Machine learning algorithms to predict the catalytic reduction performance of eco-toxic nitrophenols and azo dyes contaminants (Invited Article)
Removing hazardous substances like azo dyes and nitrophenols from drinking water is essential for maintaining human health since these substances occur naturally in the environment. This research study used machine learning techniques to estimate the catalytic reduction performance of environmentall...
Saved in:
| Published in | Alexandria engineering journal Vol. 72; pp. 673 - 693 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
01.06.2023
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1110-0168 2090-2670 |
| DOI | 10.1016/j.aej.2023.04.007 |
Cover
| Abstract | Removing hazardous substances like azo dyes and nitrophenols from drinking water is essential for maintaining human health since these substances occur naturally in the environment. This research study used machine learning techniques to estimate the catalytic reduction performance of environmentally hazardous nitrophenols and azodyes pollutants. The catalyst PdO-NiO was used to eliminate contaminants in the water, including 4-nitrophenol (4-NP), 2,4-dinitrophenol (DNP), 2,4,6-trinitrophenol (TNP), methylene blue (MB), Rhodamine B (RHB), and Methyl Orange (MO). We conducted the experiments at different timings, and machine learning algorithms, including Linear Regression (LR), Support Vector Machines (SVM), Gradient boosted machines (GBM), Random forest (RF), and XGBTree (XGB), were used to predict the catalytic activity. The performance of these algorithms was measured using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The results showed that the XGB algorithm performs best with NP and DNP. RF algorithm performs best with TNP, MB, and RHB, and the SVM algorithm performs best with MO. PdO-NiO bimetallic catalyst showed 98% reduction efficiency of azo compounds mixture within 8 min. Hence, we found PdO-NiO to be an efficient catalyst for real-site applications. |
|---|---|
| AbstractList | Removing hazardous substances like azo dyes and nitrophenols from drinking water is essential for maintaining human health since these substances occur naturally in the environment. This research study used machine learning techniques to estimate the catalytic reduction performance of environmentally hazardous nitrophenols and azodyes pollutants. The catalyst PdO-NiO was used to eliminate contaminants in the water, including 4-nitrophenol (4-NP), 2,4-dinitrophenol (DNP), 2,4,6-trinitrophenol (TNP), methylene blue (MB), Rhodamine B (RHB), and Methyl Orange (MO). We conducted the experiments at different timings, and machine learning algorithms, including Linear Regression (LR), Support Vector Machines (SVM), Gradient boosted machines (GBM), Random forest (RF), and XGBTree (XGB), were used to predict the catalytic activity. The performance of these algorithms was measured using Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE). The results showed that the XGB algorithm performs best with NP and DNP. RF algorithm performs best with TNP, MB, and RHB, and the SVM algorithm performs best with MO. PdO-NiO bimetallic catalyst showed 98% reduction efficiency of azo compounds mixture within 8 min. Hence, we found PdO-NiO to be an efficient catalyst for real-site applications. |
| Author | Ramu, A.G. Cho, Jaehyuk Sathishkumar, V.E. |
| Author_xml | – sequence: 1 givenname: V.E. surname: Sathishkumar fullname: Sathishkumar, V.E. organization: Department of Software Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea – sequence: 2 givenname: A.G. surname: Ramu fullname: Ramu, A.G. organization: Department of Chemical Engineering, Hongik University, Sejong, Republic of Korea – sequence: 3 givenname: Jaehyuk surname: Cho fullname: Cho, Jaehyuk email: chojh@jbnu.ac.kr organization: Department of Software Engineering, Jeonbuk National University, Jeonju-si, Jeollabuk-do, 54896, Republic of Korea |
| BookMark | eNqNkcFu3CAQhn1IpaRpHqA3ju3BLtjYYPUURW26UqpemjOahWEXywsWkLSbp8gjl62rHnqIygVp4PsG5n9dnfngsareMtowyoYPUwM4NS1tu4byhlJxVl0wxmhdDuV5dZXSRMvqxcjH4aJ6_gp67zySGSF653cE5l2ILu8PieRAlojG6UzyHomGDPMxO01K8UFnFzxZMNoQD-A1kmAJ6lDn8LNc8S7HsOzRhzkR8IbAUyDmiIno4DMcnAefE3m38Y8uoyHXsYhnfP-memVhTnj1Z7-s7j9_-n7zpb77dru5ub6rNadDrreMis6IkXVMDnIYhJbUGIk9ip6LEZGBoGPPJdctF6bnW2bHbc9R0s5KbbvLarN6TYBJLdEdIB5VAKd-F0LcKVifpLgF2VM9dkXCmdRjz2wnBsuxHdotyOJqV9eDX-D4A-b5r5BRdYpFTarEok6xKMpViaVAYoV0DClFtEq7DKeh5ghufpFk_5D_0-3jymCZ6aPDqJJ2WFIzLqLO5dPuBfoXBgu9Ww |
| CitedBy_id | crossref_primary_10_1016_j_jece_2025_115634 crossref_primary_10_1016_j_jorganchem_2024_123492 crossref_primary_10_1016_j_chemosphere_2024_142347 crossref_primary_10_1016_j_cis_2024_103281 crossref_primary_10_1016_j_ijbiomac_2024_134701 crossref_primary_10_1080_10934529_2024_2309102 crossref_primary_10_1016_j_aej_2024_09_116 crossref_primary_10_1016_j_ces_2025_121413 crossref_primary_10_1038_s41598_024_70989_0 crossref_primary_10_1016_j_jallcom_2023_172994 crossref_primary_10_1016_j_ijbiomac_2024_137965 crossref_primary_10_1080_15422119_2024_2437408 crossref_primary_10_3390_rs16244687 crossref_primary_10_1016_j_cattod_2024_114986 crossref_primary_10_1039_D4RA00711E crossref_primary_10_1016_j_materresbull_2024_113061 crossref_primary_10_3390_f14091782 |
| Cites_doi | 10.1021/acsami.9b14792 10.1246/bcsj.20170046 10.18637/jss.v028.i05 10.1016/j.pecs.2021.100904 10.1080/10618600.1996.10474713 10.1039/C6RA23621A 10.1016/j.molliq.2019.111108 10.1039/D0CP01518K 10.1016/j.envpol.2020.116063 10.1016/j.fct.2022.112972 10.1007/s11749-016-0481-7 10.1021/jp4041474 10.1145/2939672.2939785 10.1016/j.jtice.2021.11.001 10.1016/j.apcatb.2018.11.073 10.1016/j.jece.2020.104401 10.3390/biology11121732 10.5121/ijdms.2019.11101 10.1021/la305068p 10.1016/j.jhazmat.2020.123870 10.1038/s41598-021-01989-7 10.1039/c2cs35029g 10.1038/nbt1206-1565 10.3389/fnbot.2013.00021 10.1016/j.envpol.2020.115498 10.1021/jp4079234 10.1016/j.chemosphere.2020.129475 10.1021/jp101125j 10.1016/j.ultsonch.2021.105485 10.1016/j.envint.2022.107184 10.3390/app11093758 10.3390/su14095256 10.1002/jcc.24764 10.1016/j.ecoenv.2019.04.035 10.1016/j.jece.2022.108449 10.1016/j.jtice.2022.104479 10.1063/1.5054523 |
| ContentType | Journal Article |
| Copyright | 2023 Faculty of Engineering, Alexandria University |
| Copyright_xml | – notice: 2023 Faculty of Engineering, Alexandria University |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1016/j.aej.2023.04.007 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 693 |
| ExternalDocumentID | oai_doaj_org_article_4fa850c934b1418c951f376f4e262ba8 10.1016/j.aej.2023.04.007 10_1016_j_aej_2023_04_007 S1110016823002806 |
| GroupedDBID | 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS FDB GROUPED_DOAJ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P ROL SES SSZ XH2 --K AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION EJD HZ~ IPNFZ RIG ADTOC UNPAY |
| ID | FETCH-LOGICAL-c406t-b1073d79131868667c80dd8e5e75479ee1a7095484c247d54b1f9b54e803f8cf3 |
| IEDL.DBID | DOA |
| ISSN | 1110-0168 2090-2670 |
| IngestDate | Fri Oct 03 12:39:34 EDT 2025 Tue Aug 19 22:23:47 EDT 2025 Thu Apr 24 22:55:35 EDT 2025 Wed Oct 29 21:15:51 EDT 2025 Thu Jul 20 20:09:23 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Agricultural waste PdO-NiO Wastewater treatment Dye reduction Machine learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-b1073d79131868667c80dd8e5e75479ee1a7095484c247d54b1f9b54e803f8cf3 |
| OpenAccessLink | https://doaj.org/article/4fa850c934b1418c951f376f4e262ba8 |
| PageCount | 21 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4fa850c934b1418c951f376f4e262ba8 unpaywall_primary_10_1016_j_aej_2023_04_007 crossref_citationtrail_10_1016_j_aej_2023_04_007 crossref_primary_10_1016_j_aej_2023_04_007 elsevier_sciencedirect_doi_10_1016_j_aej_2023_04_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 2023-06-00 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Alexandria engineering journal |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Ramu, Salla, Sivaraman Chandrasekaran, Silambarasan, Seo, Yun, Choi (b0035) 2021; 270 2014, 020119. AIP Publishing LLC, (2018). Sahoo, Prasanta Kumar, Dinbandhu Thakur, D. Bahadur, and Bharati Panigrahy. Highly efficient and simultaneous catalytic Reduction of multiple dyes using recyclable RGO/Co dendritic nanocomposites as wastewater treatment catalysts. RSC advances 6, 108 106723-106731 (2016). Dong, Xue, Mu, Wang, Xiao, Dai, Wang, Huang, Qian, Chen (b0130) 2021; 73 Das, Sypu, Paumo, Bhaumik, Maharaj, Maity (b0030) 2019; 244 Gopal, Song, Yang, Lkhagvaa, Chandrasekaran, Choi (b0020) 2020; 267 Yağ, Altan (b0120) 2022; 11 Herves, Pérez-Lorenzo, Liz-Marzán, Dzubiella, Lu, Ballauff (b0065) 2016; 41 Wu, Yuan, Zhong, Wang, Zeng, Chen, Wang, Shao (b0040) 2016; 6 Zhang, Xintai, Ma, Aslam Khan, Wang, Maloletnev, Yang (b0250) 2021; 403 Akamatsu, Komatsu, Matsuda, Mori, Nakanishi, Sakai, Hill, Ariga (b0025) 2017; 90 Aghbashlo, Peng, Tabatabaei, Kalogirou, Soltanian, Hosseinzadeh-Bandbafha, Lam (b0235) 2021; 85 Johnson, Makis, Marvin, Rodenbusch, Stevenson (b0080) 2013; 117 Mahmoud, Garlyyev, El-Sayed (b0085) 2013; 117 Kuhn (b0205) 2008; 28 Wang, Y., & Ni, X. S. A XGBoost risk model via feature selection and Bayesian hyper-parameter optimization. arXiv preprint arXiv:1901.08433, (2019). Lin, Gulbagca, Aygun, Tiri, Xia, Van Le, Gur, Sen, Vasseghian (b0125) 2022; 163 Noble (b0155) 2006; 24 Probst, Wright, Boulesteix (b0195) 2019; 9 Al-Jamimi, BinMakhashen, Saleh (b0230) 2022; 1–12 Zhang, Zheng, He (b0110) 2022; 138 Dondapati, Chen (b0135) 2020; 22 Kim, Park (b0190) 2022; 14 Ramu, Aruna Kumari, Elshikh, Alkhamis, Alrefaei, Choi (b0010) 2021; 271 Kuhn (b0180) 2008; 28 Goh, Hodas, Vishnu (b0210) 2017; 38 Lee, Kwon, Kim, Keel, Yoon, Lee (b0240) 2021; 11 Wu, D'Ambrosi, Ammann, Stadnicka-Michalak, Schirmer, Baity-Jesi (b0090) 2022; 163 Natekin, Knoll (b0160) 2013; 7 Kassem, Abdelhamid, Fouad, Ibrahim (b0050) 2021; 9 Kooh, Thotagamuge, Chau, Mahadi, Lim (b0100) 2022; 132 Zhu, Zhu, Xia, Yunlong, Hua, Xie (b0005) 2016; 6 Han, S., Qubo, C., & Meng, H. Parameter selection in SVM with RBF kernel function. In World Automation Congress 2012 (pp. 1-4). IEEE. Munawaroh, H., P. L. Sari, S. Wahyuningsih, and A. H. Ramelan. The photocatalytic degradation of Methylene blue using graphene oxide (GO)/ZnO nano drums. In Seber, Lee (b0150) 2003; Vol. 330 Zeng, Yuan, Huang, Cheng (b0225) 2019; 11 Ramu, Choi (b0055) 2021; 11 Ihaka, Gentleman (b0140) 1996; 5 Benesty, Chen, Huang, Cohen (b0145) 2009 Da, Ren, He, Gong, Chen (b0105) 2022; 10 Fadillah, Saleh, Wahyuningsih (b0045) 2019; 289 Abbasi, Moghaddam, Kowsari (b0115) 2022; 134588 Feurer, Hutter (b0175) 2019 Baruah, Gabriel, Akbashev, Booher (b0075) 2013; 29 A random forest-guided tour. Test, 25(2), 197-227, (2016). Biau, G., & Scornet, E. Ai, Wu, Zhang, Qi, Zhao, Zhao, Zhao, Liu (b0095) 2019; 179 Chen, T., & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794), (2016, August). steady-state gamma radiolysis experiments Radiat (b0015) 2003; 67 Wunder, Polzer, Lu, Mei, Ballauff (b0070) 2010; 114 Kuhn (10.1016/j.aej.2023.04.007_b0180) 2008; 28 Probst (10.1016/j.aej.2023.04.007_b0195) 2019; 9 Feurer (10.1016/j.aej.2023.04.007_b0175) 2019 Zhu (10.1016/j.aej.2023.04.007_b0005) 2016; 6 Zeng (10.1016/j.aej.2023.04.007_b0225) 2019; 11 steady-state gamma radiolysis experiments Radiat (10.1016/j.aej.2023.04.007_b0015) 2003; 67 Aghbashlo (10.1016/j.aej.2023.04.007_b0235) 2021; 85 Kooh (10.1016/j.aej.2023.04.007_b0100) 2022; 132 Da (10.1016/j.aej.2023.04.007_b0105) 2022; 10 Abbasi (10.1016/j.aej.2023.04.007_b0115) 2022; 134588 Mahmoud (10.1016/j.aej.2023.04.007_b0085) 2013; 117 Das (10.1016/j.aej.2023.04.007_b0030) 2019; 244 Benesty (10.1016/j.aej.2023.04.007_b0145) 2009 Wu (10.1016/j.aej.2023.04.007_b0090) 2022; 163 Yağ (10.1016/j.aej.2023.04.007_b0120) 2022; 11 10.1016/j.aej.2023.04.007_b0060 10.1016/j.aej.2023.04.007_b0185 Zhang (10.1016/j.aej.2023.04.007_b0250) 2021; 403 10.1016/j.aej.2023.04.007_b0165 Ramu (10.1016/j.aej.2023.04.007_b0010) 2021; 271 Ai (10.1016/j.aej.2023.04.007_b0095) 2019; 179 Ihaka (10.1016/j.aej.2023.04.007_b0140) 1996; 5 10.1016/j.aej.2023.04.007_b0200 Lee (10.1016/j.aej.2023.04.007_b0240) 2021; 11 10.1016/j.aej.2023.04.007_b0245 Noble (10.1016/j.aej.2023.04.007_b0155) 2006; 24 Gopal (10.1016/j.aej.2023.04.007_b0020) 2020; 267 Dondapati (10.1016/j.aej.2023.04.007_b0135) 2020; 22 Kim (10.1016/j.aej.2023.04.007_b0190) 2022; 14 Johnson (10.1016/j.aej.2023.04.007_b0080) 2013; 117 Akamatsu (10.1016/j.aej.2023.04.007_b0025) 2017; 90 Kuhn (10.1016/j.aej.2023.04.007_b0205) 2008; 28 Herves (10.1016/j.aej.2023.04.007_b0065) 2016; 41 Dong (10.1016/j.aej.2023.04.007_b0130) 2021; 73 Fadillah (10.1016/j.aej.2023.04.007_b0045) 2019; 289 Zhang (10.1016/j.aej.2023.04.007_b0110) 2022; 138 Kassem (10.1016/j.aej.2023.04.007_b0050) 2021; 9 Ramu (10.1016/j.aej.2023.04.007_b0055) 2021; 11 Natekin (10.1016/j.aej.2023.04.007_b0160) 2013; 7 10.1016/j.aej.2023.04.007_b0170 Goh (10.1016/j.aej.2023.04.007_b0210) 2017; 38 Ramu (10.1016/j.aej.2023.04.007_b0035) 2021; 270 Al-Jamimi (10.1016/j.aej.2023.04.007_b0230) 2022; 1–12 Wunder (10.1016/j.aej.2023.04.007_b0070) 2010; 114 Baruah (10.1016/j.aej.2023.04.007_b0075) 2013; 29 Seber (10.1016/j.aej.2023.04.007_b0150) 2003; Vol. 330 Lin (10.1016/j.aej.2023.04.007_b0125) 2022; 163 Wu (10.1016/j.aej.2023.04.007_b0040) 2016; 6 |
| References_xml | – volume: 28 start-page: 1 year: 2008 end-page: 26 ident: b0180 article-title: Caret package publication-title: Journal of statistical software – volume: 163 year: 2022 ident: b0090 article-title: Predicting chemical hazard across taxa through machine learning publication-title: Environment International – volume: 11 start-page: 40099 year: 2019 end-page: 40106 ident: b0225 article-title: Accelerated design of catalytic water-cleaning nanomotors via machine learning publication-title: ACS applied materials & interfaces – volume: 117 start-page: 21886 year: 2013 end-page: 21893 ident: b0085 article-title: Determining the Mechanism of Solution Metallic Nanocatalysis with Solid and Hollow Nanoparticles: Homogeneous or Heterogeneous publication-title: J. Phys. Chem. C – reference: Sahoo, Prasanta Kumar, Dinbandhu Thakur, D. Bahadur, and Bharati Panigrahy. Highly efficient and simultaneous catalytic Reduction of multiple dyes using recyclable RGO/Co dendritic nanocomposites as wastewater treatment catalysts. RSC advances 6, 108 106723-106731 (2016). – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: b0005 article-title: Lanthanide metal-organic frameworks with six-coordinated ln (iii) ions, free functional organic sites for Removals, and extensive catalytic activities publication-title: Scientific reports – volume: 163 year: 2022 ident: b0125 article-title: Phyto-mediated synthesis of nanoparticles and their applications on hydrogen generation on NaBH publication-title: Food and Chemical Toxicology – volume: 5 start-page: 299 year: 1996 end-page: 314 ident: b0140 article-title: R: a language for data analysis and graphics publication-title: Journal of computational and graphical statistics – reference: Chen, T., & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785-794), (2016, August). – volume: 29 start-page: 4225 year: 2013 end-page: 4234 ident: b0075 article-title: Facile Synthesis of Silver Nanoparticles Stabilized by Cationic Polynorbornenes and Their Catalytic Activity in 4-Nitrophenol Reduction publication-title: Langmuir – volume: 24 start-page: 1565 year: 2006 end-page: 1567 ident: b0155 article-title: What is a support vector machine? publication-title: Nature Biotechnology – volume: 7 start-page: 21 year: 2013 ident: b0160 article-title: Gradient boosting machines, a tutorial publication-title: Frontiers in neurorobotics – volume: 11 start-page: 1732 year: 2022 ident: b0120 article-title: Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments publication-title: Biology – volume: 41 start-page: 5577 year: 2016 end-page: 5587 ident: b0065 article-title: Catalysis by metallic nanoparticles in aqueous solution: model reactions publication-title: Chemical Society Reviews – start-page: 1 year: 2009 end-page: 4 ident: b0145 article-title: Pearson correlation coefficient publication-title: Noise reduction in speech processing – volume: 14 start-page: 5256 year: 2022 ident: b0190 article-title: Predicting Determinants of Lifelong Learning Intention Using Gradient Boosting Machine (GBM) with Grid Search publication-title: Sustainability – volume: 22 start-page: 8878 year: 2020 end-page: 8888 ident: b0135 article-title: Quantitative structure–property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning publication-title: Physical Chemistry Chemical Physics – volume: 85 year: 2021 ident: b0235 article-title: Machine learning technology in biodiesel research: A review publication-title: Progress in Energy and Combustion Science – volume: 289 year: 2019 ident: b0045 article-title: Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO publication-title: Journal of Molecular Liquids – volume: 10 year: 2022 ident: b0105 article-title: Prediction of uranium adsorption capacity on biochar by machine learning methods publication-title: Journal of Environmental Chemical Engineering – start-page: 3 year: 2019 end-page: 33 ident: b0175 article-title: Hyperparameter optimization publication-title: Automated machine learning – volume: 6 start-page: 1 year: 2016 end-page: 13 ident: b0040 article-title: Enhanced adsorptive removal of p-nitrophenol from water by aluminum-metal–organic framework/reduced graphene oxide composite publication-title: Scientific reports – reference: Munawaroh, H., P. L. Sari, S. Wahyuningsih, and A. H. Ramelan. The photocatalytic degradation of Methylene blue using graphene oxide (GO)/ZnO nano drums. In – volume: 73 year: 2021 ident: b0130 article-title: Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning publication-title: Ultrasonics Sonochemistry – volume: 403 year: 2021 ident: b0250 article-title: Promotion effects of halloysite nanotubes on the catalytic activity of Co publication-title: Journal of Hazardous Materials – volume: 134588 year: 2022 ident: b0115 article-title: A systematic and critical review on the development of machine learning based-ensemble models for prediction of adsorption process efficiency publication-title: Journal of Cleaner Production – volume: 67 start-page: 531 year: 2003 end-page: 534 ident: b0015 article-title: D. Şolpan, O. Güven, E. Takács, L. Wojnárovits, K. Dajka High-energy irradiation treatment of aqueous solutions of azo dyes publication-title: Phys. Chem. – volume: 11 start-page: 22699 year: 2021 ident: b0055 article-title: Highly efficient and simultaneous catalytic Reduction of multiple toxic dyes and nitrophenols wastewater using highly active bimetallic PdO–NiO nanocomposite publication-title: Scientific Reports – volume: 114 start-page: 8814 year: 2010 end-page: 8820 ident: b0070 article-title: Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes publication-title: J. Phys. Chem. C – volume: 90 start-page: 678 year: 2017 end-page: 683 ident: b0025 article-title: Using a nano-optode, visual detection of cesium ions in a domestic water supply or seawater publication-title: Bulletin of the Chemical Society of Japan – volume: 38 start-page: 1291 year: 2017 end-page: 1307 ident: b0210 article-title: Deep learning for computational chemistry publication-title: Journal of computational chemistry – volume: 9 year: 2019 ident: b0195 article-title: Hyperparameters and tuning strategies for a random forest publication-title: Wiley Interdisciplinary Reviews: data mining and knowledge discovery – volume: 132 year: 2022 ident: b0100 article-title: Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of Methylene blue publication-title: Journal of the Taiwan Institute of Chemical Engineers – reference: A random forest-guided tour. Test, 25(2), 197-227, (2016). Biau, G., & Scornet, E. – volume: 9 year: 2021 ident: b0050 article-title: Catalytic Reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@ C composite publication-title: Journal of Environmental Chemical Engineering – volume: 1–12 year: 2022 ident: b0230 article-title: Artificial intelligence approach for modeling petroleum refinery catalytic desulfurization process publication-title: Neural Computing and Applications – volume: 267 year: 2020 ident: b0020 article-title: Synthesis of hierarchically structured ɤ-Fe publication-title: Environmental Pollution – volume: 271 year: 2021 ident: b0010 article-title: A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in an aqueous medium publication-title: Chemosphere – volume: 117 start-page: 22644 year: 2013 end-page: 22651 ident: b0080 article-title: Size-Dependent Hydrogenation of p-Nitrophenol with Pd Nanoparticles Synthesized with Poly(amido)amine Dendrimer Templates publication-title: J. Phys. Chem. C – volume: 179 start-page: 71 year: 2019 end-page: 78 ident: b0095 article-title: QSAR modeling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods publication-title: Ecotoxicology and environmental safety – volume: 244 start-page: 546 year: 2019 end-page: 558 ident: b0030 article-title: Silver decorated magnetic nanocomposite (Fe publication-title: Applied Catalysis B: Environmental – reference: Wang, Y., & Ni, X. S. A XGBoost risk model via feature selection and Bayesian hyper-parameter optimization. arXiv preprint arXiv:1901.08433, (2019). – volume: 11 start-page: 3758 year: 2021 ident: b0240 article-title: Machine Learning Applied to the NOx Prediction of Diesel Vehicle under Real Driving Cycle publication-title: Applied Sciences – reference: , 2014, 020119. AIP Publishing LLC, (2018). – reference: Han, S., Qubo, C., & Meng, H. Parameter selection in SVM with RBF kernel function. In World Automation Congress 2012 (pp. 1-4). IEEE. – volume: 138 year: 2022 ident: b0110 article-title: Machine-learning-based prediction of hydrogen adsorption capacity at varied temperatures and pressures for MOFs adsorbents publication-title: Journal of the Taiwan Institute of Chemical Engineers – volume: Vol. 330 year: 2003 ident: b0150 publication-title: Linear regression analysis – volume: 28 start-page: 1 year: 2008 end-page: 26 ident: b0205 article-title: Building predictive models in R using the caret package publication-title: Journal of statistical software – volume: 270 year: 2021 ident: b0035 article-title: A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants publication-title: Environmental Pollution – volume: 11 start-page: 40099 issue: 43 year: 2019 ident: 10.1016/j.aej.2023.04.007_b0225 article-title: Accelerated design of catalytic water-cleaning nanomotors via machine learning publication-title: ACS applied materials & interfaces doi: 10.1021/acsami.9b14792 – volume: 90 start-page: 678 year: 2017 ident: 10.1016/j.aej.2023.04.007_b0025 article-title: Using a nano-optode, visual detection of cesium ions in a domestic water supply or seawater publication-title: Bulletin of the Chemical Society of Japan doi: 10.1246/bcsj.20170046 – volume: 28 start-page: 1 year: 2008 ident: 10.1016/j.aej.2023.04.007_b0205 article-title: Building predictive models in R using the caret package publication-title: Journal of statistical software doi: 10.18637/jss.v028.i05 – volume: 85 year: 2021 ident: 10.1016/j.aej.2023.04.007_b0235 article-title: Machine learning technology in biodiesel research: A review publication-title: Progress in Energy and Combustion Science doi: 10.1016/j.pecs.2021.100904 – volume: 5 start-page: 299 issue: 3 year: 1996 ident: 10.1016/j.aej.2023.04.007_b0140 article-title: R: a language for data analysis and graphics publication-title: Journal of computational and graphical statistics doi: 10.1080/10618600.1996.10474713 – ident: 10.1016/j.aej.2023.04.007_b0245 doi: 10.1039/C6RA23621A – volume: 289 year: 2019 ident: 10.1016/j.aej.2023.04.007_b0045 article-title: Enhanced electrochemical degradation of 4-Nitrophenol molecules using novel Ti/TiO2-NiO electrodes publication-title: Journal of Molecular Liquids doi: 10.1016/j.molliq.2019.111108 – volume: 22 start-page: 8878 issue: 16 year: 2020 ident: 10.1016/j.aej.2023.04.007_b0135 article-title: Quantitative structure–property relationship of the photoelectrochemical oxidation of phenolic pollutants at modified nanoporous titanium oxide using supervised machine learning publication-title: Physical Chemistry Chemical Physics doi: 10.1039/D0CP01518K – volume: 28 start-page: 1 issue: 5 year: 2008 ident: 10.1016/j.aej.2023.04.007_b0180 article-title: Caret package publication-title: Journal of statistical software – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.aej.2023.04.007_b0005 article-title: Lanthanide metal-organic frameworks with six-coordinated ln (iii) ions, free functional organic sites for Removals, and extensive catalytic activities publication-title: Scientific reports – volume: 270 year: 2021 ident: 10.1016/j.aej.2023.04.007_b0035 article-title: A facile synthesis of metal ferrites and their catalytic removal of toxic nitro-organic pollutants publication-title: Environmental Pollution doi: 10.1016/j.envpol.2020.116063 – volume: 1–12 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0230 article-title: Artificial intelligence approach for modeling petroleum refinery catalytic desulfurization process publication-title: Neural Computing and Applications – volume: 163 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0125 article-title: Phyto-mediated synthesis of nanoparticles and their applications on hydrogen generation on NaBH4, biological activities and photodegradation on azo dyes: Development of machine learning model publication-title: Food and Chemical Toxicology doi: 10.1016/j.fct.2022.112972 – ident: 10.1016/j.aej.2023.04.007_b0165 doi: 10.1007/s11749-016-0481-7 – volume: 117 start-page: 22644 year: 2013 ident: 10.1016/j.aej.2023.04.007_b0080 article-title: Size-Dependent Hydrogenation of p-Nitrophenol with Pd Nanoparticles Synthesized with Poly(amido)amine Dendrimer Templates publication-title: J. Phys. Chem. C doi: 10.1021/jp4041474 – ident: 10.1016/j.aej.2023.04.007_b0170 doi: 10.1145/2939672.2939785 – volume: 132 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0100 article-title: Machine learning approaches to predict adsorption capacity of Azolla pinnata in the removal of Methylene blue publication-title: Journal of the Taiwan Institute of Chemical Engineers doi: 10.1016/j.jtice.2021.11.001 – volume: 244 start-page: 546 year: 2019 ident: 10.1016/j.aej.2023.04.007_b0030 article-title: Silver decorated magnetic nanocomposite (Fe3O4@ PPy-MAA/Ag) as a highly active catalyst towards Reduction of 4-nitrophenol and toxic organic dyes publication-title: Applied Catalysis B: Environmental doi: 10.1016/j.apcatb.2018.11.073 – volume: 9 issue: 1 year: 2021 ident: 10.1016/j.aej.2023.04.007_b0050 article-title: Catalytic Reduction of 4-nitrophenol using copper terephthalate frameworks and CuO@ C composite publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2020.104401 – volume: 11 start-page: 1732 issue: 12 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0120 article-title: Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments publication-title: Biology doi: 10.3390/biology11121732 – ident: 10.1016/j.aej.2023.04.007_b0200 doi: 10.5121/ijdms.2019.11101 – volume: Vol. 330 year: 2003 ident: 10.1016/j.aej.2023.04.007_b0150 – volume: 29 start-page: 4225 year: 2013 ident: 10.1016/j.aej.2023.04.007_b0075 article-title: Facile Synthesis of Silver Nanoparticles Stabilized by Cationic Polynorbornenes and Their Catalytic Activity in 4-Nitrophenol Reduction publication-title: Langmuir doi: 10.1021/la305068p – start-page: 1 year: 2009 ident: 10.1016/j.aej.2023.04.007_b0145 article-title: Pearson correlation coefficient – volume: 9 issue: 3 year: 2019 ident: 10.1016/j.aej.2023.04.007_b0195 article-title: Hyperparameters and tuning strategies for a random forest publication-title: Wiley Interdisciplinary Reviews: data mining and knowledge discovery – volume: 403 year: 2021 ident: 10.1016/j.aej.2023.04.007_b0250 article-title: Promotion effects of halloysite nanotubes on the catalytic activity of Co3O4 nanoparticles toward Reduction of 4-nitrophenol and organic dyes publication-title: Journal of Hazardous Materials doi: 10.1016/j.jhazmat.2020.123870 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.aej.2023.04.007_b0040 article-title: Enhanced adsorptive removal of p-nitrophenol from water by aluminum-metal–organic framework/reduced graphene oxide composite publication-title: Scientific reports – volume: 134588 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0115 article-title: A systematic and critical review on the development of machine learning based-ensemble models for prediction of adsorption process efficiency publication-title: Journal of Cleaner Production – volume: 11 start-page: 22699 issue: 1 year: 2021 ident: 10.1016/j.aej.2023.04.007_b0055 article-title: Highly efficient and simultaneous catalytic Reduction of multiple toxic dyes and nitrophenols wastewater using highly active bimetallic PdO–NiO nanocomposite publication-title: Scientific Reports doi: 10.1038/s41598-021-01989-7 – volume: 41 start-page: 5577 issue: 17 year: 2016 ident: 10.1016/j.aej.2023.04.007_b0065 article-title: Catalysis by metallic nanoparticles in aqueous solution: model reactions publication-title: Chemical Society Reviews doi: 10.1039/c2cs35029g – volume: 24 start-page: 1565 issue: 12 year: 2006 ident: 10.1016/j.aej.2023.04.007_b0155 article-title: What is a support vector machine? publication-title: Nature Biotechnology doi: 10.1038/nbt1206-1565 – volume: 7 start-page: 21 year: 2013 ident: 10.1016/j.aej.2023.04.007_b0160 article-title: Gradient boosting machines, a tutorial publication-title: Frontiers in neurorobotics doi: 10.3389/fnbot.2013.00021 – volume: 267 year: 2020 ident: 10.1016/j.aej.2023.04.007_b0020 article-title: Synthesis of hierarchically structured ɤ-Fe2O3–PPy nanocomposite as an effective adsorbent for cationic dye removal from wastewater publication-title: Environmental Pollution doi: 10.1016/j.envpol.2020.115498 – volume: 117 start-page: 21886 year: 2013 ident: 10.1016/j.aej.2023.04.007_b0085 article-title: Determining the Mechanism of Solution Metallic Nanocatalysis with Solid and Hollow Nanoparticles: Homogeneous or Heterogeneous publication-title: J. Phys. Chem. C doi: 10.1021/jp4079234 – volume: 271 year: 2021 ident: 10.1016/j.aej.2023.04.007_b0010 article-title: A facile and green synthesis of CuO/NiO nanoparticles and their removal activity of toxic nitro compounds in an aqueous medium publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.129475 – volume: 114 start-page: 8814 year: 2010 ident: 10.1016/j.aej.2023.04.007_b0070 article-title: Kinetic Analysis of Catalytic Reduction of 4-Nitrophenol by Metallic Nanoparticles Immobilized in Spherical Polyelectrolyte Brushes publication-title: J. Phys. Chem. C doi: 10.1021/jp101125j – start-page: 3 year: 2019 ident: 10.1016/j.aej.2023.04.007_b0175 article-title: Hyperparameter optimization – volume: 73 year: 2021 ident: 10.1016/j.aej.2023.04.007_b0130 article-title: Synthesis of monodisperse spherical AgNPs by ultrasound-intensified Lee-Meisel method, and quick evaluation via machine learning publication-title: Ultrasonics Sonochemistry doi: 10.1016/j.ultsonch.2021.105485 – volume: 163 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0090 article-title: Predicting chemical hazard across taxa through machine learning publication-title: Environment International doi: 10.1016/j.envint.2022.107184 – ident: 10.1016/j.aej.2023.04.007_b0185 – volume: 11 start-page: 3758 issue: 9 year: 2021 ident: 10.1016/j.aej.2023.04.007_b0240 article-title: Machine Learning Applied to the NOx Prediction of Diesel Vehicle under Real Driving Cycle publication-title: Applied Sciences doi: 10.3390/app11093758 – volume: 14 start-page: 5256 issue: 9 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0190 article-title: Predicting Determinants of Lifelong Learning Intention Using Gradient Boosting Machine (GBM) with Grid Search publication-title: Sustainability doi: 10.3390/su14095256 – volume: 38 start-page: 1291 issue: 16 year: 2017 ident: 10.1016/j.aej.2023.04.007_b0210 article-title: Deep learning for computational chemistry publication-title: Journal of computational chemistry doi: 10.1002/jcc.24764 – volume: 67 start-page: 531 year: 2003 ident: 10.1016/j.aej.2023.04.007_b0015 article-title: D. Şolpan, O. Güven, E. Takács, L. Wojnárovits, K. Dajka High-energy irradiation treatment of aqueous solutions of azo dyes publication-title: Phys. Chem. – volume: 179 start-page: 71 year: 2019 ident: 10.1016/j.aej.2023.04.007_b0095 article-title: QSAR modeling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods publication-title: Ecotoxicology and environmental safety doi: 10.1016/j.ecoenv.2019.04.035 – volume: 10 issue: 5 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0105 article-title: Prediction of uranium adsorption capacity on biochar by machine learning methods publication-title: Journal of Environmental Chemical Engineering doi: 10.1016/j.jece.2022.108449 – volume: 138 year: 2022 ident: 10.1016/j.aej.2023.04.007_b0110 article-title: Machine-learning-based prediction of hydrogen adsorption capacity at varied temperatures and pressures for MOFs adsorbents publication-title: Journal of the Taiwan Institute of Chemical Engineers doi: 10.1016/j.jtice.2022.104479 – ident: 10.1016/j.aej.2023.04.007_b0060 doi: 10.1063/1.5054523 |
| SSID | ssj0000579496 |
| Score | 2.38334 |
| Snippet | Removing hazardous substances like azo dyes and nitrophenols from drinking water is essential for maintaining human health since these substances occur... |
| SourceID | doaj unpaywall crossref elsevier |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 673 |
| SubjectTerms | Agricultural waste Dye reduction Machine learning PdO-NiO Wastewater treatment |
| SummonAdditionalLinks | – databaseName: ScienceDirect Free and Delayed Access Journal dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqXoAD4imWl3zgwEPpJrGdOEdaUbVI5USlvVl-LlulSZRNaZdfwU_G4zhL91IkjrHGj3jG47Fn_A1C74yscpulKlGqgAMKM4k0iiS0dJZbLY0L7oKzb8XJOf26YIs9dDS9hYGwyqj7R50etHUsmcfZnHer1dyvQ8APKsBTFPyDXg8TyiF9w-nicHvPAo8taUjTBfQJVJicmyHMS9qLA0ghfjDCaO9sTwHFf2eXunfVdHJzLev61i50_Ag9jOYj_jyO8DHas80T9OAWqOBT9PssxEdaHBNCLLGsl22_Gn5crvHQ4q4H38yAveWHw-XNxreFe4BwBSbh7u9TAtw67I-nydDeeBK_-HtAIWjaeo1lY7D81WKzsWsM8e4yxtTg96fNT7Bjp0F-eIbOj798PzpJYt6FRPvtfUiUPxISU1YZASz9oig1T43hltmS0bKyNpNlCkBxVOe0NIyqzFWKUctT4rh25Dnab9rGvkC41FLKCoxQJ2llWUUNMc5SYorUmpzNUDpNt9ARlBxyY9Riij67EJ5DAjgkUio8h2bo47ZKNyJy3EV8CDzcEgKYdiho-6WI0iSok5yluiL-R2jGtTc6nde7jtq8yJXkM0QnCRA7sumbWt3V96ettPx7pC__r5NX6D58jcFrr9H-0F_ZN95MGtTbsA7-AL5jENA priority: 102 providerName: Elsevier – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVgukAsoLzEVFB5wYKHMnISO4mXpWpVkFqxYKSysvy4Li0hGWUyhelX8MnYjmfoIFRgG904flzbx7nH5yL0wkieQUpUolThDyjMJNKoPKGlhQq0NDaEC45PiqMpfX_KTqNYtL8LsxG_DzwsCRcTn-N7Muhc30ZbBXOwe4S2picf9j6F5CmBXBWuvWWEkyQrynUE809lbOxBQap_Yyu6s2hmcvlN1vW1rebw_kDSmgeFQs8w-TJZ9Gqir37Tb_ynVmyjexFw4r3BQx6gW9A8RHevyRA-Qj-OA6MScEwhcYZlfdZ25_3nr3Pct3jW-WhOjx1WxOF3z9KVhTsv-uqHFc9-XT7ArcXuQJv07Xdn4paLzusWNG09x7IxWF612Cxhjj1DXkYWDn75rrn0yHdVyVeP0fTw4OP-URIzNSTaAYI-Ue4QmZuSp7lX3y-KUlfEmAoYlIyWHCCVJfHSclRntDSMqtRyxShUJLeVtvkTNGraBp4iXGopJfew1UrKgXFqcmOB5qYgYDI2RmQ1dkJHGXOfTaMWK77ahXCdLXxnC0KF6-wxer1-ZTZoeNxk_NY7xNrQy2-HB248RZzNglpZMaJ57hpC00o7mGrdSm0pZEWmZDVGdOVOIiKZAaG4os5v-vabtev9vaY7_2X9DI36bgHPHYTq1W6cPD8BlWYYAw priority: 102 providerName: Unpaywall |
| Title | Machine learning algorithms to predict the catalytic reduction performance of eco-toxic nitrophenols and azo dyes contaminants (Invited Article) |
| URI | https://dx.doi.org/10.1016/j.aej.2023.04.007 https://doi.org/10.1016/j.aej.2023.04.007 https://doaj.org/article/4fa850c934b1418c951f376f4e262ba8 |
| UnpaywallVersion | publishedVersion |
| Volume | 72 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1110-0168 databaseCode: KQ8 dateStart: 20101201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0000579496 providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Open Access Full Text issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal issn: 1110-0168 databaseCode: IXB dateStart: 20101201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000579496 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1110-0168 databaseCode: AKRWK dateStart: 20101201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000579496 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQewAOVXmJbaHygQMPpTiJndjHLaJqqVohxIrlZPlZqNJktZsCy6_gJzN2kmV7aS9ccrAcZ-SZ0czEn79B6IVVInMp0YnWRShQmE2U1XlCS--4M8r6eFxwelYcTeiHKZuutfoKmLCOHrjbuLfUK86IETnVKU25gYzAg1N46rIi0ype8yVcrBVTHas32FlszgW-HJBXBR-ONCO4S7mL_dA4fL8jz74WlCJ3_7XYdPeqnqnlT1VVa7HncBtt9UkjHnfCPkB3XP0Q3V-jEnyE_pxGVKTDfRuIc6yq8wYq_2-XC9w2eDYPJzIthnwPx182S1gLzwNxa1ANnv27QIAbj6EoTdrmF0wBl58H7oG6qRZY1Rar3w22S7fAAeWueiQNfnlc_wjZ6yDkq8docvj-87ujpO-2kBgI6m2ioRDMbSnSPDDoF0VpOLGWO-ZKRkvhXKpKEujhqMloaRnowwvNqOMk99z4_AnaqJvaPUW4NEopEVJPr6hwTFCbW-9obgvibMZGiAzbLU1PRR46YlRywJxdSNCQDBqShErQ0Ai9Xr0y63g4bpp8EHS4mhgotOMAGJbsDUveZlgjRAcLkH020mUZsNT3m779ZmUtt0u68z8k3UX3wpIdgO0Z2mjnV-45pEqt3kOb45NPX072onfA83h6AGOTs4_jr38Bs9UUvQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPVAOVZ_q0pcPPfShsHnYeRwLKlpalhNIe7P83C4KSZQNtMuv4CfX4zhb9kKlXh2_4hmPx56ZbxD6oHgR6ygUgRApXFCoCrgSSUAyo3MtuTLOXDA9TSfn5PuMzrbQ4RALA26VXvb3Mt1Ja18y9qs5bhaLsd2HgB-UgqXI2QcfoIeEWu0EovhmB-uHFoi2JC5PFzQIoMVg3XR-Xlxf7EMO8f0eR3vjfHIw_hvH1M5V1fDVL16Wd46hoyfosdcf8dd-ik_Rlq6eod07qILP0e3UOUhq7DNCzDEv53W76H5eLnFX46YF40yHreqH3evNyvaFW8BwBSrh5m8sAa4NtvfToKt_2yp297cAQ1DV5RLzSmF-U2O10ksMDu_cO9Xgj8fVNSiywyQ_vUDnR9_ODieBT7wQSHu-d4Gwd8JEZUWUAJh-mmYyD5XKNdUZJVmhdcSzEJDiiIxJpigRkSkEJToPE5NLk7xE21Vd6VcIZ5JzXoAWajgpNC2ISpTRJFFpqFVMRygclptJj0oOyTFKNrifXTBLIQYUYiFhlkIj9HndpOkhOe6rfAA0XFcENG1XULdz5tmJEcNzGsoisT9ColxardNYwWuIjtNY8HyEyMABbIM5bVeL-8b-suaWf8907_8GeY92JmfTE3ZyfPrjNXoEX3pPtjdou2uv9FurM3XindsTfwCIBhP2 |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LbtQwFLVgukAsoLzEVFB5wYKHMnISO4mXpWpVkFqxYKSysvy4Li0hGWUyhelX8MnYjmfoIFRgG904flzbx7nH5yL0wkieQUpUolThDyjMJNKoPKGlhQq0NDaEC45PiqMpfX_KTqNYtL8LsxG_DzwsCRcTn-N7Muhc30ZbBXOwe4S2picf9j6F5CmBXBWuvWWEkyQrynUE809lbOxBQap_Yyu6s2hmcvlN1vW1rebw_kDSmgeFQs8w-TJZ9Gqir37Tb_ynVmyjexFw4r3BQx6gW9A8RHevyRA-Qj-OA6MScEwhcYZlfdZ25_3nr3Pct3jW-WhOjx1WxOF3z9KVhTsv-uqHFc9-XT7ArcXuQJv07Xdn4paLzusWNG09x7IxWF612Cxhjj1DXkYWDn75rrn0yHdVyVeP0fTw4OP-URIzNSTaAYI-Ue4QmZuSp7lX3y-KUlfEmAoYlIyWHCCVJfHSclRntDSMqtRyxShUJLeVtvkTNGraBp4iXGopJfew1UrKgXFqcmOB5qYgYDI2RmQ1dkJHGXOfTaMWK77ahXCdLXxnC0KF6-wxer1-ZTZoeNxk_NY7xNrQy2-HB248RZzNglpZMaJ57hpC00o7mGrdSm0pZEWmZDVGdOVOIiKZAaG4os5v-vabtev9vaY7_2X9DI36bgHPHYTq1W6cPD8BlWYYAw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+algorithms+to+predict+the+catalytic+reduction+performance+of+eco-toxic+nitrophenols+and+azo+dyes+contaminants+%28Invited+Article%29&rft.jtitle=Alexandria+engineering+journal&rft.au=V.E.+Sathishkumar&rft.au=A.G.+Ramu&rft.au=Jaehyuk+Cho&rft.date=2023-06-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=72&rft.spage=673&rft.epage=693&rft_id=info:doi/10.1016%2Fj.aej.2023.04.007&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4fa850c934b1418c951f376f4e262ba8 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |