface-enhanced Raman spectroscopy substrates.•Comparative overview of established lithographic techniques for surface-enhanced Raman spectroscopy substrates.•Overview of various fabrication methods for surface-enhanced Raman spectroscopy substrates in a commercial market.•Discussion on alternative and innovative methods for fabrication of surface-enhanced Raman spectroscopy substrates.
ArticleNumber 100267
Author Lozeman, J.J.A.
van der Stam, W.
van den Berg, A.
Srivastava, K.
Odijk, M.
Le-The, H.
Author_xml – sequence: 1
  givenname: K.
  surname: Srivastava
  fullname: Srivastava, K.
  email: k.srivastava@utwente.nl
  organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands
– sequence: 2
  givenname: H.
  surname: Le-The
  fullname: Le-The, H.
  organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands
– sequence: 3
  givenname: J.J.A.
  surname: Lozeman
  fullname: Lozeman, J.J.A.
  organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands
– sequence: 4
  givenname: A.
  surname: van den Berg
  fullname: van den Berg, A.
  organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands
– sequence: 5
  givenname: W.
  surname: van der Stam
  fullname: van der Stam, W.
  organization: Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, the Netherlands
– sequence: 6
  givenname: M.
  surname: Odijk
  fullname: Odijk, M.
  organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands
BookMark eNp9UcFu3CAURFUqNU3zAb1xbA7eArYBK6coStpIkVol7Rk940eWlRc2QCPt3xfvtlLVQ0480MzwZuY9OQkxICEfOVtxxuXnzWobcCWY6OqdCanekFPRD6xhTImTf-Z35DznDasY3UvdqVPy_D3FvENbMo2OBgixmX1Zx6cEu7W3tMQ4Z-piomWN1MGYvIXiY1jg-VdyYLHBsIZgcaIPsIVAD3pV1sbdnn56vHl4vKjQMZcEBfMH8tbBnPH8z3lGft7e_Lj-2tx_-3J3fXXf2I7J0kyD4MqBZCCl0nxsdau0kK7OU18dSDchtgOTbceHngs9gHCj7qTsO-C9as_I3VF3irAxu-S3kPYmgjeHh5ieDKTi7Yxm0i06OwKA7DpU7bBo1W9bZLof-rFqqaOWrbZyQmesL4cYqic_G87MUoTZmFqEWYowxyIqk__H_LvJa5zLIwdrPC8ek8nW4xKwTzXZur9_hf0bJw2iUA
CitedBy_id crossref_primary_10_1016_j_saa_2024_125631
crossref_primary_10_1016_j_saa_2025_125989
crossref_primary_10_1002_sia_7388
crossref_primary_10_1039_D4NR04239E
Cites_doi 10.1021/nn4009559
10.1016/j.vibspec.2018.11.002
10.1039/C7TC00667E
10.1021/jp5007236
10.1016/j.mee.2014.02.025
10.1039/C7NR08905H
10.1080/14786443608649032
10.1088/2043-6254/aa7252
10.1002/admt.201600238
10.1088/1361-6528/aa6f00
10.1016/0009-2614(74)85388-1
10.1021/jp0774140
10.1016/j.aca.2017.04.003
10.1016/j.saa.2022.121232
10.1021/acsami.6b14008
10.1088/1361-6528/28/4/045303
10.1039/D0NR05546H
10.1016/j.bios.2014.05.013
10.1109/JSEN.2009.2038634
10.1021/jp0687908
10.1088/0960-1317/22/12/125007
10.1021/acsami.5b09128
10.1016/j.jallcom.2017.05.213
10.1016/j.bios.2008.10.016
10.1038/nnano.2007.39
10.1007/s11051-017-3953-0
10.15407/spqeo22.02.215
10.1088/1361-6439/ab4b8e
10.1021/nl200994k
10.1021/nl048818w
10.1002/adfm.201201466
10.1007/s11468-020-01137-3
10.1021/acsanm.0c00887
10.1021/nl070648a
10.1366/12-06698
10.1002/adfm.201704818
10.1002/adma.200600882
10.1007/s00216-009-2761-5
10.1186/1556-276X-7-399
10.1021/jp070906s
10.3390/ijms21093373
10.1117/1.1803552
10.1088/0957-4484/20/29/292001
10.1016/j.mee.2014.10.001
10.1002/adfm.201200921
10.1116/1.3258144
10.3390/nano7060142
10.1088/1361-6528/aaa691
10.1116/1.579726
10.1021/acs.chemrev.9b00725
10.1016/j.mattod.2014.04.026
10.1039/C4CP04946B
10.3390/nano11082026
10.1016/j.jcis.2008.06.052
10.1039/c2cp43642f
10.1021/acsanm.7b00295
10.1021/acsphotonics.5b00242
10.1039/C8TC01168K
10.1007/s11468-019-00949-2
10.1088/0957-4484/25/24/245301
10.1063/1.5126981
10.1021/acsomega.8b02629
10.1021/am505511v
10.1038/s41378-019-0124-8
10.1364/OE.16.009708
10.1088/1361-6528/ab7100
10.1016/S0925-4005(98)00219-6
10.1021/jp984454i
10.1016/j.ccr.2017.02.006
10.1021/jp9101702
10.1002/jrs.4599
10.1016/j.mee.2015.03.050
10.1002/aisy.202100051
10.1016/j.vibspec.2015.11.007
10.1016/S0379-6779(03)00276-5
10.1002/adfm.201909467
10.1016/j.apsusc.2018.02.163
10.1088/0957-4484/21/25/255502
10.1038/s42254-020-0171-y
10.1039/C9NR02215E
10.1016/j.mee.2008.12.061
10.1109/TNANO.2016.2647263
10.3390/s18114076
10.1016/j.mee.2014.10.010
10.1063/1.4985270
10.1016/j.aca.2011.03.002
10.1039/C4NR00902A
10.1007/s11468-019-01084-8
10.3952/physics.v53i4.2765
10.1515/nanoph-2019-0158
10.1039/c3nr33498h
10.1364/OE.19.010686
10.1002/elps.201100309
10.1016/j.snb.2013.01.035
10.1021/acsami.9b22932
10.1016/j.cap.2008.07.017
10.1039/C4NR02513J
10.3390/nano10050939
10.1002/anie.201205748
10.3390/nano10010049
10.1155/2013/948510
10.1021/la302262g
10.1021/jp010657m
10.1016/j.aca.2017.05.025
10.1007/s12274-019-2484-7
10.1039/C5RA11787A
10.1021/jp806785u
10.1002/sca.20152
10.1039/c0nr00845a
10.3390/nano10040776
10.1021/acsami.0c09357
10.1021/acsami.0c03300
10.1515/nanoph-2019-0385
10.1021/am1011518
10.1021/jp805785s
10.1186/1556-276X-9-623
10.1016/j.ymeth.2013.07.010
10.1016/j.mee.2008.05.005
10.1007/s11433-016-0341-y
10.1021/acsami.0c05596
10.1166/jnn.2014.9199
10.1147/rd.123.0251
10.1063/1.2759985
10.1016/j.snb.2018.02.037
10.1021/acs.jpcc.0c09122
10.1080/09500839.2015.1093665
10.1002/adom.202200233
10.1021/acsomega.0c00677
10.3390/nano12030401
10.1039/c2jm34470j
10.1039/b717960j
10.1149/05012.0301ecst
10.1002/jrs.5662
10.1007/s00216-011-5631-x
10.1039/C3CP53560F
10.1038/s41598-017-12423-2
ContentType Journal Article
Copyright 2024 The Authors
Copyright_xml – notice: 2024 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.mne.2024.100267
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-0072
ExternalDocumentID oai_doaj_org_article_d83efcbaaa644e7399a2f6673e08595b
10_1016_j_mne_2024_100267
S2590007224000303
GroupedDBID 0R~
0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFJKZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c406t-d9217fa60a66781b3837826f781d50006fdee3906341951289a2fb846654a1573
IEDL.DBID DOA
ISSN 2590-0072
IngestDate Wed Aug 27 01:04:18 EDT 2025
Thu Apr 24 23:06:29 EDT 2025
Tue Jul 01 00:35:32 EDT 2025
Sat Sep 21 15:58:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Nanofabrication
Enhancement factor
Lithography
Surface-enhanced Raman spectroscopy
Language English
License This is an open access article under the CC BY-NC license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-d9217fa60a66781b3837826f781d50006fdee3906341951289a2fb846654a1573
OpenAccessLink https://doaj.org/article/d83efcbaaa644e7399a2f6673e08595b
ParticipantIDs doaj_primary_oai_doaj_org_article_d83efcbaaa644e7399a2f6673e08595b
crossref_citationtrail_10_1016_j_mne_2024_100267
crossref_primary_10_1016_j_mne_2024_100267
elsevier_sciencedirect_doi_10_1016_j_mne_2024_100267
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Micro and Nano Engineering
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Isoyan, Jiang, Cheng, Cerrina, Wachulak, Urbanski, Rocca, Menoni, Marconi (bb0690) 2009; 27
Heydari, Mabbott, Thompson, Graham, Cooper, Clark (bb0735) 2016; April 2016
Rakhmatov, Dafonseca, Khademi, Brolo, Gordon (bb0415) 2019
Solak, Dais, Clube (bb0700) 2011; 19
Li, Lin, Peng, He, Yang (bb0205) 2022
Hsu, Fang, Fung (bb0030) 2014; 46
Krishnamoorthy, Krishnan, Thoniyot, Low (bb0630) 2011; 3
Barman, Dhasmana, Verma, Kumar, Chaudhary, Jain (bb0750) 2017; 8
Coluccio, Das, Mecarini (bb0250) 2009; 86
Zhang, Theuring, Song, Mao, Begliarbekov, Strauf (bb0595) 2011; 11
Quilis, Lequeux, Venugopalan, Khan, Knoll, Boujday, de La Chapelle, Dostalek (bb0555) 2018; 10
Dhawan, Du, Yan, Gerhold, Misra, Vo-Dinh (bb0390) 2010; 10
Levinson (bb0135) 2010
van Wolferen, Abelmann (bb0540) 2011
Hwang, Yang (bb0560) 2018; 18
Schmidt, Hübner, Boisen (bb0830) 2012; 24
Zhang, Salcedo, Rahman, Brolo (bb0370) November 2017; 2018
Chen, Pang, Huang, Cambrea, Fainman (bb0590) 2012; 8231
Pandey, Seo, Shin, Lee, Sohn (bb0190) 2022; 12
Wu, Ren, Zhou, Lin, Liu, Qian, Yu (bb0805) 2023
Seo, Park, Kim, Park, Ma, Choi, Ju (bb0610) 2014; 14
Pavliuk, Pavlov, Mitsai, Vitrik, Mironenko, Zakharenko, Kulinich, Juodkazis, Bratskaya, Zhizhchenko, Kuchmizhak (bb0800) 2020; 10
Mosier-Boss (bb0820) 2017; 7
Franssila (bb0130) 2010
Anikin, Rodyakina, Veber, Milekhin, Latyshev, Zahn (bb0330) 2019; 14
Schlücker (bb0210) 2014; 53
Zhao, Wen, Zhang, Wang, Wang, Chen, Zhang, Yang, Du (bb0450) 2017; 9
Liu, Zhang, Tardivel, Lequeux, Chen, Liu, Huang, Tian, Liu, Huang, Gillibert (bb0845) 2020; 15
Fang, Zheng, Yin, Wang, Wang, Liu, Luo, Liu (bb0480) 2020; 12
Liu, Zhan, Yao, Yan, Ren (bb0605) 2020; 12
Ding, Sigle, Herrmann, Wolverson, Baumberg (bb0665) 2014; 6
Cañamares, Garcia-Ramos, Sanchez-Cortes, Castillejo, Oujja (bb0065) 2008; 326
.
Aghajani, Accardo, Tichem (bb0140) 2020; 3
Lee, Fung, Tang, Tam, Chan (bb0510) 2009; 9
Sung, Kosuda, Zhao, Elam, Spears, Van Duyne (bb0440) 2008; 112
Narasimhan, Siddique, Siddique, Park, Choo, Choo (bb0095) 2020; 5
Francis, Sahu, Bhargav (bb0155) 2022
Fleischmann, Hendra, Mcquillan (bb0055) 1974; 26
Wei, Peng, Yang, Tian, Sun, Wang, Liu (bb0090) 2021; 11
Repetto, Giordano, Foti, Gucciardi, Mennucci, Buatier de Mongeot (bb0080) 2018; 446
Hahn, Hajebifard, Berini (bb0360) 2020; 9
Lao, Zheng, Dai, Hu, Ni, Ji, Cai, Smith, Li, Zhang, Wu (bb0745) 2020; 30
He, Liang, Peng, Norman (bb0150) 2017; 19
Yue, Wang, Whittaker, Lopez-Royo, Yang, Zayats (bb0335) 2017; 5
Howell, Grushina, Holzner, Brugger (bb0810) 2020; 6
Yang, Sun, Li, Pan, Gu, Li (bb0295) 2019; 29
Kostovski, White, Mitchell, Austin, Stoddart (bb0680) 2009; 24
Min, Santos, Girotto, Brolo, Gordon (bb0395) 2008; 112
Mai, Lai, Zheng, Balasubramanian, Leong, Lee, Lee, Choi (bb0530) 2012; 28
Lim, Ng, Fu, Tobing, Zhang (bb0765) 2017; 28
Akinoglu, Mir, Gatensby, Rydzek, Mokarian-Tabari (bb0770) 2020; 12
Bahns, Imre, Vlasko-Vlasov, Pearson, Hiller, Chen, Welp (bb0375) 2007; 91
Yuan, Panwar, Yap (bb0010) 2017; 337
Aleknavičienė, Pabrėža, Talaikis, Jankunec, Račiukaitis (bb0175) 2022
Stankevičius, Gedvilas, Voisiat, Malinauskas, Račiukaitis (bb0545) 2013; 53
Zhao, Li, Wang, Zhang, Chu, Yang, Liu, Zhou, Lu (bb0355) 2017; 720
Grigorescu, Hagen (bb0260) 2009; 20
Le Ru, Blackie, Meyer, Etchegoint (bb0040) 2007; 111
Yue, Gong, Long, Kravets, Gao, Pu, Wang (bb0320) 2020
Liu, Petrosko, Zheng, Mirkin (bb0725) 2020; 120
Wang, Le-The, Karamanos, Suryadharma, van den Berg, Pinkse, Rockstuhl, Shui, Eijkel, Segerink (bb0505) 2020; 12
Yan, Zhang, Wang, Fu, Jiang, Liu, Verma, Kawata, Sun (bb0575) 2015; 7
Jonker, Srivastava, Lafuente, Susarrey-Arce, Stam, Berg, Odijk, Gardeniers (bb0185) 2023; 20
Zhang, Yang, Wang, Zhao, Zhu, Liu, Zhong, Sun (bb0615) 2014; 25
Yang, Lapsley, Cao, Zhao, Zhao, Hao, Kiraly, Scott, Li, Wang, Lei (bb0475) 2013; 23
Le Thi, Jin, Wiedemair, Van Den Berg, Carlen (bb0300) 2013; 7
Hong, de Albuquerque, Poppi, Brolo (bb0580) 2017; 982
Cetin, Yilmaz, Galarreta, Yilmaz, Altug, Busnaina (bb0170) 2020; 15
Betz, Yu, Cheng, White, Rubloff (bb0220) 2014; 16
Hulteen, Van Duyne (bb0465) 1995; 13
Kahl, Voges, Kostrewa, Viets, Hill (bb0110) 1998; 51
Alvarez-Puebla, Cui, Bravo-Vasquez, Veres, Fenniri (bb0640) 2007; 111
Cao, Qin, Zhu, Qian, Zhang, Wu, Li (bb0755) 2017; 7
Anema, Brolo, Marthandam, Gordon (bb0380) 2008; 112
Stuerzebecher, Fuchs, Zeitner, Tuennermann (bb0710) 2015; 132
Wang, Zhu, Wu, Xu, Su, Zhang, Qi, Wen, Yang (bb0305) 2020
Cetin, Etezadi, Galarreta, Busson, Eksioglu, Altug (bb0315) 2015; 2
Hreshchuk, Yukhymchuk, Dzhagan, Danko, Min’ko, Indutnyi, Shepeliavyi, Lytvyn, Sheregii, Prokhorenko, Polit (bb0565) 2019; 22
Le-The, Berenschot, Tiggelaar, Tas, van den Berg, Eijkel (bb0705) 2017; 2
Gao, Xu, Fang, Gao, Zhang, Xu (bb0400) 2012; 7
Suresh, Ding, Chew, Yap (bb0650) 2018; 1
Luo, Sivashanmugan, Der, Yao, Peng (bb0020) 2014; 61
Rahmani, Taugeron, Rousseau (bb0120) October 23, 2023
Gombert (bb0550) 2004; 43
Jeon, Park, Cho, Yang (bb0535) 2012; 22
Talbot (bb0685) 1836; 9
Avasarala, Jena, Balivada, Angani, Syed, Soma, Podagatlapalli (bb0795) 2021
Scaglione, Paschalidou, Rizzi, Bordiga, Battezzati (bb0145) 2015; 95
D’Andrea, Fazio, Gucciardi, Giordano, Martella, Chiappe, Toma, Buatier de Mongeot, Tantussi, Vasanthakumar, Fuso (bb0085) 2014; 118
Bernardeschi, Ilyas, Beccai (bb0775) 2021; 3
Fan, Andrade, Brolo (bb0060) 2011; 693
Jeon, Heo, Lee, Yang (bb0585) 2012; 22
Hong, Brolo (bb0520) 2017; 972
Lin, Cui, Xu, Ren, Tian (bb0070) 2009; 394
Huebner, Boucher, Schneidewind, Cialla, Popp (bb0240) 2008; 85
Haller, Hatzakis, Srinivasan (bb0245) 1968; 12
Zhang, Dai, Zhang, Dong, Wu, Yang, Xiao, Jiang (bb0430) 2016; 59
Azziz, Safar, Xiang, Edely, Lamy de la Chapelle (bb0840) 2022
Dhawan, Gerhold, Madison, Fowlkes, Russell, Vo-Dinh, Leonard (bb0405) 2009; 31
Hatzakis (bb0270) 1949; vol. 11
Hao, Chu, Zhang, Zhao, Yan, Li, Liu, Lu (bb0350) 2018; 263
Hamad, Bharati Moram, Yendeti, Podagatlapalli, Nageswara Rao, Pathak, Mohiddon, Soma (bb0790) 2018; 3
Chen, Du, Tan, Shen, Chen (bb0050) 2011; 3
Hatab, Oran, Sepaniak (bb0280) 2008; 2
Brolo, Arctander, Gordon, Leathem, Kavanagh (bb0385) 2004; 4
Xu, Ma, Wang, Liu, Zhang, Zhang, Zhang, Jiang, Sun (bb0570) 2011; 32
Hoppmann, Yu, White (bb0740) 2013; 63
Mehrvar, Sadeghipari, Tavassoli, Mohajerzadeh, Fathipour, Hajihosseini (bb0345) 2019; 50
Salaita K, Wang Y, Mirkin CA. Applications of dip-pen nanolithography. Nat. Nanotechnol. (1):145-155. doi
Bauman, Darweesh, Herzog (bb0825) 2016; 9759
Chan, Zhao, Hicks, Schatz, Van Duyne (bb0435) 2007; 7
Xiang, Li, Zheng (bb0265) 2018; 29
Xie, Cao, Li (bb0195) 2022
Petti, Capasso, Rippa (bb0230) 2016; 82
Wu, Hu, Ou, Li, Williams (bb0645) 2010; 21
Mercadal, Encina, Villa, Coronado (bb0105) 2021; 125
Mehrvar, Sadeghipari, Tavassoli, Mohajerzadeh, Fathipour (bb0340) 2017; 7
Péter (bb0495) 2021
Yao, Jiang, Luo (bb0600) 2020; 12
Chang, Huang, Lin (bb0310) 2020; 10
Sivashanmugan, Der, You, Wu (bb0420) 2013; 181
Lee, Kwon, Jung, Lim, Lee (bb0675) 2019; 12
Kasani, Curtin, Wu (bb0125) 2019; 8
Liu, Zhang, Lu, Du, Li, Cui, Yuan, Zhan, Ge, Wang, Chen (bb0670) 2017; 7
Kim, Mun, Baek (bb0255) 2020; xxx
Kahl, Voges, Kostrewa, Viets, Hill (bb0275) 1998; 51
Petti, Capasso, Rippa (bb0290) 2016; 82
Wang, Huang, Hu, Yan, Ren (bb0215) 2020; 2
Johnson, Hultqvist, Bent (bb0760) 2014; 17
Erkızan, İdikut, Demirtaş, Goodarzi, Demir, Borra, Pavlov, Bek (bb0785) 2022; 10
Colson, Henrist, Cloots (bb0470) 2013; 2013
Xu, Zhang, Zhang, Yang, Wang, Li (bb0160) 2022
Colniță, Marconi, Dina, Brezeștean, Bogdan, Turcu (bb0200) 2022; 276
Selimis, Mironov, Farsari (bb0780) 2015; 132
Ahn, Thiyagarajan, Jia, Kim, Yoon, Thomas, Jang (bb0525) 2013; 5
Purwidyantri, El-Mekki, Lai (bb0500) 2017; 16
Guo (bb0635) 2007; 19
Ambartsumyan, Gribanyov, Kukushkin, Kopylov, Zavyalova (bb0005) 2020; 21
Zheng, Zhu, Chen, Xiang, Duan (bb0115) 2017; 28
Wang, Hsu, Liu, Lai, Chiang (bb0490) 2016; 18
Lee, Park, Moon, Yang (bb0515) 2008; 8
Kim, Mun, Choi, Jung, Kim, Kim, Park (bb0625) 2020; 10
Sabouri, Anthony, Bowen, Vishnyakov, Prewett (bb0365) 2014; 121
Le-The, Lozeman, Lafuente, Muñoz, Bomer, Duy-Tong, Berenschot, van den Berg, Tas, Odijk, Eijkel (bb0165) 2019; 11
Doherty, Murphy, Pollard, Dawson (bb0025) 2013; 3
Indrasekara, Meyers, Shubeita, Feldman, Gustafsson, Fabris (bb0100) 2014; 6
Kennedy, Spaeth, Dickey, Carron (bb0425) 1999; 103
Grand, Kostcheev, Bijeon (bb0285) 2003; 139
Solak, Dais, Clube, Wang (bb0695) 2015; 143
Radziuk, Moehwald (bb0045) 2015; 17
Yue, Wang, Yang (bb0235) 2012; 22
Cottat, Lidgi-Guigui, Tijunelyte, Barbillon, Hamouda, Gogol, Aassime, Lourtioz, Bartenlian, de la Chapelle (bb0660) 2014; 9
Cialla, März, Böhme (bb0035) 2012; 403
Zhu, Zhao, Meng, Wang, Hu, Han, Lei (bb0455) 2020; 31
Liszewska, Bartosewicz, Budner, Nasiłowska, Szala, Weyher, Dzięcielewski, Mierczyk, Jankiewicz (bb0835) 2019; 100
Ho, Zhao, Lee (bb0485) 2014; 6
Min, Gordon (bb0410) 2008; 16
Yang, Akhatov, Mahinfalah, Jang (bb0720) 2007; 30
Demirel, Usta, Yilmaz, Celik, Alidagi, Buyukserin (bb0075) 2018; 6
Akbıyık, Avishan, Demirtaş, Demir, Yüce, Bek (bb0815) 2022; 10
Haynes, Van Duyne (bb0460) 2001; 105
Wu, Li, Schmidt, Rindzevicius, Boisen, Ndoni (bb0180) 2018; 28
Yue, Wang, Yang (bb0225) 2012; 22
Ryu, Kang, Lee, Kim (bb0655) 2015; 5
Lee, Chao, Hsieh, Ou (bb0730) 2013; 50
Polavarapu, Liz-Marzán (bb0620) 2013; 15
Harvey, Petterson, Weckhuysen, Gooijer, Ariese, Mank (bb0015) 2012; 66
Wang, Ruan, Ji, Ji, Lv, Zhao, Zhao (bb0445) 2010; 114
Kaneko, Watanabe, Fujii, Nishino, Kiguchi (bb0325) 2020; 10
Hatab (10.1016/j.mne.2024.100267_bb0280) 2008; 2
Quilis (10.1016/j.mne.2024.100267_bb0555) 2018; 10
Yang (10.1016/j.mne.2024.100267_bb0475) 2013; 23
Lee (10.1016/j.mne.2024.100267_bb0675) 2019; 12
Xu (10.1016/j.mne.2024.100267_bb0160) 2022
Lee (10.1016/j.mne.2024.100267_bb0510) 2009; 9
Sivashanmugan (10.1016/j.mne.2024.100267_bb0420) 2013; 181
10.1016/j.mne.2024.100267_bb0715
Hatzakis (10.1016/j.mne.2024.100267_bb0270) 1949; vol. 11
Mehrvar (10.1016/j.mne.2024.100267_bb0340) 2017; 7
Chen (10.1016/j.mne.2024.100267_bb0590) 2012; 8231
Jonker (10.1016/j.mne.2024.100267_bb0185) 2023; 20
Jeon (10.1016/j.mne.2024.100267_bb0535) 2012; 22
Zheng (10.1016/j.mne.2024.100267_bb0115) 2017; 28
Le Thi (10.1016/j.mne.2024.100267_bb0300) 2013; 7
Pavliuk (10.1016/j.mne.2024.100267_bb0800) 2020; 10
Grigorescu (10.1016/j.mne.2024.100267_bb0260) 2009; 20
Coluccio (10.1016/j.mne.2024.100267_bb0250) 2009; 86
Anikin (10.1016/j.mne.2024.100267_bb0330) 2019; 14
Levinson (10.1016/j.mne.2024.100267_bb0135) 2010
Hong (10.1016/j.mne.2024.100267_bb0580) 2017; 982
Mehrvar (10.1016/j.mne.2024.100267_bb0345) 2019; 50
Heydari (10.1016/j.mne.2024.100267_bb0735) 2016; April 2016
Hong (10.1016/j.mne.2024.100267_bb0520) 2017; 972
Kaneko (10.1016/j.mne.2024.100267_bb0325) 2020; 10
Stuerzebecher (10.1016/j.mne.2024.100267_bb0710) 2015; 132
Ryu (10.1016/j.mne.2024.100267_bb0655) 2015; 5
Liu (10.1016/j.mne.2024.100267_bb0725) 2020; 120
Grand (10.1016/j.mne.2024.100267_bb0285) 2003; 139
Dhawan (10.1016/j.mne.2024.100267_bb0390) 2010; 10
Guo (10.1016/j.mne.2024.100267_bb0635) 2007; 19
Wang (10.1016/j.mne.2024.100267_bb0490) 2016; 18
Hwang (10.1016/j.mne.2024.100267_bb0560) 2018; 18
D’Andrea (10.1016/j.mne.2024.100267_bb0085) 2014; 118
Colniță (10.1016/j.mne.2024.100267_bb0200) 2022; 276
Yue (10.1016/j.mne.2024.100267_bb0235) 2012; 22
Lee (10.1016/j.mne.2024.100267_bb0515) 2008; 8
Rakhmatov (10.1016/j.mne.2024.100267_bb0415) 2019
Aghajani (10.1016/j.mne.2024.100267_bb0140) 2020; 3
Lim (10.1016/j.mne.2024.100267_bb0765) 2017; 28
Luo (10.1016/j.mne.2024.100267_bb0020) 2014; 61
Petti (10.1016/j.mne.2024.100267_bb0290) 2016; 82
Hreshchuk (10.1016/j.mne.2024.100267_bb0565) 2019; 22
Scaglione (10.1016/j.mne.2024.100267_bb0145) 2015; 95
Schlücker (10.1016/j.mne.2024.100267_bb0210) 2014; 53
Yan (10.1016/j.mne.2024.100267_bb0575) 2015; 7
He (10.1016/j.mne.2024.100267_bb0150) 2017; 19
Francis (10.1016/j.mne.2024.100267_bb0155) 2022
Haynes (10.1016/j.mne.2024.100267_bb0460) 2001; 105
Zhang (10.1016/j.mne.2024.100267_bb0430) 2016; 59
Wang (10.1016/j.mne.2024.100267_bb0305) 2020
Hsu (10.1016/j.mne.2024.100267_bb0030) 2014; 46
Cañamares (10.1016/j.mne.2024.100267_bb0065) 2008; 326
Johnson (10.1016/j.mne.2024.100267_bb0760) 2014; 17
Hulteen (10.1016/j.mne.2024.100267_bb0465) 1995; 13
Kostovski (10.1016/j.mne.2024.100267_bb0680) 2009; 24
Lin (10.1016/j.mne.2024.100267_bb0070) 2009; 394
Yue (10.1016/j.mne.2024.100267_bb0335) 2017; 5
Lee (10.1016/j.mne.2024.100267_bb0730) 2013; 50
Suresh (10.1016/j.mne.2024.100267_bb0650) 2018; 1
Bauman (10.1016/j.mne.2024.100267_bb0825) 2016; 9759
Kim (10.1016/j.mne.2024.100267_bb0255) 2020; xxx
Zhao (10.1016/j.mne.2024.100267_bb0355) 2017; 720
Colson (10.1016/j.mne.2024.100267_bb0470) 2013; 2013
Bernardeschi (10.1016/j.mne.2024.100267_bb0775) 2021; 3
Aleknavičienė (10.1016/j.mne.2024.100267_bb0175) 2022
Liszewska (10.1016/j.mne.2024.100267_bb0835) 2019; 100
Huebner (10.1016/j.mne.2024.100267_bb0240) 2008; 85
Brolo (10.1016/j.mne.2024.100267_bb0385) 2004; 4
Pandey (10.1016/j.mne.2024.100267_bb0190) 2022; 12
Le-The (10.1016/j.mne.2024.100267_bb0705) 2017; 2
Yue (10.1016/j.mne.2024.100267_bb0225) 2012; 22
Li (10.1016/j.mne.2024.100267_bb0205) 2022
Fleischmann (10.1016/j.mne.2024.100267_bb0055) 1974; 26
Xie (10.1016/j.mne.2024.100267_bb0195) 2022
Kahl (10.1016/j.mne.2024.100267_bb0110) 1998; 51
Kim (10.1016/j.mne.2024.100267_bb0625) 2020; 10
Wang (10.1016/j.mne.2024.100267_bb0445) 2010; 114
Selimis (10.1016/j.mne.2024.100267_bb0780) 2015; 132
Hahn (10.1016/j.mne.2024.100267_bb0360) 2020; 9
Mai (10.1016/j.mne.2024.100267_bb0530) 2012; 28
Wu (10.1016/j.mne.2024.100267_bb0180) 2018; 28
Repetto (10.1016/j.mne.2024.100267_bb0080) 2018; 446
Sabouri (10.1016/j.mne.2024.100267_bb0365) 2014; 121
Dhawan (10.1016/j.mne.2024.100267_bb0405) 2009; 31
Jeon (10.1016/j.mne.2024.100267_bb0585) 2012; 22
Fan (10.1016/j.mne.2024.100267_bb0060) 2011; 693
Yang (10.1016/j.mne.2024.100267_bb0720) 2007; 30
Bahns (10.1016/j.mne.2024.100267_bb0375) 2007; 91
Yang (10.1016/j.mne.2024.100267_bb0295) 2019; 29
Wu (10.1016/j.mne.2024.100267_bb0805) 2023
Liu (10.1016/j.mne.2024.100267_bb0845) 2020; 15
Cetin (10.1016/j.mne.2024.100267_bb0170) 2020; 15
van Wolferen (10.1016/j.mne.2024.100267_bb0540) 2011
Doherty (10.1016/j.mne.2024.100267_bb0025) 2013; 3
Ho (10.1016/j.mne.2024.100267_bb0485) 2014; 6
Chang (10.1016/j.mne.2024.100267_bb0310) 2020; 10
Zhang (10.1016/j.mne.2024.100267_bb0595) 2011; 11
Schmidt (10.1016/j.mne.2024.100267_bb0830) 2012; 24
Betz (10.1016/j.mne.2024.100267_bb0220) 2014; 16
Min (10.1016/j.mne.2024.100267_bb0395) 2008; 112
Demirel (10.1016/j.mne.2024.100267_bb0075) 2018; 6
Hamad (10.1016/j.mne.2024.100267_bb0790) 2018; 3
Alvarez-Puebla (10.1016/j.mne.2024.100267_bb0640) 2007; 111
Isoyan (10.1016/j.mne.2024.100267_bb0690) 2009; 27
Solak (10.1016/j.mne.2024.100267_bb0700) 2011; 19
Min (10.1016/j.mne.2024.100267_bb0410) 2008; 16
Zhang (10.1016/j.mne.2024.100267_bb0370) 2017; 2018
Hoppmann (10.1016/j.mne.2024.100267_bb0740) 2013; 63
Zhang (10.1016/j.mne.2024.100267_bb0615) 2014; 25
Wei (10.1016/j.mne.2024.100267_bb0090) 2021; 11
Yuan (10.1016/j.mne.2024.100267_bb0010) 2017; 337
Solak (10.1016/j.mne.2024.100267_bb0695) 2015; 143
Mosier-Boss (10.1016/j.mne.2024.100267_bb0820) 2017; 7
Mercadal (10.1016/j.mne.2024.100267_bb0105) 2021; 125
Gombert (10.1016/j.mne.2024.100267_bb0550) 2004; 43
Franssila (10.1016/j.mne.2024.100267_bb0130) 2010
Krishnamoorthy (10.1016/j.mne.2024.100267_bb0630) 2011; 3
Cialla (10.1016/j.mne.2024.100267_bb0035) 2012; 403
Radziuk (10.1016/j.mne.2024.100267_bb0045) 2015; 17
Xu (10.1016/j.mne.2024.100267_bb0570) 2011; 32
Howell (10.1016/j.mne.2024.100267_bb0810) 2020; 6
Péter (10.1016/j.mne.2024.100267_bb0495) 2021
Akinoglu (10.1016/j.mne.2024.100267_bb0770) 2020; 12
Fang (10.1016/j.mne.2024.100267_bb0480) 2020; 12
Kahl (10.1016/j.mne.2024.100267_bb0275) 1998; 51
Wang (10.1016/j.mne.2024.100267_bb0505) 2020; 12
Erkızan (10.1016/j.mne.2024.100267_bb0785) 2022; 10
Gao (10.1016/j.mne.2024.100267_bb0400) 2012; 7
Sung (10.1016/j.mne.2024.100267_bb0440) 2008; 112
Le Ru (10.1016/j.mne.2024.100267_bb0040) 2007; 111
Hao (10.1016/j.mne.2024.100267_bb0350) 2018; 263
Azziz (10.1016/j.mne.2024.100267_bb0840) 2022
Petti (10.1016/j.mne.2024.100267_bb0230) 2016; 82
Lao (10.1016/j.mne.2024.100267_bb0745) 2020; 30
Cetin (10.1016/j.mne.2024.100267_bb0315) 2015; 2
Cao (10.1016/j.mne.2024.100267_bb0755) 2017; 7
Ahn (10.1016/j.mne.2024.100267_bb0525) 2013; 5
Liu (10.1016/j.mne.2024.100267_bb0605) 2020; 12
Anema (10.1016/j.mne.2024.100267_bb0380) 2008; 112
Kasani (10.1016/j.mne.2024.100267_bb0125) 2019; 8
Avasarala (10.1016/j.mne.2024.100267_bb0795) 2021
Polavarapu (10.1016/j.mne.2024.100267_bb0620) 2013; 15
Talbot (10.1016/j.mne.2024.100267_bb0685) 1836; 9
Wang (10.1016/j.mne.2024.100267_bb0215) 2020; 2
Ding (10.1016/j.mne.2024.100267_bb0665) 2014; 6
Rahmani (10.1016/j.mne.2024.100267_bb0120) 2023
Yue (10.1016/j.mne.2024.100267_bb0320) 2020
Zhu (10.1016/j.mne.2024.100267_bb0455) 2020; 31
Chan (10.1016/j.mne.2024.100267_bb0435) 2007; 7
Kennedy (10.1016/j.mne.2024.100267_bb0425) 1999; 103
Seo (10.1016/j.mne.2024.100267_bb0610) 2014; 14
Wu (10.1016/j.mne.2024.100267_bb0645) 2010; 21
Ambartsumyan (10.1016/j.mne.2024.100267_bb0005) 2020; 21
Le-The (10.1016/j.mne.2024.100267_bb0165) 2019; 11
Indrasekara (10.1016/j.mne.2024.100267_bb0100) 2014; 6
Barman (10.1016/j.mne.2024.100267_bb0750) 2017; 8
Chen (10.1016/j.mne.2024.100267_bb0050) 2011; 3
Cottat (10.1016/j.mne.2024.100267_bb0660) 2014; 9
Harvey (10.1016/j.mne.2024.100267_bb0015) 2012; 66
Zhao (10.1016/j.mne.2024.100267_bb0450) 2017; 9
Akbıyık (10.1016/j.mne.2024.100267_bb0815) 2022; 10
Narasimhan (10.1016/j.mne.2024.100267_bb0095) 2020; 5
Haller (10.1016/j.mne.2024.100267_bb0245) 1968; 12
Yao (10.1016/j.mne.2024.100267_bb0600) 2020; 12
Stankevičius (10.1016/j.mne.2024.100267_bb0545) 2013; 53
Liu (10.1016/j.mne.2024.100267_bb0670) 2017; 7
Xiang (10.1016/j.mne.2024.100267_bb0265) 2018; 29
Purwidyantri (10.1016/j.mne.2024.100267_bb0500) 2017; 16
References_xml – volume: 10
  year: 2020
  ident: bb0325
  article-title: The practical electromagnetic effect in surface-enhanced Raman scattering observed by the lithographically fabricated gold nanosquare dimers
  publication-title: AIP Adv.
– volume: 61
  start-page: 232
  year: 2014
  end-page: 240
  ident: bb0020
  article-title: Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review
  publication-title: Biosens. Bioelectron.
– year: 2010
  ident: bb0135
  article-title: Principles of Lithography
– volume: 3
  year: 2013
  ident: bb0025
  article-title: Surface-enhanced Raman scattering from metallic nanostructures: bridging the gap between the near-field and far-field responses
  publication-title: Phys. Rev. X
– volume: 10
  start-page: 10268
  year: 2018
  end-page: 10276
  ident: bb0555
  article-title: Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS
  publication-title: Nanoscale
– volume: 22
  year: 2012
  ident: bb0225
  article-title: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering
  publication-title: J. Micromech. Microeng.
– volume: 4
  start-page: 2015
  year: 2004
  end-page: 2018
  ident: bb0385
  article-title: Nanohole-enhanced raman scattering
  publication-title: Nano Lett.
– volume: 12
  start-page: 12345
  year: 2020
  end-page: 12352
  ident: bb0480
  article-title: Hierarchically ordered silicon Metastructures from improved self-assembly-based Nanosphere lithography
  publication-title: ACS Appl. Mater. Interfaces
– volume: 53
  start-page: 4756
  year: 2014
  end-page: 4795
  ident: bb0210
  article-title: Surface-enhanced raman spectroscopy: concepts and chemical applications
  publication-title: Angew. Chem. Int. Ed.
– volume: vol. 11
  year: 1949
  ident: bb0270
  article-title: The Metal Molybdenum
– volume: 7
  start-page: 1
  year: 2017
  end-page: 8
  ident: bb0755
  article-title: Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable Nanogap for surface-enhanced Raman scattering
  publication-title: Sci. Rep.
– start-page: 571
  year: 2022
  ident: bb0175
  article-title: Low-cost SERS substrate featuring laser-ablated amorphous nanostructure
  publication-title: Appl. Surf. Sci.
– volume: 26
  start-page: 163
  year: 1974
  end-page: 166
  ident: bb0055
  article-title: Raman spectra of pyridine absorbed at a silver electrode
  publication-title: Chem. Phys. Lett.
– volume: 3
  start-page: 1033
  year: 2011
  end-page: 1040
  ident: bb0630
  article-title: Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography
  publication-title: ACS Appl. Mater. Interfaces
– volume: 25
  year: 2014
  ident: bb0615
  article-title: Large-scale uniform au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate
  publication-title: Nanotechnology
– volume: 3
  start-page: 1575
  year: 2011
  end-page: 1581
  ident: bb0050
  article-title: Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering
  publication-title: Nanoscale
– year: 2021
  ident: bb0495
  article-title: Electrochemical Methods of Nanostructure Preparation
– volume: 143
  start-page: 74
  year: 2015
  end-page: 80
  ident: bb0695
  article-title: Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs
  publication-title: Microelectron. Eng.
– volume: 3
  year: 2021
  ident: bb0775
  article-title: A review on active 3D microstructures via direct laser lithography
  publication-title: Adv. Intell. Syst.
– volume: 132
  start-page: 83
  year: 2015
  end-page: 89
  ident: bb0780
  article-title: Direct laser writing: principles and materials for scaffold 3D printing
  publication-title: Microelectron. Eng.
– volume: 7
  start-page: 1
  year: 2012
  end-page: 8
  ident: bb0400
  article-title: High performance surface-enhanced Raman scattering substrates of Si-based au film developed by focused ion beam nanofabrication
  publication-title: Nanoscale Res. Lett.
– volume: 5
  start-page: 76085
  year: 2015
  end-page: 76091
  ident: bb0655
  article-title: Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer
  publication-title: RSC Adv.
– volume: 85
  start-page: 1792
  year: 2008
  end-page: 1794
  ident: bb0240
  article-title: Microfabricated SERS-arrays with sharp-edged metallic nanostructures
  publication-title: Microelectron. Eng.
– volume: 22
  start-page: 4268
  year: 2012
  end-page: 4274
  ident: bb0585
  article-title: Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform
  publication-title: Adv. Funct. Mater.
– volume: 326
  start-page: 103
  year: 2008
  end-page: 109
  ident: bb0065
  article-title: Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and the interfacial properties
  publication-title: J. Colloid Interface Sci.
– volume: 28
  start-page: 1
  year: 2017
  end-page: 7
  ident: bb0115
  article-title: Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy
  publication-title: Nanotechnology
– volume: 5
  start-page: 4075
  year: 2017
  end-page: 4084
  ident: bb0335
  article-title: Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers
  publication-title: J. Mater. Chem. C Mater.
– volume: 10
  year: 2020
  ident: bb0310
  article-title: Surface-enhanced Raman scattering and fluorescence on gold nanogratings
  publication-title: Nanomaterials
– volume: 11
  start-page: 2715
  year: 2011
  end-page: 2719
  ident: bb0595
  article-title: Holographic control of motive shape in plasmonic nanogap arrays
  publication-title: Nano Lett.
– volume: 17
  start-page: 236
  year: 2014
  end-page: 246
  ident: bb0760
  article-title: A brief review of atomic layer deposition: from fundamentals to applications
  publication-title: Mater. Today
– volume: 6
  start-page: 8891
  year: 2014
  end-page: 8899
  ident: bb0100
  article-title: Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime
  publication-title: Nanoscale
– volume: 7
  start-page: 27059
  year: 2015
  end-page: 27065
  ident: bb0575
  article-title: Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference
  publication-title: ACS Appl. Mater. Interfaces
– volume: 121
  start-page: 24
  year: 2014
  end-page: 26
  ident: bb0365
  article-title: The effects of dwell time on focused ion beam machining of silicon
  publication-title: Microelectron. Eng.
– volume: 21
  year: 2010
  ident: bb0645
  article-title: Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy
  publication-title: Nanotechnology
– volume: 2
  year: 2017
  ident: bb0705
  article-title: Shrinkage control of photoresist for large-area fabrication of Sub-30 nm periodic nanocolumns
  publication-title: Adv. Mater. Technol.
– volume: 30
  start-page: 441
  year: 2007
  end-page: 446
  ident: bb0720
  article-title: Nano-fabrication: a review
  publication-title: J. Chin. Inst. Eng. Transact. Chin. Inst. Eng. Ser. A/Chung-kuo Kung Ch’eng Hsuch K’an
– volume: 86
  start-page: 1085
  year: 2009
  end-page: 1088
  ident: bb0250
  article-title: Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition
  publication-title: Microelectron. Eng.
– volume: 9
  start-page: 393
  year: 2020
  end-page: 399
  ident: bb0360
  article-title: Helium focused ion beam direct milling of plasmonic heptamer-arranged nanohole arrays
  publication-title: Nanophotonics
– volume: 103
  start-page: 3640
  year: 1999
  end-page: 3646
  ident: bb0425
  article-title: Determination of the distance dependence and experimental effects for modified Sers substrates based on self-assembled monolayers formed using alkanethiols
  publication-title: J. Phys. Chem. B
– volume: 2
  start-page: 253
  year: 2020
  end-page: 271
  ident: bb0215
  article-title: Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy
  publication-title: Nat. Rev. Phys.
– reference: Salaita K, Wang Y, Mirkin CA. Applications of dip-pen nanolithography. Nat. Nanotechnol. (1):145-155. doi:
– volume: 114
  start-page: 2886
  year: 2010
  end-page: 2890
  ident: bb0445
  article-title: Preparation of nanoscale ag semishell array with tunable interparticle distance and its application in surface-enhanced Raman scattering
  publication-title: J. Phys. Chem. C
– volume: 10
  year: 2020
  ident: bb0800
  article-title: Ultrasensitive SERS-based plasmonic sensor with analyte enrichment system produced by direct laser writing
  publication-title: Nanomaterials
– volume: 720
  start-page: 139
  year: 2017
  end-page: 146
  ident: bb0355
  article-title: Constructing sub-10-nm gaps in graphene-metal hybrid system for advanced surface-enhanced Raman scattering detection
  publication-title: J. Alloys Compd.
– volume: 2013
  year: 2013
  ident: bb0470
  article-title: Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials
  publication-title: J. Nanomater.
– volume: 10
  start-page: 608
  year: 2010
  end-page: 616
  ident: bb0390
  article-title: Methodologies for developing surface-enhanced raman scattering (SERS) substrates for detection of chemical and biological molecules
  publication-title: IEEE Sensors J.
– volume: 59
  year: 2016
  ident: bb0430
  article-title: Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres
  publication-title: Sci. China Phys. Mech. Astron.
– volume: 21
  start-page: 1
  year: 2020
  end-page: 15
  ident: bb0005
  article-title: SERS-based biosensors for virus determination with oligonucleotides as recognition elements
  publication-title: Int. J. Mol. Sci.
– volume: 118
  start-page: 8571
  year: 2014
  end-page: 8580
  ident: bb0085
  article-title: SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering
  publication-title: J. Phys. Chem. C
– volume: 19
  start-page: 495
  year: 2007
  end-page: 513
  ident: bb0635
  article-title: Nanoimprint lithography: methods and material requirements
  publication-title: Adv. Mater.
– volume: 63
  start-page: 219
  year: 2013
  end-page: 224
  ident: bb0740
  article-title: Highly sensitive and flexible inkjet printed SERS sensors on paper
  publication-title: Methods
– volume: 11
  year: 2021
  ident: bb0090
  article-title: Three-dimensional au/ag nanoparticle/crossed carbon nanotube sers substrate for the detection of mixed toxic molecules
  publication-title: Nanomaterials
– volume: 22
  year: 2012
  ident: bb0235
  article-title: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering
  publication-title: J. Micromech. Microeng.
– volume: 13
  start-page: 1553
  year: 1995
  end-page: 1558
  ident: bb0465
  article-title: Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces
  publication-title: J. Vac. Sci. Technol. A
– volume: 100
  start-page: 79
  year: 2019
  end-page: 85
  ident: bb0835
  article-title: Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems
  publication-title: Vib. Spectrosc.
– volume: 20
  year: 2009
  ident: bb0260
  article-title: Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art
  publication-title: Nanotechnology
– volume: 263
  start-page: 634
  year: 2018
  end-page: 642
  ident: bb0350
  article-title: Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene
  publication-title: Sensors Actuators B Chem.
– start-page: 2018
  year: 2019
  end-page: 2021
  ident: bb0415
  article-title: Subnanometer gaps for enhanced raman substrates
  publication-title: 2018 IEEE 13th Nanotechnology Materials and Devices Conference, NMDC 2018
– volume: 51
  start-page: 285
  year: 1998
  end-page: 291
  ident: bb0275
  article-title: Periodically structured metallic substrates for SERS
  publication-title: Sensors Actuators B Chem.
– volume: 22
  start-page: 23650
  year: 2012
  end-page: 23654
  ident: bb0535
  article-title: Dual length-scale nanotip arrays with controllable morphological features for highly sensitive SERS applications
  publication-title: J. Mater. Chem.
– volume: 16
  start-page: 2224
  year: 2014
  end-page: 2239
  ident: bb0220
  article-title: Simple SERS substrates: powerful, portable, and full of potential
  publication-title: Phys. Chem. Chem. Phys.
– volume: 8231
  year: 2012
  ident: bb0590
  article-title: Two-dimensional, periodic mushroomlike nanostructures for SERS applications
  publication-title: Nanoscale Imag. Sens. Actuat. Biomed. Appl. VIII
– volume: 112
  start-page: 5707
  year: 2008
  end-page: 5714
  ident: bb0440
  article-title: Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation
  publication-title: J. Phys. Chem. C
– volume: 51
  start-page: 285
  year: 1998
  end-page: 291
  ident: bb0110
  article-title: Periodically structured metallic substrates for SERS
  publication-title: Sensors Actuators B Chem.
– volume: 5
  start-page: 1836
  year: 2013
  end-page: 1842
  ident: bb0525
  article-title: An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography
  publication-title: Nanoscale
– volume: 3
  start-page: 5665
  year: 2020
  end-page: 5675
  ident: bb0140
  article-title: Aerosol direct writing and thermal tuning of copper nanoparticle patterns as surface-enhanced Raman scattering sensors
  publication-title: ACS Appl. Nano Mater.
– volume: 66
  start-page: 1179
  year: 2012
  end-page: 1185
  ident: bb0015
  article-title: Looking inside catalyst extrudates with time-resolved surface enhanced raman spectroscopy (TR-SERS)
  publication-title: Appl. Spectrosc.
– volume: 28
  year: 2018
  ident: bb0180
  article-title: Gold nanoparticles sliding on recyclable Nanohoodoos—engineered for surface-enhanced Raman spectroscopy
  publication-title: Adv. Funct. Mater.
– volume: 23
  start-page: 720
  year: 2013
  end-page: 730
  ident: bb0475
  article-title: Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition
  publication-title: Adv. Funct. Mater.
– start-page: 1248
  year: 2022
  ident: bb0840
  article-title: Sensing performances of commercial SERS substrates
  publication-title: J. Mol. Struct.
– start-page: 381
  year: 2022
  ident: bb0195
  article-title: Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues
  publication-title: Food Chem.
– volume: 91
  start-page: 2005
  year: 2007
  end-page: 2008
  ident: bb0375
  article-title: Enhanced Raman scattering from focused surface plasmons
  publication-title: Appl. Phys. Lett.
– volume: 139
  start-page: 621
  year: 2003
  end-page: 624
  ident: bb0285
  article-title: Optimization of SERS-active substrates for near-field Raman spectroscopy
  publication-title: Synth. Met.
– volume: 132
  start-page: 120
  year: 2015
  end-page: 134
  ident: bb0710
  article-title: High-resolution proximity lithography for nano-optical components
  publication-title: Microelectron. Eng.
– volume: 53
  start-page: 227
  year: 2013
  end-page: 237
  ident: bb0545
  article-title: Fabrication of periodic micro-structures by holographic lithography
  publication-title: Lith. J. Phys.
– volume: 27
  start-page: 2931
  year: 2009
  ident: bb0690
  article-title: Talbot lithography: self-imaging of complex structures
  publication-title: J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct.
– start-page: 322
  year: 2020
  ident: bb0320
  article-title: Sensitive and reproducible surface-enhanced raman spectroscopy (SERS) with arrays of dimer-nanopillars
  publication-title: Sensors Actuators B Chem.
– volume: 15
  start-page: 5288
  year: 2013
  end-page: 5300
  ident: bb0620
  article-title: Towards low-cost flexible substrates for nanoplasmonic sensing
  publication-title: Phys. Chem. Chem. Phys.
– volume: 20
  year: 2023
  ident: bb0185
  article-title: Low-variance surface-enhanced Raman spectroscopy using confined gold nanoparticles over silicon nanocones
  publication-title: ACS Appl. Nano Mater.
– volume: 6
  start-page: 5314
  year: 2018
  end-page: 5335
  ident: bb0075
  article-title: Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms
  publication-title: J. Mater. Chem. C Mater.
– volume: 6
  start-page: 8606
  year: 2014
  end-page: 8611
  ident: bb0485
  article-title: Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography
  publication-title: Nanoscale
– volume: 30
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0745
  article-title: Nanogap Plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS
  publication-title: Adv. Funct. Mater.
– volume: 16
  start-page: 9708
  year: 2008
  ident: bb0410
  article-title: Surface plasmon microcavity for resonant transmission through a slit in a gold film
  publication-title: Opt. Express
– volume: 2
  start-page: 1167
  year: 2015
  end-page: 1174
  ident: bb0315
  article-title: Plasmonic Nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing
  publication-title: ACS Photonics
– volume: 19
  start-page: 10686
  year: 2011
  ident: bb0700
  article-title: Displacement Talbot lithography: a new method for high-resolution patterning of large areas
  publication-title: Opt. Express
– volume: 18
  year: 2016
  ident: bb0490
  article-title: Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter
  publication-title: J. Opt. (U.K.).
– volume: 7
  start-page: 1
  year: 2017
  end-page: 13
  ident: bb0340
  article-title: Optical and surface enhanced Raman scattering properties of ag modified silicon double nanocone array
  publication-title: Sci. Rep.
– volume: 9759
  year: 2016
  ident: bb0825
  article-title: Surface-enhanced Raman spectroscopy substrate fabricated via nanomasking technique for biological sensor applications
  publication-title: Adv. Fabric. Technol. Micro/Nano Optics Photonics IX
– volume: 7
  start-page: 5223
  year: 2013
  end-page: 5234
  ident: bb0300
  article-title: Large area metal nanowire arrays with tunable sub-20 nm nanogaps
  publication-title: ACS Nano
– volume: 9
  start-page: 401
  year: 1836
  end-page: 407
  ident: bb0685
  article-title: LXXVI. Facts relating to optical science. No. IV
  publication-title: Lond., Edinbur. Dublin Philosoph. Magaz. J. Sci.
– volume: 24
  year: 2012
  ident: bb0830
  article-title: Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy
  publication-title: Adv. Mater.
– volume: 403
  start-page: 27
  year: 2012
  end-page: 54
  ident: bb0035
  article-title: Surface-enhanced Raman spectroscopy (SERS): Progress and trends
  publication-title: Anal. Bioanal. Chem.
– year: 2011
  ident: bb0540
  article-title: Laser Interference Lithography. Lithography: Principles, Processes and Materials
– start-page: 145
  year: 2022
  ident: bb0160
  article-title: Copper nanoleaves SERS substrates with high surface roughness for sensitive detection crystal violet and rhodamine 6G
  publication-title: Opt. Laser Technol.
– volume: 125
  start-page: 4056
  year: 2021
  end-page: 4065
  ident: bb0105
  article-title: A new figure of merit to assess the SERS enhancement factor of colloidal gold nanoparticle aggregates
  publication-title: J. Phys. Chem. C
– volume: 982
  start-page: 148
  year: 2017
  end-page: 155
  ident: bb0580
  article-title: Determination of aqueous antibiotic solutions using SERS nanogratings
  publication-title: Anal. Chim. Acta
– volume: 17
  start-page: 21072
  year: 2015
  end-page: 21093
  ident: bb0045
  article-title: Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells
  publication-title: Phys. Chem. Chem. Phys.
– volume: 111
  start-page: 6720
  year: 2007
  end-page: 6723
  ident: bb0640
  article-title: Nanoimprinted SERS-active substrates with tunable surface plasmon resonances
  publication-title: J. Phys. Chem. C
– volume: 105
  start-page: 5599
  year: 2001
  end-page: 5611
  ident: bb0460
  article-title: Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics
  publication-title: J. Phys. Chem. B
– volume: 24
  start-page: 1531
  year: 2009
  end-page: 1535
  ident: bb0680
  article-title: Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing
  publication-title: Biosens. Bioelectron.
– volume: 111
  start-page: 13794
  year: 2007
  end-page: 13803
  ident: bb0040
  article-title: Surface enhanced raman scattering enhancement factors: a comprehensive study
  publication-title: J. Phys. Chem. C
– volume: xxx
  year: 2020
  ident: bb0255
  article-title: Cascade domino lithography for extreme photon squeezing
  publication-title: Mater. Today
– volume: 12
  start-page: 23410
  year: 2020
  end-page: 23416
  ident: bb0770
  article-title: Block copolymer derived vertically coupled Plasmonic arrays for surface-enhanced Raman spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 365
  year: 2022
  ident: bb0205
  article-title: High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor
  publication-title: Sensors Actuators B Chem.
– volume: 2018
  start-page: 39
  year: November 2017
  end-page: 45
  ident: bb0370
  article-title: Surface-enhanced Raman scattering from bowtie nanoaperture arrays
  publication-title: Surf. Sci.
– volume: 10
  year: 2022
  ident: bb0815
  article-title: Laser photochemical Nanostructuring of silicon for surface enhanced Raman spectroscopy.
  publication-title: Opt. Mater.
– volume: 15
  start-page: 743
  year: 2020
  end-page: 752
  ident: bb0845
  article-title: Evaluation of the reliability of six commercial SERS substrates
  publication-title: Plasmonics
– volume: 22
  start-page: 215
  year: 2019
  end-page: 223
  ident: bb0565
  article-title: Efficient SERS substrates based on laterally ordered gold nanostructures made using interference lithography
  publication-title: Semicond. Phys. Quant. Electron. Optoelectron.
– volume: 12
  start-page: 251
  year: 1968
  end-page: 256
  ident: bb0245
  article-title: High-resolution positive resists for Electron-beam exposure
  publication-title: IBM J. Res. Dev.
– volume: 12
  start-page: 37657
  year: 2020
  end-page: 37669
  ident: bb0505
  article-title: Plasmonic nanocrystal arrays on photonic crystals with tailored optical resonances
  publication-title: ACS Appl. Mater. Interfaces
– volume: 8
  start-page: 2065
  year: 2019
  end-page: 2089
  ident: bb0125
  article-title: A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications
  publication-title: Nanophotonics
– start-page: 17
  year: 2020
  ident: bb0305
  article-title: Hybrid surface plasmon effect and SERS characterization in a heterogeneous composite structure of Au nano-array and Ag film
  publication-title: Results Phys.
– volume: 43
  start-page: 2525
  year: 2004
  ident: bb0550
  article-title: Some application cases and related manufacturing techniques for optically functional microstructures on large areas
  publication-title: Opt. Eng.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 10
  ident: bb0625
  article-title: Quasi-3D plasmonic nanowell array for molecular enrichment and Sers-based detection
  publication-title: Nanomaterials
– volume: 10
  year: 2022
  ident: bb0785
  article-title: LIPSS for SERS: metal coated direct laser written periodic nanostructures for surface enhanced Raman spectroscopy
  publication-title: Adv. Opt. Mater.
– volume: 5
  start-page: 12915
  year: 2020
  end-page: 12922
  ident: bb0095
  article-title: Bioinspired disordered flexible Metasurfaces for human tear analysis using broadband surface-enhanced Raman scattering
  publication-title: ACS Omega
– volume: 15
  start-page: 1165
  year: 2020
  end-page: 1171
  ident: bb0170
  article-title: Fabrication of Sub-10-nm plasmonic gaps for ultra-sensitive Raman spectroscopy
  publication-title: Plasmonics
– volume: 120
  start-page: 6009
  year: 2020
  end-page: 6047
  ident: bb0725
  article-title: Evolution of dip-pen nanolithography (DPN): from molecular patterning to materials discovery
  publication-title: Chem. Rev.
– year: 2010
  ident: bb0130
  article-title: Introduction to Microfabrication
– volume: 31
  start-page: 139
  year: 2009
  end-page: 146
  ident: bb0405
  article-title: Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition
  publication-title: Scanning
– volume: 112
  start-page: 17051
  year: 2008
  end-page: 17055
  ident: bb0380
  article-title: Enhanced Raman scattering from nanoholes in a copper film
  publication-title: J. Phys. Chem. C
– volume: 12
  start-page: 36505
  year: 2020
  end-page: 36512
  ident: bb0600
  article-title: Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition
  publication-title: ACS Appl. Mater. Interfaces
– volume: 9
  start-page: 7710
  year: 2017
  end-page: 7716
  ident: bb0450
  article-title: Design of Hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography
  publication-title: ACS Appl. Mater. Interfaces
– volume: 446
  start-page: 83
  year: 2018
  end-page: 91
  ident: bb0080
  article-title: SERS amplification by ultra-dense plasmonic arrays on self-organized PDMS templates
  publication-title: Appl. Surf. Sci.
– volume: 7
  start-page: 1947
  year: 2007
  end-page: 1952
  ident: bb0435
  article-title: Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography
  publication-title: Nano Lett.
– volume: 82
  start-page: 22
  year: 2016
  end-page: 30
  ident: bb0290
  article-title: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications
  publication-title: Vib. Spectrosc.
– volume: 18
  year: 2018
  ident: bb0560
  article-title: Sensitive and reproducible gold SERS sensor based on interference lithography and electrophoretic deposition
  publication-title: Sensors (Switzerland)
– volume: 7
  year: 2017
  ident: bb0670
  article-title: A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template
  publication-title: AIP Adv.
– volume: 32
  start-page: 3378
  year: 2011
  end-page: 3384
  ident: bb0570
  article-title: A SERS-active microfluidic device with tunable surface plasmon resonances
  publication-title: Electrophoresis
– volume: 8
  year: 2017
  ident: bb0750
  article-title: Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
– volume: 29
  year: 2018
  ident: bb0265
  article-title: Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers
  publication-title: Nanotechnology
– volume: 16
  start-page: 551
  year: 2017
  end-page: 559
  ident: bb0500
  article-title: Tunable plasmonic SERS hotspots on Au-film over nanosphere by rapid thermal annealing
  publication-title: IEEE Trans. Nanotechnol.
– year: October 23, 2023
  ident: bb0120
  article-title: Highlight on commercial SERS substrates and on optimized nanorough large-area SERS-based sensors: a Raman study
  publication-title: Appl. Nanosci.
– volume: 693
  start-page: 7
  year: 2011
  end-page: 25
  ident: bb0060
  article-title: A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry
  publication-title: Anal. Chim. Acta
– volume: 14
  start-page: 1521
  year: 2014
  end-page: 1532
  ident: bb0610
  article-title: Nanopatterning by laser interference lithography: applications to optical devices
  publication-title: J. Nanosci. Nanotechnol.
– volume: 337
  start-page: 1
  year: 2017
  end-page: 33
  ident: bb0010
  article-title: SERS-based ultrasensitive sensing platform: an insight into design and practical applications
  publication-title: Coord. Chem. Rev.
– volume: 11
  start-page: 12152
  year: 2019
  end-page: 12160
  ident: bb0165
  article-title: Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering
  publication-title: Nanoscale
– volume: 394
  start-page: 1729
  year: 2009
  end-page: 1745
  ident: bb0070
  article-title: Surface-enhanced raman spectroscopy: substrate-related issues
  publication-title: Anal. Bioanal. Chem.
– volume: 82
  start-page: 22
  year: 2016
  end-page: 30
  ident: bb0230
  article-title: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications
  publication-title: Vib. Spectrosc.
– volume: 28
  year: 2017
  ident: bb0765
  article-title: Highly sensitive and scalable AAO-based nano-fibre SERS substrate for sensing application
  publication-title: Nanotechnology
– volume: 46
  start-page: 59
  year: 2014
  end-page: 63
  ident: bb0030
  article-title: A study on the spectral characteristics of surface enhanced Raman scattering based on far-field extinction and near-field electromagnetic field intensity of 2D nanostructures
  publication-title: J. Raman Spectrosc.
– volume: 50
  start-page: 1416
  year: 2019
  end-page: 1428
  ident: bb0345
  article-title: Fabrication of ag-modified nanocone frustum arrays with controlled shape as active substrates for surface-enhanced Raman scattering
  publication-title: J. Raman Spectrosc.
– volume: 12
  start-page: 21401
  year: 2020
  end-page: 21408
  ident: bb0605
  article-title: Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography
  publication-title: Nanoscale
– volume: 181
  start-page: 361
  year: 2013
  end-page: 367
  ident: bb0420
  article-title: Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection
  publication-title: Sensors Actuators B Chem.
– volume: 19
  year: 2017
  ident: bb0150
  article-title: Effect of the size of silver nanoparticles on SERS signal enhancement
  publication-title: J. Nanopart. Res.
– volume: 7
  year: 2017
  ident: bb0820
  article-title: Review of SERS substrates for chemical sensing
  publication-title: Nanomaterials
– volume: 1
  start-page: 886
  year: 2018
  end-page: 893
  ident: bb0650
  article-title: Fabrication of large-area flexible SERS substrates by nanoimprint lithography
  publication-title: ACS Appl. Nano Mater.
– volume: 50
  start-page: 301
  year: 2013
  end-page: 305
  ident: bb0730
  article-title: Fabrication of surface enhanced Raman scattering (SERS)-active substrates by using dip-pen nanolithography
  publication-title: ECS Trans.
– volume: 8
  start-page: 388
  year: 2008
  end-page: 391
  ident: bb0515
  article-title: Holographic fabrication of photonic nanostructures for optofluidic integration
  publication-title: Lab Chip
– start-page: 626
  year: 2023
  ident: bb0805
  article-title: Fabrication of wafer-scale ordered micro/nanostructures for SERS substrates using rotational symmetry cantilever-based probe lithography
  publication-title: Appl. Surf. Sci.
– volume: 29
  year: 2019
  ident: bb0295
  article-title: Interdigitated silver nanoelectrode arrays: a surface-enhanced Raman scattering platform for monitoring the reorientation of molecules under an external electric field
  publication-title: J. Micromech. Microeng.
– volume: 9
  start-page: 820
  year: 2009
  end-page: 825
  ident: bb0510
  article-title: Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography
  publication-title: Curr. Appl. Phys.
– start-page: 137
  year: 2022
  ident: bb0155
  article-title: Ag nanowires based SERS substrates with very high enhancement factor
  publication-title: Phys. E Low Dimens. Syst. Nanostruct.
– volume: 276
  year: 2022
  ident: bb0200
  article-title: 3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 972
  start-page: 73
  year: 2017
  end-page: 80
  ident: bb0520
  article-title: Polarization-dependent surface-enhanced Raman scattering (SERS) from microarrays
  publication-title: Anal. Chim. Acta
– volume: 3
  start-page: 18420
  year: 2018
  end-page: 18432
  ident: bb0790
  article-title: Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multi-utility SERS platforms
  publication-title: ACS Omega
– volume: 112
  start-page: 15098
  year: 2008
  end-page: 15101
  ident: bb0395
  article-title: Localized Raman enhancement from a double-hole nanostructure in a metal film
  publication-title: J. Phys. Chem. C
– volume: 12
  year: 2022
  ident: bb0190
  article-title: Hierarchically assembled Plasmonic metal-dielectric-metal hybrid Nano-architectures for high-sensitivity SERS detection
  publication-title: Nanomaterials
– reference: .
– volume: 95
  start-page: 474
  year: 2015
  end-page: 482
  ident: bb0145
  article-title: Nanoporous gold obtained from a metallic glass precursor used as substrate for surface-enhanced Raman scattering
  publication-title: Philos. Mag. Lett.
– volume: 14
  start-page: 1527
  year: 2019
  end-page: 1537
  ident: bb0330
  article-title: Localized surface plasmon resonance in gold nanocluster arrays on opaque substrates
  publication-title: Plasmonics
– volume: April 2016
  year: 2016
  ident: bb0735
  article-title: Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering
  publication-title: Nanoscale Imag. Sens. Actuat. Biomed. Appl. XIII.
– volume: 31
  year: 2020
  ident: bb0455
  article-title: Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue
  publication-title: Nanotechnology
– volume: 12
  start-page: 2554
  year: 2019
  end-page: 2558
  ident: bb0675
  article-title: Macroscopic ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates
  publication-title: Nano Res.
– start-page: 5
  year: 2021
  ident: bb0795
  article-title: Gold-coated silicon nanoripples achieved via picosecond laser ablation for surface enhanced Raman scattering studies
  publication-title: Results Optics.
– volume: 2
  start-page: 377
  year: 2008
  end-page: 385
  ident: bb0280
  article-title: Surface-enhanced Raman
  publication-title: Spectroscopy
– volume: 9
  start-page: 1
  year: 2014
  end-page: 6
  ident: bb0660
  article-title: Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection
  publication-title: Nanoscale Res. Lett.
– volume: 6
  start-page: 17358
  year: 2014
  end-page: 17363
  ident: bb0665
  article-title: Nanoimprint lithography of Al nanovoids for deep-UV SERS
  publication-title: ACS Appl. Mater. Interfaces
– volume: 6
  year: 2020
  ident: bb0810
  article-title: Thermal scanning probe lithography—a review
  publication-title: Microsyst. Nanoeng.
– volume: 28
  start-page: 11465
  year: 2012
  end-page: 11471
  ident: bb0530
  article-title: Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching
  publication-title: Langmuir
– volume: 7
  start-page: 5223
  issue: 6
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0300
  article-title: Large area metal nanowire arrays with tunable sub-20 nm nanogaps
  publication-title: ACS Nano
  doi: 10.1021/nn4009559
– volume: 100
  start-page: 79
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0835
  article-title: Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2018.11.002
– volume: xxx
  issue: xx
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0255
  article-title: Cascade domino lithography for extreme photon squeezing
  publication-title: Mater. Today
– volume: 5
  start-page: 4075
  issue: 16
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0335
  article-title: Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers
  publication-title: J. Mater. Chem. C Mater.
  doi: 10.1039/C7TC00667E
– volume: 118
  start-page: 8571
  issue: 16
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0085
  article-title: SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp5007236
– volume: 121
  start-page: 24
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0365
  article-title: The effects of dwell time on focused ion beam machining of silicon
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2014.02.025
– volume: 10
  start-page: 10268
  issue: 21
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0555
  article-title: Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS
  publication-title: Nanoscale
  doi: 10.1039/C7NR08905H
– start-page: 145
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0160
  article-title: Copper nanoleaves SERS substrates with high surface roughness for sensitive detection crystal violet and rhodamine 6G
  publication-title: Opt. Laser Technol.
– start-page: 626
  year: 2023
  ident: 10.1016/j.mne.2024.100267_bb0805
  article-title: Fabrication of wafer-scale ordered micro/nanostructures for SERS substrates using rotational symmetry cantilever-based probe lithography
  publication-title: Appl. Surf. Sci.
– volume: 9
  start-page: 401
  issue: 56
  year: 1836
  ident: 10.1016/j.mne.2024.100267_bb0685
  article-title: LXXVI. Facts relating to optical science. No. IV
  publication-title: Lond., Edinbur. Dublin Philosoph. Magaz. J. Sci.
  doi: 10.1080/14786443608649032
– volume: 8
  issue: 3
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0750
  article-title: Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface
  publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol.
  doi: 10.1088/2043-6254/aa7252
– volume: 2
  issue: 3
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0705
  article-title: Shrinkage control of photoresist for large-area fabrication of Sub-30 nm periodic nanocolumns
  publication-title: Adv. Mater. Technol.
  doi: 10.1002/admt.201600238
– volume: 28
  issue: 23
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0765
  article-title: Highly sensitive and scalable AAO-based nano-fibre SERS substrate for sensing application
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aa6f00
– volume: 26
  start-page: 163
  issue: 2
  year: 1974
  ident: 10.1016/j.mne.2024.100267_bb0055
  article-title: Raman spectra of pyridine absorbed at a silver electrode
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/0009-2614(74)85388-1
– volume: 112
  start-page: 5707
  issue: 15
  year: 2008
  ident: 10.1016/j.mne.2024.100267_bb0440
  article-title: Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0774140
– year: 2011
  ident: 10.1016/j.mne.2024.100267_bb0540
– volume: 972
  start-page: 73
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0520
  article-title: Polarization-dependent surface-enhanced Raman scattering (SERS) from microarrays
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.04.003
– volume: 276
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0200
  article-title: 3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2022.121232
– volume: 9
  start-page: 7710
  issue: 8
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0450
  article-title: Design of Hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b14008
– volume: 28
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0115
  article-title: Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/28/4/045303
– volume: 12
  start-page: 21401
  issue: 41
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0605
  article-title: Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography
  publication-title: Nanoscale
  doi: 10.1039/D0NR05546H
– volume: 18
  issue: 5
  year: 2016
  ident: 10.1016/j.mne.2024.100267_bb0490
  article-title: Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter
  publication-title: J. Opt. (U.K.).
– volume: 61
  start-page: 232
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0020
  article-title: Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2014.05.013
– year: 2021
  ident: 10.1016/j.mne.2024.100267_bb0495
– volume: 10
  start-page: 608
  issue: 3
  year: 2010
  ident: 10.1016/j.mne.2024.100267_bb0390
  article-title: Methodologies for developing surface-enhanced raman scattering (SERS) substrates for detection of chemical and biological molecules
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2009.2038634
– volume: 111
  start-page: 13794
  issue: 37
  year: 2007
  ident: 10.1016/j.mne.2024.100267_bb0040
  article-title: Surface enhanced raman scattering enhancement factors: a comprehensive study
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0687908
– volume: 22
  issue: 12
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0225
  article-title: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/12/125007
– volume: 7
  start-page: 27059
  issue: 49
  year: 2015
  ident: 10.1016/j.mne.2024.100267_bb0575
  article-title: Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b09128
– volume: 720
  start-page: 139
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0355
  article-title: Constructing sub-10-nm gaps in graphene-metal hybrid system for advanced surface-enhanced Raman scattering detection
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.05.213
– volume: 24
  start-page: 1531
  issue: 5
  year: 2009
  ident: 10.1016/j.mne.2024.100267_bb0680
  article-title: Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2008.10.016
– ident: 10.1016/j.mne.2024.100267_bb0715
  doi: 10.1038/nnano.2007.39
– volume: 19
  issue: 8
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0150
  article-title: Effect of the size of silver nanoparticles on SERS signal enhancement
  publication-title: J. Nanopart. Res.
  doi: 10.1007/s11051-017-3953-0
– volume: 22
  start-page: 215
  issue: 2
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0565
  article-title: Efficient SERS substrates based on laterally ordered gold nanostructures made using interference lithography
  publication-title: Semicond. Phys. Quant. Electron. Optoelectron.
  doi: 10.15407/spqeo22.02.215
– volume: 29
  issue: 12
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0295
  article-title: Interdigitated silver nanoelectrode arrays: a surface-enhanced Raman scattering platform for monitoring the reorientation of molecules under an external electric field
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/1361-6439/ab4b8e
– volume: April 2016
  issue: 9721
  year: 2016
  ident: 10.1016/j.mne.2024.100267_bb0735
  article-title: Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering
  publication-title: Nanoscale Imag. Sens. Actuat. Biomed. Appl. XIII.
– volume: 20
  year: 2023
  ident: 10.1016/j.mne.2024.100267_bb0185
  article-title: Low-variance surface-enhanced Raman spectroscopy using confined gold nanoparticles over silicon nanocones
  publication-title: ACS Appl. Nano Mater.
– volume: 11
  start-page: 2715
  issue: 7
  year: 2011
  ident: 10.1016/j.mne.2024.100267_bb0595
  article-title: Holographic control of motive shape in plasmonic nanogap arrays
  publication-title: Nano Lett.
  doi: 10.1021/nl200994k
– volume: 4
  start-page: 2015
  issue: 10
  year: 2004
  ident: 10.1016/j.mne.2024.100267_bb0385
  article-title: Nanohole-enhanced raman scattering
  publication-title: Nano Lett.
  doi: 10.1021/nl048818w
– volume: 23
  start-page: 720
  issue: 6
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0475
  article-title: Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201201466
– volume: 15
  start-page: 1165
  issue: 4
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0170
  article-title: Fabrication of Sub-10-nm plasmonic gaps for ultra-sensitive Raman spectroscopy
  publication-title: Plasmonics
  doi: 10.1007/s11468-020-01137-3
– volume: 3
  start-page: 5665
  issue: 6
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0140
  article-title: Aerosol direct writing and thermal tuning of copper nanoparticle patterns as surface-enhanced Raman scattering sensors
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.0c00887
– volume: 7
  start-page: 1947
  issue: 7
  year: 2007
  ident: 10.1016/j.mne.2024.100267_bb0435
  article-title: Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography
  publication-title: Nano Lett.
  doi: 10.1021/nl070648a
– volume: 66
  start-page: 1179
  issue: 10
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0015
  article-title: Looking inside catalyst extrudates with time-resolved surface enhanced raman spectroscopy (TR-SERS)
  publication-title: Appl. Spectrosc.
  doi: 10.1366/12-06698
– volume: 28
  issue: 2
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0180
  article-title: Gold nanoparticles sliding on recyclable Nanohoodoos—engineered for surface-enhanced Raman spectroscopy
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201704818
– start-page: 365
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0205
  article-title: High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor
  publication-title: Sensors Actuators B Chem.
– volume: 19
  start-page: 495
  issue: 4
  year: 2007
  ident: 10.1016/j.mne.2024.100267_bb0635
  article-title: Nanoimprint lithography: methods and material requirements
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200600882
– volume: 394
  start-page: 1729
  issue: 7
  year: 2009
  ident: 10.1016/j.mne.2024.100267_bb0070
  article-title: Surface-enhanced raman spectroscopy: substrate-related issues
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-009-2761-5
– volume: 7
  start-page: 1
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0400
  article-title: High performance surface-enhanced Raman scattering substrates of Si-based au film developed by focused ion beam nanofabrication
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-7-399
– volume: 111
  start-page: 6720
  issue: 18
  year: 2007
  ident: 10.1016/j.mne.2024.100267_bb0640
  article-title: Nanoimprinted SERS-active substrates with tunable surface plasmon resonances
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp070906s
– volume: 21
  start-page: 1
  issue: 9
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0005
  article-title: SERS-based biosensors for virus determination with oligonucleotides as recognition elements
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21093373
– volume: 43
  start-page: 2525
  issue: 11
  year: 2004
  ident: 10.1016/j.mne.2024.100267_bb0550
  article-title: Some application cases and related manufacturing techniques for optically functional microstructures on large areas
  publication-title: Opt. Eng.
  doi: 10.1117/1.1803552
– volume: 20
  issue: 29
  year: 2009
  ident: 10.1016/j.mne.2024.100267_bb0260
  article-title: Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/20/29/292001
– volume: 132
  start-page: 83
  year: 2015
  ident: 10.1016/j.mne.2024.100267_bb0780
  article-title: Direct laser writing: principles and materials for scaffold 3D printing
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2014.10.001
– volume: 22
  start-page: 4268
  issue: 20
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0585
  article-title: Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201200921
– volume: 27
  start-page: 2931
  issue: 6
  year: 2009
  ident: 10.1016/j.mne.2024.100267_bb0690
  article-title: Talbot lithography: self-imaging of complex structures
  publication-title: J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct.
  doi: 10.1116/1.3258144
– volume: 7
  issue: 6
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0820
  article-title: Review of SERS substrates for chemical sensing
  publication-title: Nanomaterials
  doi: 10.3390/nano7060142
– volume: 29
  issue: 10
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0265
  article-title: Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/aaa691
– volume: 13
  start-page: 1553
  issue: 3
  year: 1995
  ident: 10.1016/j.mne.2024.100267_bb0465
  article-title: Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.579726
– volume: 120
  start-page: 6009
  issue: 13
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0725
  article-title: Evolution of dip-pen nanolithography (DPN): from molecular patterning to materials discovery
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00725
– volume: 17
  start-page: 236
  issue: 5
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0760
  article-title: A brief review of atomic layer deposition: from fundamentals to applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.04.026
– volume: 17
  start-page: 21072
  issue: 33
  year: 2015
  ident: 10.1016/j.mne.2024.100267_bb0045
  article-title: Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP04946B
– start-page: 571
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0175
  article-title: Low-cost SERS substrate featuring laser-ablated amorphous nanostructure
  publication-title: Appl. Surf. Sci.
– volume: 11
  issue: 8
  year: 2021
  ident: 10.1016/j.mne.2024.100267_bb0090
  article-title: Three-dimensional au/ag nanoparticle/crossed carbon nanotube sers substrate for the detection of mixed toxic molecules
  publication-title: Nanomaterials
  doi: 10.3390/nano11082026
– volume: 326
  start-page: 103
  issue: 1
  year: 2008
  ident: 10.1016/j.mne.2024.100267_bb0065
  article-title: Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and the interfacial properties
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2008.06.052
– volume: 15
  start-page: 5288
  issue: 15
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0620
  article-title: Towards low-cost flexible substrates for nanoplasmonic sensing
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp43642f
– volume: 1
  start-page: 886
  issue: 2
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0650
  article-title: Fabrication of large-area flexible SERS substrates by nanoimprint lithography
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.7b00295
– volume: 2
  start-page: 1167
  issue: 8
  year: 2015
  ident: 10.1016/j.mne.2024.100267_bb0315
  article-title: Plasmonic Nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.5b00242
– volume: 6
  start-page: 5314
  issue: 20
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0075
  article-title: Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms
  publication-title: J. Mater. Chem. C Mater.
  doi: 10.1039/C8TC01168K
– volume: 14
  start-page: 1527
  issue: 6
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0330
  article-title: Localized surface plasmon resonance in gold nanocluster arrays on opaque substrates
  publication-title: Plasmonics
  doi: 10.1007/s11468-019-00949-2
– volume: 25
  issue: 24
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0615
  article-title: Large-scale uniform au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/25/24/245301
– volume: 10
  issue: 2
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0325
  article-title: The practical electromagnetic effect in surface-enhanced Raman scattering observed by the lithographically fabricated gold nanosquare dimers
  publication-title: AIP Adv.
  doi: 10.1063/1.5126981
– volume: 3
  start-page: 18420
  issue: 12
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0790
  article-title: Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multi-utility SERS platforms
  publication-title: ACS Omega
  doi: 10.1021/acsomega.8b02629
– volume: 6
  start-page: 17358
  issue: 20
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0665
  article-title: Nanoimprint lithography of Al nanovoids for deep-UV SERS
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505511v
– volume: 6
  issue: 1
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0810
  article-title: Thermal scanning probe lithography—a review
  publication-title: Microsyst. Nanoeng.
  doi: 10.1038/s41378-019-0124-8
– volume: 16
  start-page: 9708
  issue: 13
  year: 2008
  ident: 10.1016/j.mne.2024.100267_bb0410
  article-title: Surface plasmon microcavity for resonant transmission through a slit in a gold film
  publication-title: Opt. Express
  doi: 10.1364/OE.16.009708
– volume: 31
  issue: 20
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0455
  article-title: Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue
  publication-title: Nanotechnology
  doi: 10.1088/1361-6528/ab7100
– volume: 51
  start-page: 285
  issue: 1–3
  year: 1998
  ident: 10.1016/j.mne.2024.100267_bb0110
  article-title: Periodically structured metallic substrates for SERS
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/S0925-4005(98)00219-6
– volume: 103
  start-page: 3640
  issue: 18
  year: 1999
  ident: 10.1016/j.mne.2024.100267_bb0425
  article-title: Determination of the distance dependence and experimental effects for modified Sers substrates based on self-assembled monolayers formed using alkanethiols
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp984454i
– volume: 337
  start-page: 1
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0010
  article-title: SERS-based ultrasensitive sensing platform: an insight into design and practical applications
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2017.02.006
– start-page: 2018
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0415
  article-title: Subnanometer gaps for enhanced raman substrates
– volume: 30
  start-page: 441
  issue: 3
  year: 2007
  ident: 10.1016/j.mne.2024.100267_bb0720
  article-title: Nano-fabrication: a review
  publication-title: J. Chin. Inst. Eng. Transact. Chin. Inst. Eng. Ser. A/Chung-kuo Kung Ch’eng Hsuch K’an
– volume: 114
  start-page: 2886
  issue: 7
  year: 2010
  ident: 10.1016/j.mne.2024.100267_bb0445
  article-title: Preparation of nanoscale ag semishell array with tunable interparticle distance and its application in surface-enhanced Raman scattering
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp9101702
– volume: 46
  start-page: 59
  issue: 1
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0030
  article-title: A study on the spectral characteristics of surface enhanced Raman scattering based on far-field extinction and near-field electromagnetic field intensity of 2D nanostructures
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.4599
– volume: 143
  start-page: 74
  year: 2015
  ident: 10.1016/j.mne.2024.100267_bb0695
  article-title: Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2015.03.050
– volume: 3
  issue: 9
  year: 2021
  ident: 10.1016/j.mne.2024.100267_bb0775
  article-title: A review on active 3D microstructures via direct laser lithography
  publication-title: Adv. Intell. Syst.
  doi: 10.1002/aisy.202100051
– volume: 9759
  year: 2016
  ident: 10.1016/j.mne.2024.100267_bb0825
  article-title: Surface-enhanced Raman spectroscopy substrate fabricated via nanomasking technique for biological sensor applications
  publication-title: Adv. Fabric. Technol. Micro/Nano Optics Photonics IX
– volume: 82
  start-page: 22
  year: 2016
  ident: 10.1016/j.mne.2024.100267_bb0290
  article-title: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2015.11.007
– volume: 139
  start-page: 621
  issue: 3
  year: 2003
  ident: 10.1016/j.mne.2024.100267_bb0285
  article-title: Optimization of SERS-active substrates for near-field Raman spectroscopy
  publication-title: Synth. Met.
  doi: 10.1016/S0379-6779(03)00276-5
– volume: 30
  start-page: 1
  issue: 15
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0745
  article-title: Nanogap Plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909467
– volume: 446
  start-page: 83
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0080
  article-title: SERS amplification by ultra-dense plasmonic arrays on self-organized PDMS templates
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.02.163
– volume: 2018
  start-page: 39
  issue: 676
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0370
  article-title: Surface-enhanced Raman scattering from bowtie nanoaperture arrays
  publication-title: Surf. Sci.
– volume: 21
  issue: 25
  year: 2010
  ident: 10.1016/j.mne.2024.100267_bb0645
  article-title: Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/25/255502
– volume: 2
  start-page: 253
  issue: 5
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0215
  article-title: Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-020-0171-y
– volume: 11
  start-page: 12152
  issue: 25
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0165
  article-title: Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering
  publication-title: Nanoscale
  doi: 10.1039/C9NR02215E
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0755
  article-title: Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable Nanogap for surface-enhanced Raman scattering
  publication-title: Sci. Rep.
– volume: 86
  start-page: 1085
  issue: 4–6
  year: 2009
  ident: 10.1016/j.mne.2024.100267_bb0250
  article-title: Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2008.12.061
– volume: 16
  start-page: 551
  issue: 4
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0500
  article-title: Tunable plasmonic SERS hotspots on Au-film over nanosphere by rapid thermal annealing
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2016.2647263
– volume: 18
  issue: 11
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0560
  article-title: Sensitive and reproducible gold SERS sensor based on interference lithography and electrophoretic deposition
  publication-title: Sensors (Switzerland)
  doi: 10.3390/s18114076
– volume: 132
  start-page: 120
  year: 2015
  ident: 10.1016/j.mne.2024.100267_bb0710
  article-title: High-resolution proximity lithography for nano-optical components
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2014.10.010
– start-page: 322
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0320
  article-title: Sensitive and reproducible surface-enhanced raman spectroscopy (SERS) with arrays of dimer-nanopillars
  publication-title: Sensors Actuators B Chem.
– volume: 7
  issue: 6
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0670
  article-title: A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template
  publication-title: AIP Adv.
  doi: 10.1063/1.4985270
– volume: 51
  start-page: 285
  issue: 1–3
  year: 1998
  ident: 10.1016/j.mne.2024.100267_bb0275
  article-title: Periodically structured metallic substrates for SERS
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/S0925-4005(98)00219-6
– volume: 693
  start-page: 7
  issue: 1–2
  year: 2011
  ident: 10.1016/j.mne.2024.100267_bb0060
  article-title: A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.03.002
– volume: 6
  start-page: 8606
  issue: 15
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0485
  article-title: Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography
  publication-title: Nanoscale
  doi: 10.1039/C4NR00902A
– volume: 15
  start-page: 743
  issue: 3
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0845
  article-title: Evaluation of the reliability of six commercial SERS substrates
  publication-title: Plasmonics
  doi: 10.1007/s11468-019-01084-8
– start-page: 137
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0155
  article-title: Ag nanowires based SERS substrates with very high enhancement factor
  publication-title: Phys. E Low Dimens. Syst. Nanostruct.
– volume: 53
  start-page: 227
  issue: 4
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0545
  article-title: Fabrication of periodic micro-structures by holographic lithography
  publication-title: Lith. J. Phys.
  doi: 10.3952/physics.v53i4.2765
– year: 2023
  ident: 10.1016/j.mne.2024.100267_bb0120
  article-title: Highlight on commercial SERS substrates and on optimized nanorough large-area SERS-based sensors: a Raman study
  publication-title: Appl. Nanosci.
– year: 2010
  ident: 10.1016/j.mne.2024.100267_bb0130
– volume: 8
  start-page: 2065
  issue: 12
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0125
  article-title: A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0158
– volume: 5
  start-page: 1836
  issue: 5
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0525
  article-title: An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography
  publication-title: Nanoscale
  doi: 10.1039/c3nr33498h
– volume: 19
  start-page: 10686
  issue: 11
  year: 2011
  ident: 10.1016/j.mne.2024.100267_bb0700
  article-title: Displacement Talbot lithography: a new method for high-resolution patterning of large areas
  publication-title: Opt. Express
  doi: 10.1364/OE.19.010686
– volume: 32
  start-page: 3378
  issue: 23
  year: 2011
  ident: 10.1016/j.mne.2024.100267_bb0570
  article-title: A SERS-active microfluidic device with tunable surface plasmon resonances
  publication-title: Electrophoresis
  doi: 10.1002/elps.201100309
– volume: 10
  issue: 14
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0815
  article-title: Laser photochemical Nanostructuring of silicon for surface enhanced Raman spectroscopy. Adv
  publication-title: Opt. Mater.
– volume: 181
  start-page: 361
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0420
  article-title: Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2013.01.035
– volume: 12
  start-page: 12345
  issue: 10
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0480
  article-title: Hierarchically ordered silicon Metastructures from improved self-assembly-based Nanosphere lithography
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.9b22932
– volume: 9
  start-page: 820
  issue: 4
  year: 2009
  ident: 10.1016/j.mne.2024.100267_bb0510
  article-title: Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2008.07.017
– volume: 3
  issue: 1
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0025
  article-title: Surface-enhanced Raman scattering from metallic nanostructures: bridging the gap between the near-field and far-field responses
  publication-title: Phys. Rev. X
– volume: 6
  start-page: 8891
  issue: 15
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0100
  article-title: Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime
  publication-title: Nanoscale
  doi: 10.1039/C4NR02513J
– volume: 10
  start-page: 1
  issue: 5
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0625
  article-title: Quasi-3D plasmonic nanowell array for molecular enrichment and Sers-based detection
  publication-title: Nanomaterials
  doi: 10.3390/nano10050939
– volume: 53
  start-page: 4756
  issue: 19
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0210
  article-title: Surface-enhanced raman spectroscopy: concepts and chemical applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201205748
– volume: vol. 11
  year: 1949
  ident: 10.1016/j.mne.2024.100267_bb0270
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0800
  article-title: Ultrasensitive SERS-based plasmonic sensor with analyte enrichment system produced by direct laser writing
  publication-title: Nanomaterials
  doi: 10.3390/nano10010049
– volume: 2013
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0470
  article-title: Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials
  publication-title: J. Nanomater.
  doi: 10.1155/2013/948510
– volume: 28
  start-page: 11465
  issue: 31
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0530
  article-title: Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching
  publication-title: Langmuir
  doi: 10.1021/la302262g
– volume: 105
  start-page: 5599
  issue: 24
  year: 2001
  ident: 10.1016/j.mne.2024.100267_bb0460
  article-title: Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp010657m
– volume: 982
  start-page: 148
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0580
  article-title: Determination of aqueous antibiotic solutions using SERS nanogratings
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2017.05.025
– volume: 12
  start-page: 2554
  issue: 10
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0675
  article-title: Macroscopic ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates
  publication-title: Nano Res.
  doi: 10.1007/s12274-019-2484-7
– start-page: 381
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0195
  article-title: Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues
  publication-title: Food Chem.
– volume: 5
  start-page: 76085
  issue: 93
  year: 2015
  ident: 10.1016/j.mne.2024.100267_bb0655
  article-title: Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer
  publication-title: RSC Adv.
  doi: 10.1039/C5RA11787A
– volume: 112
  start-page: 15098
  issue: 39
  year: 2008
  ident: 10.1016/j.mne.2024.100267_bb0395
  article-title: Localized Raman enhancement from a double-hole nanostructure in a metal film
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp806785u
– volume: 31
  start-page: 139
  issue: 4
  year: 2009
  ident: 10.1016/j.mne.2024.100267_bb0405
  article-title: Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition
  publication-title: Scanning
  doi: 10.1002/sca.20152
– year: 2010
  ident: 10.1016/j.mne.2024.100267_bb0135
– volume: 3
  start-page: 1575
  issue: 4
  year: 2011
  ident: 10.1016/j.mne.2024.100267_bb0050
  article-title: Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering
  publication-title: Nanoscale
  doi: 10.1039/c0nr00845a
– start-page: 17
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0305
  article-title: Hybrid surface plasmon effect and SERS characterization in a heterogeneous composite structure of Au nano-array and Ag film
  publication-title: Results Phys.
– volume: 10
  issue: 4
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0310
  article-title: Surface-enhanced Raman scattering and fluorescence on gold nanogratings
  publication-title: Nanomaterials
  doi: 10.3390/nano10040776
– volume: 12
  start-page: 36505
  issue: 32
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0600
  article-title: Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c09357
– volume: 12
  start-page: 23410
  issue: 20
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0770
  article-title: Block copolymer derived vertically coupled Plasmonic arrays for surface-enhanced Raman spectroscopy
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03300
– volume: 9
  start-page: 393
  issue: 2
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0360
  article-title: Helium focused ion beam direct milling of plasmonic heptamer-arranged nanohole arrays
  publication-title: Nanophotonics
  doi: 10.1515/nanoph-2019-0385
– volume: 3
  start-page: 1033
  issue: 4
  year: 2011
  ident: 10.1016/j.mne.2024.100267_bb0630
  article-title: Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am1011518
– volume: 112
  start-page: 17051
  issue: 44
  year: 2008
  ident: 10.1016/j.mne.2024.100267_bb0380
  article-title: Enhanced Raman scattering from nanoholes in a copper film
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp805785s
– volume: 9
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0660
  article-title: Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection
  publication-title: Nanoscale Res. Lett.
  doi: 10.1186/1556-276X-9-623
– volume: 63
  start-page: 219
  issue: 3
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0740
  article-title: Highly sensitive and flexible inkjet printed SERS sensors on paper
  publication-title: Methods
  doi: 10.1016/j.ymeth.2013.07.010
– volume: 2
  start-page: 377
  issue: 2
  year: 2008
  ident: 10.1016/j.mne.2024.100267_bb0280
  article-title: Surface-enhanced Raman
  publication-title: Spectroscopy
– volume: 8231
  issue: February 2012
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0590
  article-title: Two-dimensional, periodic mushroomlike nanostructures for SERS applications
  publication-title: Nanoscale Imag. Sens. Actuat. Biomed. Appl. VIII
– volume: 85
  start-page: 1792
  issue: 8
  year: 2008
  ident: 10.1016/j.mne.2024.100267_bb0240
  article-title: Microfabricated SERS-arrays with sharp-edged metallic nanostructures
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2008.05.005
– volume: 59
  issue: 12
  year: 2016
  ident: 10.1016/j.mne.2024.100267_bb0430
  article-title: Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres
  publication-title: Sci. China Phys. Mech. Astron.
  doi: 10.1007/s11433-016-0341-y
– volume: 12
  start-page: 37657
  issue: 33
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0505
  article-title: Plasmonic nanocrystal arrays on photonic crystals with tailored optical resonances
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c05596
– volume: 14
  start-page: 1521
  issue: 2
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0610
  article-title: Nanopatterning by laser interference lithography: applications to optical devices
  publication-title: J. Nanosci. Nanotechnol.
  doi: 10.1166/jnn.2014.9199
– volume: 12
  start-page: 251
  issue: 3
  year: 1968
  ident: 10.1016/j.mne.2024.100267_bb0245
  article-title: High-resolution positive resists for Electron-beam exposure
  publication-title: IBM J. Res. Dev.
  doi: 10.1147/rd.123.0251
– volume: 91
  start-page: 2005
  issue: 8
  year: 2007
  ident: 10.1016/j.mne.2024.100267_bb0375
  article-title: Enhanced Raman scattering from focused surface plasmons
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2759985
– start-page: 1248
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0840
  article-title: Sensing performances of commercial SERS substrates
  publication-title: J. Mol. Struct.
– volume: 263
  start-page: 634
  year: 2018
  ident: 10.1016/j.mne.2024.100267_bb0350
  article-title: Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2018.02.037
– volume: 125
  start-page: 4056
  issue: 7
  year: 2021
  ident: 10.1016/j.mne.2024.100267_bb0105
  article-title: A new figure of merit to assess the SERS enhancement factor of colloidal gold nanoparticle aggregates
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c09122
– volume: 95
  start-page: 474
  issue: 9
  year: 2015
  ident: 10.1016/j.mne.2024.100267_bb0145
  article-title: Nanoporous gold obtained from a metallic glass precursor used as substrate for surface-enhanced Raman scattering
  publication-title: Philos. Mag. Lett.
  doi: 10.1080/09500839.2015.1093665
– volume: 10
  issue: 22
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0785
  article-title: LIPSS for SERS: metal coated direct laser written periodic nanostructures for surface enhanced Raman spectroscopy
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.202200233
– volume: 24
  issue: 10
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0830
  article-title: Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy
  publication-title: Adv. Mater.
– volume: 5
  start-page: 12915
  issue: 22
  year: 2020
  ident: 10.1016/j.mne.2024.100267_bb0095
  article-title: Bioinspired disordered flexible Metasurfaces for human tear analysis using broadband surface-enhanced Raman scattering
  publication-title: ACS Omega
  doi: 10.1021/acsomega.0c00677
– volume: 12
  issue: 3
  year: 2022
  ident: 10.1016/j.mne.2024.100267_bb0190
  article-title: Hierarchically assembled Plasmonic metal-dielectric-metal hybrid Nano-architectures for high-sensitivity SERS detection
  publication-title: Nanomaterials
  doi: 10.3390/nano12030401
– volume: 82
  start-page: 22
  year: 2016
  ident: 10.1016/j.mne.2024.100267_bb0230
  article-title: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2015.11.007
– volume: 22
  start-page: 23650
  issue: 44
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0535
  article-title: Dual length-scale nanotip arrays with controllable morphological features for highly sensitive SERS applications
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm34470j
– volume: 8
  start-page: 388
  issue: 3
  year: 2008
  ident: 10.1016/j.mne.2024.100267_bb0515
  article-title: Holographic fabrication of photonic nanostructures for optofluidic integration
  publication-title: Lab Chip
  doi: 10.1039/b717960j
– volume: 50
  start-page: 301
  issue: 12
  year: 2013
  ident: 10.1016/j.mne.2024.100267_bb0730
  article-title: Fabrication of surface enhanced Raman scattering (SERS)-active substrates by using dip-pen nanolithography
  publication-title: ECS Trans.
  doi: 10.1149/05012.0301ecst
– volume: 50
  start-page: 1416
  issue: 10
  year: 2019
  ident: 10.1016/j.mne.2024.100267_bb0345
  article-title: Fabrication of ag-modified nanocone frustum arrays with controlled shape as active substrates for surface-enhanced Raman scattering
  publication-title: J. Raman Spectrosc.
  doi: 10.1002/jrs.5662
– volume: 403
  start-page: 27
  issue: 1
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0035
  article-title: Surface-enhanced Raman spectroscopy (SERS): Progress and trends
  publication-title: Anal. Bioanal. Chem.
  doi: 10.1007/s00216-011-5631-x
– volume: 22
  issue: 12
  year: 2012
  ident: 10.1016/j.mne.2024.100267_bb0235
  article-title: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering
  publication-title: J. Micromech. Microeng.
  doi: 10.1088/0960-1317/22/12/125007
– start-page: 5
  year: 2021
  ident: 10.1016/j.mne.2024.100267_bb0795
  article-title: Gold-coated silicon nanoripples achieved via picosecond laser ablation for surface enhanced Raman scattering studies
  publication-title: Results Optics.
– volume: 16
  start-page: 2224
  issue: 6
  year: 2014
  ident: 10.1016/j.mne.2024.100267_bb0220
  article-title: Simple SERS substrates: powerful, portable, and full of potential
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP53560F
– volume: 7
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.mne.2024.100267_bb0340
  article-title: Optical and surface enhanced Raman scattering properties of ag modified silicon double nanocone array
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12423-2
SSID ssj0002856847
Score 2.356607
SecondaryResourceType review_article
Snippet The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates....
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100267
SubjectTerms Enhancement factor
Lithography
Nanofabrication
Surface-enhanced Raman spectroscopy
Title Prospects of nano-lithographic tools for the fabrication of surface-enhanced Raman spectroscopy (SERS) substrates
URI https://dx.doi.org/10.1016/j.mne.2024.100267
https://doaj.org/article/d83efcbaaa644e7399a2f6673e08595b
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYsoKs5f5OBBhWDXpt16VNkYgiKbg91KkiZsY0tn1x38730vbWcv6sVbKelLeXnJ-17y8j1CrnkaxYb7gnWlFIy3RcSQg4X5XaV9hPimg5eTX16jwZg_T8JJo9QX5oSV9MCl4u7TbqCNkkII8Ny6A_5U-AZrVWpHzSVx9fVirxFMzd2WURjBulsfY7qErqVFWkyfO9ZRV1f-2xE5vv6GP2r4mP4B2a_AIX0of-qQ7Gh7RD7e8szdh1zTzFArbMYAOk9LqumZokWWLdYUsCcFLEeNkHm1DYfN15vcCKWZtlN31E-HYiksdfKQxzJbfdKbUW84uoWm0nHo6vUxGfd7708DVhVKYAr8ccHSGAILIyJPgGIAh2LUCWGDgecUCx5EJtU6iAGN8DYgKoixQIcSkEcUctEOO8EJ2bWZ1aeE-qGJY6MAB_qKYy0rkOBLCfM2kDD9TYt4tdYSVbGIYzGLRVKni80TUHSCik5KRbfI3faTVUmh8VvjRxyKbUNkv3YvwCaSyiaSv2yiRXg9kEkFJEqAAKJmP_d99h99n5M9FFlmk12Q3SLf6EvALYW8cib6BeBx6hA
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+of+nano-lithographic+tools+for+the+fabrication+of+surface-enhanced+Raman+spectroscopy+%28SERS%29+substrates&rft.jtitle=Micro+and+Nano+Engineering&rft.au=Srivastava%2C+K.&rft.au=Le-The%2C+H.&rft.au=Lozeman%2C+J.J.A.&rft.au=van+den+Berg%2C+A.&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2590-0072&rft.eissn=2590-0072&rft.volume=23&rft_id=info:doi/10.1016%2Fj.mne.2024.100267&rft.externalDocID=S2590007224000303
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0072&client=summon