Machine learning algorithms to predict the catalytic reduction performance of eco-toxic nitrophenols and azo dyes contaminants (Invited Article)

Removing hazardous substances like azo dyes and nitrophenols from drinking water is essential for maintaining human health since these substances occur naturally in the environment. This research study used machine learning techniques to estimate the catalytic reduction performance of environmentall...

Full description

Saved in:
Bibliographic Details
Published inAlexandria engineering journal Vol. 72; pp. 673 - 693
Main Authors Sathishkumar, V.E., Ramu, A.G., Cho, Jaehyuk
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.06.2023
Elsevier
Subjects
Online AccessGet full text
ISSN1110-0168
2090-2670
DOI10.1016/j.aej.2023.04.007

Cover

Abstract Removing hazardous substances like azo dyes and nitrophenols from drinking water is essential for maintaining human health since these substances occur naturally in the environment. This research study used machine learning techniques to estimate the catalytic reduction performance of environmentally hazardous nitrophenols and azodyes pollutants. The catalyst PdO-NiO was used to eliminate contaminants in the water, including 4-nitrophenol (4-NP), 2,4-dinitrophenol (DNP), 2,4,6-trinitrophenol (TNP), methylene blue (MB), Rhodamine B (RHB), and Methyl Orange (MO). We conducted the experiments at different timings, and machine learning algorithms, including Linear Regression (LR), Support Vector Machines (SVM), Gradient boosted machines (GBM), Random forest (RF), and XGBTree (XGB), were used to predict the catalytic activity. The performance of these algorithms was measured using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The results showed that the XGB algorithm performs best with NP and DNP. RF algorithm performs best with TNP, MB, and RHB, and the SVM algorithm performs best with MO. PdO-NiO bimetallic catalyst showed 98% reduction efficiency of azo compounds mixture within 8 min. Hence, we found PdO-NiO to be an efficient catalyst for real-site applications.
AbstractList Removing hazardous substances like azo dyes and nitrophenols from drinking water is essential for maintaining human health since these substances occur naturally in the environment. This research study used machine learning techniques to estimate the catalytic reduction performance of environmentally hazardous nitrophenols and azodyes pollutants. The catalyst PdO-NiO was used to eliminate contaminants in the water, including 4-nitrophenol (4-NP), 2,4-dinitrophenol (DNP), 2,4,6-trinitrophenol (TNP), methylene blue (MB), Rhodamine B (RHB), and Methyl Orange (MO). We conducted the experiments at different timings, and machine learning algorithms, including Linear Regression (LR), Support Vector Machines (SVM), Gradient boosted machines (GBM), Random forest (RF), and XGBTree (XGB), were used to predict the catalytic activity. The performance of these algorithms was measured using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The results showed that the XGB algorithm performs best with NP and DNP. RF algorithm performs best with TNP, MB, and RHB, and the SVM algorithm performs best with MO. PdO-NiO bimetallic catalyst showed 98% reduction efficiency of azo compounds mixture within 8 min. Hence, we found PdO-NiO to be an efficient catalyst for real-site applications.
Author Ramu, A.G.
Cho, Jaehyuk
Sathishkumar, V.E.
Author_xml – sequence: 1
  givenname: V.E.
  surname: Sathishkumar
  fullname: Sathishkumar, V.E.
  organization: Department of Software Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
– sequence: 2
  givenname: A.G.
  surname: Ramu
  fullname: Ramu, A.G.
  organization: Department of Chemical Engineering, Hongik University, Sejong, Republic of Korea
– sequence: 3
  givenname: Jaehyuk
  surname: Cho
  fullname: Cho, Jaehyuk
  email: chojh@jbnu.ac.kr
  organization: Department of Software Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea
BookMark eNqNkcFu3CAQhn1IpaRpHqA3ju3BLtjYYPUURW26UqpemjOahWEXywsWkLSbp8gjl62rHnqIygVp4PsG5n9dnfngsareMtowyoYPUwM4NS1tu4byhlJxVl0wxmhdDuV5dZXSRMvqxcjH4aJ6_gp67zySGSF653cE5l2ILu8PieRAlojG6UzyHomGDPMxO01K8UFnFzxZMNoQD-A1kmAJ6lDn8LNc8S7HsOzRhzkR8IbAUyDmiIno4DMcnAefE3m38Y8uoyHXsYhnfP-memVhTnj1Z7-s7j9_-n7zpb77dru5ub6rNadDrreMis6IkXVMDnIYhJbUGIk9ip6LEZGBoGPPJdctF6bnW2bHbc9R0s5KbbvLarN6TYBJLdEdIB5VAKd-F0LcKVifpLgF2VM9dkXCmdRjz2wnBsuxHdotyOJqV9eDX-D4A-b5r5BRdYpFTarEok6xKMpViaVAYoV0DClFtEq7DKeh5ghufpFk_5D_0-3jymCZ6aPDqJJ2WFIzLqLO5dPuBfoXBgu9Ww
CitedBy_id crossref_primary_10_1016_j_jece_2025_115634
crossref_primary_10_1016_j_jorganchem_2024_123492
crossref_primary_10_1016_j_chemosphere_2024_142347
crossref_primary_10_1016_j_cis_2024_103281
crossref_primary_10_1016_j_ijbiomac_2024_134701
crossref_primary_10_1080_10934529_2024_2309102
crossref_primary_10_1016_j_aej_2024_09_116
crossref_primary_10_1016_j_ces_2025_121413
crossref_primary_10_1038_s41598_024_70989_0
crossref_primary_10_1016_j_jallcom_2023_172994
crossref_primary_10_1016_j_ijbiomac_2024_137965
crossref_primary_10_1080_15422119_2024_2437408
crossref_primary_10_3390_rs16244687
crossref_primary_10_1016_j_cattod_2024_114986
crossref_primary_10_1039_D4RA00711E
crossref_primary_10_1016_j_materresbull_2024_113061
crossref_primary_10_3390_f14091782
Cites_doi 10.1021/acsami.9b14792
10.1246/bcsj.20170046
10.18637/jss.v028.i05
10.1016/j.pecs.2021.100904
10.1080/10618600.1996.10474713
10.1039/C6RA23621A
10.1016/j.molliq.2019.111108
10.1039/D0CP01518K
10.1016/j.envpol.2020.116063
10.1016/j.fct.2022.112972
10.1007/s11749-016-0481-7
10.1021/jp4041474
10.1145/2939672.2939785
10.1016/j.jtice.2021.11.001
10.1016/j.apcatb.2018.11.073
10.1016/j.jece.2020.104401
10.3390/biology11121732
10.5121/ijdms.2019.11101
10.1021/la305068p
10.1016/j.jhazmat.2020.123870
10.1038/s41598-021-01989-7
10.1039/c2cs35029g
10.1038/nbt1206-1565
10.3389/fnbot.2013.00021
10.1016/j.envpol.2020.115498
10.1021/jp4079234
10.1016/j.chemosphere.2020.129475
10.1021/jp101125j
10.1016/j.ultsonch.2021.105485
10.1016/j.envint.2022.107184
10.3390/app11093758
10.3390/su14095256
10.1002/jcc.24764
10.1016/j.ecoenv.2019.04.035
10.1016/j.jece.2022.108449
10.1016/j.jtice.2022.104479
10.1063/1.5054523
ContentType Journal Article
Copyright 2023 Faculty of Engineering, Alexandria University
Copyright_xml – notice: 2023 Faculty of Engineering, Alexandria University
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.aej.2023.04.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 693
ExternalDocumentID oai_doaj_org_article_4fa850c934b1418c951f376f4e262ba8
10.1016/j.aej.2023.04.007
10_1016_j_aej_2023_04_007
S1110016823002806
GroupedDBID 0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
FDB
GROUPED_DOAJ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
ROL
SES
SSZ
XH2
--K
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
EJD
HZ~
IPNFZ
RIG
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-b1073d79131868667c80dd8e5e75479ee1a7095484c247d54b1f9b54e803f8cf3
IEDL.DBID DOA
ISSN 1110-0168
2090-2670
IngestDate Fri Oct 03 12:39:34 EDT 2025
Tue Aug 19 22:23:47 EDT 2025
Thu Apr 24 22:55:35 EDT 2025
Wed Oct 29 21:15:51 EDT 2025
Thu Jul 20 20:09:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Agricultural waste
PdO-NiO
Wastewater treatment
Dye reduction
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-b1073d79131868667c80dd8e5e75479ee1a7095484c247d54b1f9b54e803f8cf3
OpenAccessLink https://doaj.org/article/4fa850c934b1418c951f376f4e262ba8
PageCount 21
ParticipantIDs doaj_primary_oai_doaj_org_article_4fa850c934b1418c951f376f4e262ba8
unpaywall_primary_10_1016_j_aej_2023_04_007
crossref_citationtrail_10_1016_j_aej_2023_04_007
crossref_primary_10_1016_j_aej_2023_04_007
elsevier_sciencedirect_doi_10_1016_j_aej_2023_04_007
PublicationCentury 2000
PublicationDate 2023-06-01
2023-06-00
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Alexandria engineering journal
PublicationYear 2023
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Ramu, Salla, Sivaraman Chandrasekaran, Silambarasan, Seo, Yun, Choi (b0035) 2021; 270
2014, 020119. AIP Publishing LLC, (2018).
Sahoo, Prasanta Kumar, Dinbandhu Thakur, D. Bahadur, and Bharati Panigrahy. Highly efficient and simultaneous catalytic Reduction of multiple dyes using recyclable RGO/Co dendritic nanocomposites as wastewater treatment catalysts. RSC advances 6, 108 106723-106731 (2016).
Dong, Xue, Mu, Wang, Xiao, Dai, Wang, Huang, Qian, Chen (b0130) 2021; 73
Das, Sypu, Paumo, Bhaumik, Maharaj, Maity (b0030) 2019; 244
Gopal, Song, Yang, Lkhagvaa, Chandrasekaran, Choi (b0020) 2020; 267
Yağ, Altan (b0120) 2022; 11
Herves, Pérez-Lorenzo, Liz-Marzán, Dzubiella, Lu, Ballauff (b0065) 2016; 41
Wu, Yuan, Zhong, Wang, Zeng, Chen, Wang, Shao (b0040) 2016; 6
Zhang, Xintai, Ma, Aslam Khan, Wang, Maloletnev, Yang (b0250) 2021; 403
Akamatsu, Komatsu, Matsuda, Mori, Nakanishi, Sakai, Hill, Ariga (b0025) 2017; 90
Aghbashlo, Peng, Tabatabaei, Kalogirou, Soltanian, Hosseinzadeh-Bandbafha, Lam (b0235) 2021; 85
Johnson, Makis, Marvin, Rodenbusch, Stevenson (b0080) 2013; 117
Mahmoud, Garlyyev, El-Sayed (b0085) 2013; 117
Kuhn (b0205) 2008; 28
Wang, Y., & Ni, X. S. A XGBoost risk model via feature selection and Bayesian hyper-parameter optimization. arXiv preprint arXiv:1901.08433, (2019).
Lin, Gulbagca, Aygun, Tiri, Xia, Van Le, Gur, Sen, Vasseghian (b0125) 2022; 163
Noble (b0155) 2006; 24
Probst, Wright, Boulesteix (b0195) 2019; 9
Al-Jamimi, BinMakhashen, Saleh (b0230) 2022; 1–12
Zhang, Zheng, He (b0110) 2022; 138
Dondapati, Chen (b0135) 2020; 22
Kim, Park (b0190) 2022; 14
Ramu, Aruna Kumari, Elshikh, Alkhamis, Alrefaei, Choi (b0010) 2021; 271
Kuhn (b0180) 2008; 28
Goh, Hodas, Vishnu (b0210) 2017; 38
Lee, Kwon, Kim, Keel, Yoon, Lee (b0240) 2021; 11
Wu, D'Ambrosi, Ammann, Stadnicka-Michalak, Schirmer, Baity-Jesi (b0090) 2022; 163
Natekin, Knoll (b0160) 2013; 7
Kassem, Abdelhamid, Fouad, Ibrahim (b0050) 2021; 9
Kooh, Thotagamuge, Chau, Mahadi, Lim (b0100) 2022; 132
Zhu, Zhu, Xia, Yunlong, Hua, Xie (b0005) 2016; 6
Han, S., Qubo, C., & Meng, H. Parameter selection in SVM with RBF kernel function. In World Automation Congress 2012 (pp. 1-4). IEEE.
Munawaroh, H., P. L. Sari, S. Wahyuningsih, and A. H. Ramelan. The photocatalytic degradation of Methylene blue using graphene oxide (GO)/ZnO nano drums. In
Seber, Lee (b0150) 2003; Vol. 330
Zeng, Yuan, Huang, Cheng (b0225) 2019; 11
Ramu, Choi (b0055) 2021; 11
Ihaka, Gentleman (b0140) 1996; 5
Benesty, Chen, Huang, Cohen (b0145) 2009
Da, Ren, He, Gong, Chen (b0105) 2022; 10
Fadillah, Saleh, Wahyuningsih (b0045) 2019; 289
Abbasi, Moghaddam, Kowsari (b0115) 2022; 134588
Feurer, Hutter (b0175) 2019
Baruah, Gabriel, Akbashev, Booher (b0075) 2013; 29
A random forest-guided tour. Test, 25(2), 197-227, (2016). Biau, G., & Scornet, E.
Ai, Wu, Zhang, Qi, Zhao, Zhao, Zhao, Liu (b0095) 2019; 179
Chen, T., & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794), (2016, August).
steady-state gamma radiolysis experiments Radiat (b0015) 2003; 67
Wunder, Polzer, Lu, Mei, Ballauff (b0070) 2010; 114
Kuhn (10.1016/j.aej.2023.04.007_b0180) 2008; 28
Probst (10.1016/j.aej.2023.04.007_b0195) 2019; 9
Feurer (10.1016/j.aej.2023.04.007_b0175) 2019
Zhu (10.1016/j.aej.2023.04.007_b0005) 2016; 6
Zeng (10.1016/j.aej.2023.04.007_b0225) 2019; 11
steady-state gamma radiolysis experiments Radiat (10.1016/j.aej.2023.04.007_b0015) 2003; 67
Aghbashlo (10.1016/j.aej.2023.04.007_b0235) 2021; 85
Kooh (10.1016/j.aej.2023.04.007_b0100) 2022; 132
Da (10.1016/j.aej.2023.04.007_b0105) 2022; 10
Abbasi (10.1016/j.aej.2023.04.007_b0115) 2022; 134588
Mahmoud (10.1016/j.aej.2023.04.007_b0085) 2013; 117
Das (10.1016/j.aej.2023.04.007_b0030) 2019; 244
Benesty (10.1016/j.aej.2023.04.007_b0145) 2009
Wu (10.1016/j.aej.2023.04.007_b0090) 2022; 163
Yağ (10.1016/j.aej.2023.04.007_b0120) 2022; 11
10.1016/j.aej.2023.04.007_b0060
10.1016/j.aej.2023.04.007_b0185
Zhang (10.1016/j.aej.2023.04.007_b0250) 2021; 403
10.1016/j.aej.2023.04.007_b0165
Ramu (10.1016/j.aej.2023.04.007_b0010) 2021; 271
Ai (10.1016/j.aej.2023.04.007_b0095) 2019; 179
Ihaka (10.1016/j.aej.2023.04.007_b0140) 1996; 5
10.1016/j.aej.2023.04.007_b0200
Lee (10.1016/j.aej.2023.04.007_b0240) 2021; 11
10.1016/j.aej.2023.04.007_b0245
Noble (10.1016/j.aej.2023.04.007_b0155) 2006; 24
Gopal (10.1016/j.aej.2023.04.007_b0020) 2020; 267
Dondapati (10.1016/j.aej.2023.04.007_b0135) 2020; 22
Kim (10.1016/j.aej.2023.04.007_b0190) 2022; 14
Johnson (10.1016/j.aej.2023.04.007_b0080) 2013; 117
Akamatsu (10.1016/j.aej.2023.04.007_b0025) 2017; 90
Kuhn (10.1016/j.aej.2023.04.007_b0205) 2008; 28
Herves (10.1016/j.aej.2023.04.007_b0065) 2016; 41
Dong (10.1016/j.aej.2023.04.007_b0130) 2021; 73
Fadillah (10.1016/j.aej.2023.04.007_b0045) 2019; 289
Zhang (10.1016/j.aej.2023.04.007_b0110) 2022; 138
Kassem (10.1016/j.aej.2023.04.007_b0050) 2021; 9
Ramu (10.1016/j.aej.2023.04.007_b0055) 2021; 11
Natekin (10.1016/j.aej.2023.04.007_b0160) 2013; 7
10.1016/j.aej.2023.04.007_b0170
Goh (10.1016/j.aej.2023.04.007_b0210) 2017; 38
Ramu (10.1016/j.aej.2023.04.007_b0035) 2021; 270
Al-Jamimi (10.1016/j.aej.2023.04.007_b0230) 2022; 1–12
Wunder (10.1016/j.aej.2023.04.007_b0070) 2010; 114
Baruah (10.1016/j.aej.2023.04.007_b0075) 2013; 29
Seber (10.1016/j.aej.2023.04.007_b0150) 2003; Vol. 330
Lin (10.1016/j.aej.2023.04.007_b0125) 2022; 163
Wu (10.1016/j.aej.2023.04.007_b0040) 2016; 6
References_xml – volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: b0180
  article-title: Caret package
  publication-title: Journal of statistical software
– volume: 163
  year: 2022
  ident: b0090
  article-title: Predicting chemical hazard across taxa through machine learning
  publication-title: Environment International
– volume: 11
  start-page: 40099
  year: 2019
  end-page: 40106
  ident: b0225
  article-title: Accelerated design of catalytic water-cleaning nanomotors via machine learning
  publication-title: ACS applied materials & interfaces
– volume: 117
  start-page: 21886
  year: 2013
  end-page: 21893
  ident: b0085
  article-title: Determining the Mechanism of Solution Metallic Nanocatalysis with Solid and Hollow Nanoparticles: Homogeneous or Heterogeneous
  publication-title: J. Phys. Chem. C
– reference: Sahoo, Prasanta Kumar, Dinbandhu Thakur, D. Bahadur, and Bharati Panigrahy. Highly efficient and simultaneous catalytic Reduction of multiple dyes using recyclable RGO/Co dendritic nanocomposites as wastewater treatment catalysts. RSC advances 6, 108 106723-106731 (2016).
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0005
  article-title: Lanthanide metal-organic frameworks with six-coordinated ln (iii) ions, free functional organic sites for Removals, and extensive catalytic activities
  publication-title: Scientific reports
– volume: 163
  year: 2022
  ident: b0125
  article-title: Phyto-mediated synthesis of nanoparticles and their applications on hydrogen generation on NaBH
  publication-title: Food and Chemical Toxicology
– volume: 5
  start-page: 299
  year: 1996
  end-page: 314
  ident: b0140
  article-title: R: a language for data analysis and graphics
  publication-title: Journal of computational and graphical statistics
– reference: Chen, T., & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794), (2016, August).
– volume: 29
  start-page: 4225
  year: 2013
  end-page: 4234
  ident: b0075
  article-title: Facile Synthesis of Silver Nanoparticles Stabilized by Cationic Polynorbornenes and Their Catalytic Activity in 4-Nitrophenol Reduction
  publication-title: Langmuir
– volume: 24
  start-page: 1565
  year: 2006
  end-page: 1567
  ident: b0155
  article-title: What is a support vector machine?
  publication-title: Nature Biotechnology
– volume: 7
  start-page: 21
  year: 2013
  ident: b0160
  article-title: Gradient boosting machines, a tutorial
  publication-title: Frontiers in neurorobotics
– volume: 11
  start-page: 1732
  year: 2022
  ident: b0120
  article-title: Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments
  publication-title: Biology
– volume: 41
  start-page: 5577
  year: 2016
  end-page: 5587
  ident: b0065
  article-title: Catalysis by metallic nanoparticles in aqueous solution: model reactions
  publication-title: Chemical Society Reviews
– start-page: 1
  year: 2009
  end-page: 4
  ident: b0145
  article-title: Pearson correlation coefficient
  publication-title: Noise reduction in speech processing
– volume: 14
  start-page: 5256
  year: 2022
  ident: b0190
  article-title: Predicting Determinants of Lifelong Learning Intention Using Gradient Boosting Machine (GBM) with Grid Search
  publication-title: Sustainability
– volume: 22
  start-page: 8878
  year: 2020
  end-page: 8888
  ident: b0135
  article-title: Quantitative structure–property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning
  publication-title: Physical Chemistry Chemical Physics
– volume: 85
  year: 2021
  ident: b0235
  article-title: Machine learning technology in biodiesel research: A review
  publication-title: Progress in Energy and Combustion Science
– volume: 289
  year: 2019
  ident: b0045
  article-title: Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO
  publication-title: Journal of Molecular Liquids
– volume: 10
  year: 2022
  ident: b0105
  article-title: Prediction of uranium adsorption capacity on biochar by machine learning methods
  publication-title: Journal of Environmental Chemical Engineering
– start-page: 3
  year: 2019
  end-page: 33
  ident: b0175
  article-title: Hyperparameter optimization
  publication-title: Automated machine learning
– volume: 6
  start-page: 1
  year: 2016
  end-page: 13
  ident: b0040
  article-title: Enhanced adsorptive removal of p-nitrophenol from water by aluminum-metal–organic framework/reduced graphene oxide composite
  publication-title: Scientific reports
– reference: Munawaroh, H., P. L. Sari, S. Wahyuningsih, and A. H. Ramelan. The photocatalytic degradation of Methylene blue using graphene oxide (GO)/ZnO nano drums. In
– volume: 73
  year: 2021
  ident: b0130
  article-title: Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning
  publication-title: Ultrasonics Sonochemistry
– volume: 403
  year: 2021
  ident: b0250
  article-title: Promotion effects of halloysite nanotubes on the catalytic activity of Co
  publication-title: Journal of Hazardous Materials
– volume: 134588
  year: 2022
  ident: b0115
  article-title: A systematic and critical review on the development of machine learning based-ensemble models for prediction of adsorption process efficiency
  publication-title: Journal of Cleaner Production
– volume: 67
  start-page: 531
  year: 2003
  end-page: 534
  ident: b0015
  article-title: D. Şolpan, O. Güven, E. Takács, L. Wojnárovits, K. Dajka High-energy irradiation treatment of aqueous solutions of azo dyes
  publication-title: Phys. Chem.
– volume: 11
  start-page: 22699
  year: 2021
  ident: b0055
  article-title: Highly efficient and simultaneous catalytic Reduction of multiple toxic dyes and nitrophenols wastewater using highly active bimetallic PdO–NiO nanocomposite
  publication-title: Scientific Reports
– volume: 114
  start-page: 8814
  year: 2010
  end-page: 8820
  ident: b0070
  article-title: Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes
  publication-title: J. Phys. Chem. C
– volume: 90
  start-page: 678
  year: 2017
  end-page: 683
  ident: b0025
  article-title: Using a nano-optode, visual detection of cesium ions in a domestic water supply or seawater
  publication-title: Bulletin of the Chemical Society of Japan
– volume: 38
  start-page: 1291
  year: 2017
  end-page: 1307
  ident: b0210
  article-title: Deep learning for computational chemistry
  publication-title: Journal of computational chemistry
– volume: 9
  year: 2019
  ident: b0195
  article-title: Hyperparameters and tuning strategies for a random forest
  publication-title: Wiley Interdisciplinary Reviews: data mining and knowledge discovery
– volume: 132
  year: 2022
  ident: b0100
  article-title: Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of Methylene blue
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
– reference: A random forest-guided tour. Test, 25(2), 197-227, (2016). Biau, G., & Scornet, E.
– volume: 9
  year: 2021
  ident: b0050
  article-title: Catalytic Reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@ C composite
  publication-title: Journal of Environmental Chemical Engineering
– volume: 1–12
  year: 2022
  ident: b0230
  article-title: Artificial intelligence approach for modeling petroleum refinery catalytic desulfurization process
  publication-title: Neural Computing and Applications
– volume: 267
  year: 2020
  ident: b0020
  article-title: Synthesis of hierarchically structured ɤ-Fe
  publication-title: Environmental Pollution
– volume: 271
  year: 2021
  ident: b0010
  article-title: A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in an aqueous medium
  publication-title: Chemosphere
– volume: 117
  start-page: 22644
  year: 2013
  end-page: 22651
  ident: b0080
  article-title: Size-Dependent Hydrogenation of p-Nitrophenol with Pd Nanoparticles Synthesized with Poly(amido)amine Dendrimer Templates
  publication-title: J. Phys. Chem. C
– volume: 179
  start-page: 71
  year: 2019
  end-page: 78
  ident: b0095
  article-title: QSAR modeling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods
  publication-title: Ecotoxicology and environmental safety
– volume: 244
  start-page: 546
  year: 2019
  end-page: 558
  ident: b0030
  article-title: Silver decorated magnetic nanocomposite (Fe
  publication-title: Applied Catalysis B: Environmental
– reference: Wang, Y., & Ni, X. S. A XGBoost risk model via feature selection and Bayesian hyper-parameter optimization. arXiv preprint arXiv:1901.08433, (2019).
– volume: 11
  start-page: 3758
  year: 2021
  ident: b0240
  article-title: Machine Learning Applied to the NOx Prediction of Diesel Vehicle under Real Driving Cycle
  publication-title: Applied Sciences
– reference: , 2014, 020119. AIP Publishing LLC, (2018).
– reference: Han, S., Qubo, C., & Meng, H. Parameter selection in SVM with RBF kernel function. In World Automation Congress 2012 (pp. 1-4). IEEE.
– volume: 138
  year: 2022
  ident: b0110
  article-title: Machine-learning-based prediction of hydrogen adsorption capacity at varied temperatures and pressures for MOFs adsorbents
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
– volume: Vol. 330
  year: 2003
  ident: b0150
  publication-title: Linear regression analysis
– volume: 28
  start-page: 1
  year: 2008
  end-page: 26
  ident: b0205
  article-title: Building predictive models in R using the caret package
  publication-title: Journal of statistical software
– volume: 270
  year: 2021
  ident: b0035
  article-title: A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants
  publication-title: Environmental Pollution
– volume: 11
  start-page: 40099
  issue: 43
  year: 2019
  ident: 10.1016/j.aej.2023.04.007_b0225
  article-title: Accelerated design of catalytic water-cleaning nanomotors via machine learning
  publication-title: ACS applied materials & interfaces
  doi: 10.1021/acsami.9b14792
– volume: 90
  start-page: 678
  year: 2017
  ident: 10.1016/j.aej.2023.04.007_b0025
  article-title: Using a nano-optode, visual detection of cesium ions in a domestic water supply or seawater
  publication-title: Bulletin of the Chemical Society of Japan
  doi: 10.1246/bcsj.20170046
– volume: 28
  start-page: 1
  year: 2008
  ident: 10.1016/j.aej.2023.04.007_b0205
  article-title: Building predictive models in R using the caret package
  publication-title: Journal of statistical software
  doi: 10.18637/jss.v028.i05
– volume: 85
  year: 2021
  ident: 10.1016/j.aej.2023.04.007_b0235
  article-title: Machine learning technology in biodiesel research: A review
  publication-title: Progress in Energy and Combustion Science
  doi: 10.1016/j.pecs.2021.100904
– volume: 5
  start-page: 299
  issue: 3
  year: 1996
  ident: 10.1016/j.aej.2023.04.007_b0140
  article-title: R: a language for data analysis and graphics
  publication-title: Journal of computational and graphical statistics
  doi: 10.1080/10618600.1996.10474713
– ident: 10.1016/j.aej.2023.04.007_b0245
  doi: 10.1039/C6RA23621A
– volume: 289
  year: 2019
  ident: 10.1016/j.aej.2023.04.007_b0045
  article-title: Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO2-NiO electrodes
  publication-title: Journal of Molecular Liquids
  doi: 10.1016/j.molliq.2019.111108
– volume: 22
  start-page: 8878
  issue: 16
  year: 2020
  ident: 10.1016/j.aej.2023.04.007_b0135
  article-title: Quantitative structure–property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning
  publication-title: Physical Chemistry Chemical Physics
  doi: 10.1039/D0CP01518K
– volume: 28
  start-page: 1
  issue: 5
  year: 2008
  ident: 10.1016/j.aej.2023.04.007_b0180
  article-title: Caret package
  publication-title: Journal of statistical software
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.aej.2023.04.007_b0005
  article-title: Lanthanide metal-organic frameworks with six-coordinated ln (iii) ions, free functional organic sites for Removals, and extensive catalytic activities
  publication-title: Scientific reports
– volume: 270
  year: 2021
  ident: 10.1016/j.aej.2023.04.007_b0035
  article-title: A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2020.116063
– volume: 1–12
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0230
  article-title: Artificial intelligence approach for modeling petroleum refinery catalytic desulfurization process
  publication-title: Neural Computing and Applications
– volume: 163
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0125
  article-title: Phyto-mediated synthesis of nanoparticles and their applications on hydrogen generation on NaBH4, biological activities and photodegradation on azo dyes: Development of machine learning model
  publication-title: Food and Chemical Toxicology
  doi: 10.1016/j.fct.2022.112972
– ident: 10.1016/j.aej.2023.04.007_b0165
  doi: 10.1007/s11749-016-0481-7
– volume: 117
  start-page: 22644
  year: 2013
  ident: 10.1016/j.aej.2023.04.007_b0080
  article-title: Size-Dependent Hydrogenation of p-Nitrophenol with Pd Nanoparticles Synthesized with Poly(amido)amine Dendrimer Templates
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4041474
– ident: 10.1016/j.aej.2023.04.007_b0170
  doi: 10.1145/2939672.2939785
– volume: 132
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0100
  article-title: Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of Methylene blue
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
  doi: 10.1016/j.jtice.2021.11.001
– volume: 244
  start-page: 546
  year: 2019
  ident: 10.1016/j.aej.2023.04.007_b0030
  article-title: Silver decorated magnetic nanocomposite (Fe3O4@ PPy-MAA/Ag) as a highly active catalyst towards Reduction of 4-nitrophenol and toxic organic dyes
  publication-title: Applied Catalysis B: Environmental
  doi: 10.1016/j.apcatb.2018.11.073
– volume: 9
  issue: 1
  year: 2021
  ident: 10.1016/j.aej.2023.04.007_b0050
  article-title: Catalytic Reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@ C composite
  publication-title: Journal of Environmental Chemical Engineering
  doi: 10.1016/j.jece.2020.104401
– volume: 11
  start-page: 1732
  issue: 12
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0120
  article-title: Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments
  publication-title: Biology
  doi: 10.3390/biology11121732
– ident: 10.1016/j.aej.2023.04.007_b0200
  doi: 10.5121/ijdms.2019.11101
– volume: Vol. 330
  year: 2003
  ident: 10.1016/j.aej.2023.04.007_b0150
– volume: 29
  start-page: 4225
  year: 2013
  ident: 10.1016/j.aej.2023.04.007_b0075
  article-title: Facile Synthesis of Silver Nanoparticles Stabilized by Cationic Polynorbornenes and Their Catalytic Activity in 4-Nitrophenol Reduction
  publication-title: Langmuir
  doi: 10.1021/la305068p
– start-page: 1
  year: 2009
  ident: 10.1016/j.aej.2023.04.007_b0145
  article-title: Pearson correlation coefficient
– volume: 9
  issue: 3
  year: 2019
  ident: 10.1016/j.aej.2023.04.007_b0195
  article-title: Hyperparameters and tuning strategies for a random forest
  publication-title: Wiley Interdisciplinary Reviews: data mining and knowledge discovery
– volume: 403
  year: 2021
  ident: 10.1016/j.aej.2023.04.007_b0250
  article-title: Promotion effects of halloysite nanotubes on the catalytic activity of Co3O4 nanoparticles toward Reduction of 4-nitrophenol and organic dyes
  publication-title: Journal of Hazardous Materials
  doi: 10.1016/j.jhazmat.2020.123870
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.aej.2023.04.007_b0040
  article-title: Enhanced adsorptive removal of p-nitrophenol from water by aluminum-metal–organic framework/reduced graphene oxide composite
  publication-title: Scientific reports
– volume: 134588
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0115
  article-title: A systematic and critical review on the development of machine learning based-ensemble models for prediction of adsorption process efficiency
  publication-title: Journal of Cleaner Production
– volume: 11
  start-page: 22699
  issue: 1
  year: 2021
  ident: 10.1016/j.aej.2023.04.007_b0055
  article-title: Highly efficient and simultaneous catalytic Reduction of multiple toxic dyes and nitrophenols wastewater using highly active bimetallic PdO–NiO nanocomposite
  publication-title: Scientific Reports
  doi: 10.1038/s41598-021-01989-7
– volume: 41
  start-page: 5577
  issue: 17
  year: 2016
  ident: 10.1016/j.aej.2023.04.007_b0065
  article-title: Catalysis by metallic nanoparticles in aqueous solution: model reactions
  publication-title: Chemical Society Reviews
  doi: 10.1039/c2cs35029g
– volume: 24
  start-page: 1565
  issue: 12
  year: 2006
  ident: 10.1016/j.aej.2023.04.007_b0155
  article-title: What is a support vector machine?
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt1206-1565
– volume: 7
  start-page: 21
  year: 2013
  ident: 10.1016/j.aej.2023.04.007_b0160
  article-title: Gradient boosting machines, a tutorial
  publication-title: Frontiers in neurorobotics
  doi: 10.3389/fnbot.2013.00021
– volume: 267
  year: 2020
  ident: 10.1016/j.aej.2023.04.007_b0020
  article-title: Synthesis of hierarchically structured ɤ-Fe2O3–PPy nanocomposite as an effective adsorbent for cationic dye removal from wastewater
  publication-title: Environmental Pollution
  doi: 10.1016/j.envpol.2020.115498
– volume: 117
  start-page: 21886
  year: 2013
  ident: 10.1016/j.aej.2023.04.007_b0085
  article-title: Determining the Mechanism of Solution Metallic Nanocatalysis with Solid and Hollow Nanoparticles: Homogeneous or Heterogeneous
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4079234
– volume: 271
  year: 2021
  ident: 10.1016/j.aej.2023.04.007_b0010
  article-title: A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in an aqueous medium
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2020.129475
– volume: 114
  start-page: 8814
  year: 2010
  ident: 10.1016/j.aej.2023.04.007_b0070
  article-title: Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp101125j
– start-page: 3
  year: 2019
  ident: 10.1016/j.aej.2023.04.007_b0175
  article-title: Hyperparameter optimization
– volume: 73
  year: 2021
  ident: 10.1016/j.aej.2023.04.007_b0130
  article-title: Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning
  publication-title: Ultrasonics Sonochemistry
  doi: 10.1016/j.ultsonch.2021.105485
– volume: 163
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0090
  article-title: Predicting chemical hazard across taxa through machine learning
  publication-title: Environment International
  doi: 10.1016/j.envint.2022.107184
– ident: 10.1016/j.aej.2023.04.007_b0185
– volume: 11
  start-page: 3758
  issue: 9
  year: 2021
  ident: 10.1016/j.aej.2023.04.007_b0240
  article-title: Machine Learning Applied to the NOx Prediction of Diesel Vehicle under Real Driving Cycle
  publication-title: Applied Sciences
  doi: 10.3390/app11093758
– volume: 14
  start-page: 5256
  issue: 9
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0190
  article-title: Predicting Determinants of Lifelong Learning Intention Using Gradient Boosting Machine (GBM) with Grid Search
  publication-title: Sustainability
  doi: 10.3390/su14095256
– volume: 38
  start-page: 1291
  issue: 16
  year: 2017
  ident: 10.1016/j.aej.2023.04.007_b0210
  article-title: Deep learning for computational chemistry
  publication-title: Journal of computational chemistry
  doi: 10.1002/jcc.24764
– volume: 67
  start-page: 531
  year: 2003
  ident: 10.1016/j.aej.2023.04.007_b0015
  article-title: D. Şolpan, O. Güven, E. Takács, L. Wojnárovits, K. Dajka High-energy irradiation treatment of aqueous solutions of azo dyes
  publication-title: Phys. Chem.
– volume: 179
  start-page: 71
  year: 2019
  ident: 10.1016/j.aej.2023.04.007_b0095
  article-title: QSAR modeling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods
  publication-title: Ecotoxicology and environmental safety
  doi: 10.1016/j.ecoenv.2019.04.035
– volume: 10
  issue: 5
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0105
  article-title: Prediction of uranium adsorption capacity on biochar by machine learning methods
  publication-title: Journal of Environmental Chemical Engineering
  doi: 10.1016/j.jece.2022.108449
– volume: 138
  year: 2022
  ident: 10.1016/j.aej.2023.04.007_b0110
  article-title: Machine-learning-based prediction of hydrogen adsorption capacity at varied temperatures and pressures for MOFs adsorbents
  publication-title: Journal of the Taiwan Institute of Chemical Engineers
  doi: 10.1016/j.jtice.2022.104479
– ident: 10.1016/j.aej.2023.04.007_b0060
  doi: 10.1063/1.5054523
SSID ssj0000579496
Score 2.38334
Snippet Removing hazardous substances like azo dyes and nitrophenols from drinking water is essential for maintaining human health since these substances occur...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 673
SubjectTerms Agricultural waste
Dye reduction
Machine learning
PdO-NiO
Wastewater treatment
SummonAdditionalLinks – databaseName: ScienceDirect Free and Delayed Access Journal
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXoAD4imWl3zgwEPpJrGdOEdaUbVI5USlvVl-LlulSZRNaZdfwU_G4zhL91IkjrHGj3jG47Fn_A1C74yscpulKlGqgAMKM4k0iiS0dJZbLY0L7oKzb8XJOf26YIs9dDS9hYGwyqj7R50etHUsmcfZnHer1dyvQ8APKsBTFPyDXg8TyiF9w-nicHvPAo8taUjTBfQJVJicmyHMS9qLA0ghfjDCaO9sTwHFf2eXunfVdHJzLev61i50_Ag9jOYj_jyO8DHas80T9OAWqOBT9PssxEdaHBNCLLGsl22_Gn5crvHQ4q4H38yAveWHw-XNxreFe4BwBSbh7u9TAtw67I-nydDeeBK_-HtAIWjaeo1lY7D81WKzsWsM8e4yxtTg96fNT7Bjp0F-eIbOj798PzpJYt6FRPvtfUiUPxISU1YZASz9oig1T43hltmS0bKyNpNlCkBxVOe0NIyqzFWKUctT4rh25Dnab9rGvkC41FLKCoxQJ2llWUUNMc5SYorUmpzNUDpNt9ARlBxyY9Riij67EJ5DAjgkUio8h2bo47ZKNyJy3EV8CDzcEgKYdiho-6WI0iSok5yluiL-R2jGtTc6nde7jtq8yJXkM0QnCRA7sumbWt3V96ettPx7pC__r5NX6D58jcFrr9H-0F_ZN95MGtTbsA7-AL5jENA
  priority: 102
  providerName: Elsevier
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVgukAsoLzEVFB5wYKHMnISO4mXpWpVkFqxYKSysvy4Li0hGWUyhelX8MnYjmfoIFRgG904flzbx7nH5yL0wkieQUpUolThDyjMJNKoPKGlhQq0NDaEC45PiqMpfX_KTqNYtL8LsxG_DzwsCRcTn-N7Muhc30ZbBXOwe4S2picf9j6F5CmBXBWuvWWEkyQrynUE809lbOxBQap_Yyu6s2hmcvlN1vW1rebw_kDSmgeFQs8w-TJZ9Gqir37Tb_ynVmyjexFw4r3BQx6gW9A8RHevyRA-Qj-OA6MScEwhcYZlfdZ25_3nr3Pct3jW-WhOjx1WxOF3z9KVhTsv-uqHFc9-XT7ArcXuQJv07Xdn4paLzusWNG09x7IxWF612Cxhjj1DXkYWDn75rrn0yHdVyVeP0fTw4OP-URIzNSTaAYI-Ue4QmZuSp7lX3y-KUlfEmAoYlIyWHCCVJfHSclRntDSMqtRyxShUJLeVtvkTNGraBp4iXGopJfew1UrKgXFqcmOB5qYgYDI2RmQ1dkJHGXOfTaMWK77ahXCdLXxnC0KF6-wxer1-ZTZoeNxk_NY7xNrQy2-HB248RZzNglpZMaJ57hpC00o7mGrdSm0pZEWmZDVGdOVOIiKZAaG4os5v-vabtev9vaY7_2X9DI36bgHPHYTq1W6cPD8BlWYYAw
  priority: 102
  providerName: Unpaywall
Title Machine learning algorithms to predict the catalytic reduction performance of eco-toxic nitrophenols and azo dyes contaminants (Invited Article)
URI https://dx.doi.org/10.1016/j.aej.2023.04.007
https://doi.org/10.1016/j.aej.2023.04.007
https://doaj.org/article/4fa850c934b1418c951f376f4e262ba8
UnpaywallVersion publishedVersion
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1110-0168
  databaseCode: KQ8
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  issn: 1110-0168
  databaseCode: IXB
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1110-0168
  databaseCode: AKRWK
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOVXmJbaHygQMPpTiJndjHLaJqqVohxIrlZPlZqNJktZsCy6_gJzN2kmV7aS9ccrAcZ-SZ0czEn79B6IVVInMp0YnWRShQmE2U1XlCS--4M8r6eFxwelYcTeiHKZuutfoKmLCOHrjbuLfUK86IETnVKU25gYzAg1N46rIi0ype8yVcrBVTHas32FlszgW-HJBXBR-ONCO4S7mL_dA4fL8jz74WlCJ3_7XYdPeqnqnlT1VVa7HncBtt9UkjHnfCPkB3XP0Q3V-jEnyE_pxGVKTDfRuIc6yq8wYq_2-XC9w2eDYPJzIthnwPx182S1gLzwNxa1ANnv27QIAbj6EoTdrmF0wBl58H7oG6qRZY1Rar3w22S7fAAeWueiQNfnlc_wjZ6yDkq8docvj-87ujpO-2kBgI6m2ioRDMbSnSPDDoF0VpOLGWO-ZKRkvhXKpKEujhqMloaRnowwvNqOMk99z4_AnaqJvaPUW4NEopEVJPr6hwTFCbW-9obgvibMZGiAzbLU1PRR46YlRywJxdSNCQDBqShErQ0Ai9Xr0y63g4bpp8EHS4mhgotOMAGJbsDUveZlgjRAcLkH020mUZsNT3m779ZmUtt0u68z8k3UX3wpIdgO0Z2mjnV-45pEqt3kOb45NPX072onfA83h6AGOTs4_jr38Bs9UUvQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPVAOVZ_q0pcPPfShsHnYeRwLKlpalhNIe7P83C4KSZQNtMuv4CfX4zhb9kKlXh2_4hmPx56ZbxD6oHgR6ygUgRApXFCoCrgSSUAyo3MtuTLOXDA9TSfn5PuMzrbQ4RALA26VXvb3Mt1Ja18y9qs5bhaLsd2HgB-UgqXI2QcfoIeEWu0EovhmB-uHFoi2JC5PFzQIoMVg3XR-Xlxf7EMO8f0eR3vjfHIw_hvH1M5V1fDVL16Wd46hoyfosdcf8dd-ik_Rlq6eod07qILP0e3UOUhq7DNCzDEv53W76H5eLnFX46YF40yHreqH3evNyvaFW8BwBSrh5m8sAa4NtvfToKt_2yp297cAQ1DV5RLzSmF-U2O10ksMDu_cO9Xgj8fVNSiywyQ_vUDnR9_ODieBT7wQSHu-d4Gwd8JEZUWUAJh-mmYyD5XKNdUZJVmhdcSzEJDiiIxJpigRkSkEJToPE5NLk7xE21Vd6VcIZ5JzXoAWajgpNC2ISpTRJFFpqFVMRygclptJj0oOyTFKNrifXTBLIQYUYiFhlkIj9HndpOkhOe6rfAA0XFcENG1XULdz5tmJEcNzGsoisT9ColxardNYwWuIjtNY8HyEyMABbIM5bVeL-8b-suaWf8907_8GeY92JmfTE3ZyfPrjNXoEX3pPtjdou2uv9FurM3XindsTfwCIBhP2
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVgukAsoLzEVFB5wYKHMnISO4mXpWpVkFqxYKSysvy4Li0hGWUyhelX8MnYjmfoIFRgG904flzbx7nH5yL0wkieQUpUolThDyjMJNKoPKGlhQq0NDaEC45PiqMpfX_KTqNYtL8LsxG_DzwsCRcTn-N7Muhc30ZbBXOwe4S2picf9j6F5CmBXBWuvWWEkyQrynUE809lbOxBQap_Yyu6s2hmcvlN1vW1rebw_kDSmgeFQs8w-TJZ9Gqir37Tb_ynVmyjexFw4r3BQx6gW9A8RHevyRA-Qj-OA6MScEwhcYZlfdZ25_3nr3Pct3jW-WhOjx1WxOF3z9KVhTsv-uqHFc9-XT7ArcXuQJv07Xdn4paLzusWNG09x7IxWF612Cxhjj1DXkYWDn75rrn0yHdVyVeP0fTw4OP-URIzNSTaAYI-Ue4QmZuSp7lX3y-KUlfEmAoYlIyWHCCVJfHSclRntDSMqtRyxShUJLeVtvkTNGraBp4iXGopJfew1UrKgXFqcmOB5qYgYDI2RmQ1dkJHGXOfTaMWK77ahXCdLXxnC0KF6-wxer1-ZTZoeNxk_NY7xNrQy2-HB248RZzNglpZMaJ57hpC00o7mGrdSm0pZEWmZDVGdOVOIiKZAaG4os5v-vabtev9vaY7_2X9DI36bgHPHYTq1W6cPD8BlWYYAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+to+predict+the+catalytic+reduction+performance+of+eco-toxic+nitrophenols+and+azo+dyes+contaminants+%28Invited+Article%29&rft.jtitle=Alexandria+engineering+journal&rft.au=V.E.+Sathishkumar&rft.au=A.G.+Ramu&rft.au=Jaehyuk+Cho&rft.date=2023-06-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=72&rft.spage=673&rft.epage=693&rft_id=info:doi/10.1016%2Fj.aej.2023.04.007&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4fa850c934b1418c951f376f4e262ba8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon