An empirical approach to model selection: weak lensing and intrinsic alignments
ABSTRACT In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against mo...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 525; no. 2; pp. 1885 - 1901 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Oxford University Press
21.08.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0035-8711 1365-2966 |
DOI | 10.1093/mnras/stad2213 |
Cover
Abstract | ABSTRACT
In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ∼1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly $30{{\ \rm per\ cent}}$ chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. We foresee applications to future analyses as a model selection tool in many contexts. |
---|---|
AbstractList | ABSTRACT
In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ∼1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly $30{{\ \rm per\ cent}}$ chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. We foresee applications to future analyses as a model selection tool in many contexts. In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ∼1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly $30{{\ \rm per\ cent}}$ chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. We foresee applications to future analyses as a model selection tool in many contexts. In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ~1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. Here, we foresee applications to future analyses as a model selection tool in many contexts. |
Author | Campos, A Mandelbaum, R Samuroff, S |
Author_xml | – sequence: 1 givenname: A orcidid: 0000-0002-5124-0771 surname: Campos fullname: Campos, A email: andresarodriguescampos@gmail.com – sequence: 2 givenname: S orcidid: 0000-0001-7147-8843 surname: Samuroff fullname: Samuroff, S – sequence: 3 givenname: R orcidid: 0000-0003-2271-1527 surname: Mandelbaum fullname: Mandelbaum, R |
BackLink | https://www.osti.gov/biblio/1996443$$D View this record in Osti.gov |
BookMark | eNqFkMFLwzAYxYNMcJtePQdvHrolTZu13sZwKgx20XP5-jXZom1Skoj439u5eRHE08cH7_d4703IyDqrCLnmbMZZKead9RDmIUKTplyckTEXMk_SUsoRGTMm8qRYcH5BJiG8MsYykcox2S4tVV1vvEFoKfS9d4B7Gh3tXKNaGlSrMBpn7-iHgjfaKhuM3VGwDTU2ejO8SKE1O9spG8MlOdfQBnV1ulPysr5_Xj0mm-3D02q5STBjMia1YoynuigbCSiLclFnQvBCA9YMOWA5NOAodc5zZHkGTaM5FnWeFxql4FpMyc3R14VoqoAmKtyjs3ZIW_GylNlgOCXZUYTeheCVrgYdHNpED6atOKsOy1Xfy1U_yw3Y7BfWe9OB__wbuD2Fee__034Bfc6E3A |
CitedBy_id | crossref_primary_10_1093_mnras_stad2700 crossref_primary_10_1103_PhysRevD_108_123519 crossref_primary_10_1103_PhysRevD_108_123518 crossref_primary_10_1103_PhysRevD_109_083528 crossref_primary_10_1051_0004_6361_202450575 |
Cites_doi | 10.1088/1475-7516/2017/02/030 10.1103/PhysRevD.78.123506 10.1002/wics.56 10.1088/0004-637X/761/2/152 10.1093/pasj/psz010 10.1093/mnras/stw2805 10.1088/1475-7516/2016/09/015 10.1051/0004-6361/202039560 10.1093/mnras/staa3679 10.1093/mnras/stab082 10.3847/0004-637X/824/2/77 10.1093/mnras/stt601 10.1103/PhysRevA.105.023515 10.1086/145672 10.1111/j.1365-2966.2007.12312.x 10.1093/mnras/stab1366 10.1103/PhysRevLett.100.191301 10.1093/mnras/stw144 10.21468/SciPostPhysLectNotes.9 10.1214/aos/1176344136 10.1111/j.1745-3933.2011.01040.x 10.1080/10705519909540131 10.1093/mnras/stab1515 10.1093/mnras/stac2786 10.1051/0004-6361:20020626 10.1093/mnras/stv138 10.1051/0004-6361/202142197 10.1214/aoms/1177732360 10.1080/01621459.1995.10476572 10.1111/j.1365-2966.2006.10198.x 10.1093/mnras/stv781 10.3847/1538-4357/ab1085 10.1103/PhysRevD.82.049901 10.1103/PhysRevA.105.023520 10.1007/BF02294104 10.1093/mnras/stab526 10.1093/pasj/psz138 10.1086/309179 10.21105/astro.1306.2144 10.1046/j.1365-8711.2001.04105.x 10.1051/0004-6361/201834714 10.1111/j.1365-2966.2010.16605.x 10.1111/j.1468-4004.2006.47430.x 10.1093/mnras/stab1670 10.1088/1367-2630/9/12/444 10.1093/mnras/stac3213 10.1088/1475-7516/2015/08/015 10.1093/mnras/stac1826 10.1016/j.ascom.2015.05.005 10.1111/j.1365-2966.2010.16598.x 10.1080/00107510802066753 10.1111/j.1365-2966.2007.11738.x 10.1111/j.1365-2966.2011.20222.x 10.1051/0004-6361/201732248 10.1214/06-BA127 10.1086/338838 10.1103/PhysRevA.105.023514 10.1093/mnras/stab2384 10.1088/0004-637X/806/2/186 10.1051/0004-6361/202038831 10.1111/j.1745-3933.2007.00306.x 10.1093/mnras/stv1911 10.1051/0004-6361/202039070 10.1103/PhysRevD.62.043007 10.1093/mnras/stz2197 10.3847/1538-4357/ab042c 10.1051/0004-6361/202142481 10.1103/PhysRevC.73.067302 |
ContentType | Journal Article |
Copyright | 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
Copyright_xml | – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023 |
CorporateAuthor | Carnegie Mellon Univ., Pittsburgh, PA (United States) |
CorporateAuthor_xml | – name: Carnegie Mellon Univ., Pittsburgh, PA (United States) |
DBID | AAYXX CITATION OTOTI |
DOI | 10.1093/mnras/stad2213 |
DatabaseName | CrossRef OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 1901 |
ExternalDocumentID | 1996443 10_1093_mnras_stad2213 10.1093/mnras/stad2213 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ OTOTI |
ID | FETCH-LOGICAL-c406t-be0012f89d6ac6897b43318facb0c1ac92131c6f515c054addf1c8b558fc631f3 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Mon Feb 10 03:53:20 EST 2025 Thu Apr 24 23:04:48 EDT 2025 Tue Jul 01 03:32:37 EDT 2025 Wed Aug 28 03:17:34 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | methods: statistical cosmology: observations gravitational lensing: weak cosmological parameters |
Language | English |
License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-be0012f89d6ac6897b43318facb0c1ac92131c6f515c054addf1c8b558fc631f3 |
Notes | USDOE USDOE Office of Science (SC), High Energy Physics (HEP) National Science Foundation (NSF) SC0010118; AST-2206563 |
ORCID | 0000-0002-5124-0771 0000-0001-7147-8843 0000-0003-2271-1527 0000000322711527 0000000251240771 0000000171478843 |
OpenAccessLink | https://www.osti.gov/biblio/1996443 |
PageCount | 17 |
ParticipantIDs | osti_scitechconnect_1996443 crossref_citationtrail_10_1093_mnras_stad2213 crossref_primary_10_1093_mnras_stad2213 oup_primary_10_1093_mnras_stad2213 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-08-21 |
PublicationDateYYYYMMDD | 2023-08-21 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Crittenden (2024072800011633000_bib13) 2002; 568 Doux (2024072800011633000_bib19) 2022; 515 Lewis (2024072800011633000_bib55) 2000; 538 Loureiro (2024072800011633000_bib60) 2022; 665 Heymans (2024072800011633000_bib26) 2006; 368 Feroz (2024072800011633000_bib21) 2019; 2 Marshall (2024072800011633000_bib63) 2006; 73 Pandey (2024072800011633000_bib70) 2020; 102 Vardanyan (2024072800011633000_bib92) 2011; 413 Handley (2024072800011633000_bib25) 2015; 453 Jee (2024072800011633000_bib36) 2016; 824 Tröster (2024072800011633000_bib87) 2022; 660 Osato (2024072800011633000_bib68) 2015; 806 Bird (2024072800011633000_bib5) 2012; 420 Kirk (2024072800011633000_bib46) 2015; 193 Hirata (2024072800011633000_bib32) 2007; 381 Ivezić (2024072800011633000_bib34) 2019; 873 Raveri (2024072800011633000_bib71) 2019; 99 Joachimi (2024072800011633000_bib40) 2021; 647 Krause (2024072800011633000_bib48) 2017 DeRose (2024072800011633000_bib15) 2019; 875 Troxel (2024072800011633000_bib91) 2018; 98 Hirata (2024072800011633000_bib30) 2004; 70 Joachimi (2024072800011633000_bib38) 2015; 193 Hikage (2024072800011633000_bib28) 2019; 71 Friedrich (2024072800011633000_bib23) 2021; 508 Krause (2024072800011633000_bib49) 2021 Liddle (2024072800011633000_bib56) 2007; 377 Dark Energy Survey Collaboration (2024072800011633000_bib14) 2016; 94 Blazek (2024072800011633000_bib8) 2019; 100 Joachimi (2024072800011633000_bib39) 2021; 646 Jarvis (2024072800011633000_bib35) 2021; 501 Bridle (2024072800011633000_bib10) 2010; 405 Blazek (2024072800011633000_bib7) 2015; 8 LoVerde (2024072800011633000_bib61) 2008; 78 Samuroff (2024072800011633000_bib74) 2019; 489 Kilbinger (2024072800011633000_bib45) 2010; 405 Hirata (2024072800011633000_bib31) 2010; 82 Tokdar (2024072800011633000_bib86) 2010; 2 Mandelbaum (2024072800011633000_bib62) 2015; 450 Lewis (2024072800011633000_bib53) 2019 Liddle (2024072800011633000_bib57) 2006; 47 Heymans (2024072800011633000_bib27) 2013; 432 Chen (2024072800011633000_bib12) 2023; 518 Wilks (2024072800011633000_bib94) 1938; 9 Secco (2024072800011633000_bib79) 2022; 105 Trotta (2024072800011633000_bib89) 2008; 49 DES Collaboration (2024072800011633000_bib16) 2022; 105 Liddle (2024072800011633000_bib58) 2006; 74 Padilla (2024072800011633000_bib69) 2019 Schneider (2024072800011633000_bib77) 2002; 389 Bridle (2024072800011633000_bib9) 2007; 9 Doux (2024072800011633000_bib18) 2021; 503 Myles (2024072800011633000_bib66) 2021; 505 Rigdon (2024072800011633000_bib72) 1999; 6 Jeffreys (2024072800011633000_bib37) 1961 Lemos (2024072800011633000_bib51) 2021; 505 Andrae (2024072800011633000_bib3) 2010 Neal (2024072800011633000_bib67) 1998 Schwarz (2024072800011633000_bib78) 1978; 6 Troxel (2024072800011633000_bib90) 2015; 558 McEwen (2024072800011633000_bib64) 2016; 2016 Amon (2024072800011633000_bib2) 2022; 105 Hildebrandt (2024072800011633000_bib29) 2017; 465 Simon (2024072800011633000_bib80) 2018; 613 Bishop (2024072800011633000_bib6) 2006 Kiessling (2024072800011633000_bib44) 2015; 193 Laureijs (2024072800011633000_bib50) 2011 Takahashi (2024072800011633000_bib85) 2012; 761 Kass (2024072800011633000_bib42) 1995; 90 Skilling (2024072800011633000_bib82) 2006; 1 Lewis (2024072800011633000_bib54) 2002; 66 Akaike (2024072800011633000_bib1) 1973 Fosalba (2024072800011633000_bib22) 2015; 448 Knabenhans (2024072800011633000_bib47) 2021; 505 Mead (2024072800011633000_bib65) 2021; 502 Steiger (2024072800011633000_bib84) 1985; 50 Schermelleh-Engel (2024072800011633000_bib76) 2003; 8 Asgari (2024072800011633000_bib4) 2021; 645 Kerscher (2024072800011633000_bib43) 2019 Trotta (2024072800011633000_bib88) 2007; 378 Fang (2024072800011633000_bib20) 2017; 2017 Sánchez (2024072800011633000_bib75) 2022; 105 Saito (2024072800011633000_bib73) 2008; 100 Catelan (2024072800011633000_bib11) 2001; 320 Zuntz (2024072800011633000_bib95) 2015; 12 Johnston (2024072800011633000_bib41) 2019; 624 Desjacques (2024072800011633000_bib17) 2018; 733 Singh (2024072800011633000_bib81) 2016; 457 Spergel (2024072800011633000_bib83) 2015 Hu (2024072800011633000_bib33) 2000; 62 Limber (2024072800011633000_bib59) 1953; 117 Hamana (2024072800011633000_bib24) 2020; 72 Lemos (2024072800011633000_bib52) 2023; 521 |
References_xml | – volume: 2017 start-page: 030 year: 2017 ident: 2024072800011633000_bib20 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/02/030 – year: 2019 ident: 2024072800011633000_bib53 – year: 2017 ident: 2024072800011633000_bib48 – volume: 78 start-page: 123506 year: 2008 ident: 2024072800011633000_bib61 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.123506 – volume: 2 start-page: 54 year: 2010 ident: 2024072800011633000_bib86 publication-title: WIREs Comput. Stat. doi: 10.1002/wics.56 – volume: 761 start-page: 152 year: 2012 ident: 2024072800011633000_bib85 publication-title: ApJ doi: 10.1088/0004-637X/761/2/152 – volume: 71 start-page: 43 year: 2019 ident: 2024072800011633000_bib28 publication-title: PASJ doi: 10.1093/pasj/psz010 – volume: 465 start-page: 1454 year: 2017 ident: 2024072800011633000_bib29 publication-title: MNRAS doi: 10.1093/mnras/stw2805 – volume: 2016 start-page: 015 year: 2016 ident: 2024072800011633000_bib64 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/09/015 – volume: 647 start-page: L5 year: 2021 ident: 2024072800011633000_bib40 publication-title: A&A doi: 10.1051/0004-6361/202039560 – volume: 501 start-page: 1282 year: 2021 ident: 2024072800011633000_bib35 publication-title: MNRAS doi: 10.1093/mnras/staa3679 – volume: 502 start-page: 1401 year: 2021 ident: 2024072800011633000_bib65 publication-title: MNRAS doi: 10.1093/mnras/stab082 – volume: 74 start-page: 123506 year: 2006 ident: 2024072800011633000_bib58 publication-title: Phys. Rev. D – volume: 824 start-page: 77 year: 2016 ident: 2024072800011633000_bib36 publication-title: ApJ doi: 10.3847/0004-637X/824/2/77 – volume: 102 start-page: 123522 year: 2020 ident: 2024072800011633000_bib70 publication-title: Phys. Rev. D – volume: 98 start-page: 043528 year: 2018 ident: 2024072800011633000_bib91 publication-title: Phys. Rev. D – volume: 432 start-page: 2433 year: 2013 ident: 2024072800011633000_bib27 publication-title: MNRAS doi: 10.1093/mnras/stt601 – volume: 105 start-page: 023515 year: 2022 ident: 2024072800011633000_bib79 publication-title: Phys. Rev. D doi: 10.1103/PhysRevA.105.023515 – volume: 558 start-page: 1 year: 2015 ident: 2024072800011633000_bib90 publication-title: Phys. Rep. – volume: 117 start-page: 134 year: 1953 ident: 2024072800011633000_bib59 publication-title: ApJ doi: 10.1086/145672 – volume: 381 start-page: 1197 year: 2007 ident: 2024072800011633000_bib32 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.12312.x – volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics) year: 2006 ident: 2024072800011633000_bib6 – year: 2019 ident: 2024072800011633000_bib69 – volume: 505 start-page: 2840 year: 2021 ident: 2024072800011633000_bib47 publication-title: MNRAS doi: 10.1093/mnras/stab1366 – year: 1998 ident: 2024072800011633000_bib67 – volume: 193 start-page: 1 year: 2015 ident: 2024072800011633000_bib38 publication-title: Space Sci. Rev. – volume: 100 start-page: 191301 year: 2008 ident: 2024072800011633000_bib73 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.191301 – volume: 457 start-page: 2301 year: 2016 ident: 2024072800011633000_bib81 publication-title: MNRAS doi: 10.1093/mnras/stw144 – start-page: 9 volume-title: SciPost Phys. Lect. Notes year: 2019 ident: 2024072800011633000_bib43 doi: 10.21468/SciPostPhysLectNotes.9 – volume: 6 start-page: 461 year: 1978 ident: 2024072800011633000_bib78 publication-title: Ann. Stat. doi: 10.1214/aos/1176344136 – volume: 413 start-page: L91 year: 2011 ident: 2024072800011633000_bib92 publication-title: MNRAS doi: 10.1111/j.1745-3933.2011.01040.x – volume: 6 start-page: 219 year: 1999 ident: 2024072800011633000_bib72 publication-title: Struct. Equ. Model.: Multidiscip. J. doi: 10.1080/10705519909540131 – volume: 505 start-page: 4249 year: 2021 ident: 2024072800011633000_bib66 publication-title: MNRAS doi: 10.1093/mnras/stab1515 – volume: 521 start-page: 1184 year: 2023 ident: 2024072800011633000_bib52 publication-title: MNRAS doi: 10.1093/mnras/stac2786 – volume: 389 start-page: 729 year: 2002 ident: 2024072800011633000_bib77 publication-title: A&A doi: 10.1051/0004-6361:20020626 – volume: 448 start-page: 2987 year: 2015 ident: 2024072800011633000_bib22 publication-title: MNRAS doi: 10.1093/mnras/stv138 – volume: 660 start-page: A27 year: 2022 ident: 2024072800011633000_bib87 publication-title: A&A doi: 10.1051/0004-6361/202142197 – volume: 9 start-page: 60 year: 1938 ident: 2024072800011633000_bib94 publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177732360 – volume: 90 start-page: 773 year: 1995 ident: 2024072800011633000_bib42 publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1995.10476572 – year: 2011 ident: 2024072800011633000_bib50 – volume: 100 start-page: 103506 year: 2019 ident: 2024072800011633000_bib8 publication-title: Phys. Rev. D – volume: 193 start-page: 139 year: 2015 ident: 2024072800011633000_bib46 publication-title: Space Sci. Rev. – volume: 66 start-page: 103511 year: 2002 ident: 2024072800011633000_bib54 publication-title: Phys. Rev. D – volume: 368 start-page: 1323 year: 2006 ident: 2024072800011633000_bib26 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10198.x – year: 2015 ident: 2024072800011633000_bib83 – volume: 450 start-page: 2963 year: 2015 ident: 2024072800011633000_bib62 publication-title: MNRAS doi: 10.1093/mnras/stv781 – volume: 875 start-page: 69 year: 2019 ident: 2024072800011633000_bib15 publication-title: ApJ doi: 10.3847/1538-4357/ab1085 – volume: 82 start-page: 049901 year: 2010 ident: 2024072800011633000_bib31 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.82.049901 – volume: 94 start-page: 022001 year: 2016 ident: 2024072800011633000_bib14 publication-title: Phys. Rev. D – volume: 105 start-page: 023520 year: 2022 ident: 2024072800011633000_bib16 publication-title: Phys. Rev. D doi: 10.1103/PhysRevA.105.023520 – volume: 50 start-page: 253 year: 1985 ident: 2024072800011633000_bib84 publication-title: Psychometrika doi: 10.1007/BF02294104 – volume: 503 start-page: 2688 year: 2021 ident: 2024072800011633000_bib18 publication-title: MNRAS doi: 10.1093/mnras/stab526 – volume: 72 start-page: 16 year: 2020 ident: 2024072800011633000_bib24 publication-title: PASJ doi: 10.1093/pasj/psz138 – volume: 538 start-page: 473 year: 2000 ident: 2024072800011633000_bib55 publication-title: ApJ doi: 10.1086/309179 – volume: 193 start-page: 67 year: 2015 ident: 2024072800011633000_bib44 publication-title: Space Sci. Rev. – volume-title: Proceedings of the Second International Symposium on Information Theory year: 1973 ident: 2024072800011633000_bib1 – volume: 2 start-page: 10 year: 2019 ident: 2024072800011633000_bib21 publication-title: Open J. Astrophy. doi: 10.21105/astro.1306.2144 – volume: 105 start-page: 083529 year: 2022 ident: 2024072800011633000_bib75 publication-title: Phys. Rev. D – volume: 320 start-page: L7 year: 2001 ident: 2024072800011633000_bib11 publication-title: MNRAS doi: 10.1046/j.1365-8711.2001.04105.x – volume: 70 start-page: 063526 year: 2004 ident: 2024072800011633000_bib30 publication-title: Phys. Rev. D – volume: 624 start-page: A30 year: 2019 ident: 2024072800011633000_bib41 publication-title: A&A doi: 10.1051/0004-6361/201834714 – volume: 405 start-page: 2381 year: 2010 ident: 2024072800011633000_bib45 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16605.x – volume: 47 start-page: 4.30 year: 2006 ident: 2024072800011633000_bib57 publication-title: Astron. Geophys. doi: 10.1111/j.1468-4004.2006.47430.x – volume: 505 start-page: 6179 year: 2021 ident: 2024072800011633000_bib51 publication-title: MNRAS doi: 10.1093/mnras/stab1670 – volume: 9 start-page: 444 year: 2007 ident: 2024072800011633000_bib9 publication-title: New J. Phys. doi: 10.1088/1367-2630/9/12/444 – volume: 518 start-page: 5340 year: 2023 ident: 2024072800011633000_bib12 publication-title: MNRAS doi: 10.1093/mnras/stac3213 – volume: 8 start-page: 015 year: 2015 ident: 2024072800011633000_bib7 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/08/015 – volume: 515 start-page: 1942 year: 2022 ident: 2024072800011633000_bib19 publication-title: MNRAS doi: 10.1093/mnras/stac1826 – volume: 12 start-page: 45 year: 2015 ident: 2024072800011633000_bib95 publication-title: Astron. Comput. doi: 10.1016/j.ascom.2015.05.005 – volume: 405 start-page: 2044 year: 2010 ident: 2024072800011633000_bib10 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.16598.x – volume: 49 start-page: 71 year: 2008 ident: 2024072800011633000_bib89 publication-title: Contemp. Phys. doi: 10.1080/00107510802066753 – volume: 378 start-page: 72 year: 2007 ident: 2024072800011633000_bib88 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.11738.x – volume: 420 start-page: 2551 year: 2012 ident: 2024072800011633000_bib5 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20222.x – volume: 613 start-page: A15 year: 2018 ident: 2024072800011633000_bib80 publication-title: A&A doi: 10.1051/0004-6361/201732248 – volume: 1 start-page: 833 year: 2006 ident: 2024072800011633000_bib82 publication-title: Bayesian Anal. doi: 10.1214/06-BA127 – volume: 568 start-page: 20 year: 2002 ident: 2024072800011633000_bib13 publication-title: ApJ doi: 10.1086/338838 – volume: 8 start-page: 23 year: 2003 ident: 2024072800011633000_bib76 publication-title: Meth. Psychol. Res. Online – volume: 105 start-page: 023514 year: 2022 ident: 2024072800011633000_bib2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevA.105.023514 – year: 2021 ident: 2024072800011633000_bib49 – volume: 508 start-page: 3125 year: 2021 ident: 2024072800011633000_bib23 publication-title: MNRAS doi: 10.1093/mnras/stab2384 – volume: 806 start-page: 186 year: 2015 ident: 2024072800011633000_bib68 publication-title: ApJ doi: 10.1088/0004-637X/806/2/186 – volume: 646 start-page: A129 year: 2021 ident: 2024072800011633000_bib39 publication-title: A&A doi: 10.1051/0004-6361/202038831 – volume: 377 start-page: L74 year: 2007 ident: 2024072800011633000_bib56 publication-title: MNRAS doi: 10.1111/j.1745-3933.2007.00306.x – volume: 453 start-page: 4384 year: 2015 ident: 2024072800011633000_bib25 publication-title: MNRAS doi: 10.1093/mnras/stv1911 – volume: 733 start-page: 1 year: 2018 ident: 2024072800011633000_bib17 publication-title: Phys. Rep. – volume: 645 start-page: A104 year: 2021 ident: 2024072800011633000_bib4 publication-title: A&A doi: 10.1051/0004-6361/202039070 – volume: 62 start-page: 043007 year: 2000 ident: 2024072800011633000_bib33 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.62.043007 – volume-title: The Theory of Probability year: 1961 ident: 2024072800011633000_bib37 – volume: 489 start-page: 5453 year: 2019 ident: 2024072800011633000_bib74 publication-title: MNRAS doi: 10.1093/mnras/stz2197 – volume: 99 start-page: 043506 year: 2019 ident: 2024072800011633000_bib71 publication-title: Phys. Rev. D – volume: 873 start-page: 111 year: 2019 ident: 2024072800011633000_bib34 publication-title: ApJ doi: 10.3847/1538-4357/ab042c – volume: 665 start-page: A56 year: 2022 ident: 2024072800011633000_bib60 publication-title: A&A doi: 10.1051/0004-6361/202142481 – year: 2010 ident: 2024072800011633000_bib3 – volume: 73 start-page: 067302 year: 2006 ident: 2024072800011633000_bib63 publication-title: Phys. Rev. D doi: 10.1103/PhysRevC.73.067302 |
SSID | ssj0004326 |
Score | 2.4792595 |
Snippet | ABSTRACT
In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with... In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly... |
SourceID | osti crossref oup |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
StartPage | 1885 |
SubjectTerms | ASTRONOMY AND ASTROPHYSICS cosmological parameters cosmology: observations gravitational lensing: weak methods: statistical PHYSICS OF ELEMENTARY PARTICLES AND FIELDS |
Title | An empirical approach to model selection: weak lensing and intrinsic alignments |
URI | https://www.osti.gov/biblio/1996443 |
Volume | 525 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: KQ8 dateStart: 18270209 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 0035-8711 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 0035-8711 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 providerName: Wiley-Blackwell |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-yJ19Ep7I5lSCiT2VL-rHWtzEcIsy9bLC3ktyaUdzS0VbE_95L2s0PFH1ryLXQuyT3yyX3O0Kucb3ri0gKRyrGHU9KnFJJGDjSsJ95gfJVYjaK46fgYeY9zv15TRZd_HCEH7ndtc5F0UWstODc1qdlCHFx5E4n848MSNcWVrMEjLgFYDt6xu-vf3E_jQynUZXZ9smpjA7JQY0G6aAy3xHZS3STtAaFiU9n6zd6Q-1zFX4omqQ9Royb5TYUjp3DVYqA07aOyWSgabLepJbzg265wmmZUVvthha24g2a4Y6-JuKZrszVdb2kQi9oqss8xSZQhOXLKu3thMxG99Phg1OXS3AAvXLpyMRgFxVGi0BAEEZ9abKhQiVA9oAJiPD3GaD6mQ8I1HBhUwxC6fuhgsBlyj0lDZ3ppEWoJ2RPRT6POKD7Z0z0vYArDgxwd4aIpE2crRZjqLnETUmLVVydabux1Xq81Xqb3O7kNxWLxq-SHWOUGP2_IbEFc9sHytjclfY87L1CW_3xibP_CHXIvikcb6LDnJ2TRpm_JBcIL0p5aUfWOycGz6s |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+approach+to+model+selection%3A+weak+lensing+and+intrinsic+alignments&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Campos%2C+A&rft.au=Samuroff%2C+S&rft.au=Mandelbaum%2C+R&rft.date=2023-08-21&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=525&rft.issue=2&rft.spage=1885&rft.epage=1901&rft_id=info:doi/10.1093%2Fmnras%2Fstad2213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stad2213 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |