Towards a Unified Architecture Powering Scalable Learning Models with IoT Data Streams, Blockchain, and Open Data

The huge amount of data produced by the Internet of Things need to be validated and curated to be prepared for the selection of relevant data in order to prototype models, train them, and serve the model. On the other side, blockchains and open data are also important data sources that need to be in...

Full description

Saved in:
Bibliographic Details
Published inInformation (Basel) Vol. 14; no. 6; p. 345
Main Authors Debauche, Olivier, Nkamla Penka, Jean Bertin, Hani, Moad, Guttadauria, Adriano, Ait Abdelouahid, Rachida, Gasmi, Kaouther, Ben Hardouz, Ouafae, Lebeau, Frédéric, Bindelle, Jérôme, Soyeurt, Hélène, Gengler, Nicolas, Manneback, Pierre, Benjelloun, Mohammed, Bertozzi, Carlo
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.06.2023
Subjects
Online AccessGet full text
ISSN2078-2489
2078-2489
DOI10.3390/info14060345

Cover

Abstract The huge amount of data produced by the Internet of Things need to be validated and curated to be prepared for the selection of relevant data in order to prototype models, train them, and serve the model. On the other side, blockchains and open data are also important data sources that need to be integrated into the proposed integrative models. It is difficult to find a sufficiently versatile and agnostic architecture based on the main machine learning frameworks that facilitate model development and allow continuous training to continuously improve them from the data streams. The paper describes the conceptualization, implementation, and testing of a new architecture that proposes a use case agnostic processing chain. The proposed architecture is mainly built around the Apache Submarine, an unified Machine Learning platform that facilitates the training and deployment of algorithms. Here, Internet of Things data are collected and formatted at the edge level. They are then processed and validated at the fog level. On the other hand, open data and blockchain data via Blockchain Access Layer are directly processed at the cloud level. Finally, the data are preprocessed to feed scalable machine learning algorithms.
AbstractList The huge amount of data produced by the Internet of Things need to be validated and curated to be prepared for the selection of relevant data in order to prototype models, train them, and serve the model. On the other side, blockchains and open data are also important data sources that need to be integrated into the proposed integrative models. It is difficult to find a sufficiently versatile and agnostic architecture based on the main machine learning frameworks that facilitate model development and allow continuous training to continuously improve them from the data streams. The paper describes the conceptualization, implementation, and testing of a new architecture that proposes a use case agnostic processing chain. The proposed architecture is mainly built around the Apache Submarine, an unified Machine Learning platform that facilitates the training and deployment of algorithms. Here, Internet of Things data are collected and formatted at the edge level. They are then processed and validated at the fog level. On the other hand, open data and blockchain data via Blockchain Access Layer are directly processed at the cloud level. Finally, the data are preprocessed to feed scalable machine learning algorithms.
Audience Academic
Author Debauche, Olivier
Bindelle, Jérôme
Gasmi, Kaouther
Ben Hardouz, Ouafae
Manneback, Pierre
Gengler, Nicolas
Hani, Moad
Ait Abdelouahid, Rachida
Nkamla Penka, Jean Bertin
Bertozzi, Carlo
Lebeau, Frédéric
Benjelloun, Mohammed
Soyeurt, Hélène
Guttadauria, Adriano
Author_xml – sequence: 1
  givenname: Olivier
  orcidid: 0000-0003-4711-2694
  surname: Debauche
  fullname: Debauche, Olivier
– sequence: 2
  givenname: Jean Bertin
  orcidid: 0000-0002-2404-7300
  surname: Nkamla Penka
  fullname: Nkamla Penka, Jean Bertin
– sequence: 3
  givenname: Moad
  orcidid: 0000-0003-2342-495X
  surname: Hani
  fullname: Hani, Moad
– sequence: 4
  givenname: Adriano
  orcidid: 0000-0003-3226-7001
  surname: Guttadauria
  fullname: Guttadauria, Adriano
– sequence: 5
  givenname: Rachida
  orcidid: 0000-0002-9582-7988
  surname: Ait Abdelouahid
  fullname: Ait Abdelouahid, Rachida
– sequence: 6
  givenname: Kaouther
  orcidid: 0000-0002-4980-7062
  surname: Gasmi
  fullname: Gasmi, Kaouther
– sequence: 7
  givenname: Ouafae
  orcidid: 0000-0002-1002-9718
  surname: Ben Hardouz
  fullname: Ben Hardouz, Ouafae
– sequence: 8
  givenname: Frédéric
  orcidid: 0000-0002-8724-5363
  surname: Lebeau
  fullname: Lebeau, Frédéric
– sequence: 9
  givenname: Jérôme
  orcidid: 0000-0001-6974-4313
  surname: Bindelle
  fullname: Bindelle, Jérôme
– sequence: 10
  givenname: Hélène
  orcidid: 0000-0001-9883-9047
  surname: Soyeurt
  fullname: Soyeurt, Hélène
– sequence: 11
  givenname: Nicolas
  orcidid: 0000-0002-5981-5509
  surname: Gengler
  fullname: Gengler, Nicolas
– sequence: 12
  givenname: Pierre
  orcidid: 0000-0003-3990-3621
  surname: Manneback
  fullname: Manneback, Pierre
– sequence: 13
  givenname: Mohammed
  orcidid: 0000-0002-4020-7327
  surname: Benjelloun
  fullname: Benjelloun, Mohammed
– sequence: 14
  givenname: Carlo
  orcidid: 0000-0003-4602-3868
  surname: Bertozzi
  fullname: Bertozzi, Carlo
BookMark eNptkc1qGzEUhYeSQNMkuzyAoFs71d-MNEs3TVuDSwJx1sOVdMeWO5YcjYzp21eOSwml0kLi8J2jK86H6izEgFV1w-itEC395EMfmaQNFbJ-V11wqvSUS92evbm_r67HcUPLUkpLzS6ql2U8QHIjAfIcfO_RkVmya5_R5n1C8hgPmHxYkScLA5gByQIhhaPyIzocRnLweU3mcUm-QAbylBPCdpyQz0O0P-0afJgQCI487DC8IlfVeQ_DiNd_zsvq-ev98u77dPHwbX43W0xt-USeWiONcTWgoYIZbVpaIwgwru8VNHXNemwAtEJZS8ld04ME2VphtTSudbW4rOanXBdh0-2S30L61UXw3asQ06qDlL0dsHMceNvUhreOSWycboQ2SjqFHJRiqmR9PGXtUnzZ45i7TdynUMbvuOatZlTUslC3J2oFJfTYR05gy3a49ba01fuiz1StBdO0ORomJ4NNcRwT9n_HZLQ7ltq9LbXg_B_c-gzZx1De8cP_Tb8BEXqm9Q
CitedBy_id crossref_primary_10_3390_info15040212
crossref_primary_10_1016_j_jii_2024_100668
Cites_doi 10.1016/j.future.2019.05.056
10.1016/j.procs.2020.10.014
10.1145/3097983.3098021
10.1109/ICCKE54056.2021.9721505
10.1109/JIOT.2017.2712672
10.1007/s11634-018-0316-3
10.1109/ICUFN.2019.8806026
10.5383/JUSPN.17.02.002
10.1145/3350546.3352529
10.1155/2021/8874988
10.1109/ICEENG45378.2020.9171705
10.14778/3415478.3415504
10.1109/ISCID.2017.111
10.1109/SITIS.2017.77
10.3390/info13090423
10.1145/3400903.3401690
10.1016/j.procs.2020.10.021
10.3390/info11040202
10.1371/journal.pone.0177459
10.3390/s21248467
10.1145/3517207.3526984
10.3390/en13051097
10.1016/j.iot.2021.100378
10.1016/j.ijinfomgt.2019.07.003
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOA
DOI 10.3390/info14060345
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2078-2489
ExternalDocumentID oai_doaj_org_article_d2a2965b29d14e6d8638b74d7e2a7717
A758318064
10_3390_info14060345
GeographicLocations Belgium
GeographicLocations_xml – name: Belgium
GroupedDBID .4I
5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABUWG
ADBBV
ADMLS
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
MK~
ML~
MODMG
M~E
OK1
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
XH6
PMFND
3V.
7SC
7XB
8AL
8FD
8FK
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQGLB
PQUKI
PRINS
PUEGO
Q9U
ID FETCH-LOGICAL-c406t-cb4bbd5aeb031b8b905ea3abdff7a6551fe6aa87e45442d6fa4a49c3c84bd9d53
IEDL.DBID DOA
ISSN 2078-2489
IngestDate Wed Aug 27 01:22:35 EDT 2025
Sun Sep 07 03:53:52 EDT 2025
Tue Jun 10 21:22:07 EDT 2025
Tue Jul 01 04:24:49 EDT 2025
Thu Apr 24 23:12:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-cb4bbd5aeb031b8b905ea3abdff7a6551fe6aa87e45442d6fa4a49c3c84bd9d53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8724-5363
0000-0003-3226-7001
0000-0003-2342-495X
0000-0002-9582-7988
0000-0002-4020-7327
0000-0002-1002-9718
0000-0003-4711-2694
0000-0002-5981-5509
0000-0002-4980-7062
0000-0002-2404-7300
0000-0003-4602-3868
0000-0001-9883-9047
0000-0003-3990-3621
0000-0001-6974-4313
OpenAccessLink https://doaj.org/article/d2a2965b29d14e6d8638b74d7e2a7717
PQID 2829810354
PQPubID 2032384
ParticipantIDs doaj_primary_oai_doaj_org_article_d2a2965b29d14e6d8638b74d7e2a7717
proquest_journals_2829810354
gale_infotracacademiconefile_A758318064
crossref_primary_10_3390_info14060345
crossref_citationtrail_10_3390_info14060345
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Information (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zaharia (ref_4) 2018; 41
ref_14
ref_13
ref_12
Mahmoudi (ref_8) 2022; 17
ref_11
ref_10
ref_32
Debauche (ref_27) 2022; 13
ref_31
Phuc (ref_26) 2020; 2020
ref_19
ref_18
ref_17
ref_15
Wang (ref_28) 2020; 13
Roukh (ref_30) 2020; 177
Bagozi (ref_1) 2019; 101
Debauche (ref_6) 2021; 14
Roukh (ref_5) 2020; 177
ref_24
ref_23
Akbar (ref_20) 2017; 4
ref_22
ref_21
Debauche (ref_7) 2022; 34
ref_3
Lee (ref_2) 2019; 49
ref_29
Sangam (ref_16) 2018; 12
ref_9
Rojo (ref_25) 2021; 2021
References_xml – volume: 101
  start-page: 51
  year: 2019
  ident: ref_1
  article-title: A Relevance-based approach for Big Data Exploration
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.056
– volume: 177
  start-page: 78
  year: 2020
  ident: ref_30
  article-title: Big data processing architecture for smart farming
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.10.014
– ident: ref_3
  doi: 10.1145/3097983.3098021
– ident: ref_9
– ident: ref_15
  doi: 10.1109/ICCKE54056.2021.9721505
– volume: 4
  start-page: 1571
  year: 2017
  ident: ref_20
  article-title: Predictive Analytics for Complex IoT Data Streams
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2712672
– volume: 2020
  start-page: 6138637
  year: 2020
  ident: ref_26
  article-title: Waste Management System Using IoT-Based Machine Learning in University
  publication-title: Wirel. Commun. Mob. Comput.
– ident: ref_11
– volume: 12
  start-page: 973
  year: 2018
  ident: ref_16
  article-title: Equi-Clustream: A framework for clustering time evolving mixed data
  publication-title: Adv. Data Anal. Classif.
  doi: 10.1007/s11634-018-0316-3
– ident: ref_23
  doi: 10.1109/ICUFN.2019.8806026
– volume: 17
  start-page: 59
  year: 2022
  ident: ref_8
  article-title: An Optimized Kappa Architecture for IoT Data Management in Smart Farming
  publication-title: Int. J. Ubiquitous Syst. Pervasive Netw.
  doi: 10.5383/JUSPN.17.02.002
– ident: ref_19
  doi: 10.1145/3350546.3352529
– volume: 2021
  start-page: 8874988
  year: 2021
  ident: ref_25
  article-title: Smart Nursing Homes: Self-Management Architecture Based on IoT and Machine Learning for Rural Areas
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2021/8874988
– ident: ref_14
  doi: 10.1109/ICEENG45378.2020.9171705
– volume: 13
  start-page: 2901
  year: 2020
  ident: ref_28
  article-title: Apache IoTDB: Time-series database for internet of things
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/3415478.3415504
– ident: ref_17
  doi: 10.1109/ISCID.2017.111
– ident: ref_18
  doi: 10.1109/SITIS.2017.77
– volume: 41
  start-page: 39
  year: 2018
  ident: ref_4
  article-title: Accelerating the machine learning lifecycle with MLflow
  publication-title: IEEE Data Eng. Bull.
– ident: ref_29
– volume: 13
  start-page: 2078
  year: 2022
  ident: ref_27
  article-title: RAMi: A New Real-Time Internet of Medical Things Architecture for Elderly Patient Monitoring
  publication-title: Information
  doi: 10.3390/info13090423
– ident: ref_31
  doi: 10.1145/3400903.3401690
– volume: 177
  start-page: 136
  year: 2020
  ident: ref_5
  article-title: Toward a big data knowledge-base management system for precision livestock farming
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2020.10.021
– ident: ref_21
  doi: 10.3390/info11040202
– ident: ref_10
– ident: ref_32
  doi: 10.1371/journal.pone.0177459
– ident: ref_24
  doi: 10.3390/s21248467
– ident: ref_12
  doi: 10.1145/3517207.3526984
– ident: ref_22
  doi: 10.3390/en13051097
– volume: 34
  start-page: 7494
  year: 2022
  ident: ref_7
  article-title: Cloud and distributed architectures for data management in agriculture 4.0: Review and future trends
  publication-title: J. King Saud-Univ.-Comput. Inf. Sci.
– ident: ref_13
– volume: 14
  start-page: 100378
  year: 2021
  ident: ref_6
  article-title: Data management and internet of things: A methodological review in smart farming
  publication-title: Internet Things
  doi: 10.1016/j.iot.2021.100378
– volume: 49
  start-page: 491
  year: 2019
  ident: ref_2
  article-title: Autonomic machine learning platform
  publication-title: Int. J. Inf. Manag.
  doi: 10.1016/j.ijinfomgt.2019.07.003
SSID ssj0000778481
Score 2.2831779
Snippet The huge amount of data produced by the Internet of Things need to be validated and curated to be prepared for the selection of relevant data in order to...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 345
SubjectTerms Agricultural production
Algorithms
Analysis
Application programming interface
Artificial intelligence
Big Data
Blockchain
cloud computing
Computer architecture
Cryptography
Cybersecurity
Data analysis
Data mining
Data processing
Data transmission
Datasets
Deep learning
edge computing
fog computing
Fraud prevention
Internet of Things
Knowledge discovery
Machine learning
Open data
Sensors
Time series
Training
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtww0KJwgQMqL7GFIh9APZSIxHbi5FQtbZfHoULqInGLxi9A0CyQ5f-ZSbzLXug1GVn2jOfleTF2qKUXVgifgPA-UZWXyHNBoyFntVdFFkKf5funOL9Wlzf5TXxwa2Na5UwmdoLaTSy9kZ9QxK_MUpmrH0_PCU2NouhqHKHxia1kAnUtVYqPzuZvLKnW1C2-z3eX6N2fENXQpShSSfVLC5qoa9j_kVjudM3oM1uPRiIf9lTdYEu-2WRrC60Dt9jzuMt3bTlwNBsDGpJ8uBAT4Fc0_Qwh-V8kApVH8dhJ9ZbT-LPHltMLLL-YjPkvmAKn6DT8a4_5KWq3B3sH980xh8ZxyjjpQLbZ9ej3-Od5EscnJBZPOE2sUca4HLxBxjWlqdLcgwTjQtBQoKUUfAFQIklypYQrAihQlZW2VMZVLpc7bLmZNH6X8QxXKZyqHDrTKqSyNJnNELlaihzRqgfs-wyVtY29xWnExWONPgYhvl5E_IAdzaGf-p4aH8CdElXmMNQJu_swebmtI2PVToCoityIymUKN1miQDFaOe0FaPRVB-wb0bRbGLdkIZYd4MGo81U9RIcJ5RpaZgO2PyN7HRm5rd-v3Zf__95jq31SD2Xy7rPl6cur_4r2ytQcdJfyDcew6fQ
  priority: 102
  providerName: ProQuest
Title Towards a Unified Architecture Powering Scalable Learning Models with IoT Data Streams, Blockchain, and Open Data
URI https://www.proquest.com/docview/2829810354
https://doaj.org/article/d2a2965b29d14e6d8638b74d7e2a7717
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB5BuZRDxaOILWXlA4gDjZrYjp0cd2mXgtqqolupt2j8KoiSArv8f2aStMql4sIpUjSynG_G45l4_A3AG6ui9FLGDGWMma6jojWXLAVy3kZtipT6Kt9Tc3ShP1-Wl6NWX1wT1tMD98DtB4myNqWTdSh0NKEig3FWBxslWspF2PvmdT5KpjofbC3zxPeV7ory-n3WFyUTJld8c2m0B3VU_fc55G6XWTyBrSE8FLN-Wk_hQWyfweMRaeBz-LXsKl1XAgUFjIlCSDEbnQaIM-57RpLinODni1Fi4FC9Etz47Hol-N-r-HSzFAe4RsHn0vhjtSfmtK9991_xW7snsA2Ca006kW24WBwuPxxlQ-OEzNMXrjPvtHOhxOhoybrK1XkZUaELKVk0FCOlaBArUkaptQwmoUZde-Ur7UIdSvUCNtqbNr4EUdAoJug6UBqtU07YF74gcK2SJcFqJ_D-FsrGD6zi3NziuqHsgoFvxsBP4O2d9M-eTeMeuTlr5U6GObC7F2QZzWAZzb8sYwLvWKfdwDQlj8OFA_ow5rxqZpQqkUejmGwCu7dqb4YlvGr4iLkqclXqnf8xm1ewyZ3q-yqzXdhY__4TX1M8s3ZTeFgtPk7h0ezg5PicnvPD07Mv086g_wLsJfX_
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5V6QE4IJ4itMAeqDhQq_bu2msfKpTQVgktUQWp1JvZl1tEm7R1EOLP8duYsdchl3LrNR6tNrOz89h5fABvlfDccu4jzb2PZOEF3rlKoSNnlZdZUlVtle8kG53IT6fp6Rr86XphqKyy04mNonZzS2_kO5Txy5NYpPLD1XVEqFGUXe0gNHSAVnC7zYix0Nhx6H__whCu3h3v4XlvcX6wP_04igLKQGTRmC0ia6QxLtXeoHyb3BRx6rXQxlWV0hmuVvlM6xx3nkrJXVZpqWVhhc2lcYUj1Ag0AeuSHlB6sD7cnxx_Wb7yxErRvPq24l6IIt4hucGgJosFdVCt2MIGMuA2w9BYu4NH8DC4qWzQytVjWPOzJ_BgZXjhU7ieNhW3NdMMHdcKXVk2WMlKsGPCX0NK9hXFgBq0WJjlesYIgO2iZvQGzMbzKdvTC80oP64v6202RPv6w57r77NtpmeOUc1LQ_IMTu6Etc-hN5vP_AtgCa6SOVk4DOdlFYvcJDZB5irBU2Sr6sP7jpWlDdPNCWTjosQohxhfrjK-D1tL6qt2qsctdEM6lSUNzeJufpjfnJXhapeOa15kqeGFSyRuMkeVZpR0ynOtMFruwzs602Zh3JLVofEB_xjN3ioHGLKhZkXfsA-b3bGXQZXU5T_Bf_n_z2_g3mj6-ag8Gk8ON-A-R2-srWnbhN7i5qd_hd7TwrwOIsrg213fir8n2DAo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5VrYTggMpLBFrYAxUHasXeXXvtQ4US0qihKIoglXoz-2wRxWnrVBV_kV_FjL0OuZRbr_ZoZc_Oc3dmPkLeSe6YYcxFijkXicJx0DkvIZAz0oks8b6t8p1mRyfi82l6ukH-dL0wWFbZ2cTGUNuFwTPyPt745UnMU9H3oSxiNhp_vLyKEEEKb1o7OA0VYBbsQTNuLDR5HLvft5DO1QeTEez9HmPjw_mnoyggDkQGHNsyMlpobVPlNMi6znURp05xpa33UmWwmneZUjn8RSoEs5lXQonCcJMLbQuLCBLgDrYkeH1IBLeGh9PZ19WJTywlzq5vq-85L-I-yhAkOFnMsZtqzS828AF3OYnG8423yeMQstJBK2NPyIarnpJHa4MMn5GreVN9W1NFIYj1ENbSwdoNBZ0hFhtQ0m8gEtisRcNc1zOKYGwXNcXzYDpZzOlILRXFu3L1q96nQ_C1P825-lHtU1VZivUvDclzcnIvrH1BNqtF5V4SmsAqmRWFhdRe-JjnOjEJMFdylgJbZY986FhZmjDpHAE3LkrIeJDx5Trje2RvRX3ZTvi4g26Iu7KiwbnczYPF9VkZ1Ly0TLEiSzUrbCLgI3Mwb1oKKx1TEjLnHnmPe9osDJ9kVGiCgB_DOVzlANI3sLIQJ_bITrftZTArdflPCV79__Vb8gC0o_wymR6_Jg8ZBGZtedsO2Vxe37hdCKSW-k2QUEq-37dS_AU4JDRs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Towards+a+Unified+Architecture+Powering+Scalable+Learning+Models+with+IoT+Data+Streams%2C+Blockchain%2C+and+Open+Data&rft.jtitle=Information+%28Basel%29&rft.au=Debauche%2C+Olivier&rft.au=Nkamla+Penka%2C+Jean+Bertin&rft.au=Hani%2C+Moad&rft.au=Guttadauria%2C+Adriano&rft.date=2023-06-01&rft.issn=2078-2489&rft.eissn=2078-2489&rft.volume=14&rft.issue=6&rft.spage=345&rft_id=info:doi/10.3390%2Finfo14060345&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_info14060345
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2078-2489&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2078-2489&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2078-2489&client=summon