Prospects of nano-lithographic tools for the fabrication of surface-enhanced Raman spectroscopy (SERS) substrates
The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates. While traditional colloidal synthesis methods have commonly been used for SERS substrate fabrication, they lack reproducibility hindering their...
Saved in:
Published in | Micro and Nano Engineering Vol. 23; p. 100267 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.06.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2590-0072 2590-0072 |
DOI | 10.1016/j.mne.2024.100267 |
Cover
Abstract | The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates. While traditional colloidal synthesis methods have commonly been used for SERS substrate fabrication, they lack reproducibility hindering their usage for many applications. The need for reproducible nanostructures showing high orders of enhancement factors has brought about a shift in the methods one can use to fabricate SERS nanostructures. Lithographic techniques have thus piqued the interest of researchers as a viable option for SERS substrate fabrication. Not only do they offer high enhancement factors and reproducible nanostructures, they also provide the ability to fabricate nanostructures with many different geometries, shapes, sizes and periodicities. Some of the most established lithographic techniques include electron beam lithography, nanosphere lithography, laser interference lithography and many more. This review discusses established lithographic techniques, such as mentioned above, along with other upcoming lithographic techniques to understand the principles and the methodology behind them. A deep understanding of how various parameters can influence the nanostructure fabrication and thereby influence the SERS enhancement is developed. A detailed description of how these nanostructures can be fabricated is also provided for better insight. In addition, strengths and limitations of each method are discussed in detail. Lastly, we also discuss the applicability of SERS substrates for commercial applications comparing the performance of chemical synthesis routes and lithography for SERS substrate fabrication. This review serves as a base to understand the concept and application of SERS from a microfabrication perspective.
[Display omitted]
•Detailed discussion on fabrication techniques for lithographic surface-enhanced Raman spectroscopy substrates.•Comparative overview of established lithographic techniques for surface-enhanced Raman spectroscopy substrates.•Overview of various fabrication methods for surface-enhanced Raman spectroscopy substrates in a commercial market.•Discussion on alternative and innovative methods for fabrication of surface-enhanced Raman spectroscopy substrates. |
---|---|
AbstractList | The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates. While traditional colloidal synthesis methods have commonly been used for SERS substrate fabrication, they lack reproducibility hindering their usage for many applications. The need for reproducible nanostructures showing high orders of enhancement factors has brought about a shift in the methods one can use to fabricate SERS nanostructures. Lithographic techniques have thus piqued the interest of researchers as a viable option for SERS substrate fabrication. Not only do they offer high enhancement factors and reproducible nanostructures, they also provide the ability to fabricate nanostructures with many different geometries, shapes, sizes and periodicities. Some of the most established lithographic techniques include electron beam lithography, nanosphere lithography, laser interference lithography and many more. This review discusses established lithographic techniques, such as mentioned above, along with other upcoming lithographic techniques to understand the principles and the methodology behind them. A deep understanding of how various parameters can influence the nanostructure fabrication and thereby influence the SERS enhancement is developed. A detailed description of how these nanostructures can be fabricated is also provided for better insight. In addition, strengths and limitations of each method are discussed in detail. Lastly, we also discuss the applicability of SERS substrates for commercial applications comparing the performance of chemical synthesis routes and lithography for SERS substrate fabrication. This review serves as a base to understand the concept and application of SERS from a microfabrication perspective. The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates. While traditional colloidal synthesis methods have commonly been used for SERS substrate fabrication, they lack reproducibility hindering their usage for many applications. The need for reproducible nanostructures showing high orders of enhancement factors has brought about a shift in the methods one can use to fabricate SERS nanostructures. Lithographic techniques have thus piqued the interest of researchers as a viable option for SERS substrate fabrication. Not only do they offer high enhancement factors and reproducible nanostructures, they also provide the ability to fabricate nanostructures with many different geometries, shapes, sizes and periodicities. Some of the most established lithographic techniques include electron beam lithography, nanosphere lithography, laser interference lithography and many more. This review discusses established lithographic techniques, such as mentioned above, along with other upcoming lithographic techniques to understand the principles and the methodology behind them. A deep understanding of how various parameters can influence the nanostructure fabrication and thereby influence the SERS enhancement is developed. A detailed description of how these nanostructures can be fabricated is also provided for better insight. In addition, strengths and limitations of each method are discussed in detail. Lastly, we also discuss the applicability of SERS substrates for commercial applications comparing the performance of chemical synthesis routes and lithography for SERS substrate fabrication. This review serves as a base to understand the concept and application of SERS from a microfabrication perspective. [Display omitted] •Detailed discussion on fabrication techniques for lithographic surface-enhanced Raman spectroscopy substrates.•Comparative overview of established lithographic techniques for surface-enhanced Raman spectroscopy substrates.•Overview of various fabrication methods for surface-enhanced Raman spectroscopy substrates in a commercial market.•Discussion on alternative and innovative methods for fabrication of surface-enhanced Raman spectroscopy substrates. |
ArticleNumber | 100267 |
Author | Lozeman, J.J.A. van der Stam, W. van den Berg, A. Srivastava, K. Odijk, M. Le-The, H. |
Author_xml | – sequence: 1 givenname: K. surname: Srivastava fullname: Srivastava, K. email: k.srivastava@utwente.nl organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands – sequence: 2 givenname: H. surname: Le-The fullname: Le-The, H. organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands – sequence: 3 givenname: J.J.A. surname: Lozeman fullname: Lozeman, J.J.A. organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands – sequence: 4 givenname: A. surname: van den Berg fullname: van den Berg, A. organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands – sequence: 5 givenname: W. surname: van der Stam fullname: van der Stam, W. organization: Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Utrecht University, the Netherlands – sequence: 6 givenname: M. surname: Odijk fullname: Odijk, M. organization: BIOS Lab on Chip Group, Mesa+ Institute of Nanotechnology, University of Twente, the Netherlands |
BookMark | eNp9UcFu3CAURFUqNU3zAb1xbA7eArYBK6coStpIkVol7Rk940eWlRc2QCPt3xfvtlLVQ0480MzwZuY9OQkxICEfOVtxxuXnzWobcCWY6OqdCanekFPRD6xhTImTf-Z35DznDasY3UvdqVPy_D3FvENbMo2OBgixmX1Zx6cEu7W3tMQ4Z-piomWN1MGYvIXiY1jg-VdyYLHBsIZgcaIPsIVAD3pV1sbdnn56vHl4vKjQMZcEBfMH8tbBnPH8z3lGft7e_Lj-2tx_-3J3fXXf2I7J0kyD4MqBZCCl0nxsdau0kK7OU18dSDchtgOTbceHngs9gHCj7qTsO-C9as_I3VF3irAxu-S3kPYmgjeHh5ieDKTi7Yxm0i06OwKA7DpU7bBo1W9bZLof-rFqqaOWrbZyQmesL4cYqic_G87MUoTZmFqEWYowxyIqk__H_LvJa5zLIwdrPC8ek8nW4xKwTzXZur9_hf0bJw2iUA |
CitedBy_id | crossref_primary_10_1016_j_saa_2024_125631 crossref_primary_10_1016_j_saa_2025_125989 crossref_primary_10_1002_sia_7388 crossref_primary_10_1039_D4NR04239E |
Cites_doi | 10.1021/nn4009559 10.1016/j.vibspec.2018.11.002 10.1039/C7TC00667E 10.1021/jp5007236 10.1016/j.mee.2014.02.025 10.1039/C7NR08905H 10.1080/14786443608649032 10.1088/2043-6254/aa7252 10.1002/admt.201600238 10.1088/1361-6528/aa6f00 10.1016/0009-2614(74)85388-1 10.1021/jp0774140 10.1016/j.aca.2017.04.003 10.1016/j.saa.2022.121232 10.1021/acsami.6b14008 10.1088/1361-6528/28/4/045303 10.1039/D0NR05546H 10.1016/j.bios.2014.05.013 10.1109/JSEN.2009.2038634 10.1021/jp0687908 10.1088/0960-1317/22/12/125007 10.1021/acsami.5b09128 10.1016/j.jallcom.2017.05.213 10.1016/j.bios.2008.10.016 10.1038/nnano.2007.39 10.1007/s11051-017-3953-0 10.15407/spqeo22.02.215 10.1088/1361-6439/ab4b8e 10.1021/nl200994k 10.1021/nl048818w 10.1002/adfm.201201466 10.1007/s11468-020-01137-3 10.1021/acsanm.0c00887 10.1021/nl070648a 10.1366/12-06698 10.1002/adfm.201704818 10.1002/adma.200600882 10.1007/s00216-009-2761-5 10.1186/1556-276X-7-399 10.1021/jp070906s 10.3390/ijms21093373 10.1117/1.1803552 10.1088/0957-4484/20/29/292001 10.1016/j.mee.2014.10.001 10.1002/adfm.201200921 10.1116/1.3258144 10.3390/nano7060142 10.1088/1361-6528/aaa691 10.1116/1.579726 10.1021/acs.chemrev.9b00725 10.1016/j.mattod.2014.04.026 10.1039/C4CP04946B 10.3390/nano11082026 10.1016/j.jcis.2008.06.052 10.1039/c2cp43642f 10.1021/acsanm.7b00295 10.1021/acsphotonics.5b00242 10.1039/C8TC01168K 10.1007/s11468-019-00949-2 10.1088/0957-4484/25/24/245301 10.1063/1.5126981 10.1021/acsomega.8b02629 10.1021/am505511v 10.1038/s41378-019-0124-8 10.1364/OE.16.009708 10.1088/1361-6528/ab7100 10.1016/S0925-4005(98)00219-6 10.1021/jp984454i 10.1016/j.ccr.2017.02.006 10.1021/jp9101702 10.1002/jrs.4599 10.1016/j.mee.2015.03.050 10.1002/aisy.202100051 10.1016/j.vibspec.2015.11.007 10.1016/S0379-6779(03)00276-5 10.1002/adfm.201909467 10.1016/j.apsusc.2018.02.163 10.1088/0957-4484/21/25/255502 10.1038/s42254-020-0171-y 10.1039/C9NR02215E 10.1016/j.mee.2008.12.061 10.1109/TNANO.2016.2647263 10.3390/s18114076 10.1016/j.mee.2014.10.010 10.1063/1.4985270 10.1016/j.aca.2011.03.002 10.1039/C4NR00902A 10.1007/s11468-019-01084-8 10.3952/physics.v53i4.2765 10.1515/nanoph-2019-0158 10.1039/c3nr33498h 10.1364/OE.19.010686 10.1002/elps.201100309 10.1016/j.snb.2013.01.035 10.1021/acsami.9b22932 10.1016/j.cap.2008.07.017 10.1039/C4NR02513J 10.3390/nano10050939 10.1002/anie.201205748 10.3390/nano10010049 10.1155/2013/948510 10.1021/la302262g 10.1021/jp010657m 10.1016/j.aca.2017.05.025 10.1007/s12274-019-2484-7 10.1039/C5RA11787A 10.1021/jp806785u 10.1002/sca.20152 10.1039/c0nr00845a 10.3390/nano10040776 10.1021/acsami.0c09357 10.1021/acsami.0c03300 10.1515/nanoph-2019-0385 10.1021/am1011518 10.1021/jp805785s 10.1186/1556-276X-9-623 10.1016/j.ymeth.2013.07.010 10.1016/j.mee.2008.05.005 10.1007/s11433-016-0341-y 10.1021/acsami.0c05596 10.1166/jnn.2014.9199 10.1147/rd.123.0251 10.1063/1.2759985 10.1016/j.snb.2018.02.037 10.1021/acs.jpcc.0c09122 10.1080/09500839.2015.1093665 10.1002/adom.202200233 10.1021/acsomega.0c00677 10.3390/nano12030401 10.1039/c2jm34470j 10.1039/b717960j 10.1149/05012.0301ecst 10.1002/jrs.5662 10.1007/s00216-011-5631-x 10.1039/C3CP53560F 10.1038/s41598-017-12423-2 |
ContentType | Journal Article |
Copyright | 2024 The Authors |
Copyright_xml | – notice: 2024 The Authors |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.mne.2024.100267 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-0072 |
ExternalDocumentID | oai_doaj_org_article_d83efcbaaa644e7399a2f6673e08595b 10_1016_j_mne_2024_100267 S2590007224000303 |
GroupedDBID | 0R~ 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV ADVLN AEXQZ AFJKZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c406t-d9217fa60a66781b3837826f781d50006fdee3906341951289a2fb846654a1573 |
IEDL.DBID | DOA |
ISSN | 2590-0072 |
IngestDate | Wed Aug 27 01:04:18 EDT 2025 Thu Apr 24 23:06:29 EDT 2025 Tue Jul 01 00:35:32 EDT 2025 Sat Sep 21 15:58:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nanofabrication Enhancement factor Lithography Surface-enhanced Raman spectroscopy |
Language | English |
License | This is an open access article under the CC BY-NC license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-d9217fa60a66781b3837826f781d50006fdee3906341951289a2fb846654a1573 |
OpenAccessLink | https://doaj.org/article/d83efcbaaa644e7399a2f6673e08595b |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d83efcbaaa644e7399a2f6673e08595b crossref_citationtrail_10_1016_j_mne_2024_100267 crossref_primary_10_1016_j_mne_2024_100267 elsevier_sciencedirect_doi_10_1016_j_mne_2024_100267 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2024 2024-06-00 2024-06-01 |
PublicationDateYYYYMMDD | 2024-06-01 |
PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
PublicationDecade | 2020 |
PublicationTitle | Micro and Nano Engineering |
PublicationYear | 2024 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Isoyan, Jiang, Cheng, Cerrina, Wachulak, Urbanski, Rocca, Menoni, Marconi (bb0690) 2009; 27 Heydari, Mabbott, Thompson, Graham, Cooper, Clark (bb0735) 2016; April 2016 Rakhmatov, Dafonseca, Khademi, Brolo, Gordon (bb0415) 2019 Solak, Dais, Clube (bb0700) 2011; 19 Li, Lin, Peng, He, Yang (bb0205) 2022 Hsu, Fang, Fung (bb0030) 2014; 46 Krishnamoorthy, Krishnan, Thoniyot, Low (bb0630) 2011; 3 Barman, Dhasmana, Verma, Kumar, Chaudhary, Jain (bb0750) 2017; 8 Coluccio, Das, Mecarini (bb0250) 2009; 86 Zhang, Theuring, Song, Mao, Begliarbekov, Strauf (bb0595) 2011; 11 Quilis, Lequeux, Venugopalan, Khan, Knoll, Boujday, de La Chapelle, Dostalek (bb0555) 2018; 10 Dhawan, Du, Yan, Gerhold, Misra, Vo-Dinh (bb0390) 2010; 10 Levinson (bb0135) 2010 van Wolferen, Abelmann (bb0540) 2011 Hwang, Yang (bb0560) 2018; 18 Schmidt, Hübner, Boisen (bb0830) 2012; 24 Zhang, Salcedo, Rahman, Brolo (bb0370) November 2017; 2018 Chen, Pang, Huang, Cambrea, Fainman (bb0590) 2012; 8231 Pandey, Seo, Shin, Lee, Sohn (bb0190) 2022; 12 Wu, Ren, Zhou, Lin, Liu, Qian, Yu (bb0805) 2023 Seo, Park, Kim, Park, Ma, Choi, Ju (bb0610) 2014; 14 Pavliuk, Pavlov, Mitsai, Vitrik, Mironenko, Zakharenko, Kulinich, Juodkazis, Bratskaya, Zhizhchenko, Kuchmizhak (bb0800) 2020; 10 Mosier-Boss (bb0820) 2017; 7 Franssila (bb0130) 2010 Anikin, Rodyakina, Veber, Milekhin, Latyshev, Zahn (bb0330) 2019; 14 Schlücker (bb0210) 2014; 53 Zhao, Wen, Zhang, Wang, Wang, Chen, Zhang, Yang, Du (bb0450) 2017; 9 Liu, Zhang, Tardivel, Lequeux, Chen, Liu, Huang, Tian, Liu, Huang, Gillibert (bb0845) 2020; 15 Fang, Zheng, Yin, Wang, Wang, Liu, Luo, Liu (bb0480) 2020; 12 Liu, Zhan, Yao, Yan, Ren (bb0605) 2020; 12 Ding, Sigle, Herrmann, Wolverson, Baumberg (bb0665) 2014; 6 Cañamares, Garcia-Ramos, Sanchez-Cortes, Castillejo, Oujja (bb0065) 2008; 326 . Aghajani, Accardo, Tichem (bb0140) 2020; 3 Lee, Fung, Tang, Tam, Chan (bb0510) 2009; 9 Sung, Kosuda, Zhao, Elam, Spears, Van Duyne (bb0440) 2008; 112 Narasimhan, Siddique, Siddique, Park, Choo, Choo (bb0095) 2020; 5 Francis, Sahu, Bhargav (bb0155) 2022 Fleischmann, Hendra, Mcquillan (bb0055) 1974; 26 Wei, Peng, Yang, Tian, Sun, Wang, Liu (bb0090) 2021; 11 Repetto, Giordano, Foti, Gucciardi, Mennucci, Buatier de Mongeot (bb0080) 2018; 446 Hahn, Hajebifard, Berini (bb0360) 2020; 9 Lao, Zheng, Dai, Hu, Ni, Ji, Cai, Smith, Li, Zhang, Wu (bb0745) 2020; 30 He, Liang, Peng, Norman (bb0150) 2017; 19 Yue, Wang, Whittaker, Lopez-Royo, Yang, Zayats (bb0335) 2017; 5 Howell, Grushina, Holzner, Brugger (bb0810) 2020; 6 Yang, Sun, Li, Pan, Gu, Li (bb0295) 2019; 29 Kostovski, White, Mitchell, Austin, Stoddart (bb0680) 2009; 24 Min, Santos, Girotto, Brolo, Gordon (bb0395) 2008; 112 Mai, Lai, Zheng, Balasubramanian, Leong, Lee, Lee, Choi (bb0530) 2012; 28 Lim, Ng, Fu, Tobing, Zhang (bb0765) 2017; 28 Akinoglu, Mir, Gatensby, Rydzek, Mokarian-Tabari (bb0770) 2020; 12 Bahns, Imre, Vlasko-Vlasov, Pearson, Hiller, Chen, Welp (bb0375) 2007; 91 Yuan, Panwar, Yap (bb0010) 2017; 337 Aleknavičienė, Pabrėža, Talaikis, Jankunec, Račiukaitis (bb0175) 2022 Stankevičius, Gedvilas, Voisiat, Malinauskas, Račiukaitis (bb0545) 2013; 53 Zhao, Li, Wang, Zhang, Chu, Yang, Liu, Zhou, Lu (bb0355) 2017; 720 Grigorescu, Hagen (bb0260) 2009; 20 Le Ru, Blackie, Meyer, Etchegoint (bb0040) 2007; 111 Yue, Gong, Long, Kravets, Gao, Pu, Wang (bb0320) 2020 Liu, Petrosko, Zheng, Mirkin (bb0725) 2020; 120 Wang, Le-The, Karamanos, Suryadharma, van den Berg, Pinkse, Rockstuhl, Shui, Eijkel, Segerink (bb0505) 2020; 12 Yan, Zhang, Wang, Fu, Jiang, Liu, Verma, Kawata, Sun (bb0575) 2015; 7 Jonker, Srivastava, Lafuente, Susarrey-Arce, Stam, Berg, Odijk, Gardeniers (bb0185) 2023; 20 Zhang, Yang, Wang, Zhao, Zhu, Liu, Zhong, Sun (bb0615) 2014; 25 Yang, Lapsley, Cao, Zhao, Zhao, Hao, Kiraly, Scott, Li, Wang, Lei (bb0475) 2013; 23 Le Thi, Jin, Wiedemair, Van Den Berg, Carlen (bb0300) 2013; 7 Hong, de Albuquerque, Poppi, Brolo (bb0580) 2017; 982 Cetin, Yilmaz, Galarreta, Yilmaz, Altug, Busnaina (bb0170) 2020; 15 Betz, Yu, Cheng, White, Rubloff (bb0220) 2014; 16 Hulteen, Van Duyne (bb0465) 1995; 13 Kahl, Voges, Kostrewa, Viets, Hill (bb0110) 1998; 51 Alvarez-Puebla, Cui, Bravo-Vasquez, Veres, Fenniri (bb0640) 2007; 111 Cao, Qin, Zhu, Qian, Zhang, Wu, Li (bb0755) 2017; 7 Anema, Brolo, Marthandam, Gordon (bb0380) 2008; 112 Stuerzebecher, Fuchs, Zeitner, Tuennermann (bb0710) 2015; 132 Wang, Zhu, Wu, Xu, Su, Zhang, Qi, Wen, Yang (bb0305) 2020 Cetin, Etezadi, Galarreta, Busson, Eksioglu, Altug (bb0315) 2015; 2 Hreshchuk, Yukhymchuk, Dzhagan, Danko, Min’ko, Indutnyi, Shepeliavyi, Lytvyn, Sheregii, Prokhorenko, Polit (bb0565) 2019; 22 Le-The, Berenschot, Tiggelaar, Tas, van den Berg, Eijkel (bb0705) 2017; 2 Gao, Xu, Fang, Gao, Zhang, Xu (bb0400) 2012; 7 Suresh, Ding, Chew, Yap (bb0650) 2018; 1 Luo, Sivashanmugan, Der, Yao, Peng (bb0020) 2014; 61 Rahmani, Taugeron, Rousseau (bb0120) October 23, 2023 Gombert (bb0550) 2004; 43 Jeon, Park, Cho, Yang (bb0535) 2012; 22 Talbot (bb0685) 1836; 9 Avasarala, Jena, Balivada, Angani, Syed, Soma, Podagatlapalli (bb0795) 2021 Scaglione, Paschalidou, Rizzi, Bordiga, Battezzati (bb0145) 2015; 95 D’Andrea, Fazio, Gucciardi, Giordano, Martella, Chiappe, Toma, Buatier de Mongeot, Tantussi, Vasanthakumar, Fuso (bb0085) 2014; 118 Bernardeschi, Ilyas, Beccai (bb0775) 2021; 3 Fan, Andrade, Brolo (bb0060) 2011; 693 Jeon, Heo, Lee, Yang (bb0585) 2012; 22 Hong, Brolo (bb0520) 2017; 972 Lin, Cui, Xu, Ren, Tian (bb0070) 2009; 394 Huebner, Boucher, Schneidewind, Cialla, Popp (bb0240) 2008; 85 Haller, Hatzakis, Srinivasan (bb0245) 1968; 12 Zhang, Dai, Zhang, Dong, Wu, Yang, Xiao, Jiang (bb0430) 2016; 59 Azziz, Safar, Xiang, Edely, Lamy de la Chapelle (bb0840) 2022 Dhawan, Gerhold, Madison, Fowlkes, Russell, Vo-Dinh, Leonard (bb0405) 2009; 31 Hatzakis (bb0270) 1949; vol. 11 Hao, Chu, Zhang, Zhao, Yan, Li, Liu, Lu (bb0350) 2018; 263 Hamad, Bharati Moram, Yendeti, Podagatlapalli, Nageswara Rao, Pathak, Mohiddon, Soma (bb0790) 2018; 3 Chen, Du, Tan, Shen, Chen (bb0050) 2011; 3 Hatab, Oran, Sepaniak (bb0280) 2008; 2 Brolo, Arctander, Gordon, Leathem, Kavanagh (bb0385) 2004; 4 Xu, Ma, Wang, Liu, Zhang, Zhang, Zhang, Jiang, Sun (bb0570) 2011; 32 Hoppmann, Yu, White (bb0740) 2013; 63 Mehrvar, Sadeghipari, Tavassoli, Mohajerzadeh, Fathipour, Hajihosseini (bb0345) 2019; 50 Salaita K, Wang Y, Mirkin CA. Applications of dip-pen nanolithography. Nat. Nanotechnol. (1):145-155. doi Bauman, Darweesh, Herzog (bb0825) 2016; 9759 Chan, Zhao, Hicks, Schatz, Van Duyne (bb0435) 2007; 7 Xiang, Li, Zheng (bb0265) 2018; 29 Xie, Cao, Li (bb0195) 2022 Petti, Capasso, Rippa (bb0230) 2016; 82 Wu, Hu, Ou, Li, Williams (bb0645) 2010; 21 Mercadal, Encina, Villa, Coronado (bb0105) 2021; 125 Mehrvar, Sadeghipari, Tavassoli, Mohajerzadeh, Fathipour (bb0340) 2017; 7 Péter (bb0495) 2021 Yao, Jiang, Luo (bb0600) 2020; 12 Chang, Huang, Lin (bb0310) 2020; 10 Sivashanmugan, Der, You, Wu (bb0420) 2013; 181 Lee, Kwon, Jung, Lim, Lee (bb0675) 2019; 12 Kasani, Curtin, Wu (bb0125) 2019; 8 Liu, Zhang, Lu, Du, Li, Cui, Yuan, Zhan, Ge, Wang, Chen (bb0670) 2017; 7 Kim, Mun, Baek (bb0255) 2020; xxx Kahl, Voges, Kostrewa, Viets, Hill (bb0275) 1998; 51 Petti, Capasso, Rippa (bb0290) 2016; 82 Wang, Huang, Hu, Yan, Ren (bb0215) 2020; 2 Johnson, Hultqvist, Bent (bb0760) 2014; 17 Erkızan, İdikut, Demirtaş, Goodarzi, Demir, Borra, Pavlov, Bek (bb0785) 2022; 10 Colson, Henrist, Cloots (bb0470) 2013; 2013 Xu, Zhang, Zhang, Yang, Wang, Li (bb0160) 2022 Colniță, Marconi, Dina, Brezeștean, Bogdan, Turcu (bb0200) 2022; 276 Selimis, Mironov, Farsari (bb0780) 2015; 132 Ahn, Thiyagarajan, Jia, Kim, Yoon, Thomas, Jang (bb0525) 2013; 5 Purwidyantri, El-Mekki, Lai (bb0500) 2017; 16 Guo (bb0635) 2007; 19 Ambartsumyan, Gribanyov, Kukushkin, Kopylov, Zavyalova (bb0005) 2020; 21 Zheng, Zhu, Chen, Xiang, Duan (bb0115) 2017; 28 Wang, Hsu, Liu, Lai, Chiang (bb0490) 2016; 18 Lee, Park, Moon, Yang (bb0515) 2008; 8 Kim, Mun, Choi, Jung, Kim, Kim, Park (bb0625) 2020; 10 Sabouri, Anthony, Bowen, Vishnyakov, Prewett (bb0365) 2014; 121 Le-The, Lozeman, Lafuente, Muñoz, Bomer, Duy-Tong, Berenschot, van den Berg, Tas, Odijk, Eijkel (bb0165) 2019; 11 Doherty, Murphy, Pollard, Dawson (bb0025) 2013; 3 Indrasekara, Meyers, Shubeita, Feldman, Gustafsson, Fabris (bb0100) 2014; 6 Kennedy, Spaeth, Dickey, Carron (bb0425) 1999; 103 Grand, Kostcheev, Bijeon (bb0285) 2003; 139 Solak, Dais, Clube, Wang (bb0695) 2015; 143 Radziuk, Moehwald (bb0045) 2015; 17 Yue, Wang, Yang (bb0235) 2012; 22 Cottat, Lidgi-Guigui, Tijunelyte, Barbillon, Hamouda, Gogol, Aassime, Lourtioz, Bartenlian, de la Chapelle (bb0660) 2014; 9 Cialla, März, Böhme (bb0035) 2012; 403 Zhu, Zhao, Meng, Wang, Hu, Han, Lei (bb0455) 2020; 31 Liszewska, Bartosewicz, Budner, Nasiłowska, Szala, Weyher, Dzięcielewski, Mierczyk, Jankiewicz (bb0835) 2019; 100 Ho, Zhao, Lee (bb0485) 2014; 6 Min, Gordon (bb0410) 2008; 16 Yang, Akhatov, Mahinfalah, Jang (bb0720) 2007; 30 Demirel, Usta, Yilmaz, Celik, Alidagi, Buyukserin (bb0075) 2018; 6 Akbıyık, Avishan, Demirtaş, Demir, Yüce, Bek (bb0815) 2022; 10 Haynes, Van Duyne (bb0460) 2001; 105 Wu, Li, Schmidt, Rindzevicius, Boisen, Ndoni (bb0180) 2018; 28 Yue, Wang, Yang (bb0225) 2012; 22 Ryu, Kang, Lee, Kim (bb0655) 2015; 5 Lee, Chao, Hsieh, Ou (bb0730) 2013; 50 Polavarapu, Liz-Marzán (bb0620) 2013; 15 Harvey, Petterson, Weckhuysen, Gooijer, Ariese, Mank (bb0015) 2012; 66 Wang, Ruan, Ji, Ji, Lv, Zhao, Zhao (bb0445) 2010; 114 Kaneko, Watanabe, Fujii, Nishino, Kiguchi (bb0325) 2020; 10 Hatab (10.1016/j.mne.2024.100267_bb0280) 2008; 2 Quilis (10.1016/j.mne.2024.100267_bb0555) 2018; 10 Yang (10.1016/j.mne.2024.100267_bb0475) 2013; 23 Lee (10.1016/j.mne.2024.100267_bb0675) 2019; 12 Xu (10.1016/j.mne.2024.100267_bb0160) 2022 Lee (10.1016/j.mne.2024.100267_bb0510) 2009; 9 Sivashanmugan (10.1016/j.mne.2024.100267_bb0420) 2013; 181 10.1016/j.mne.2024.100267_bb0715 Hatzakis (10.1016/j.mne.2024.100267_bb0270) 1949; vol. 11 Mehrvar (10.1016/j.mne.2024.100267_bb0340) 2017; 7 Chen (10.1016/j.mne.2024.100267_bb0590) 2012; 8231 Jonker (10.1016/j.mne.2024.100267_bb0185) 2023; 20 Jeon (10.1016/j.mne.2024.100267_bb0535) 2012; 22 Zheng (10.1016/j.mne.2024.100267_bb0115) 2017; 28 Le Thi (10.1016/j.mne.2024.100267_bb0300) 2013; 7 Pavliuk (10.1016/j.mne.2024.100267_bb0800) 2020; 10 Grigorescu (10.1016/j.mne.2024.100267_bb0260) 2009; 20 Coluccio (10.1016/j.mne.2024.100267_bb0250) 2009; 86 Anikin (10.1016/j.mne.2024.100267_bb0330) 2019; 14 Levinson (10.1016/j.mne.2024.100267_bb0135) 2010 Hong (10.1016/j.mne.2024.100267_bb0580) 2017; 982 Mehrvar (10.1016/j.mne.2024.100267_bb0345) 2019; 50 Heydari (10.1016/j.mne.2024.100267_bb0735) 2016; April 2016 Hong (10.1016/j.mne.2024.100267_bb0520) 2017; 972 Kaneko (10.1016/j.mne.2024.100267_bb0325) 2020; 10 Stuerzebecher (10.1016/j.mne.2024.100267_bb0710) 2015; 132 Ryu (10.1016/j.mne.2024.100267_bb0655) 2015; 5 Liu (10.1016/j.mne.2024.100267_bb0725) 2020; 120 Grand (10.1016/j.mne.2024.100267_bb0285) 2003; 139 Dhawan (10.1016/j.mne.2024.100267_bb0390) 2010; 10 Guo (10.1016/j.mne.2024.100267_bb0635) 2007; 19 Wang (10.1016/j.mne.2024.100267_bb0490) 2016; 18 Hwang (10.1016/j.mne.2024.100267_bb0560) 2018; 18 D’Andrea (10.1016/j.mne.2024.100267_bb0085) 2014; 118 Colniță (10.1016/j.mne.2024.100267_bb0200) 2022; 276 Yue (10.1016/j.mne.2024.100267_bb0235) 2012; 22 Lee (10.1016/j.mne.2024.100267_bb0515) 2008; 8 Rakhmatov (10.1016/j.mne.2024.100267_bb0415) 2019 Aghajani (10.1016/j.mne.2024.100267_bb0140) 2020; 3 Lim (10.1016/j.mne.2024.100267_bb0765) 2017; 28 Luo (10.1016/j.mne.2024.100267_bb0020) 2014; 61 Petti (10.1016/j.mne.2024.100267_bb0290) 2016; 82 Hreshchuk (10.1016/j.mne.2024.100267_bb0565) 2019; 22 Scaglione (10.1016/j.mne.2024.100267_bb0145) 2015; 95 Schlücker (10.1016/j.mne.2024.100267_bb0210) 2014; 53 Yan (10.1016/j.mne.2024.100267_bb0575) 2015; 7 He (10.1016/j.mne.2024.100267_bb0150) 2017; 19 Francis (10.1016/j.mne.2024.100267_bb0155) 2022 Haynes (10.1016/j.mne.2024.100267_bb0460) 2001; 105 Zhang (10.1016/j.mne.2024.100267_bb0430) 2016; 59 Wang (10.1016/j.mne.2024.100267_bb0305) 2020 Hsu (10.1016/j.mne.2024.100267_bb0030) 2014; 46 Cañamares (10.1016/j.mne.2024.100267_bb0065) 2008; 326 Johnson (10.1016/j.mne.2024.100267_bb0760) 2014; 17 Hulteen (10.1016/j.mne.2024.100267_bb0465) 1995; 13 Kostovski (10.1016/j.mne.2024.100267_bb0680) 2009; 24 Lin (10.1016/j.mne.2024.100267_bb0070) 2009; 394 Yue (10.1016/j.mne.2024.100267_bb0335) 2017; 5 Lee (10.1016/j.mne.2024.100267_bb0730) 2013; 50 Suresh (10.1016/j.mne.2024.100267_bb0650) 2018; 1 Bauman (10.1016/j.mne.2024.100267_bb0825) 2016; 9759 Kim (10.1016/j.mne.2024.100267_bb0255) 2020; xxx Zhao (10.1016/j.mne.2024.100267_bb0355) 2017; 720 Colson (10.1016/j.mne.2024.100267_bb0470) 2013; 2013 Bernardeschi (10.1016/j.mne.2024.100267_bb0775) 2021; 3 Aleknavičienė (10.1016/j.mne.2024.100267_bb0175) 2022 Liszewska (10.1016/j.mne.2024.100267_bb0835) 2019; 100 Huebner (10.1016/j.mne.2024.100267_bb0240) 2008; 85 Brolo (10.1016/j.mne.2024.100267_bb0385) 2004; 4 Pandey (10.1016/j.mne.2024.100267_bb0190) 2022; 12 Le-The (10.1016/j.mne.2024.100267_bb0705) 2017; 2 Yue (10.1016/j.mne.2024.100267_bb0225) 2012; 22 Li (10.1016/j.mne.2024.100267_bb0205) 2022 Fleischmann (10.1016/j.mne.2024.100267_bb0055) 1974; 26 Xie (10.1016/j.mne.2024.100267_bb0195) 2022 Kahl (10.1016/j.mne.2024.100267_bb0110) 1998; 51 Kim (10.1016/j.mne.2024.100267_bb0625) 2020; 10 Wang (10.1016/j.mne.2024.100267_bb0445) 2010; 114 Selimis (10.1016/j.mne.2024.100267_bb0780) 2015; 132 Hahn (10.1016/j.mne.2024.100267_bb0360) 2020; 9 Mai (10.1016/j.mne.2024.100267_bb0530) 2012; 28 Wu (10.1016/j.mne.2024.100267_bb0180) 2018; 28 Repetto (10.1016/j.mne.2024.100267_bb0080) 2018; 446 Sabouri (10.1016/j.mne.2024.100267_bb0365) 2014; 121 Dhawan (10.1016/j.mne.2024.100267_bb0405) 2009; 31 Jeon (10.1016/j.mne.2024.100267_bb0585) 2012; 22 Fan (10.1016/j.mne.2024.100267_bb0060) 2011; 693 Yang (10.1016/j.mne.2024.100267_bb0720) 2007; 30 Bahns (10.1016/j.mne.2024.100267_bb0375) 2007; 91 Yang (10.1016/j.mne.2024.100267_bb0295) 2019; 29 Wu (10.1016/j.mne.2024.100267_bb0805) 2023 Liu (10.1016/j.mne.2024.100267_bb0845) 2020; 15 Cetin (10.1016/j.mne.2024.100267_bb0170) 2020; 15 van Wolferen (10.1016/j.mne.2024.100267_bb0540) 2011 Doherty (10.1016/j.mne.2024.100267_bb0025) 2013; 3 Ho (10.1016/j.mne.2024.100267_bb0485) 2014; 6 Chang (10.1016/j.mne.2024.100267_bb0310) 2020; 10 Zhang (10.1016/j.mne.2024.100267_bb0595) 2011; 11 Schmidt (10.1016/j.mne.2024.100267_bb0830) 2012; 24 Betz (10.1016/j.mne.2024.100267_bb0220) 2014; 16 Min (10.1016/j.mne.2024.100267_bb0395) 2008; 112 Demirel (10.1016/j.mne.2024.100267_bb0075) 2018; 6 Hamad (10.1016/j.mne.2024.100267_bb0790) 2018; 3 Alvarez-Puebla (10.1016/j.mne.2024.100267_bb0640) 2007; 111 Isoyan (10.1016/j.mne.2024.100267_bb0690) 2009; 27 Solak (10.1016/j.mne.2024.100267_bb0700) 2011; 19 Min (10.1016/j.mne.2024.100267_bb0410) 2008; 16 Zhang (10.1016/j.mne.2024.100267_bb0370) 2017; 2018 Hoppmann (10.1016/j.mne.2024.100267_bb0740) 2013; 63 Zhang (10.1016/j.mne.2024.100267_bb0615) 2014; 25 Wei (10.1016/j.mne.2024.100267_bb0090) 2021; 11 Yuan (10.1016/j.mne.2024.100267_bb0010) 2017; 337 Solak (10.1016/j.mne.2024.100267_bb0695) 2015; 143 Mosier-Boss (10.1016/j.mne.2024.100267_bb0820) 2017; 7 Mercadal (10.1016/j.mne.2024.100267_bb0105) 2021; 125 Gombert (10.1016/j.mne.2024.100267_bb0550) 2004; 43 Franssila (10.1016/j.mne.2024.100267_bb0130) 2010 Krishnamoorthy (10.1016/j.mne.2024.100267_bb0630) 2011; 3 Cialla (10.1016/j.mne.2024.100267_bb0035) 2012; 403 Radziuk (10.1016/j.mne.2024.100267_bb0045) 2015; 17 Xu (10.1016/j.mne.2024.100267_bb0570) 2011; 32 Howell (10.1016/j.mne.2024.100267_bb0810) 2020; 6 Péter (10.1016/j.mne.2024.100267_bb0495) 2021 Akinoglu (10.1016/j.mne.2024.100267_bb0770) 2020; 12 Fang (10.1016/j.mne.2024.100267_bb0480) 2020; 12 Kahl (10.1016/j.mne.2024.100267_bb0275) 1998; 51 Wang (10.1016/j.mne.2024.100267_bb0505) 2020; 12 Erkızan (10.1016/j.mne.2024.100267_bb0785) 2022; 10 Gao (10.1016/j.mne.2024.100267_bb0400) 2012; 7 Sung (10.1016/j.mne.2024.100267_bb0440) 2008; 112 Le Ru (10.1016/j.mne.2024.100267_bb0040) 2007; 111 Hao (10.1016/j.mne.2024.100267_bb0350) 2018; 263 Azziz (10.1016/j.mne.2024.100267_bb0840) 2022 Petti (10.1016/j.mne.2024.100267_bb0230) 2016; 82 Lao (10.1016/j.mne.2024.100267_bb0745) 2020; 30 Cetin (10.1016/j.mne.2024.100267_bb0315) 2015; 2 Cao (10.1016/j.mne.2024.100267_bb0755) 2017; 7 Ahn (10.1016/j.mne.2024.100267_bb0525) 2013; 5 Liu (10.1016/j.mne.2024.100267_bb0605) 2020; 12 Anema (10.1016/j.mne.2024.100267_bb0380) 2008; 112 Kasani (10.1016/j.mne.2024.100267_bb0125) 2019; 8 Avasarala (10.1016/j.mne.2024.100267_bb0795) 2021 Polavarapu (10.1016/j.mne.2024.100267_bb0620) 2013; 15 Talbot (10.1016/j.mne.2024.100267_bb0685) 1836; 9 Wang (10.1016/j.mne.2024.100267_bb0215) 2020; 2 Ding (10.1016/j.mne.2024.100267_bb0665) 2014; 6 Rahmani (10.1016/j.mne.2024.100267_bb0120) 2023 Yue (10.1016/j.mne.2024.100267_bb0320) 2020 Zhu (10.1016/j.mne.2024.100267_bb0455) 2020; 31 Chan (10.1016/j.mne.2024.100267_bb0435) 2007; 7 Kennedy (10.1016/j.mne.2024.100267_bb0425) 1999; 103 Seo (10.1016/j.mne.2024.100267_bb0610) 2014; 14 Wu (10.1016/j.mne.2024.100267_bb0645) 2010; 21 Ambartsumyan (10.1016/j.mne.2024.100267_bb0005) 2020; 21 Le-The (10.1016/j.mne.2024.100267_bb0165) 2019; 11 Indrasekara (10.1016/j.mne.2024.100267_bb0100) 2014; 6 Barman (10.1016/j.mne.2024.100267_bb0750) 2017; 8 Chen (10.1016/j.mne.2024.100267_bb0050) 2011; 3 Cottat (10.1016/j.mne.2024.100267_bb0660) 2014; 9 Harvey (10.1016/j.mne.2024.100267_bb0015) 2012; 66 Zhao (10.1016/j.mne.2024.100267_bb0450) 2017; 9 Akbıyık (10.1016/j.mne.2024.100267_bb0815) 2022; 10 Narasimhan (10.1016/j.mne.2024.100267_bb0095) 2020; 5 Haller (10.1016/j.mne.2024.100267_bb0245) 1968; 12 Yao (10.1016/j.mne.2024.100267_bb0600) 2020; 12 Stankevičius (10.1016/j.mne.2024.100267_bb0545) 2013; 53 Liu (10.1016/j.mne.2024.100267_bb0670) 2017; 7 Xiang (10.1016/j.mne.2024.100267_bb0265) 2018; 29 Purwidyantri (10.1016/j.mne.2024.100267_bb0500) 2017; 16 |
References_xml | – volume: 10 year: 2020 ident: bb0325 article-title: The practical electromagnetic effect in surface-enhanced Raman scattering observed by the lithographically fabricated gold nanosquare dimers publication-title: AIP Adv. – volume: 61 start-page: 232 year: 2014 end-page: 240 ident: bb0020 article-title: Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review publication-title: Biosens. Bioelectron. – year: 2010 ident: bb0135 article-title: Principles of Lithography – volume: 3 year: 2013 ident: bb0025 article-title: Surface-enhanced Raman scattering from metallic nanostructures: bridging the gap between the near-field and far-field responses publication-title: Phys. Rev. X – volume: 10 start-page: 10268 year: 2018 end-page: 10276 ident: bb0555 article-title: Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS publication-title: Nanoscale – volume: 22 year: 2012 ident: bb0225 article-title: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering publication-title: J. Micromech. Microeng. – volume: 4 start-page: 2015 year: 2004 end-page: 2018 ident: bb0385 article-title: Nanohole-enhanced raman scattering publication-title: Nano Lett. – volume: 12 start-page: 12345 year: 2020 end-page: 12352 ident: bb0480 article-title: Hierarchically ordered silicon Metastructures from improved self-assembly-based Nanosphere lithography publication-title: ACS Appl. Mater. Interfaces – volume: 53 start-page: 4756 year: 2014 end-page: 4795 ident: bb0210 article-title: Surface-enhanced raman spectroscopy: concepts and chemical applications publication-title: Angew. Chem. Int. Ed. – volume: vol. 11 year: 1949 ident: bb0270 article-title: The Metal Molybdenum – volume: 7 start-page: 1 year: 2017 end-page: 8 ident: bb0755 article-title: Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable Nanogap for surface-enhanced Raman scattering publication-title: Sci. Rep. – start-page: 571 year: 2022 ident: bb0175 article-title: Low-cost SERS substrate featuring laser-ablated amorphous nanostructure publication-title: Appl. Surf. Sci. – volume: 26 start-page: 163 year: 1974 end-page: 166 ident: bb0055 article-title: Raman spectra of pyridine absorbed at a silver electrode publication-title: Chem. Phys. Lett. – volume: 3 start-page: 1033 year: 2011 end-page: 1040 ident: bb0630 article-title: Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography publication-title: ACS Appl. Mater. Interfaces – volume: 25 year: 2014 ident: bb0615 article-title: Large-scale uniform au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate publication-title: Nanotechnology – volume: 3 start-page: 1575 year: 2011 end-page: 1581 ident: bb0050 article-title: Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering publication-title: Nanoscale – year: 2021 ident: bb0495 article-title: Electrochemical Methods of Nanostructure Preparation – volume: 143 start-page: 74 year: 2015 end-page: 80 ident: bb0695 article-title: Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs publication-title: Microelectron. Eng. – volume: 3 year: 2021 ident: bb0775 article-title: A review on active 3D microstructures via direct laser lithography publication-title: Adv. Intell. Syst. – volume: 132 start-page: 83 year: 2015 end-page: 89 ident: bb0780 article-title: Direct laser writing: principles and materials for scaffold 3D printing publication-title: Microelectron. Eng. – volume: 7 start-page: 1 year: 2012 end-page: 8 ident: bb0400 article-title: High performance surface-enhanced Raman scattering substrates of Si-based au film developed by focused ion beam nanofabrication publication-title: Nanoscale Res. Lett. – volume: 5 start-page: 76085 year: 2015 end-page: 76091 ident: bb0655 article-title: Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer publication-title: RSC Adv. – volume: 85 start-page: 1792 year: 2008 end-page: 1794 ident: bb0240 article-title: Microfabricated SERS-arrays with sharp-edged metallic nanostructures publication-title: Microelectron. Eng. – volume: 22 start-page: 4268 year: 2012 end-page: 4274 ident: bb0585 article-title: Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform publication-title: Adv. Funct. Mater. – volume: 326 start-page: 103 year: 2008 end-page: 109 ident: bb0065 article-title: Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and the interfacial properties publication-title: J. Colloid Interface Sci. – volume: 28 start-page: 1 year: 2017 end-page: 7 ident: bb0115 article-title: Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy publication-title: Nanotechnology – volume: 5 start-page: 4075 year: 2017 end-page: 4084 ident: bb0335 article-title: Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers publication-title: J. Mater. Chem. C Mater. – volume: 10 year: 2020 ident: bb0310 article-title: Surface-enhanced Raman scattering and fluorescence on gold nanogratings publication-title: Nanomaterials – volume: 11 start-page: 2715 year: 2011 end-page: 2719 ident: bb0595 article-title: Holographic control of motive shape in plasmonic nanogap arrays publication-title: Nano Lett. – volume: 17 start-page: 236 year: 2014 end-page: 246 ident: bb0760 article-title: A brief review of atomic layer deposition: from fundamentals to applications publication-title: Mater. Today – volume: 6 start-page: 8891 year: 2014 end-page: 8899 ident: bb0100 article-title: Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime publication-title: Nanoscale – volume: 7 start-page: 27059 year: 2015 end-page: 27065 ident: bb0575 article-title: Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference publication-title: ACS Appl. Mater. Interfaces – volume: 121 start-page: 24 year: 2014 end-page: 26 ident: bb0365 article-title: The effects of dwell time on focused ion beam machining of silicon publication-title: Microelectron. Eng. – volume: 21 year: 2010 ident: bb0645 article-title: Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy publication-title: Nanotechnology – volume: 2 year: 2017 ident: bb0705 article-title: Shrinkage control of photoresist for large-area fabrication of Sub-30 nm periodic nanocolumns publication-title: Adv. Mater. Technol. – volume: 30 start-page: 441 year: 2007 end-page: 446 ident: bb0720 article-title: Nano-fabrication: a review publication-title: J. Chin. Inst. Eng. Transact. Chin. Inst. Eng. Ser. A/Chung-kuo Kung Ch’eng Hsuch K’an – volume: 86 start-page: 1085 year: 2009 end-page: 1088 ident: bb0250 article-title: Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition publication-title: Microelectron. Eng. – volume: 9 start-page: 393 year: 2020 end-page: 399 ident: bb0360 article-title: Helium focused ion beam direct milling of plasmonic heptamer-arranged nanohole arrays publication-title: Nanophotonics – volume: 103 start-page: 3640 year: 1999 end-page: 3646 ident: bb0425 article-title: Determination of the distance dependence and experimental effects for modified Sers substrates based on self-assembled monolayers formed using alkanethiols publication-title: J. Phys. Chem. B – volume: 2 start-page: 253 year: 2020 end-page: 271 ident: bb0215 article-title: Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy publication-title: Nat. Rev. Phys. – reference: Salaita K, Wang Y, Mirkin CA. Applications of dip-pen nanolithography. Nat. Nanotechnol. (1):145-155. doi: – volume: 114 start-page: 2886 year: 2010 end-page: 2890 ident: bb0445 article-title: Preparation of nanoscale ag semishell array with tunable interparticle distance and its application in surface-enhanced Raman scattering publication-title: J. Phys. Chem. C – volume: 10 year: 2020 ident: bb0800 article-title: Ultrasensitive SERS-based plasmonic sensor with analyte enrichment system produced by direct laser writing publication-title: Nanomaterials – volume: 720 start-page: 139 year: 2017 end-page: 146 ident: bb0355 article-title: Constructing sub-10-nm gaps in graphene-metal hybrid system for advanced surface-enhanced Raman scattering detection publication-title: J. Alloys Compd. – volume: 2013 year: 2013 ident: bb0470 article-title: Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials publication-title: J. Nanomater. – volume: 10 start-page: 608 year: 2010 end-page: 616 ident: bb0390 article-title: Methodologies for developing surface-enhanced raman scattering (SERS) substrates for detection of chemical and biological molecules publication-title: IEEE Sensors J. – volume: 59 year: 2016 ident: bb0430 article-title: Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres publication-title: Sci. China Phys. Mech. Astron. – volume: 21 start-page: 1 year: 2020 end-page: 15 ident: bb0005 article-title: SERS-based biosensors for virus determination with oligonucleotides as recognition elements publication-title: Int. J. Mol. Sci. – volume: 118 start-page: 8571 year: 2014 end-page: 8580 ident: bb0085 article-title: SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering publication-title: J. Phys. Chem. C – volume: 19 start-page: 495 year: 2007 end-page: 513 ident: bb0635 article-title: Nanoimprint lithography: methods and material requirements publication-title: Adv. Mater. – volume: 63 start-page: 219 year: 2013 end-page: 224 ident: bb0740 article-title: Highly sensitive and flexible inkjet printed SERS sensors on paper publication-title: Methods – volume: 11 year: 2021 ident: bb0090 article-title: Three-dimensional au/ag nanoparticle/crossed carbon nanotube sers substrate for the detection of mixed toxic molecules publication-title: Nanomaterials – volume: 22 year: 2012 ident: bb0235 article-title: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering publication-title: J. Micromech. Microeng. – volume: 13 start-page: 1553 year: 1995 end-page: 1558 ident: bb0465 article-title: Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces publication-title: J. Vac. Sci. Technol. A – volume: 100 start-page: 79 year: 2019 end-page: 85 ident: bb0835 article-title: Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems publication-title: Vib. Spectrosc. – volume: 20 year: 2009 ident: bb0260 article-title: Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art publication-title: Nanotechnology – volume: 263 start-page: 634 year: 2018 end-page: 642 ident: bb0350 article-title: Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene publication-title: Sensors Actuators B Chem. – start-page: 2018 year: 2019 end-page: 2021 ident: bb0415 article-title: Subnanometer gaps for enhanced raman substrates publication-title: 2018 IEEE 13th Nanotechnology Materials and Devices Conference, NMDC 2018 – volume: 51 start-page: 285 year: 1998 end-page: 291 ident: bb0275 article-title: Periodically structured metallic substrates for SERS publication-title: Sensors Actuators B Chem. – volume: 22 start-page: 23650 year: 2012 end-page: 23654 ident: bb0535 article-title: Dual length-scale nanotip arrays with controllable morphological features for highly sensitive SERS applications publication-title: J. Mater. Chem. – volume: 16 start-page: 2224 year: 2014 end-page: 2239 ident: bb0220 article-title: Simple SERS substrates: powerful, portable, and full of potential publication-title: Phys. Chem. Chem. Phys. – volume: 8231 year: 2012 ident: bb0590 article-title: Two-dimensional, periodic mushroomlike nanostructures for SERS applications publication-title: Nanoscale Imag. Sens. Actuat. Biomed. Appl. VIII – volume: 112 start-page: 5707 year: 2008 end-page: 5714 ident: bb0440 article-title: Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation publication-title: J. Phys. Chem. C – volume: 51 start-page: 285 year: 1998 end-page: 291 ident: bb0110 article-title: Periodically structured metallic substrates for SERS publication-title: Sensors Actuators B Chem. – volume: 5 start-page: 1836 year: 2013 end-page: 1842 ident: bb0525 article-title: An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography publication-title: Nanoscale – volume: 3 start-page: 5665 year: 2020 end-page: 5675 ident: bb0140 article-title: Aerosol direct writing and thermal tuning of copper nanoparticle patterns as surface-enhanced Raman scattering sensors publication-title: ACS Appl. Nano Mater. – volume: 66 start-page: 1179 year: 2012 end-page: 1185 ident: bb0015 article-title: Looking inside catalyst extrudates with time-resolved surface enhanced raman spectroscopy (TR-SERS) publication-title: Appl. Spectrosc. – volume: 28 year: 2018 ident: bb0180 article-title: Gold nanoparticles sliding on recyclable Nanohoodoos—engineered for surface-enhanced Raman spectroscopy publication-title: Adv. Funct. Mater. – volume: 23 start-page: 720 year: 2013 end-page: 730 ident: bb0475 article-title: Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition publication-title: Adv. Funct. Mater. – start-page: 1248 year: 2022 ident: bb0840 article-title: Sensing performances of commercial SERS substrates publication-title: J. Mol. Struct. – start-page: 381 year: 2022 ident: bb0195 article-title: Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues publication-title: Food Chem. – volume: 91 start-page: 2005 year: 2007 end-page: 2008 ident: bb0375 article-title: Enhanced Raman scattering from focused surface plasmons publication-title: Appl. Phys. Lett. – volume: 139 start-page: 621 year: 2003 end-page: 624 ident: bb0285 article-title: Optimization of SERS-active substrates for near-field Raman spectroscopy publication-title: Synth. Met. – volume: 132 start-page: 120 year: 2015 end-page: 134 ident: bb0710 article-title: High-resolution proximity lithography for nano-optical components publication-title: Microelectron. Eng. – volume: 53 start-page: 227 year: 2013 end-page: 237 ident: bb0545 article-title: Fabrication of periodic micro-structures by holographic lithography publication-title: Lith. J. Phys. – volume: 27 start-page: 2931 year: 2009 ident: bb0690 article-title: Talbot lithography: self-imaging of complex structures publication-title: J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. – start-page: 322 year: 2020 ident: bb0320 article-title: Sensitive and reproducible surface-enhanced raman spectroscopy (SERS) with arrays of dimer-nanopillars publication-title: Sensors Actuators B Chem. – volume: 15 start-page: 5288 year: 2013 end-page: 5300 ident: bb0620 article-title: Towards low-cost flexible substrates for nanoplasmonic sensing publication-title: Phys. Chem. Chem. Phys. – volume: 20 year: 2023 ident: bb0185 article-title: Low-variance surface-enhanced Raman spectroscopy using confined gold nanoparticles over silicon nanocones publication-title: ACS Appl. Nano Mater. – volume: 6 start-page: 5314 year: 2018 end-page: 5335 ident: bb0075 article-title: Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms publication-title: J. Mater. Chem. C Mater. – volume: 6 start-page: 8606 year: 2014 end-page: 8611 ident: bb0485 article-title: Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography publication-title: Nanoscale – volume: 30 start-page: 1 year: 2020 end-page: 10 ident: bb0745 article-title: Nanogap Plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS publication-title: Adv. Funct. Mater. – volume: 16 start-page: 9708 year: 2008 ident: bb0410 article-title: Surface plasmon microcavity for resonant transmission through a slit in a gold film publication-title: Opt. Express – volume: 2 start-page: 1167 year: 2015 end-page: 1174 ident: bb0315 article-title: Plasmonic Nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing publication-title: ACS Photonics – volume: 19 start-page: 10686 year: 2011 ident: bb0700 article-title: Displacement Talbot lithography: a new method for high-resolution patterning of large areas publication-title: Opt. Express – volume: 18 year: 2016 ident: bb0490 article-title: Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter publication-title: J. Opt. (U.K.). – volume: 7 start-page: 1 year: 2017 end-page: 13 ident: bb0340 article-title: Optical and surface enhanced Raman scattering properties of ag modified silicon double nanocone array publication-title: Sci. Rep. – volume: 9759 year: 2016 ident: bb0825 article-title: Surface-enhanced Raman spectroscopy substrate fabricated via nanomasking technique for biological sensor applications publication-title: Adv. Fabric. Technol. Micro/Nano Optics Photonics IX – volume: 7 start-page: 5223 year: 2013 end-page: 5234 ident: bb0300 article-title: Large area metal nanowire arrays with tunable sub-20 nm nanogaps publication-title: ACS Nano – volume: 9 start-page: 401 year: 1836 end-page: 407 ident: bb0685 article-title: LXXVI. Facts relating to optical science. No. IV publication-title: Lond., Edinbur. Dublin Philosoph. Magaz. J. Sci. – volume: 24 year: 2012 ident: bb0830 article-title: Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy publication-title: Adv. Mater. – volume: 403 start-page: 27 year: 2012 end-page: 54 ident: bb0035 article-title: Surface-enhanced Raman spectroscopy (SERS): Progress and trends publication-title: Anal. Bioanal. Chem. – year: 2011 ident: bb0540 article-title: Laser Interference Lithography. Lithography: Principles, Processes and Materials – start-page: 145 year: 2022 ident: bb0160 article-title: Copper nanoleaves SERS substrates with high surface roughness for sensitive detection crystal violet and rhodamine 6G publication-title: Opt. Laser Technol. – volume: 125 start-page: 4056 year: 2021 end-page: 4065 ident: bb0105 article-title: A new figure of merit to assess the SERS enhancement factor of colloidal gold nanoparticle aggregates publication-title: J. Phys. Chem. C – volume: 982 start-page: 148 year: 2017 end-page: 155 ident: bb0580 article-title: Determination of aqueous antibiotic solutions using SERS nanogratings publication-title: Anal. Chim. Acta – volume: 17 start-page: 21072 year: 2015 end-page: 21093 ident: bb0045 article-title: Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells publication-title: Phys. Chem. Chem. Phys. – volume: 111 start-page: 6720 year: 2007 end-page: 6723 ident: bb0640 article-title: Nanoimprinted SERS-active substrates with tunable surface plasmon resonances publication-title: J. Phys. Chem. C – volume: 105 start-page: 5599 year: 2001 end-page: 5611 ident: bb0460 article-title: Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics publication-title: J. Phys. Chem. B – volume: 24 start-page: 1531 year: 2009 end-page: 1535 ident: bb0680 article-title: Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing publication-title: Biosens. Bioelectron. – volume: 111 start-page: 13794 year: 2007 end-page: 13803 ident: bb0040 article-title: Surface enhanced raman scattering enhancement factors: a comprehensive study publication-title: J. Phys. Chem. C – volume: xxx year: 2020 ident: bb0255 article-title: Cascade domino lithography for extreme photon squeezing publication-title: Mater. Today – volume: 12 start-page: 23410 year: 2020 end-page: 23416 ident: bb0770 article-title: Block copolymer derived vertically coupled Plasmonic arrays for surface-enhanced Raman spectroscopy publication-title: ACS Appl. Mater. Interfaces – start-page: 365 year: 2022 ident: bb0205 article-title: High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor publication-title: Sensors Actuators B Chem. – volume: 2018 start-page: 39 year: November 2017 end-page: 45 ident: bb0370 article-title: Surface-enhanced Raman scattering from bowtie nanoaperture arrays publication-title: Surf. Sci. – volume: 10 year: 2022 ident: bb0815 article-title: Laser photochemical Nanostructuring of silicon for surface enhanced Raman spectroscopy. publication-title: Opt. Mater. – volume: 15 start-page: 743 year: 2020 end-page: 752 ident: bb0845 article-title: Evaluation of the reliability of six commercial SERS substrates publication-title: Plasmonics – volume: 22 start-page: 215 year: 2019 end-page: 223 ident: bb0565 article-title: Efficient SERS substrates based on laterally ordered gold nanostructures made using interference lithography publication-title: Semicond. Phys. Quant. Electron. Optoelectron. – volume: 12 start-page: 251 year: 1968 end-page: 256 ident: bb0245 article-title: High-resolution positive resists for Electron-beam exposure publication-title: IBM J. Res. Dev. – volume: 12 start-page: 37657 year: 2020 end-page: 37669 ident: bb0505 article-title: Plasmonic nanocrystal arrays on photonic crystals with tailored optical resonances publication-title: ACS Appl. Mater. Interfaces – volume: 8 start-page: 2065 year: 2019 end-page: 2089 ident: bb0125 article-title: A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications publication-title: Nanophotonics – start-page: 17 year: 2020 ident: bb0305 article-title: Hybrid surface plasmon effect and SERS characterization in a heterogeneous composite structure of Au nano-array and Ag film publication-title: Results Phys. – volume: 43 start-page: 2525 year: 2004 ident: bb0550 article-title: Some application cases and related manufacturing techniques for optically functional microstructures on large areas publication-title: Opt. Eng. – volume: 10 start-page: 1 year: 2020 end-page: 10 ident: bb0625 article-title: Quasi-3D plasmonic nanowell array for molecular enrichment and Sers-based detection publication-title: Nanomaterials – volume: 10 year: 2022 ident: bb0785 article-title: LIPSS for SERS: metal coated direct laser written periodic nanostructures for surface enhanced Raman spectroscopy publication-title: Adv. Opt. Mater. – volume: 5 start-page: 12915 year: 2020 end-page: 12922 ident: bb0095 article-title: Bioinspired disordered flexible Metasurfaces for human tear analysis using broadband surface-enhanced Raman scattering publication-title: ACS Omega – volume: 15 start-page: 1165 year: 2020 end-page: 1171 ident: bb0170 article-title: Fabrication of Sub-10-nm plasmonic gaps for ultra-sensitive Raman spectroscopy publication-title: Plasmonics – volume: 120 start-page: 6009 year: 2020 end-page: 6047 ident: bb0725 article-title: Evolution of dip-pen nanolithography (DPN): from molecular patterning to materials discovery publication-title: Chem. Rev. – year: 2010 ident: bb0130 article-title: Introduction to Microfabrication – volume: 31 start-page: 139 year: 2009 end-page: 146 ident: bb0405 article-title: Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition publication-title: Scanning – volume: 112 start-page: 17051 year: 2008 end-page: 17055 ident: bb0380 article-title: Enhanced Raman scattering from nanoholes in a copper film publication-title: J. Phys. Chem. C – volume: 12 start-page: 36505 year: 2020 end-page: 36512 ident: bb0600 article-title: Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition publication-title: ACS Appl. Mater. Interfaces – volume: 9 start-page: 7710 year: 2017 end-page: 7716 ident: bb0450 article-title: Design of Hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography publication-title: ACS Appl. Mater. Interfaces – volume: 446 start-page: 83 year: 2018 end-page: 91 ident: bb0080 article-title: SERS amplification by ultra-dense plasmonic arrays on self-organized PDMS templates publication-title: Appl. Surf. Sci. – volume: 7 start-page: 1947 year: 2007 end-page: 1952 ident: bb0435 article-title: Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography publication-title: Nano Lett. – volume: 82 start-page: 22 year: 2016 end-page: 30 ident: bb0290 article-title: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications publication-title: Vib. Spectrosc. – volume: 18 year: 2018 ident: bb0560 article-title: Sensitive and reproducible gold SERS sensor based on interference lithography and electrophoretic deposition publication-title: Sensors (Switzerland) – volume: 7 year: 2017 ident: bb0670 article-title: A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template publication-title: AIP Adv. – volume: 32 start-page: 3378 year: 2011 end-page: 3384 ident: bb0570 article-title: A SERS-active microfluidic device with tunable surface plasmon resonances publication-title: Electrophoresis – volume: 8 year: 2017 ident: bb0750 article-title: Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. – volume: 29 year: 2018 ident: bb0265 article-title: Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers publication-title: Nanotechnology – volume: 16 start-page: 551 year: 2017 end-page: 559 ident: bb0500 article-title: Tunable plasmonic SERS hotspots on Au-film over nanosphere by rapid thermal annealing publication-title: IEEE Trans. Nanotechnol. – year: October 23, 2023 ident: bb0120 article-title: Highlight on commercial SERS substrates and on optimized nanorough large-area SERS-based sensors: a Raman study publication-title: Appl. Nanosci. – volume: 693 start-page: 7 year: 2011 end-page: 25 ident: bb0060 article-title: A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry publication-title: Anal. Chim. Acta – volume: 14 start-page: 1521 year: 2014 end-page: 1532 ident: bb0610 article-title: Nanopatterning by laser interference lithography: applications to optical devices publication-title: J. Nanosci. Nanotechnol. – volume: 337 start-page: 1 year: 2017 end-page: 33 ident: bb0010 article-title: SERS-based ultrasensitive sensing platform: an insight into design and practical applications publication-title: Coord. Chem. Rev. – volume: 11 start-page: 12152 year: 2019 end-page: 12160 ident: bb0165 article-title: Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering publication-title: Nanoscale – volume: 394 start-page: 1729 year: 2009 end-page: 1745 ident: bb0070 article-title: Surface-enhanced raman spectroscopy: substrate-related issues publication-title: Anal. Bioanal. Chem. – volume: 82 start-page: 22 year: 2016 end-page: 30 ident: bb0230 article-title: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications publication-title: Vib. Spectrosc. – volume: 28 year: 2017 ident: bb0765 article-title: Highly sensitive and scalable AAO-based nano-fibre SERS substrate for sensing application publication-title: Nanotechnology – volume: 46 start-page: 59 year: 2014 end-page: 63 ident: bb0030 article-title: A study on the spectral characteristics of surface enhanced Raman scattering based on far-field extinction and near-field electromagnetic field intensity of 2D nanostructures publication-title: J. Raman Spectrosc. – volume: 50 start-page: 1416 year: 2019 end-page: 1428 ident: bb0345 article-title: Fabrication of ag-modified nanocone frustum arrays with controlled shape as active substrates for surface-enhanced Raman scattering publication-title: J. Raman Spectrosc. – volume: 12 start-page: 21401 year: 2020 end-page: 21408 ident: bb0605 article-title: Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography publication-title: Nanoscale – volume: 181 start-page: 361 year: 2013 end-page: 367 ident: bb0420 article-title: Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection publication-title: Sensors Actuators B Chem. – volume: 19 year: 2017 ident: bb0150 article-title: Effect of the size of silver nanoparticles on SERS signal enhancement publication-title: J. Nanopart. Res. – volume: 7 year: 2017 ident: bb0820 article-title: Review of SERS substrates for chemical sensing publication-title: Nanomaterials – volume: 1 start-page: 886 year: 2018 end-page: 893 ident: bb0650 article-title: Fabrication of large-area flexible SERS substrates by nanoimprint lithography publication-title: ACS Appl. Nano Mater. – volume: 50 start-page: 301 year: 2013 end-page: 305 ident: bb0730 article-title: Fabrication of surface enhanced Raman scattering (SERS)-active substrates by using dip-pen nanolithography publication-title: ECS Trans. – volume: 8 start-page: 388 year: 2008 end-page: 391 ident: bb0515 article-title: Holographic fabrication of photonic nanostructures for optofluidic integration publication-title: Lab Chip – start-page: 626 year: 2023 ident: bb0805 article-title: Fabrication of wafer-scale ordered micro/nanostructures for SERS substrates using rotational symmetry cantilever-based probe lithography publication-title: Appl. Surf. Sci. – volume: 29 year: 2019 ident: bb0295 article-title: Interdigitated silver nanoelectrode arrays: a surface-enhanced Raman scattering platform for monitoring the reorientation of molecules under an external electric field publication-title: J. Micromech. Microeng. – volume: 9 start-page: 820 year: 2009 end-page: 825 ident: bb0510 article-title: Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography publication-title: Curr. Appl. Phys. – start-page: 137 year: 2022 ident: bb0155 article-title: Ag nanowires based SERS substrates with very high enhancement factor publication-title: Phys. E Low Dimens. Syst. Nanostruct. – volume: 276 year: 2022 ident: bb0200 article-title: 3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 972 start-page: 73 year: 2017 end-page: 80 ident: bb0520 article-title: Polarization-dependent surface-enhanced Raman scattering (SERS) from microarrays publication-title: Anal. Chim. Acta – volume: 3 start-page: 18420 year: 2018 end-page: 18432 ident: bb0790 article-title: Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multi-utility SERS platforms publication-title: ACS Omega – volume: 112 start-page: 15098 year: 2008 end-page: 15101 ident: bb0395 article-title: Localized Raman enhancement from a double-hole nanostructure in a metal film publication-title: J. Phys. Chem. C – volume: 12 year: 2022 ident: bb0190 article-title: Hierarchically assembled Plasmonic metal-dielectric-metal hybrid Nano-architectures for high-sensitivity SERS detection publication-title: Nanomaterials – reference: . – volume: 95 start-page: 474 year: 2015 end-page: 482 ident: bb0145 article-title: Nanoporous gold obtained from a metallic glass precursor used as substrate for surface-enhanced Raman scattering publication-title: Philos. Mag. Lett. – volume: 14 start-page: 1527 year: 2019 end-page: 1537 ident: bb0330 article-title: Localized surface plasmon resonance in gold nanocluster arrays on opaque substrates publication-title: Plasmonics – volume: April 2016 year: 2016 ident: bb0735 article-title: Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering publication-title: Nanoscale Imag. Sens. Actuat. Biomed. Appl. XIII. – volume: 31 year: 2020 ident: bb0455 article-title: Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue publication-title: Nanotechnology – volume: 12 start-page: 2554 year: 2019 end-page: 2558 ident: bb0675 article-title: Macroscopic ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates publication-title: Nano Res. – start-page: 5 year: 2021 ident: bb0795 article-title: Gold-coated silicon nanoripples achieved via picosecond laser ablation for surface enhanced Raman scattering studies publication-title: Results Optics. – volume: 2 start-page: 377 year: 2008 end-page: 385 ident: bb0280 article-title: Surface-enhanced Raman publication-title: Spectroscopy – volume: 9 start-page: 1 year: 2014 end-page: 6 ident: bb0660 article-title: Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection publication-title: Nanoscale Res. Lett. – volume: 6 start-page: 17358 year: 2014 end-page: 17363 ident: bb0665 article-title: Nanoimprint lithography of Al nanovoids for deep-UV SERS publication-title: ACS Appl. Mater. Interfaces – volume: 6 year: 2020 ident: bb0810 article-title: Thermal scanning probe lithography—a review publication-title: Microsyst. Nanoeng. – volume: 28 start-page: 11465 year: 2012 end-page: 11471 ident: bb0530 article-title: Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching publication-title: Langmuir – volume: 7 start-page: 5223 issue: 6 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0300 article-title: Large area metal nanowire arrays with tunable sub-20 nm nanogaps publication-title: ACS Nano doi: 10.1021/nn4009559 – volume: 100 start-page: 79 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0835 article-title: Evaluation of selected SERS substrates for trace detection of explosive materials using portable Raman systems publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2018.11.002 – volume: xxx issue: xx year: 2020 ident: 10.1016/j.mne.2024.100267_bb0255 article-title: Cascade domino lithography for extreme photon squeezing publication-title: Mater. Today – volume: 5 start-page: 4075 issue: 16 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0335 article-title: Amplification of surface-enhanced Raman scattering due to substrate-mediated localized surface plasmons in gold nanodimers publication-title: J. Mater. Chem. C Mater. doi: 10.1039/C7TC00667E – volume: 118 start-page: 8571 issue: 16 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0085 article-title: SERS enhancement and field confinement in nanosensors based on self-organized gold nanowires produced by ion-beam sputtering publication-title: J. Phys. Chem. C doi: 10.1021/jp5007236 – volume: 121 start-page: 24 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0365 article-title: The effects of dwell time on focused ion beam machining of silicon publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2014.02.025 – volume: 10 start-page: 10268 issue: 21 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0555 article-title: Tunable laser interference lithography preparation of plasmonic nanoparticle arrays tailored for SERS publication-title: Nanoscale doi: 10.1039/C7NR08905H – start-page: 145 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0160 article-title: Copper nanoleaves SERS substrates with high surface roughness for sensitive detection crystal violet and rhodamine 6G publication-title: Opt. Laser Technol. – start-page: 626 year: 2023 ident: 10.1016/j.mne.2024.100267_bb0805 article-title: Fabrication of wafer-scale ordered micro/nanostructures for SERS substrates using rotational symmetry cantilever-based probe lithography publication-title: Appl. Surf. Sci. – volume: 9 start-page: 401 issue: 56 year: 1836 ident: 10.1016/j.mne.2024.100267_bb0685 article-title: LXXVI. Facts relating to optical science. No. IV publication-title: Lond., Edinbur. Dublin Philosoph. Magaz. J. Sci. doi: 10.1080/14786443608649032 – volume: 8 issue: 3 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0750 article-title: Formation of plasmonic silver nanoparticles using rapid thermal annealing at low temperature and study in reflectance reduction of Si surface publication-title: Adv. Nat. Sci. Nanosci. Nanotechnol. doi: 10.1088/2043-6254/aa7252 – volume: 2 issue: 3 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0705 article-title: Shrinkage control of photoresist for large-area fabrication of Sub-30 nm periodic nanocolumns publication-title: Adv. Mater. Technol. doi: 10.1002/admt.201600238 – volume: 28 issue: 23 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0765 article-title: Highly sensitive and scalable AAO-based nano-fibre SERS substrate for sensing application publication-title: Nanotechnology doi: 10.1088/1361-6528/aa6f00 – volume: 26 start-page: 163 issue: 2 year: 1974 ident: 10.1016/j.mne.2024.100267_bb0055 article-title: Raman spectra of pyridine absorbed at a silver electrode publication-title: Chem. Phys. Lett. doi: 10.1016/0009-2614(74)85388-1 – volume: 112 start-page: 5707 issue: 15 year: 2008 ident: 10.1016/j.mne.2024.100267_bb0440 article-title: Stability of silver nanoparticles fabricated by nanosphere lithography and atomic layer deposition to femtosecond laser excitation publication-title: J. Phys. Chem. C doi: 10.1021/jp0774140 – year: 2011 ident: 10.1016/j.mne.2024.100267_bb0540 – volume: 972 start-page: 73 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0520 article-title: Polarization-dependent surface-enhanced Raman scattering (SERS) from microarrays publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.04.003 – volume: 276 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0200 article-title: 3D silver metallized nanotrenches fabricated by nanoimprint lithography as flexible SERS detection platform publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2022.121232 – volume: 9 start-page: 7710 issue: 8 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0450 article-title: Design of Hybrid nanostructural arrays to manipulate SERS-active substrates by nanosphere lithography publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b14008 – volume: 28 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0115 article-title: Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy publication-title: Nanotechnology doi: 10.1088/1361-6528/28/4/045303 – volume: 12 start-page: 21401 issue: 41 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0605 article-title: Nanobowtie arrays with tunable materials and geometries fabricated by holographic lithography publication-title: Nanoscale doi: 10.1039/D0NR05546H – volume: 18 issue: 5 year: 2016 ident: 10.1016/j.mne.2024.100267_bb0490 article-title: Nanostructured SERS substrates produced by nanosphere lithography and plastic deformation through direct peel-off on soft matter publication-title: J. Opt. (U.K.). – volume: 61 start-page: 232 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0020 article-title: Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: a review publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2014.05.013 – year: 2021 ident: 10.1016/j.mne.2024.100267_bb0495 – volume: 10 start-page: 608 issue: 3 year: 2010 ident: 10.1016/j.mne.2024.100267_bb0390 article-title: Methodologies for developing surface-enhanced raman scattering (SERS) substrates for detection of chemical and biological molecules publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2009.2038634 – volume: 111 start-page: 13794 issue: 37 year: 2007 ident: 10.1016/j.mne.2024.100267_bb0040 article-title: Surface enhanced raman scattering enhancement factors: a comprehensive study publication-title: J. Phys. Chem. C doi: 10.1021/jp0687908 – volume: 22 issue: 12 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0225 article-title: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/12/125007 – volume: 7 start-page: 27059 issue: 49 year: 2015 ident: 10.1016/j.mne.2024.100267_bb0575 article-title: Superhydrophobic SERS substrates based on silver-coated reduced graphene oxide gratings prepared by two-beam laser interference publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b09128 – volume: 720 start-page: 139 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0355 article-title: Constructing sub-10-nm gaps in graphene-metal hybrid system for advanced surface-enhanced Raman scattering detection publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.05.213 – volume: 24 start-page: 1531 issue: 5 year: 2009 ident: 10.1016/j.mne.2024.100267_bb0680 article-title: Nanoimprinted optical fibres: biotemplated nanostructures for SERS sensing publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2008.10.016 – ident: 10.1016/j.mne.2024.100267_bb0715 doi: 10.1038/nnano.2007.39 – volume: 19 issue: 8 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0150 article-title: Effect of the size of silver nanoparticles on SERS signal enhancement publication-title: J. Nanopart. Res. doi: 10.1007/s11051-017-3953-0 – volume: 22 start-page: 215 issue: 2 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0565 article-title: Efficient SERS substrates based on laterally ordered gold nanostructures made using interference lithography publication-title: Semicond. Phys. Quant. Electron. Optoelectron. doi: 10.15407/spqeo22.02.215 – volume: 29 issue: 12 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0295 article-title: Interdigitated silver nanoelectrode arrays: a surface-enhanced Raman scattering platform for monitoring the reorientation of molecules under an external electric field publication-title: J. Micromech. Microeng. doi: 10.1088/1361-6439/ab4b8e – volume: April 2016 issue: 9721 year: 2016 ident: 10.1016/j.mne.2024.100267_bb0735 article-title: Engineering molecularly-active nanoplasmonic surfaces for DNA detection via colorimetry and Raman scattering publication-title: Nanoscale Imag. Sens. Actuat. Biomed. Appl. XIII. – volume: 20 year: 2023 ident: 10.1016/j.mne.2024.100267_bb0185 article-title: Low-variance surface-enhanced Raman spectroscopy using confined gold nanoparticles over silicon nanocones publication-title: ACS Appl. Nano Mater. – volume: 11 start-page: 2715 issue: 7 year: 2011 ident: 10.1016/j.mne.2024.100267_bb0595 article-title: Holographic control of motive shape in plasmonic nanogap arrays publication-title: Nano Lett. doi: 10.1021/nl200994k – volume: 4 start-page: 2015 issue: 10 year: 2004 ident: 10.1016/j.mne.2024.100267_bb0385 article-title: Nanohole-enhanced raman scattering publication-title: Nano Lett. doi: 10.1021/nl048818w – volume: 23 start-page: 720 issue: 6 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0475 article-title: Large-scale fabrication of three-dimensional surface patterns using template-defined electrochemical deposition publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201201466 – volume: 15 start-page: 1165 issue: 4 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0170 article-title: Fabrication of Sub-10-nm plasmonic gaps for ultra-sensitive Raman spectroscopy publication-title: Plasmonics doi: 10.1007/s11468-020-01137-3 – volume: 3 start-page: 5665 issue: 6 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0140 article-title: Aerosol direct writing and thermal tuning of copper nanoparticle patterns as surface-enhanced Raman scattering sensors publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.0c00887 – volume: 7 start-page: 1947 issue: 7 year: 2007 ident: 10.1016/j.mne.2024.100267_bb0435 article-title: Plasmonic properties of copper nanoparticles fabricated by nanosphere lithography publication-title: Nano Lett. doi: 10.1021/nl070648a – volume: 66 start-page: 1179 issue: 10 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0015 article-title: Looking inside catalyst extrudates with time-resolved surface enhanced raman spectroscopy (TR-SERS) publication-title: Appl. Spectrosc. doi: 10.1366/12-06698 – volume: 28 issue: 2 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0180 article-title: Gold nanoparticles sliding on recyclable Nanohoodoos—engineered for surface-enhanced Raman spectroscopy publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201704818 – start-page: 365 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0205 article-title: High-sensitivity and point-of-care detection of SARS-CoV-2 from nasal and throat swabs by magnetic SERS biosensor publication-title: Sensors Actuators B Chem. – volume: 19 start-page: 495 issue: 4 year: 2007 ident: 10.1016/j.mne.2024.100267_bb0635 article-title: Nanoimprint lithography: methods and material requirements publication-title: Adv. Mater. doi: 10.1002/adma.200600882 – volume: 394 start-page: 1729 issue: 7 year: 2009 ident: 10.1016/j.mne.2024.100267_bb0070 article-title: Surface-enhanced raman spectroscopy: substrate-related issues publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-009-2761-5 – volume: 7 start-page: 1 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0400 article-title: High performance surface-enhanced Raman scattering substrates of Si-based au film developed by focused ion beam nanofabrication publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-7-399 – volume: 111 start-page: 6720 issue: 18 year: 2007 ident: 10.1016/j.mne.2024.100267_bb0640 article-title: Nanoimprinted SERS-active substrates with tunable surface plasmon resonances publication-title: J. Phys. Chem. C doi: 10.1021/jp070906s – volume: 21 start-page: 1 issue: 9 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0005 article-title: SERS-based biosensors for virus determination with oligonucleotides as recognition elements publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21093373 – volume: 43 start-page: 2525 issue: 11 year: 2004 ident: 10.1016/j.mne.2024.100267_bb0550 article-title: Some application cases and related manufacturing techniques for optically functional microstructures on large areas publication-title: Opt. Eng. doi: 10.1117/1.1803552 – volume: 20 issue: 29 year: 2009 ident: 10.1016/j.mne.2024.100267_bb0260 article-title: Resists for sub-20-nm electron beam lithography with a focus on HSQ: state of the art publication-title: Nanotechnology doi: 10.1088/0957-4484/20/29/292001 – volume: 132 start-page: 83 year: 2015 ident: 10.1016/j.mne.2024.100267_bb0780 article-title: Direct laser writing: principles and materials for scaffold 3D printing publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2014.10.001 – volume: 22 start-page: 4268 issue: 20 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0585 article-title: Hierarchically ordered arrays of noncircular silicon nanowires featured by holographic lithography toward a high-fidelity sensing platform publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201200921 – volume: 27 start-page: 2931 issue: 6 year: 2009 ident: 10.1016/j.mne.2024.100267_bb0690 article-title: Talbot lithography: self-imaging of complex structures publication-title: J. Vacuum Sci. Technol. B: Microelectron. Nanometer Struct. doi: 10.1116/1.3258144 – volume: 7 issue: 6 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0820 article-title: Review of SERS substrates for chemical sensing publication-title: Nanomaterials doi: 10.3390/nano7060142 – volume: 29 issue: 10 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0265 article-title: Sensitive SERS detection at the single-particle level based on nanometer-separated mushroom-shaped plasmonic dimers publication-title: Nanotechnology doi: 10.1088/1361-6528/aaa691 – volume: 13 start-page: 1553 issue: 3 year: 1995 ident: 10.1016/j.mne.2024.100267_bb0465 article-title: Nanosphere lithography: a materials general fabrication process for periodic particle array surfaces publication-title: J. Vac. Sci. Technol. A doi: 10.1116/1.579726 – volume: 120 start-page: 6009 issue: 13 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0725 article-title: Evolution of dip-pen nanolithography (DPN): from molecular patterning to materials discovery publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00725 – volume: 17 start-page: 236 issue: 5 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0760 article-title: A brief review of atomic layer deposition: from fundamentals to applications publication-title: Mater. Today doi: 10.1016/j.mattod.2014.04.026 – volume: 17 start-page: 21072 issue: 33 year: 2015 ident: 10.1016/j.mne.2024.100267_bb0045 article-title: Prospects for plasmonic hot spots in single molecule SERS towards the chemical imaging of live cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP04946B – start-page: 571 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0175 article-title: Low-cost SERS substrate featuring laser-ablated amorphous nanostructure publication-title: Appl. Surf. Sci. – volume: 11 issue: 8 year: 2021 ident: 10.1016/j.mne.2024.100267_bb0090 article-title: Three-dimensional au/ag nanoparticle/crossed carbon nanotube sers substrate for the detection of mixed toxic molecules publication-title: Nanomaterials doi: 10.3390/nano11082026 – volume: 326 start-page: 103 issue: 1 year: 2008 ident: 10.1016/j.mne.2024.100267_bb0065 article-title: Comparative SERS effectiveness of silver nanoparticles prepared by different methods: a study of the enhancement factor and the interfacial properties publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2008.06.052 – volume: 15 start-page: 5288 issue: 15 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0620 article-title: Towards low-cost flexible substrates for nanoplasmonic sensing publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp43642f – volume: 1 start-page: 886 issue: 2 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0650 article-title: Fabrication of large-area flexible SERS substrates by nanoimprint lithography publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.7b00295 – volume: 2 start-page: 1167 issue: 8 year: 2015 ident: 10.1016/j.mne.2024.100267_bb0315 article-title: Plasmonic Nanohole arrays on a robust hybrid substrate for highly sensitive label-free biosensing publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00242 – volume: 6 start-page: 5314 issue: 20 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0075 article-title: Surface-enhanced Raman spectroscopy (SERS): an adventure from plasmonic metals to organic semiconductors as SERS platforms publication-title: J. Mater. Chem. C Mater. doi: 10.1039/C8TC01168K – volume: 14 start-page: 1527 issue: 6 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0330 article-title: Localized surface plasmon resonance in gold nanocluster arrays on opaque substrates publication-title: Plasmonics doi: 10.1007/s11468-019-00949-2 – volume: 25 issue: 24 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0615 article-title: Large-scale uniform au nanodisk arrays fabricated via x-ray interference lithography for reproducible and sensitive SERS substrate publication-title: Nanotechnology doi: 10.1088/0957-4484/25/24/245301 – volume: 10 issue: 2 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0325 article-title: The practical electromagnetic effect in surface-enhanced Raman scattering observed by the lithographically fabricated gold nanosquare dimers publication-title: AIP Adv. doi: 10.1063/1.5126981 – volume: 3 start-page: 18420 issue: 12 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0790 article-title: Femtosecond laser-induced, nanoparticle-embedded periodic surface structures on crystalline silicon for reproducible and multi-utility SERS platforms publication-title: ACS Omega doi: 10.1021/acsomega.8b02629 – volume: 6 start-page: 17358 issue: 20 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0665 article-title: Nanoimprint lithography of Al nanovoids for deep-UV SERS publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505511v – volume: 6 issue: 1 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0810 article-title: Thermal scanning probe lithography—a review publication-title: Microsyst. Nanoeng. doi: 10.1038/s41378-019-0124-8 – volume: 16 start-page: 9708 issue: 13 year: 2008 ident: 10.1016/j.mne.2024.100267_bb0410 article-title: Surface plasmon microcavity for resonant transmission through a slit in a gold film publication-title: Opt. Express doi: 10.1364/OE.16.009708 – volume: 31 issue: 20 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0455 article-title: Silver nanoparticle-assembled micro-bowl arrays for sensitive SERS detection of pesticide residue publication-title: Nanotechnology doi: 10.1088/1361-6528/ab7100 – volume: 51 start-page: 285 issue: 1–3 year: 1998 ident: 10.1016/j.mne.2024.100267_bb0110 article-title: Periodically structured metallic substrates for SERS publication-title: Sensors Actuators B Chem. doi: 10.1016/S0925-4005(98)00219-6 – volume: 103 start-page: 3640 issue: 18 year: 1999 ident: 10.1016/j.mne.2024.100267_bb0425 article-title: Determination of the distance dependence and experimental effects for modified Sers substrates based on self-assembled monolayers formed using alkanethiols publication-title: J. Phys. Chem. B doi: 10.1021/jp984454i – volume: 337 start-page: 1 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0010 article-title: SERS-based ultrasensitive sensing platform: an insight into design and practical applications publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2017.02.006 – start-page: 2018 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0415 article-title: Subnanometer gaps for enhanced raman substrates – volume: 30 start-page: 441 issue: 3 year: 2007 ident: 10.1016/j.mne.2024.100267_bb0720 article-title: Nano-fabrication: a review publication-title: J. Chin. Inst. Eng. Transact. Chin. Inst. Eng. Ser. A/Chung-kuo Kung Ch’eng Hsuch K’an – volume: 114 start-page: 2886 issue: 7 year: 2010 ident: 10.1016/j.mne.2024.100267_bb0445 article-title: Preparation of nanoscale ag semishell array with tunable interparticle distance and its application in surface-enhanced Raman scattering publication-title: J. Phys. Chem. C doi: 10.1021/jp9101702 – volume: 46 start-page: 59 issue: 1 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0030 article-title: A study on the spectral characteristics of surface enhanced Raman scattering based on far-field extinction and near-field electromagnetic field intensity of 2D nanostructures publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.4599 – volume: 143 start-page: 74 year: 2015 ident: 10.1016/j.mne.2024.100267_bb0695 article-title: Phase shifting masks in displacement Talbot lithography for printing nano-grids and periodic motifs publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2015.03.050 – volume: 3 issue: 9 year: 2021 ident: 10.1016/j.mne.2024.100267_bb0775 article-title: A review on active 3D microstructures via direct laser lithography publication-title: Adv. Intell. Syst. doi: 10.1002/aisy.202100051 – volume: 9759 year: 2016 ident: 10.1016/j.mne.2024.100267_bb0825 article-title: Surface-enhanced Raman spectroscopy substrate fabricated via nanomasking technique for biological sensor applications publication-title: Adv. Fabric. Technol. Micro/Nano Optics Photonics IX – volume: 82 start-page: 22 year: 2016 ident: 10.1016/j.mne.2024.100267_bb0290 article-title: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2015.11.007 – volume: 139 start-page: 621 issue: 3 year: 2003 ident: 10.1016/j.mne.2024.100267_bb0285 article-title: Optimization of SERS-active substrates for near-field Raman spectroscopy publication-title: Synth. Met. doi: 10.1016/S0379-6779(03)00276-5 – volume: 30 start-page: 1 issue: 15 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0745 article-title: Nanogap Plasmonic structures fabricated by switchable capillary-force driven self-assembly for localized sensing of anticancer medicines with microfluidic SERS publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909467 – volume: 446 start-page: 83 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0080 article-title: SERS amplification by ultra-dense plasmonic arrays on self-organized PDMS templates publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.02.163 – volume: 2018 start-page: 39 issue: 676 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0370 article-title: Surface-enhanced Raman scattering from bowtie nanoaperture arrays publication-title: Surf. Sci. – volume: 21 issue: 25 year: 2010 ident: 10.1016/j.mne.2024.100267_bb0645 article-title: Cones fabricated by 3D nanoimprint lithography for highly sensitive surface enhanced Raman spectroscopy publication-title: Nanotechnology doi: 10.1088/0957-4484/21/25/255502 – volume: 2 start-page: 253 issue: 5 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0215 article-title: Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-020-0171-y – volume: 11 start-page: 12152 issue: 25 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0165 article-title: Wafer-scale fabrication of high-quality tunable gold nanogap arrays for surface-enhanced Raman scattering publication-title: Nanoscale doi: 10.1039/C9NR02215E – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0755 article-title: Atomic-layer-deposition assisted formation of wafer-scale double-layer metal nanoparticles with tunable Nanogap for surface-enhanced Raman scattering publication-title: Sci. Rep. – volume: 86 start-page: 1085 issue: 4–6 year: 2009 ident: 10.1016/j.mne.2024.100267_bb0250 article-title: Silver-based surface enhanced Raman scattering (SERS) substrate fabrication using nanolithography and site selective electroless deposition publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.12.061 – volume: 16 start-page: 551 issue: 4 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0500 article-title: Tunable plasmonic SERS hotspots on Au-film over nanosphere by rapid thermal annealing publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2016.2647263 – volume: 18 issue: 11 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0560 article-title: Sensitive and reproducible gold SERS sensor based on interference lithography and electrophoretic deposition publication-title: Sensors (Switzerland) doi: 10.3390/s18114076 – volume: 132 start-page: 120 year: 2015 ident: 10.1016/j.mne.2024.100267_bb0710 article-title: High-resolution proximity lithography for nano-optical components publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2014.10.010 – start-page: 322 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0320 article-title: Sensitive and reproducible surface-enhanced raman spectroscopy (SERS) with arrays of dimer-nanopillars publication-title: Sensors Actuators B Chem. – volume: 7 issue: 6 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0670 article-title: A high-performance and low cost SERS substrate of plasmonic nanopillars on plastic film fabricated by nanoimprint lithography with AAO template publication-title: AIP Adv. doi: 10.1063/1.4985270 – volume: 51 start-page: 285 issue: 1–3 year: 1998 ident: 10.1016/j.mne.2024.100267_bb0275 article-title: Periodically structured metallic substrates for SERS publication-title: Sensors Actuators B Chem. doi: 10.1016/S0925-4005(98)00219-6 – volume: 693 start-page: 7 issue: 1–2 year: 2011 ident: 10.1016/j.mne.2024.100267_bb0060 article-title: A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.03.002 – volume: 6 start-page: 8606 issue: 15 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0485 article-title: Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography publication-title: Nanoscale doi: 10.1039/C4NR00902A – volume: 15 start-page: 743 issue: 3 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0845 article-title: Evaluation of the reliability of six commercial SERS substrates publication-title: Plasmonics doi: 10.1007/s11468-019-01084-8 – start-page: 137 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0155 article-title: Ag nanowires based SERS substrates with very high enhancement factor publication-title: Phys. E Low Dimens. Syst. Nanostruct. – volume: 53 start-page: 227 issue: 4 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0545 article-title: Fabrication of periodic micro-structures by holographic lithography publication-title: Lith. J. Phys. doi: 10.3952/physics.v53i4.2765 – year: 2023 ident: 10.1016/j.mne.2024.100267_bb0120 article-title: Highlight on commercial SERS substrates and on optimized nanorough large-area SERS-based sensors: a Raman study publication-title: Appl. Nanosci. – year: 2010 ident: 10.1016/j.mne.2024.100267_bb0130 – volume: 8 start-page: 2065 issue: 12 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0125 article-title: A review of 2D and 3D plasmonic nanostructure array patterns: fabrication, light management and sensing applications publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0158 – volume: 5 start-page: 1836 issue: 5 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0525 article-title: An optimal substrate design for SERS: dual-scale diamond-shaped gold nano-structures fabricated via interference lithography publication-title: Nanoscale doi: 10.1039/c3nr33498h – volume: 19 start-page: 10686 issue: 11 year: 2011 ident: 10.1016/j.mne.2024.100267_bb0700 article-title: Displacement Talbot lithography: a new method for high-resolution patterning of large areas publication-title: Opt. Express doi: 10.1364/OE.19.010686 – volume: 32 start-page: 3378 issue: 23 year: 2011 ident: 10.1016/j.mne.2024.100267_bb0570 article-title: A SERS-active microfluidic device with tunable surface plasmon resonances publication-title: Electrophoresis doi: 10.1002/elps.201100309 – volume: 10 issue: 14 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0815 article-title: Laser photochemical Nanostructuring of silicon for surface enhanced Raman spectroscopy. Adv publication-title: Opt. Mater. – volume: 181 start-page: 361 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0420 article-title: Focused-ion-beam-fabricated Au/Ag multilayered nanorod array as SERS-active substrate for virus strain detection publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2013.01.035 – volume: 12 start-page: 12345 issue: 10 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0480 article-title: Hierarchically ordered silicon Metastructures from improved self-assembly-based Nanosphere lithography publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b22932 – volume: 9 start-page: 820 issue: 4 year: 2009 ident: 10.1016/j.mne.2024.100267_bb0510 article-title: Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2008.07.017 – volume: 3 issue: 1 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0025 article-title: Surface-enhanced Raman scattering from metallic nanostructures: bridging the gap between the near-field and far-field responses publication-title: Phys. Rev. X – volume: 6 start-page: 8891 issue: 15 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0100 article-title: Gold nanostar substrates for SERS-based chemical sensing in the femtomolar regime publication-title: Nanoscale doi: 10.1039/C4NR02513J – volume: 10 start-page: 1 issue: 5 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0625 article-title: Quasi-3D plasmonic nanowell array for molecular enrichment and Sers-based detection publication-title: Nanomaterials doi: 10.3390/nano10050939 – volume: 53 start-page: 4756 issue: 19 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0210 article-title: Surface-enhanced raman spectroscopy: concepts and chemical applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201205748 – volume: vol. 11 year: 1949 ident: 10.1016/j.mne.2024.100267_bb0270 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0800 article-title: Ultrasensitive SERS-based plasmonic sensor with analyte enrichment system produced by direct laser writing publication-title: Nanomaterials doi: 10.3390/nano10010049 – volume: 2013 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0470 article-title: Nanosphere lithography: a powerful method for the controlled manufacturing of nanomaterials publication-title: J. Nanomater. doi: 10.1155/2013/948510 – volume: 28 start-page: 11465 issue: 31 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0530 article-title: Dynamics of wicking in silicon nanopillars fabricated with interference lithography and metal-assisted chemical etching publication-title: Langmuir doi: 10.1021/la302262g – volume: 105 start-page: 5599 issue: 24 year: 2001 ident: 10.1016/j.mne.2024.100267_bb0460 article-title: Nanosphere lithography: a versatile nanofabrication tool for studies of size-dependent nanoparticle optics publication-title: J. Phys. Chem. B doi: 10.1021/jp010657m – volume: 982 start-page: 148 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0580 article-title: Determination of aqueous antibiotic solutions using SERS nanogratings publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2017.05.025 – volume: 12 start-page: 2554 issue: 10 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0675 article-title: Macroscopic ag nanostructure array patterns with high-density hotspots for reliable and ultra-sensitive SERS substrates publication-title: Nano Res. doi: 10.1007/s12274-019-2484-7 – start-page: 381 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0195 article-title: Highly sensitive SERS substrates with multi-hot spots for on-site detection of pesticide residues publication-title: Food Chem. – volume: 5 start-page: 76085 issue: 93 year: 2015 ident: 10.1016/j.mne.2024.100267_bb0655 article-title: Porous metallic nanocone arrays for high-density SERS hot spots via solvent-assisted nanoimprint lithography of block copolymer publication-title: RSC Adv. doi: 10.1039/C5RA11787A – volume: 112 start-page: 15098 issue: 39 year: 2008 ident: 10.1016/j.mne.2024.100267_bb0395 article-title: Localized Raman enhancement from a double-hole nanostructure in a metal film publication-title: J. Phys. Chem. C doi: 10.1021/jp806785u – volume: 31 start-page: 139 issue: 4 year: 2009 ident: 10.1016/j.mne.2024.100267_bb0405 article-title: Fabrication of nanodot plasmonic waveguide structures using FIB milling and electron beam-induced deposition publication-title: Scanning doi: 10.1002/sca.20152 – year: 2010 ident: 10.1016/j.mne.2024.100267_bb0135 – volume: 3 start-page: 1575 issue: 4 year: 2011 ident: 10.1016/j.mne.2024.100267_bb0050 article-title: Site-selective localization of analytes on gold nanorod surface for investigating field enhancement distribution in surface-enhanced Raman scattering publication-title: Nanoscale doi: 10.1039/c0nr00845a – start-page: 17 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0305 article-title: Hybrid surface plasmon effect and SERS characterization in a heterogeneous composite structure of Au nano-array and Ag film publication-title: Results Phys. – volume: 10 issue: 4 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0310 article-title: Surface-enhanced Raman scattering and fluorescence on gold nanogratings publication-title: Nanomaterials doi: 10.3390/nano10040776 – volume: 12 start-page: 36505 issue: 32 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0600 article-title: Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c09357 – volume: 12 start-page: 23410 issue: 20 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0770 article-title: Block copolymer derived vertically coupled Plasmonic arrays for surface-enhanced Raman spectroscopy publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03300 – volume: 9 start-page: 393 issue: 2 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0360 article-title: Helium focused ion beam direct milling of plasmonic heptamer-arranged nanohole arrays publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0385 – volume: 3 start-page: 1033 issue: 4 year: 2011 ident: 10.1016/j.mne.2024.100267_bb0630 article-title: Inherently reproducible fabrication of plasmonic nanoparticle arrays for SERS by combining nanoimprint and copolymer lithography publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am1011518 – volume: 112 start-page: 17051 issue: 44 year: 2008 ident: 10.1016/j.mne.2024.100267_bb0380 article-title: Enhanced Raman scattering from nanoholes in a copper film publication-title: J. Phys. Chem. C doi: 10.1021/jp805785s – volume: 9 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0660 article-title: Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection publication-title: Nanoscale Res. Lett. doi: 10.1186/1556-276X-9-623 – volume: 63 start-page: 219 issue: 3 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0740 article-title: Highly sensitive and flexible inkjet printed SERS sensors on paper publication-title: Methods doi: 10.1016/j.ymeth.2013.07.010 – volume: 2 start-page: 377 issue: 2 year: 2008 ident: 10.1016/j.mne.2024.100267_bb0280 article-title: Surface-enhanced Raman publication-title: Spectroscopy – volume: 8231 issue: February 2012 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0590 article-title: Two-dimensional, periodic mushroomlike nanostructures for SERS applications publication-title: Nanoscale Imag. Sens. Actuat. Biomed. Appl. VIII – volume: 85 start-page: 1792 issue: 8 year: 2008 ident: 10.1016/j.mne.2024.100267_bb0240 article-title: Microfabricated SERS-arrays with sharp-edged metallic nanostructures publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2008.05.005 – volume: 59 issue: 12 year: 2016 ident: 10.1016/j.mne.2024.100267_bb0430 article-title: Recent progress in the fabrication of SERS substrates based on the arrays of polystyrene nanospheres publication-title: Sci. China Phys. Mech. Astron. doi: 10.1007/s11433-016-0341-y – volume: 12 start-page: 37657 issue: 33 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0505 article-title: Plasmonic nanocrystal arrays on photonic crystals with tailored optical resonances publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c05596 – volume: 14 start-page: 1521 issue: 2 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0610 article-title: Nanopatterning by laser interference lithography: applications to optical devices publication-title: J. Nanosci. Nanotechnol. doi: 10.1166/jnn.2014.9199 – volume: 12 start-page: 251 issue: 3 year: 1968 ident: 10.1016/j.mne.2024.100267_bb0245 article-title: High-resolution positive resists for Electron-beam exposure publication-title: IBM J. Res. Dev. doi: 10.1147/rd.123.0251 – volume: 91 start-page: 2005 issue: 8 year: 2007 ident: 10.1016/j.mne.2024.100267_bb0375 article-title: Enhanced Raman scattering from focused surface plasmons publication-title: Appl. Phys. Lett. doi: 10.1063/1.2759985 – start-page: 1248 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0840 article-title: Sensing performances of commercial SERS substrates publication-title: J. Mol. Struct. – volume: 263 start-page: 634 year: 2018 ident: 10.1016/j.mne.2024.100267_bb0350 article-title: Constructing sensitive SERS substrate with a sandwich structure separated by single layer graphene publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2018.02.037 – volume: 125 start-page: 4056 issue: 7 year: 2021 ident: 10.1016/j.mne.2024.100267_bb0105 article-title: A new figure of merit to assess the SERS enhancement factor of colloidal gold nanoparticle aggregates publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c09122 – volume: 95 start-page: 474 issue: 9 year: 2015 ident: 10.1016/j.mne.2024.100267_bb0145 article-title: Nanoporous gold obtained from a metallic glass precursor used as substrate for surface-enhanced Raman scattering publication-title: Philos. Mag. Lett. doi: 10.1080/09500839.2015.1093665 – volume: 10 issue: 22 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0785 article-title: LIPSS for SERS: metal coated direct laser written periodic nanostructures for surface enhanced Raman spectroscopy publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202200233 – volume: 24 issue: 10 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0830 article-title: Large area fabrication of leaning silicon nanopillars for surface enhanced Raman spectroscopy publication-title: Adv. Mater. – volume: 5 start-page: 12915 issue: 22 year: 2020 ident: 10.1016/j.mne.2024.100267_bb0095 article-title: Bioinspired disordered flexible Metasurfaces for human tear analysis using broadband surface-enhanced Raman scattering publication-title: ACS Omega doi: 10.1021/acsomega.0c00677 – volume: 12 issue: 3 year: 2022 ident: 10.1016/j.mne.2024.100267_bb0190 article-title: Hierarchically assembled Plasmonic metal-dielectric-metal hybrid Nano-architectures for high-sensitivity SERS detection publication-title: Nanomaterials doi: 10.3390/nano12030401 – volume: 82 start-page: 22 year: 2016 ident: 10.1016/j.mne.2024.100267_bb0230 article-title: A plasmonic nanostructure fabricated by electron beam lithography as a sensitive and highly homogeneous SERS substrate for bio-sensing applications publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2015.11.007 – volume: 22 start-page: 23650 issue: 44 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0535 article-title: Dual length-scale nanotip arrays with controllable morphological features for highly sensitive SERS applications publication-title: J. Mater. Chem. doi: 10.1039/c2jm34470j – volume: 8 start-page: 388 issue: 3 year: 2008 ident: 10.1016/j.mne.2024.100267_bb0515 article-title: Holographic fabrication of photonic nanostructures for optofluidic integration publication-title: Lab Chip doi: 10.1039/b717960j – volume: 50 start-page: 301 issue: 12 year: 2013 ident: 10.1016/j.mne.2024.100267_bb0730 article-title: Fabrication of surface enhanced Raman scattering (SERS)-active substrates by using dip-pen nanolithography publication-title: ECS Trans. doi: 10.1149/05012.0301ecst – volume: 50 start-page: 1416 issue: 10 year: 2019 ident: 10.1016/j.mne.2024.100267_bb0345 article-title: Fabrication of ag-modified nanocone frustum arrays with controlled shape as active substrates for surface-enhanced Raman scattering publication-title: J. Raman Spectrosc. doi: 10.1002/jrs.5662 – volume: 403 start-page: 27 issue: 1 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0035 article-title: Surface-enhanced Raman spectroscopy (SERS): Progress and trends publication-title: Anal. Bioanal. Chem. doi: 10.1007/s00216-011-5631-x – volume: 22 issue: 12 year: 2012 ident: 10.1016/j.mne.2024.100267_bb0235 article-title: Electron-beam lithography of gold nanostructures for surface-enhanced Raman scattering publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/22/12/125007 – start-page: 5 year: 2021 ident: 10.1016/j.mne.2024.100267_bb0795 article-title: Gold-coated silicon nanoripples achieved via picosecond laser ablation for surface enhanced Raman scattering studies publication-title: Results Optics. – volume: 16 start-page: 2224 issue: 6 year: 2014 ident: 10.1016/j.mne.2024.100267_bb0220 article-title: Simple SERS substrates: powerful, portable, and full of potential publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP53560F – volume: 7 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.mne.2024.100267_bb0340 article-title: Optical and surface enhanced Raman scattering properties of ag modified silicon double nanocone array publication-title: Sci. Rep. doi: 10.1038/s41598-017-12423-2 |
SSID | ssj0002856847 |
Score | 2.356607 |
SecondaryResourceType | review_article |
Snippet | The previous decades have seen a massive increase in the research towards reproducible and optimized surface-enhanced Raman spectroscopy (SERS) substrates.... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100267 |
SubjectTerms | Enhancement factor Lithography Nanofabrication Surface-enhanced Raman spectroscopy |
Title | Prospects of nano-lithographic tools for the fabrication of surface-enhanced Raman spectroscopy (SERS) substrates |
URI | https://dx.doi.org/10.1016/j.mne.2024.100267 https://doaj.org/article/d83efcbaaa644e7399a2f6673e08595b |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PS8MwFA7iyYsoKs5f5OBBhWDXpt16VNkYgiKbg91KkiZsY0tn1x38730vbWcv6sVbKelLeXnJ-17y8j1CrnkaxYb7gnWlFIy3RcSQg4X5XaV9hPimg5eTX16jwZg_T8JJo9QX5oSV9MCl4u7TbqCNkkII8Ny6A_5U-AZrVWpHzSVx9fVirxFMzd2WURjBulsfY7qErqVFWkyfO9ZRV1f-2xE5vv6GP2r4mP4B2a_AIX0of-qQ7Gh7RD7e8szdh1zTzFArbMYAOk9LqumZokWWLdYUsCcFLEeNkHm1DYfN15vcCKWZtlN31E-HYiksdfKQxzJbfdKbUW84uoWm0nHo6vUxGfd7708DVhVKYAr8ccHSGAILIyJPgGIAh2LUCWGDgecUCx5EJtU6iAGN8DYgKoixQIcSkEcUctEOO8EJ2bWZ1aeE-qGJY6MAB_qKYy0rkOBLCfM2kDD9TYt4tdYSVbGIYzGLRVKni80TUHSCik5KRbfI3faTVUmh8VvjRxyKbUNkv3YvwCaSyiaSv2yiRXg9kEkFJEqAAKJmP_d99h99n5M9FFlmk12Q3SLf6EvALYW8cib6BeBx6hA |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prospects+of+nano-lithographic+tools+for+the+fabrication+of+surface-enhanced+Raman+spectroscopy+%28SERS%29+substrates&rft.jtitle=Micro+and+Nano+Engineering&rft.au=Srivastava%2C+K.&rft.au=Le-The%2C+H.&rft.au=Lozeman%2C+J.J.A.&rft.au=van+den+Berg%2C+A.&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=2590-0072&rft.eissn=2590-0072&rft.volume=23&rft_id=info:doi/10.1016%2Fj.mne.2024.100267&rft.externalDocID=S2590007224000303 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0072&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0072&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0072&client=summon |