An empirical approach to model selection: weak lensing and intrinsic alignments

ABSTRACT In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against mo...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 525; no. 2; pp. 1885 - 1901
Main Authors Campos, A, Samuroff, S, Mandelbaum, R
Format Journal Article
LanguageEnglish
Published United States Oxford University Press 21.08.2023
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1093/mnras/stad2213

Cover

Abstract ABSTRACT In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ∼1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly $30{{\ \rm per\ cent}}$ chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. We foresee applications to future analyses as a model selection tool in many contexts.
AbstractList ABSTRACT In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ∼1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly $30{{\ \rm per\ cent}}$ chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. We foresee applications to future analyses as a model selection tool in many contexts.
In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ∼1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly $30{{\ \rm per\ cent}}$ chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. We foresee applications to future analyses as a model selection tool in many contexts.
In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly complex models. In this paper, we propose an empirical approach to model selection that explicitly balances parameter bias against model complexity. Our method uses synthetic data to calibrate the relation between bias and the χ2 difference between models. This allows us to interpret χ2 values obtained from real data (even if catalogues are blinded) and choose a model accordingly. We apply our method to the problem of intrinsic alignments – one of the most significant weak lensing systematics, and a major contributor to the error budget in modern lensing surveys. Specifically, we consider the example of the Dark Energy Survey Year 3 (DES Y3), and compare the commonly used non-linear alignment (NLA) and tidal alignment and tidal torque (TATT) models. The models are calibrated against bias in the Ωm–S8 plane. Once noise is accounted for, we find that it is possible to set a threshold Δχ2 that guarantees an analysis using NLA is unbiased at some specified level Nσ and confidence level. By contrast, we find that theoretically defined thresholds (based on, e.g. p-values for χ2) tend to be overly optimistic, and do not reliably rule out cosmological biases up to ~1–2σ. Considering the real DES Y3 cosmic shear results, based on the reported difference in χ2 from NLA and TATT analyses, we find a roughly chance that were NLA to be the fiducial model, the results would be biased (in the Ωm–S8 plane) by more than 0.3σ. More broadly, the method we propose here is simple and general, and requires a relatively low level of resources. Here, we foresee applications to future analyses as a model selection tool in many contexts.
Author Campos, A
Mandelbaum, R
Samuroff, S
Author_xml – sequence: 1
  givenname: A
  orcidid: 0000-0002-5124-0771
  surname: Campos
  fullname: Campos, A
  email: andresarodriguescampos@gmail.com
– sequence: 2
  givenname: S
  orcidid: 0000-0001-7147-8843
  surname: Samuroff
  fullname: Samuroff, S
– sequence: 3
  givenname: R
  orcidid: 0000-0003-2271-1527
  surname: Mandelbaum
  fullname: Mandelbaum, R
BackLink https://www.osti.gov/biblio/1996443$$D View this record in Osti.gov
BookMark eNqFkMFLwzAYxYNMcJtePQdvHrolTZu13sZwKgx20XP5-jXZom1Skoj439u5eRHE08cH7_d4703IyDqrCLnmbMZZKead9RDmIUKTplyckTEXMk_SUsoRGTMm8qRYcH5BJiG8MsYykcox2S4tVV1vvEFoKfS9d4B7Gh3tXKNaGlSrMBpn7-iHgjfaKhuM3VGwDTU2ejO8SKE1O9spG8MlOdfQBnV1ulPysr5_Xj0mm-3D02q5STBjMia1YoynuigbCSiLclFnQvBCA9YMOWA5NOAodc5zZHkGTaM5FnWeFxql4FpMyc3R14VoqoAmKtyjs3ZIW_GylNlgOCXZUYTeheCVrgYdHNpED6atOKsOy1Xfy1U_yw3Y7BfWe9OB__wbuD2Fee__034Bfc6E3A
CitedBy_id crossref_primary_10_1093_mnras_stad2700
crossref_primary_10_1103_PhysRevD_108_123519
crossref_primary_10_1103_PhysRevD_108_123518
crossref_primary_10_1103_PhysRevD_109_083528
crossref_primary_10_1051_0004_6361_202450575
Cites_doi 10.1088/1475-7516/2017/02/030
10.1103/PhysRevD.78.123506
10.1002/wics.56
10.1088/0004-637X/761/2/152
10.1093/pasj/psz010
10.1093/mnras/stw2805
10.1088/1475-7516/2016/09/015
10.1051/0004-6361/202039560
10.1093/mnras/staa3679
10.1093/mnras/stab082
10.3847/0004-637X/824/2/77
10.1093/mnras/stt601
10.1103/PhysRevA.105.023515
10.1086/145672
10.1111/j.1365-2966.2007.12312.x
10.1093/mnras/stab1366
10.1103/PhysRevLett.100.191301
10.1093/mnras/stw144
10.21468/SciPostPhysLectNotes.9
10.1214/aos/1176344136
10.1111/j.1745-3933.2011.01040.x
10.1080/10705519909540131
10.1093/mnras/stab1515
10.1093/mnras/stac2786
10.1051/0004-6361:20020626
10.1093/mnras/stv138
10.1051/0004-6361/202142197
10.1214/aoms/1177732360
10.1080/01621459.1995.10476572
10.1111/j.1365-2966.2006.10198.x
10.1093/mnras/stv781
10.3847/1538-4357/ab1085
10.1103/PhysRevD.82.049901
10.1103/PhysRevA.105.023520
10.1007/BF02294104
10.1093/mnras/stab526
10.1093/pasj/psz138
10.1086/309179
10.21105/astro.1306.2144
10.1046/j.1365-8711.2001.04105.x
10.1051/0004-6361/201834714
10.1111/j.1365-2966.2010.16605.x
10.1111/j.1468-4004.2006.47430.x
10.1093/mnras/stab1670
10.1088/1367-2630/9/12/444
10.1093/mnras/stac3213
10.1088/1475-7516/2015/08/015
10.1093/mnras/stac1826
10.1016/j.ascom.2015.05.005
10.1111/j.1365-2966.2010.16598.x
10.1080/00107510802066753
10.1111/j.1365-2966.2007.11738.x
10.1111/j.1365-2966.2011.20222.x
10.1051/0004-6361/201732248
10.1214/06-BA127
10.1086/338838
10.1103/PhysRevA.105.023514
10.1093/mnras/stab2384
10.1088/0004-637X/806/2/186
10.1051/0004-6361/202038831
10.1111/j.1745-3933.2007.00306.x
10.1093/mnras/stv1911
10.1051/0004-6361/202039070
10.1103/PhysRevD.62.043007
10.1093/mnras/stz2197
10.3847/1538-4357/ab042c
10.1051/0004-6361/202142481
10.1103/PhysRevC.73.067302
ContentType Journal Article
Copyright 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
Copyright_xml – notice: 2023 The Author(s) Published by Oxford University Press on behalf of Royal Astronomical Society 2023
CorporateAuthor Carnegie Mellon Univ., Pittsburgh, PA (United States)
CorporateAuthor_xml – name: Carnegie Mellon Univ., Pittsburgh, PA (United States)
DBID AAYXX
CITATION
OTOTI
DOI 10.1093/mnras/stad2213
DatabaseName CrossRef
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 1901
ExternalDocumentID 1996443
10_1093_mnras_stad2213
10.1093/mnras/stad2213
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
OTOTI
ID FETCH-LOGICAL-c406t-be0012f89d6ac6897b43318facb0c1ac92131c6f515c054addf1c8b558fc631f3
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Mon Feb 10 03:53:20 EST 2025
Thu Apr 24 23:04:48 EDT 2025
Tue Jul 01 03:32:37 EDT 2025
Wed Aug 28 03:17:34 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords methods: statistical
cosmology: observations
gravitational lensing: weak
cosmological parameters
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-be0012f89d6ac6897b43318facb0c1ac92131c6f515c054addf1c8b558fc631f3
Notes USDOE
USDOE Office of Science (SC), High Energy Physics (HEP)
National Science Foundation (NSF)
SC0010118; AST-2206563
ORCID 0000-0002-5124-0771
0000-0001-7147-8843
0000-0003-2271-1527
0000000322711527
0000000251240771
0000000171478843
OpenAccessLink https://www.osti.gov/biblio/1996443
PageCount 17
ParticipantIDs osti_scitechconnect_1996443
crossref_citationtrail_10_1093_mnras_stad2213
crossref_primary_10_1093_mnras_stad2213
oup_primary_10_1093_mnras_stad2213
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-21
PublicationDateYYYYMMDD 2023-08-21
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-21
  day: 21
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Crittenden (2024072800011633000_bib13) 2002; 568
Doux (2024072800011633000_bib19) 2022; 515
Lewis (2024072800011633000_bib55) 2000; 538
Loureiro (2024072800011633000_bib60) 2022; 665
Heymans (2024072800011633000_bib26) 2006; 368
Feroz (2024072800011633000_bib21) 2019; 2
Marshall (2024072800011633000_bib63) 2006; 73
Pandey (2024072800011633000_bib70) 2020; 102
Vardanyan (2024072800011633000_bib92) 2011; 413
Handley (2024072800011633000_bib25) 2015; 453
Jee (2024072800011633000_bib36) 2016; 824
Tröster (2024072800011633000_bib87) 2022; 660
Osato (2024072800011633000_bib68) 2015; 806
Bird (2024072800011633000_bib5) 2012; 420
Kirk (2024072800011633000_bib46) 2015; 193
Hirata (2024072800011633000_bib32) 2007; 381
Ivezić (2024072800011633000_bib34) 2019; 873
Raveri (2024072800011633000_bib71) 2019; 99
Joachimi (2024072800011633000_bib40) 2021; 647
Krause (2024072800011633000_bib48) 2017
DeRose (2024072800011633000_bib15) 2019; 875
Troxel (2024072800011633000_bib91) 2018; 98
Hirata (2024072800011633000_bib30) 2004; 70
Joachimi (2024072800011633000_bib38) 2015; 193
Hikage (2024072800011633000_bib28) 2019; 71
Friedrich (2024072800011633000_bib23) 2021; 508
Krause (2024072800011633000_bib49) 2021
Liddle (2024072800011633000_bib56) 2007; 377
Dark Energy Survey Collaboration (2024072800011633000_bib14) 2016; 94
Blazek (2024072800011633000_bib8) 2019; 100
Joachimi (2024072800011633000_bib39) 2021; 646
Jarvis (2024072800011633000_bib35) 2021; 501
Bridle (2024072800011633000_bib10) 2010; 405
Blazek (2024072800011633000_bib7) 2015; 8
LoVerde (2024072800011633000_bib61) 2008; 78
Samuroff (2024072800011633000_bib74) 2019; 489
Kilbinger (2024072800011633000_bib45) 2010; 405
Hirata (2024072800011633000_bib31) 2010; 82
Tokdar (2024072800011633000_bib86) 2010; 2
Mandelbaum (2024072800011633000_bib62) 2015; 450
Lewis (2024072800011633000_bib53) 2019
Liddle (2024072800011633000_bib57) 2006; 47
Heymans (2024072800011633000_bib27) 2013; 432
Chen (2024072800011633000_bib12) 2023; 518
Wilks (2024072800011633000_bib94) 1938; 9
Secco (2024072800011633000_bib79) 2022; 105
Trotta (2024072800011633000_bib89) 2008; 49
DES Collaboration (2024072800011633000_bib16) 2022; 105
Liddle (2024072800011633000_bib58) 2006; 74
Padilla (2024072800011633000_bib69) 2019
Schneider (2024072800011633000_bib77) 2002; 389
Bridle (2024072800011633000_bib9) 2007; 9
Doux (2024072800011633000_bib18) 2021; 503
Myles (2024072800011633000_bib66) 2021; 505
Rigdon (2024072800011633000_bib72) 1999; 6
Jeffreys (2024072800011633000_bib37) 1961
Lemos (2024072800011633000_bib51) 2021; 505
Andrae (2024072800011633000_bib3) 2010
Neal (2024072800011633000_bib67) 1998
Schwarz (2024072800011633000_bib78) 1978; 6
Troxel (2024072800011633000_bib90) 2015; 558
McEwen (2024072800011633000_bib64) 2016; 2016
Amon (2024072800011633000_bib2) 2022; 105
Hildebrandt (2024072800011633000_bib29) 2017; 465
Simon (2024072800011633000_bib80) 2018; 613
Bishop (2024072800011633000_bib6) 2006
Kiessling (2024072800011633000_bib44) 2015; 193
Laureijs (2024072800011633000_bib50) 2011
Takahashi (2024072800011633000_bib85) 2012; 761
Kass (2024072800011633000_bib42) 1995; 90
Skilling (2024072800011633000_bib82) 2006; 1
Lewis (2024072800011633000_bib54) 2002; 66
Akaike (2024072800011633000_bib1) 1973
Fosalba (2024072800011633000_bib22) 2015; 448
Knabenhans (2024072800011633000_bib47) 2021; 505
Mead (2024072800011633000_bib65) 2021; 502
Steiger (2024072800011633000_bib84) 1985; 50
Schermelleh-Engel (2024072800011633000_bib76) 2003; 8
Asgari (2024072800011633000_bib4) 2021; 645
Kerscher (2024072800011633000_bib43) 2019
Trotta (2024072800011633000_bib88) 2007; 378
Fang (2024072800011633000_bib20) 2017; 2017
Sánchez (2024072800011633000_bib75) 2022; 105
Saito (2024072800011633000_bib73) 2008; 100
Catelan (2024072800011633000_bib11) 2001; 320
Zuntz (2024072800011633000_bib95) 2015; 12
Johnston (2024072800011633000_bib41) 2019; 624
Desjacques (2024072800011633000_bib17) 2018; 733
Singh (2024072800011633000_bib81) 2016; 457
Spergel (2024072800011633000_bib83) 2015
Hu (2024072800011633000_bib33) 2000; 62
Limber (2024072800011633000_bib59) 1953; 117
Hamana (2024072800011633000_bib24) 2020; 72
Lemos (2024072800011633000_bib52) 2023; 521
References_xml – volume: 2017
  start-page: 030
  year: 2017
  ident: 2024072800011633000_bib20
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/02/030
– year: 2019
  ident: 2024072800011633000_bib53
– year: 2017
  ident: 2024072800011633000_bib48
– volume: 78
  start-page: 123506
  year: 2008
  ident: 2024072800011633000_bib61
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.123506
– volume: 2
  start-page: 54
  year: 2010
  ident: 2024072800011633000_bib86
  publication-title: WIREs Comput. Stat.
  doi: 10.1002/wics.56
– volume: 761
  start-page: 152
  year: 2012
  ident: 2024072800011633000_bib85
  publication-title: ApJ
  doi: 10.1088/0004-637X/761/2/152
– volume: 71
  start-page: 43
  year: 2019
  ident: 2024072800011633000_bib28
  publication-title: PASJ
  doi: 10.1093/pasj/psz010
– volume: 465
  start-page: 1454
  year: 2017
  ident: 2024072800011633000_bib29
  publication-title: MNRAS
  doi: 10.1093/mnras/stw2805
– volume: 2016
  start-page: 015
  year: 2016
  ident: 2024072800011633000_bib64
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/09/015
– volume: 647
  start-page: L5
  year: 2021
  ident: 2024072800011633000_bib40
  publication-title: A&A
  doi: 10.1051/0004-6361/202039560
– volume: 501
  start-page: 1282
  year: 2021
  ident: 2024072800011633000_bib35
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3679
– volume: 502
  start-page: 1401
  year: 2021
  ident: 2024072800011633000_bib65
  publication-title: MNRAS
  doi: 10.1093/mnras/stab082
– volume: 74
  start-page: 123506
  year: 2006
  ident: 2024072800011633000_bib58
  publication-title: Phys. Rev. D
– volume: 824
  start-page: 77
  year: 2016
  ident: 2024072800011633000_bib36
  publication-title: ApJ
  doi: 10.3847/0004-637X/824/2/77
– volume: 102
  start-page: 123522
  year: 2020
  ident: 2024072800011633000_bib70
  publication-title: Phys. Rev. D
– volume: 98
  start-page: 043528
  year: 2018
  ident: 2024072800011633000_bib91
  publication-title: Phys. Rev. D
– volume: 432
  start-page: 2433
  year: 2013
  ident: 2024072800011633000_bib27
  publication-title: MNRAS
  doi: 10.1093/mnras/stt601
– volume: 105
  start-page: 023515
  year: 2022
  ident: 2024072800011633000_bib79
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevA.105.023515
– volume: 558
  start-page: 1
  year: 2015
  ident: 2024072800011633000_bib90
  publication-title: Phys. Rep.
– volume: 117
  start-page: 134
  year: 1953
  ident: 2024072800011633000_bib59
  publication-title: ApJ
  doi: 10.1086/145672
– volume: 381
  start-page: 1197
  year: 2007
  ident: 2024072800011633000_bib32
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.12312.x
– volume-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
  year: 2006
  ident: 2024072800011633000_bib6
– year: 2019
  ident: 2024072800011633000_bib69
– volume: 505
  start-page: 2840
  year: 2021
  ident: 2024072800011633000_bib47
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1366
– year: 1998
  ident: 2024072800011633000_bib67
– volume: 193
  start-page: 1
  year: 2015
  ident: 2024072800011633000_bib38
  publication-title: Space Sci. Rev.
– volume: 100
  start-page: 191301
  year: 2008
  ident: 2024072800011633000_bib73
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.191301
– volume: 457
  start-page: 2301
  year: 2016
  ident: 2024072800011633000_bib81
  publication-title: MNRAS
  doi: 10.1093/mnras/stw144
– start-page: 9
  volume-title: SciPost Phys. Lect. Notes
  year: 2019
  ident: 2024072800011633000_bib43
  doi: 10.21468/SciPostPhysLectNotes.9
– volume: 6
  start-page: 461
  year: 1978
  ident: 2024072800011633000_bib78
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176344136
– volume: 413
  start-page: L91
  year: 2011
  ident: 2024072800011633000_bib92
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2011.01040.x
– volume: 6
  start-page: 219
  year: 1999
  ident: 2024072800011633000_bib72
  publication-title: Struct. Equ. Model.: Multidiscip. J.
  doi: 10.1080/10705519909540131
– volume: 505
  start-page: 4249
  year: 2021
  ident: 2024072800011633000_bib66
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1515
– volume: 521
  start-page: 1184
  year: 2023
  ident: 2024072800011633000_bib52
  publication-title: MNRAS
  doi: 10.1093/mnras/stac2786
– volume: 389
  start-page: 729
  year: 2002
  ident: 2024072800011633000_bib77
  publication-title: A&A
  doi: 10.1051/0004-6361:20020626
– volume: 448
  start-page: 2987
  year: 2015
  ident: 2024072800011633000_bib22
  publication-title: MNRAS
  doi: 10.1093/mnras/stv138
– volume: 660
  start-page: A27
  year: 2022
  ident: 2024072800011633000_bib87
  publication-title: A&A
  doi: 10.1051/0004-6361/202142197
– volume: 9
  start-page: 60
  year: 1938
  ident: 2024072800011633000_bib94
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177732360
– volume: 90
  start-page: 773
  year: 1995
  ident: 2024072800011633000_bib42
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– year: 2011
  ident: 2024072800011633000_bib50
– volume: 100
  start-page: 103506
  year: 2019
  ident: 2024072800011633000_bib8
  publication-title: Phys. Rev. D
– volume: 193
  start-page: 139
  year: 2015
  ident: 2024072800011633000_bib46
  publication-title: Space Sci. Rev.
– volume: 66
  start-page: 103511
  year: 2002
  ident: 2024072800011633000_bib54
  publication-title: Phys. Rev. D
– volume: 368
  start-page: 1323
  year: 2006
  ident: 2024072800011633000_bib26
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10198.x
– year: 2015
  ident: 2024072800011633000_bib83
– volume: 450
  start-page: 2963
  year: 2015
  ident: 2024072800011633000_bib62
  publication-title: MNRAS
  doi: 10.1093/mnras/stv781
– volume: 875
  start-page: 69
  year: 2019
  ident: 2024072800011633000_bib15
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1085
– volume: 82
  start-page: 049901
  year: 2010
  ident: 2024072800011633000_bib31
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.82.049901
– volume: 94
  start-page: 022001
  year: 2016
  ident: 2024072800011633000_bib14
  publication-title: Phys. Rev. D
– volume: 105
  start-page: 023520
  year: 2022
  ident: 2024072800011633000_bib16
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevA.105.023520
– volume: 50
  start-page: 253
  year: 1985
  ident: 2024072800011633000_bib84
  publication-title: Psychometrika
  doi: 10.1007/BF02294104
– volume: 503
  start-page: 2688
  year: 2021
  ident: 2024072800011633000_bib18
  publication-title: MNRAS
  doi: 10.1093/mnras/stab526
– volume: 72
  start-page: 16
  year: 2020
  ident: 2024072800011633000_bib24
  publication-title: PASJ
  doi: 10.1093/pasj/psz138
– volume: 538
  start-page: 473
  year: 2000
  ident: 2024072800011633000_bib55
  publication-title: ApJ
  doi: 10.1086/309179
– volume: 193
  start-page: 67
  year: 2015
  ident: 2024072800011633000_bib44
  publication-title: Space Sci. Rev.
– volume-title: Proceedings of the Second International Symposium on Information Theory
  year: 1973
  ident: 2024072800011633000_bib1
– volume: 2
  start-page: 10
  year: 2019
  ident: 2024072800011633000_bib21
  publication-title: Open J. Astrophy.
  doi: 10.21105/astro.1306.2144
– volume: 105
  start-page: 083529
  year: 2022
  ident: 2024072800011633000_bib75
  publication-title: Phys. Rev. D
– volume: 320
  start-page: L7
  year: 2001
  ident: 2024072800011633000_bib11
  publication-title: MNRAS
  doi: 10.1046/j.1365-8711.2001.04105.x
– volume: 70
  start-page: 063526
  year: 2004
  ident: 2024072800011633000_bib30
  publication-title: Phys. Rev. D
– volume: 624
  start-page: A30
  year: 2019
  ident: 2024072800011633000_bib41
  publication-title: A&A
  doi: 10.1051/0004-6361/201834714
– volume: 405
  start-page: 2381
  year: 2010
  ident: 2024072800011633000_bib45
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16605.x
– volume: 47
  start-page: 4.30
  year: 2006
  ident: 2024072800011633000_bib57
  publication-title: Astron. Geophys.
  doi: 10.1111/j.1468-4004.2006.47430.x
– volume: 505
  start-page: 6179
  year: 2021
  ident: 2024072800011633000_bib51
  publication-title: MNRAS
  doi: 10.1093/mnras/stab1670
– volume: 9
  start-page: 444
  year: 2007
  ident: 2024072800011633000_bib9
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/9/12/444
– volume: 518
  start-page: 5340
  year: 2023
  ident: 2024072800011633000_bib12
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3213
– volume: 8
  start-page: 015
  year: 2015
  ident: 2024072800011633000_bib7
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/08/015
– volume: 515
  start-page: 1942
  year: 2022
  ident: 2024072800011633000_bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stac1826
– volume: 12
  start-page: 45
  year: 2015
  ident: 2024072800011633000_bib95
  publication-title: Astron. Comput.
  doi: 10.1016/j.ascom.2015.05.005
– volume: 405
  start-page: 2044
  year: 2010
  ident: 2024072800011633000_bib10
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.16598.x
– volume: 49
  start-page: 71
  year: 2008
  ident: 2024072800011633000_bib89
  publication-title: Contemp. Phys.
  doi: 10.1080/00107510802066753
– volume: 378
  start-page: 72
  year: 2007
  ident: 2024072800011633000_bib88
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2007.11738.x
– volume: 420
  start-page: 2551
  year: 2012
  ident: 2024072800011633000_bib5
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20222.x
– volume: 613
  start-page: A15
  year: 2018
  ident: 2024072800011633000_bib80
  publication-title: A&A
  doi: 10.1051/0004-6361/201732248
– volume: 1
  start-page: 833
  year: 2006
  ident: 2024072800011633000_bib82
  publication-title: Bayesian Anal.
  doi: 10.1214/06-BA127
– volume: 568
  start-page: 20
  year: 2002
  ident: 2024072800011633000_bib13
  publication-title: ApJ
  doi: 10.1086/338838
– volume: 8
  start-page: 23
  year: 2003
  ident: 2024072800011633000_bib76
  publication-title: Meth. Psychol. Res. Online
– volume: 105
  start-page: 023514
  year: 2022
  ident: 2024072800011633000_bib2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevA.105.023514
– year: 2021
  ident: 2024072800011633000_bib49
– volume: 508
  start-page: 3125
  year: 2021
  ident: 2024072800011633000_bib23
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2384
– volume: 806
  start-page: 186
  year: 2015
  ident: 2024072800011633000_bib68
  publication-title: ApJ
  doi: 10.1088/0004-637X/806/2/186
– volume: 646
  start-page: A129
  year: 2021
  ident: 2024072800011633000_bib39
  publication-title: A&A
  doi: 10.1051/0004-6361/202038831
– volume: 377
  start-page: L74
  year: 2007
  ident: 2024072800011633000_bib56
  publication-title: MNRAS
  doi: 10.1111/j.1745-3933.2007.00306.x
– volume: 453
  start-page: 4384
  year: 2015
  ident: 2024072800011633000_bib25
  publication-title: MNRAS
  doi: 10.1093/mnras/stv1911
– volume: 733
  start-page: 1
  year: 2018
  ident: 2024072800011633000_bib17
  publication-title: Phys. Rep.
– volume: 645
  start-page: A104
  year: 2021
  ident: 2024072800011633000_bib4
  publication-title: A&A
  doi: 10.1051/0004-6361/202039070
– volume: 62
  start-page: 043007
  year: 2000
  ident: 2024072800011633000_bib33
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.62.043007
– volume-title: The Theory of Probability
  year: 1961
  ident: 2024072800011633000_bib37
– volume: 489
  start-page: 5453
  year: 2019
  ident: 2024072800011633000_bib74
  publication-title: MNRAS
  doi: 10.1093/mnras/stz2197
– volume: 99
  start-page: 043506
  year: 2019
  ident: 2024072800011633000_bib71
  publication-title: Phys. Rev. D
– volume: 873
  start-page: 111
  year: 2019
  ident: 2024072800011633000_bib34
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab042c
– volume: 665
  start-page: A56
  year: 2022
  ident: 2024072800011633000_bib60
  publication-title: A&A
  doi: 10.1051/0004-6361/202142481
– year: 2010
  ident: 2024072800011633000_bib3
– volume: 73
  start-page: 067302
  year: 2006
  ident: 2024072800011633000_bib63
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevC.73.067302
SSID ssj0004326
Score 2.4792595
Snippet ABSTRACT In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with...
In cosmology, we routinely choose between models to describe our data, and can incur biases due to insufficient models or lose constraining power with overly...
SourceID osti
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 1885
SubjectTerms ASTRONOMY AND ASTROPHYSICS
cosmological parameters
cosmology: observations
gravitational lensing: weak
methods: statistical
PHYSICS OF ELEMENTARY PARTICLES AND FIELDS
Title An empirical approach to model selection: weak lensing and intrinsic alignments
URI https://www.osti.gov/biblio/1996443
Volume 525
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: KQ8
  dateStart: 18270209
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 0035-8711
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 0035-8711
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-yJ19Ep7I5lSCiT2VL-rHWtzEcIsy9bLC3ktyaUdzS0VbE_95L2s0PFH1ryLXQuyT3yyX3O0Kucb3ri0gKRyrGHU9KnFJJGDjSsJ95gfJVYjaK46fgYeY9zv15TRZd_HCEH7ndtc5F0UWstODc1qdlCHFx5E4n848MSNcWVrMEjLgFYDt6xu-vf3E_jQynUZXZ9smpjA7JQY0G6aAy3xHZS3STtAaFiU9n6zd6Q-1zFX4omqQ9Royb5TYUjp3DVYqA07aOyWSgabLepJbzg265wmmZUVvthha24g2a4Y6-JuKZrszVdb2kQi9oqss8xSZQhOXLKu3thMxG99Phg1OXS3AAvXLpyMRgFxVGi0BAEEZ9abKhQiVA9oAJiPD3GaD6mQ8I1HBhUwxC6fuhgsBlyj0lDZ3ppEWoJ2RPRT6POKD7Z0z0vYArDgxwd4aIpE2crRZjqLnETUmLVVydabux1Xq81Xqb3O7kNxWLxq-SHWOUGP2_IbEFc9sHytjclfY87L1CW_3xibP_CHXIvikcb6LDnJ2TRpm_JBcIL0p5aUfWOycGz6s
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+empirical+approach+to+model+selection%3A+weak+lensing+and+intrinsic+alignments&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Campos%2C+A&rft.au=Samuroff%2C+S&rft.au=Mandelbaum%2C+R&rft.date=2023-08-21&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=525&rft.issue=2&rft.spage=1885&rft.epage=1901&rft_id=info:doi/10.1093%2Fmnras%2Fstad2213&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stad2213
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon