Prediction of Physical Quality Parameters of Frozen Shrimp (Litopenaeus vannamei): An Artificial Neural Networks and Genetic Algorithm Approach
Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage t...
        Saved in:
      
    
          | Published in | Food and bioprocess technology Vol. 7; no. 5; pp. 1433 - 1444 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Boston
          Springer-Verlag
    
        01.05.2014
     Springer US Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1935-5130 1935-5149  | 
| DOI | 10.1007/s11947-013-1135-3 | 
Cover
| Abstract | Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R ², of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R ². | 
    
|---|---|
| AbstractList | Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R², of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R². Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R2, of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R2. Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp ( Litopenaeus vannamei ), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L * a * b * values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R 2 , of >0.9 and root mean square error (RMSE) of <1.6. The redness ( a *) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R 2 . Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R ², of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R ². Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l' Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm-artificial neural network (GANN) which included one hidden layer with 3-17 neurons successfully predicted color and textural values with correlation coefficient, R super(2), of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R super(2).  | 
    
| Author | Jeenanunta, Chawalit Chanvarasuth, Pisit Komolavanij, Somrote Ahmad, Imran  | 
    
| Author_xml | – sequence: 1 fullname: Ahmad, Imran – sequence: 2 fullname: Jeenanunta, Chawalit – sequence: 3 fullname: Chanvarasuth, Pisit – sequence: 4 fullname: Komolavanij, Somrote  | 
    
| BookMark | eNqFksFu1DAQhiNUJNqFB-CEJS7lEJiJkzjhFlW0IK1gUenZGhxn1yVrB9sBLS_BK-MlCKQeii8zkv9vZjy_z7IT66zOsqcILxFAvAqIbSlyQJ4j8irnD7JTbFNSYdme_M05PMrOQrgFqKFEfpr93HjdGxWNs8wNbLM7BKNoZB9nGk08sA152uuofTheX3r3Q1t2vfNmP7HztYlu0pb0HNg3sjYpzYvXrLOs89EMRplU6b2e_e8Qvzv_JTCyPbvSVkejWDdunTdxt2fdNHlHavc4ezjQGPSTP3GV3Vy--XTxNl9_uHp30a1zVUIdc0IlUIOqW2ianjhwUKUg3feqwopDSbwqqCj150GoAkRdk-DtwHlakMZa8VV2vtRNbb_OOkS5N0HpcSSr3RwktukUdY3N_6UCWhSibOskfX5Heutmb9NDZFEiNIBFGnWV4aJS3oXg9SCntE_yB4kgj27KxU2ZhpVHNyVPjLjDKBPpaFv0ZMZ7yWIhQ-pit9r_m-k-6NkCDeQkbb0J8ua6ACwBoKmb9HV-AYnIvok | 
    
| CitedBy_id | crossref_primary_10_1007_s11356_021_13548_8 crossref_primary_10_1515_cppm_2016_0053 crossref_primary_10_1080_15428052_2020_1840474 crossref_primary_10_3390_foods13193025 crossref_primary_10_1016_j_biosystemseng_2018_03_005 crossref_primary_10_1016_j_lwt_2015_01_018 crossref_primary_10_1080_10408398_2023_2245899 crossref_primary_10_1007_s11947_014_1377_8 crossref_primary_10_1080_10498850_2020_1766616 crossref_primary_10_1016_j_eswa_2014_07_039  | 
    
| Cites_doi | 10.1016/S0952-1976(00)00021-X 10.1016/j.neunet.2005.03.010 10.1109/10.752940 10.1016/S0168-1699(97)00030-6 10.1016/j.lwt.2008.07.010 10.1007/s11947-010-0452-z 10.1016/j.aquaeng.2005.03.003 10.1016/S0304-3800(02)00064-9 10.1007/s11947-012-0867-9 10.1016/S0963-9969(00)00091-0 10.1111/j.1745-4603.1999.tb00216.x 10.1111/j.1365-2621.1997.tb04379.x 10.1016/j.foodcont.2006.05.010 10.1007/s11947-009-0222-y 10.1111/j.1745-4603.2008.00134.x 10.1111/j.1365-2621.1999.tb09869.x 10.1016/j.tifs.2012.08.004 10.1016/j.jfoodeng.2007.05.006 10.1006/fstl.1998.0416 10.1016/S0260-8774(01)00159-5 10.1111/j.1745-4530.1996.tb00396.x 10.1300/J030v09n04_07 10.1016/j.jfoodeng.2005.08.044 10.3173/air.19.64 10.1111/j.1365-2621.2005.tb11493.x  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media New York 2013 Springer Science+Business Media New York 2013.  | 
    
| Copyright_xml | – notice: Springer Science+Business Media New York 2013 – notice: Springer Science+Business Media New York 2013.  | 
    
| DBID | FBQ AAYXX CITATION 3V. 7X2 8FE 8FG 8FH 8FK ABJCF AEUYN AFKRA ATCPS BENPR BGLVJ BHPHI CCPQU DWQXO HCIFZ L6V M0K M7S PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7QO 8FD FR3 P64 7S9 L.6  | 
    
| DOI | 10.1007/s11947-013-1135-3 | 
    
| DatabaseName | AGRIS CrossRef ProQuest Central (Corporate) Agricultural Science Collection ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Database ProQuest One Sustainability ProQuest Central Agricultural & Environmental Science Collection ProQuest Central ProQuest Technology Collection (LUT) Natural Science Collection ProQuest One Community College ProQuest Central SciTech Premium Collection ProQuest Engineering Collection Agricultural Science Database Engineering Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitle | CrossRef Agricultural Science Database Technology Collection ProQuest One Academic Middle East (New) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Agricultural Science Collection ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts AGRICOLA AGRICOLA - Academic  | 
    
| DatabaseTitleList | AGRICOLA Agricultural Science Database Engineering Research Database  | 
    
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 2 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Chemistry Agriculture  | 
    
| EISSN | 1935-5149 | 
    
| EndPage | 1444 | 
    
| ExternalDocumentID | 10_1007_s11947_013_1135_3 US201400086841  | 
    
| GroupedDBID | -58 -5G -BR -EM -Y2 -~C .86 06C 06D 0R~ 0VY 1N0 203 29H 2JN 2JY 2KG 2VQ 2~H 30V 4.4 406 408 409 40D 5GY 5VS 67Z 6NX 7X2 875 8TC 8UJ 96X AAAVM AABHQ AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AATVU AAUYE AAWCG AAYFA AAYIU AAYQN AAYTO ABBXA ABDZT ABECU ABFGW ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKAS ABKCH ABMNI ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACBMV ACBRV ACBXY ACBYP ACGFS ACHSB ACIGE ACIPQ ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACTTH ACVWB ACWMK ADHHG ADHIR ADINQ ADKNI ADKPE ADMDM ADOXG ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFTE AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AESTI AETLH AEVLU AEVTX AEXYK AFGCZ AFKRA AFLOW AFNRJ AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AJRNO AJZVZ AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ATCPS AUKKA AXYYD AYJHY B-. BA0 BDATZ BENPR BGLVJ BGNMA BHPHI CAG CCPQU COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FBQ FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ I0C IJ- IKXTQ IWAJR IXC IXD IZIGR IZQ I~X J-C J0Z JBSCW JCJTX JZLTJ KOV LLZTM M0K M4Y M7S MA- NPVJJ NQJWS NU0 O9- O93 O9J OAM P9N PT4 PTHSS QOR QOS R89 RLLFE ROL RPX RSV S16 S1Z S27 S3B SAP SCM SDH SHX SISQX SNE SNPRN SNX SOHCF SOJ SPISZ SQXTU SRMVM SSLCW STPWE T13 TSG TSK U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 YLTOR Z45 Z7U Z7V Z7W Z7Y Z7Z Z81 Z83 ZMTXR ~A9 ~KM AACDK AAHBH AAJBT AASML AAYZH ABAKF ACAOD ACDTI ACPIV ACZOJ AEFQL AEMSY AEUYN AFBBN AGQEE AGRTI AIGIU H13 SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 3V. 8FE 8FG 8FH 8FK DWQXO L6V PKEHL PQEST PQQKQ PQUKI PRINS 7QO 8FD FR3 P64 7S9 L.6  | 
    
| ID | FETCH-LOGICAL-c406t-a1c71e0c69088da3030c47aeddc515304a352a24ebf7c20766a739f33013e16c3 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 1935-5130 | 
    
| IngestDate | Thu Oct 02 06:18:29 EDT 2025 Tue Oct 07 09:43:30 EDT 2025 Fri Jul 25 11:14:05 EDT 2025 Wed Oct 01 02:48:01 EDT 2025 Thu Apr 24 23:02:49 EDT 2025 Fri Feb 21 02:41:26 EST 2025 Wed Dec 27 19:19:56 EST 2023  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 5 | 
    
| Keywords | Frozen shrimp Thawing rate Genetic algorithm Artificial neural networks Freezing rate Storage temperature GANN  | 
    
| Language | English | 
    
| License | http://www.springer.com/tdm | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-a1c71e0c69088da3030c47aeddc515304a352a24ebf7c20766a739f33013e16c3 | 
    
| Notes | http://dx.doi.org/10.1007/s11947-013-1135-3 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| PQID | 2410801230 | 
    
| PQPubID | 2043651 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | proquest_miscellaneous_1999926618 proquest_miscellaneous_1709177496 proquest_journals_2410801230 crossref_primary_10_1007_s11947_013_1135_3 crossref_citationtrail_10_1007_s11947_013_1135_3 springer_journals_10_1007_s11947_013_1135_3 fao_agris_US201400086841  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2014-05-01 | 
    
| PublicationDateYYYYMMDD | 2014-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2014 text: 2014-05-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Boston | 
    
| PublicationPlace_xml | – name: Boston – name: New York  | 
    
| PublicationSubtitle | An International Journal | 
    
| PublicationTitle | Food and bioprocess technology | 
    
| PublicationTitleAbbrev | Food Bioprocess Technol | 
    
| PublicationYear | 2014 | 
    
| Publisher | Springer-Verlag Springer US Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer-Verlag – name: Springer US – name: Springer Nature B.V  | 
    
| References | FathiMMohebbiMRazaviSMAApplication of image analysis and artificial neural network to predict mass transfer kinetics and colour changes of osmotically dehydrated kiwifruitFood Bioprocess Technology201141357136610.1007/s11947-009-0222-y MonacoR. D.CavellaR.MasiP.Predicting sensory cohesiveness, hardness and springiness of solid foods from instrumental measurementsJournal of Texture Studies2007392129149 TaoukisPSLabuzaTPSaguyISValentasKJRotsteinESinghRPKinetics of food deterioration and shelf-life predictionHandbook of food engineering practice1997New YorkCRC361403 Giannakourou, M. C., Taoukis, P. S., & Nychas, G. J. E. (2006). Monitoring and control of the cold chain. In D-W. Sun (Ed.), Handbook of frozen food processing and packaging (pp. 279). CRC. LuzuriagaADMuratOLuzuriagaAMuratDBalabanOSencerYAnalysis of visual quality attributes of white shrimp by machine visionJournal of Food Science19976211131181:CAS:528:DyaK2sXhtFWns78%3D10.1111/j.1365-2621.1997.tb04379.x RameshM. N.KumarM. A.RaoP. N. S.Application of artificial neural networks to investigate the drying of cooked riceJournal of Food Process Engineering199619321329 FerentinoseKPBiological engineering application of feed forward neural network designed by genetic algorithmNeural Networks20051893410.1016/j.neunet.2005.03.010 Vongsawasdi, P. (1996). Effects of handling and preservation methods on qualities of giant freshwater prawns. Ph.D. Diss., Asian Institute of Technology, Thailand. EnitanAMAdeyemoJFood processing optimization using evolutionary algorithmsAfrican Journal of Biotechnology201110721612016127 ErdoğduFBalabanaMOThermal processing effects on the textural attributes of previously frozen shrimpJournal of Aquatic Food Product Technology2000914 YuRLeungPBienfangPPredicting shrimp growth: artificial neural network versus nonlinear regression modelsAquacultural Engineering200634263210.1016/j.aquaeng.2005.03.003 FathiMMohebbiMRazaviSMAEffect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithmFood Bioprocess Technology201141519152610.1007/s11947-010-0452-z Jindal, V. K., & Chauhan, V. (2002). Neural networks approach to modeling food processing operations. In: J. Irudayaraj (Ed.), Food processing operations modeling: design and analysis. New York: Marcel Dekker Inc. Wu, D., and Sun, D-W. (2012). Colour measurements by computer vision for food quality control—a review. Trends in Food Science & Technology, 1–16 doi:10.1016/j.tifs.2012.08.004. Ahmad, I., Komolavanij, S., and Chanvarasuth, P. (2010). Prediction of raw milk microbial quality using data mining techniques. Agricultural Information Research, 19(3), 64–70. www.jstage.jst.go.jp on 23/10/2012. Thai Frozen Food Association Thailand. (2011). Downloaded from http://www.thai-frozen.or.th/index.asp on 21/9/2011. ThyboAKMartensMInstrumental and sensory characterization of potato textureJ Texture Studies19993025927810.1111/j.1745-4603.1999.tb00216.x PatharePBOparaULFahad Al-SaidAColour measurement and analysis in fresh and processed foods: a reviewFood Bioprocess Technology2013636601:CAS:528:DC%2BC3sXjslSmuw%3D%3D10.1007/s11947-012-0867-9 ChenCRRamaswamyHSModeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithmsJournal of Food Engineering20025320922010.1016/S0260-8774(01)00159-5 OldenJDJacksonDAIlluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networksEcological Modeling200215413515010.1016/S0304-3800(02)00064-9 SigurgisladottirSHafsteinssonHJonssonALieONortvedtRThomassenMTextural properties of raw salmon fillets as related to sampling methodJournal of Food Science1999641991041:CAS:528:DyaK1MXhvFSmsbo%3D10.1111/j.1365-2621.1999.tb09869.x TsironiT.DermesonlouoglouE.GiannakourouM.TaoukisP.Shelf life modelling of frozen shrimp at variable temperature conditionsLWT - Food Science and Technology2009422664671 LiuXChenXWuWPengGA neural network for predicting moisture content of grain drying process using genetic algorithmFood Control20071892893310.1016/j.foodcont.2006.05.010 GarsonGDInterpreting neural-network connection weightsArtificial Intelligence Expert199164751 ZengQZThorarinsdottirKAOlafsdottirGQuality changes of shrimp (Pandalus borealis) stored under different cooling conditionsJ. Food Science200570745946610.1111/j.1365-2621.2005.tb11493.x TsironiTDermesonlouoglouEGiannakourouMTaoukisPShelf life modeling of frozen shrimp at variable temperature conditionsLWT- Food Science and Technology2009426646711:CAS:528:DC%2BD1cXhtl2qu73L10.1016/j.lwt.2008.07.010 GoldbergDEGenetic algorithms in search, optimization, and machine learning1989New YorkAddison-Wesley IzadifarMJahromiMZApplication of genetic algorithm for optimization of vegetable oil hydrogenation processJournal of Food Engineering200778181:CAS:528:DC%2BD28XhtFWgur%2FF10.1016/j.jfoodeng.2005.08.044 XieGXiongRChurchIComparison of kinetics, neural network and fuzzy logic in modelling texture changes of dry peas in long time cookingLWT- Food Science and Technology1998316396471:CAS:528:DyaK1MXht12mu7k%3D10.1006/fstl.1998.0416 GoniSMOddonedSSeguraJAMascheroniRHSalvadoriVOPrediction of foods freezing and thawing times: artificial neural networks and genetic algorithm approachJournal of Food Engineering20088316417810.1016/j.jfoodeng.2007.05.006 International Institute of Refrigeration. (1986). Recommendations for the processing and handling of frozen foods (3rd ed.). Paris: IIR. pp. 32–39. MorimotoTBaerdemaekerJDHashimotoYAn intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithmsComputers and Electronics in Agriculture19971820522410.1016/S0168-1699(97)00030-6 KermaniB. G.SchiffmanS. S.NagleH. T.Using neural networks and genetic algorithms to enhance performance in an electronic noseIEEE Transactions on Biomedical Engineering1999464429439 CookCTRagsdaleMajorRLCombining a neural network with a genetic algorithm for process parameter optimizationEngineering Applications of Artificial Intelligence20001339139610.1016/S0952-1976(00)00021-X MittalGSZhangJPrediction of freezing time for food products using a neural networkFood Research International20003355756210.1016/S0963-9969(00)00091-0 TaoukisPSFuBLabuzaTPTime–temperature indicatorsFood Technology19914570821:CAS:528:DyaK38XhsFShs7o%3D BourneMCTexture profile analysisFood Technology1978326272 PB Pathare (1135_CR24) 2013; 6 SM Goni (1135_CR13) 2008; 83 KP Ferentinose (1135_CR9) 2005; 18 PS Taoukis (1135_CR27) 1991; 45 T Morimoto (1135_CR22) 1997; 18 1135_CR29 AK Thybo (1135_CR30) 1999; 30 CR Chen (1135_CR3) 2002; 53 1135_CR21 G Xie (1135_CR35) 1998; 31 1135_CR25 T Tsironi (1135_CR32) 2009; 42 R Yu (1135_CR36) 2006; 34 GD Garson (1135_CR10) 1991; 6 X Liu (1135_CR18) 2007; 18 GS Mittal (1135_CR20) 2000; 33 CT Cook (1135_CR4) 2000; 13 MC Bourne (1135_CR2) 1978; 32 S Sigurgisladottir (1135_CR26) 1999; 64 M Fathi (1135_CR8) 2011; 4 1135_CR17 1135_CR16 1135_CR1 M Fathi (1135_CR7) 2011; 4 JD Olden (1135_CR23) 2002; 154 DE Goldberg (1135_CR12) 1989 1135_CR31 F Erdoğdu (1135_CR6) 2000; 9 1135_CR14 1135_CR34 1135_CR11 1135_CR33 AD Luzuriaga (1135_CR19) 1997; 62 M Izadifar (1135_CR15) 2007; 78 AM Enitan (1135_CR5) 2011; 10 PS Taoukis (1135_CR28) 1997 QZ Zeng (1135_CR37) 2005; 70  | 
    
| References_xml | – reference: YuRLeungPBienfangPPredicting shrimp growth: artificial neural network versus nonlinear regression modelsAquacultural Engineering200634263210.1016/j.aquaeng.2005.03.003 – reference: Vongsawasdi, P. (1996). Effects of handling and preservation methods on qualities of giant freshwater prawns. Ph.D. Diss., Asian Institute of Technology, Thailand. – reference: FathiMMohebbiMRazaviSMAApplication of image analysis and artificial neural network to predict mass transfer kinetics and colour changes of osmotically dehydrated kiwifruitFood Bioprocess Technology201141357136610.1007/s11947-009-0222-y – reference: FathiMMohebbiMRazaviSMAEffect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithmFood Bioprocess Technology201141519152610.1007/s11947-010-0452-z – reference: FerentinoseKPBiological engineering application of feed forward neural network designed by genetic algorithmNeural Networks20051893410.1016/j.neunet.2005.03.010 – reference: Thai Frozen Food Association Thailand. (2011). Downloaded from http://www.thai-frozen.or.th/index.asp on 21/9/2011. – reference: MittalGSZhangJPrediction of freezing time for food products using a neural networkFood Research International20003355756210.1016/S0963-9969(00)00091-0 – reference: TaoukisPSFuBLabuzaTPTime–temperature indicatorsFood Technology19914570821:CAS:528:DyaK38XhsFShs7o%3D – reference: ErdoğduFBalabanaMOThermal processing effects on the textural attributes of previously frozen shrimpJournal of Aquatic Food Product Technology2000914 – reference: Ahmad, I., Komolavanij, S., and Chanvarasuth, P. (2010). Prediction of raw milk microbial quality using data mining techniques. Agricultural Information Research, 19(3), 64–70. www.jstage.jst.go.jp on 23/10/2012. – reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning1989New YorkAddison-Wesley – reference: TaoukisPSLabuzaTPSaguyISValentasKJRotsteinESinghRPKinetics of food deterioration and shelf-life predictionHandbook of food engineering practice1997New YorkCRC361403 – reference: GoniSMOddonedSSeguraJAMascheroniRHSalvadoriVOPrediction of foods freezing and thawing times: artificial neural networks and genetic algorithm approachJournal of Food Engineering20088316417810.1016/j.jfoodeng.2007.05.006 – reference: PatharePBOparaULFahad Al-SaidAColour measurement and analysis in fresh and processed foods: a reviewFood Bioprocess Technology2013636601:CAS:528:DC%2BC3sXjslSmuw%3D%3D10.1007/s11947-012-0867-9 – reference: Giannakourou, M. C., Taoukis, P. S., & Nychas, G. J. E. (2006). Monitoring and control of the cold chain. In D-W. Sun (Ed.), Handbook of frozen food processing and packaging (pp. 279). CRC. – reference: MonacoR. D.CavellaR.MasiP.Predicting sensory cohesiveness, hardness and springiness of solid foods from instrumental measurementsJournal of Texture Studies2007392129149 – reference: GarsonGDInterpreting neural-network connection weightsArtificial Intelligence Expert199164751 – reference: Jindal, V. K., & Chauhan, V. (2002). Neural networks approach to modeling food processing operations. In: J. Irudayaraj (Ed.), Food processing operations modeling: design and analysis. New York: Marcel Dekker Inc. – reference: Wu, D., and Sun, D-W. (2012). Colour measurements by computer vision for food quality control—a review. Trends in Food Science & Technology, 1–16 doi:10.1016/j.tifs.2012.08.004. – reference: ChenCRRamaswamyHSModeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithmsJournal of Food Engineering20025320922010.1016/S0260-8774(01)00159-5 – reference: ThyboAKMartensMInstrumental and sensory characterization of potato textureJ Texture Studies19993025927810.1111/j.1745-4603.1999.tb00216.x – reference: SigurgisladottirSHafsteinssonHJonssonALieONortvedtRThomassenMTextural properties of raw salmon fillets as related to sampling methodJournal of Food Science1999641991041:CAS:528:DyaK1MXhvFSmsbo%3D10.1111/j.1365-2621.1999.tb09869.x – reference: International Institute of Refrigeration. (1986). Recommendations for the processing and handling of frozen foods (3rd ed.). Paris: IIR. pp. 32–39. – reference: KermaniB. G.SchiffmanS. S.NagleH. T.Using neural networks and genetic algorithms to enhance performance in an electronic noseIEEE Transactions on Biomedical Engineering1999464429439 – reference: CookCTRagsdaleMajorRLCombining a neural network with a genetic algorithm for process parameter optimizationEngineering Applications of Artificial Intelligence20001339139610.1016/S0952-1976(00)00021-X – reference: IzadifarMJahromiMZApplication of genetic algorithm for optimization of vegetable oil hydrogenation processJournal of Food Engineering200778181:CAS:528:DC%2BD28XhtFWgur%2FF10.1016/j.jfoodeng.2005.08.044 – reference: LiuXChenXWuWPengGA neural network for predicting moisture content of grain drying process using genetic algorithmFood Control20071892893310.1016/j.foodcont.2006.05.010 – reference: TsironiT.DermesonlouoglouE.GiannakourouM.TaoukisP.Shelf life modelling of frozen shrimp at variable temperature conditionsLWT - Food Science and Technology2009422664671 – reference: LuzuriagaADMuratOLuzuriagaAMuratDBalabanOSencerYAnalysis of visual quality attributes of white shrimp by machine visionJournal of Food Science19976211131181:CAS:528:DyaK2sXhtFWns78%3D10.1111/j.1365-2621.1997.tb04379.x – reference: ZengQZThorarinsdottirKAOlafsdottirGQuality changes of shrimp (Pandalus borealis) stored under different cooling conditionsJ. Food Science200570745946610.1111/j.1365-2621.2005.tb11493.x – reference: EnitanAMAdeyemoJFood processing optimization using evolutionary algorithmsAfrican Journal of Biotechnology201110721612016127 – reference: MorimotoTBaerdemaekerJDHashimotoYAn intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithmsComputers and Electronics in Agriculture19971820522410.1016/S0168-1699(97)00030-6 – reference: BourneMCTexture profile analysisFood Technology1978326272 – reference: TsironiTDermesonlouoglouEGiannakourouMTaoukisPShelf life modeling of frozen shrimp at variable temperature conditionsLWT- Food Science and Technology2009426646711:CAS:528:DC%2BD1cXhtl2qu73L10.1016/j.lwt.2008.07.010 – reference: OldenJDJacksonDAIlluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networksEcological Modeling200215413515010.1016/S0304-3800(02)00064-9 – reference: XieGXiongRChurchIComparison of kinetics, neural network and fuzzy logic in modelling texture changes of dry peas in long time cookingLWT- Food Science and Technology1998316396471:CAS:528:DyaK1MXht12mu7k%3D10.1006/fstl.1998.0416 – reference: RameshM. N.KumarM. A.RaoP. N. S.Application of artificial neural networks to investigate the drying of cooked riceJournal of Food Process Engineering199619321329 – volume: 13 start-page: 391 year: 2000 ident: 1135_CR4 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/S0952-1976(00)00021-X – volume: 18 start-page: 934 year: 2005 ident: 1135_CR9 publication-title: Neural Networks doi: 10.1016/j.neunet.2005.03.010 – ident: 1135_CR17 doi: 10.1109/10.752940 – volume: 18 start-page: 205 year: 1997 ident: 1135_CR22 publication-title: Computers and Electronics in Agriculture doi: 10.1016/S0168-1699(97)00030-6 – volume: 10 start-page: 16120 issue: 72 year: 2011 ident: 1135_CR5 publication-title: African Journal of Biotechnology – ident: 1135_CR31 doi: 10.1016/j.lwt.2008.07.010 – ident: 1135_CR16 – volume: 4 start-page: 1519 year: 2011 ident: 1135_CR8 publication-title: Food Bioprocess Technology doi: 10.1007/s11947-010-0452-z – ident: 1135_CR14 – volume: 34 start-page: 26 year: 2006 ident: 1135_CR36 publication-title: Aquacultural Engineering doi: 10.1016/j.aquaeng.2005.03.003 – volume: 154 start-page: 135 year: 2002 ident: 1135_CR23 publication-title: Ecological Modeling doi: 10.1016/S0304-3800(02)00064-9 – volume: 6 start-page: 36 year: 2013 ident: 1135_CR24 publication-title: Food Bioprocess Technology doi: 10.1007/s11947-012-0867-9 – volume: 33 start-page: 557 year: 2000 ident: 1135_CR20 publication-title: Food Research International doi: 10.1016/S0963-9969(00)00091-0 – volume: 45 start-page: 70 year: 1991 ident: 1135_CR27 publication-title: Food Technology – volume: 30 start-page: 259 year: 1999 ident: 1135_CR30 publication-title: J Texture Studies doi: 10.1111/j.1745-4603.1999.tb00216.x – volume: 6 start-page: 47 year: 1991 ident: 1135_CR10 publication-title: Artificial Intelligence Expert – volume: 62 start-page: 113 issue: 1 year: 1997 ident: 1135_CR19 publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1997.tb04379.x – volume: 18 start-page: 928 year: 2007 ident: 1135_CR18 publication-title: Food Control doi: 10.1016/j.foodcont.2006.05.010 – volume: 4 start-page: 1357 year: 2011 ident: 1135_CR7 publication-title: Food Bioprocess Technology doi: 10.1007/s11947-009-0222-y – ident: 1135_CR21 doi: 10.1111/j.1745-4603.2008.00134.x – volume: 64 start-page: 99 issue: 1 year: 1999 ident: 1135_CR26 publication-title: Journal of Food Science doi: 10.1111/j.1365-2621.1999.tb09869.x – ident: 1135_CR34 doi: 10.1016/j.tifs.2012.08.004 – start-page: 361 volume-title: Handbook of food engineering practice year: 1997 ident: 1135_CR28 – volume: 83 start-page: 164 year: 2008 ident: 1135_CR13 publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2007.05.006 – volume: 31 start-page: 639 year: 1998 ident: 1135_CR35 publication-title: LWT- Food Science and Technology doi: 10.1006/fstl.1998.0416 – ident: 1135_CR11 – volume: 53 start-page: 209 year: 2002 ident: 1135_CR3 publication-title: Journal of Food Engineering doi: 10.1016/S0260-8774(01)00159-5 – ident: 1135_CR25 doi: 10.1111/j.1745-4530.1996.tb00396.x – ident: 1135_CR29 – volume: 32 start-page: 62 year: 1978 ident: 1135_CR2 publication-title: Food Technology – volume: 9 start-page: 1 year: 2000 ident: 1135_CR6 publication-title: Journal of Aquatic Food Product Technology doi: 10.1300/J030v09n04_07 – volume: 78 start-page: 1 year: 2007 ident: 1135_CR15 publication-title: Journal of Food Engineering doi: 10.1016/j.jfoodeng.2005.08.044 – ident: 1135_CR33 – volume: 42 start-page: 664 year: 2009 ident: 1135_CR32 publication-title: LWT- Food Science and Technology doi: 10.1016/j.lwt.2008.07.010 – ident: 1135_CR1 doi: 10.3173/air.19.64 – volume-title: Genetic algorithms in search, optimization, and machine learning year: 1989 ident: 1135_CR12 – volume: 70 start-page: 459 issue: 7 year: 2005 ident: 1135_CR37 publication-title: J. Food Science doi: 10.1111/j.1365-2621.2005.tb11493.x  | 
    
| SSID | ssj0060413 | 
    
| Score | 2.0878563 | 
    
| Snippet | Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp... Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (...  | 
    
| SourceID | proquest crossref springer fao  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1433 | 
    
| SubjectTerms | Agriculture Algorithms Artificial neural networks Back propagation Biotechnology Chemistry Chemistry and Materials Science Chemistry/Food Science chewiness cohesion Color correlation Correlation coefficient Correlation coefficients Data points Decapoda Dependent variables Food Science Freezing Frozen foods Genetic algorithms hardness linear models Litopenaeus vannamei Mathematical models Neural networks Original Paper Parameters prediction Predictions Root-mean-square errors shrimp storage time texture Thawing  | 
    
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoOUAPCAqooS0yEgcesuRHEifcoopVhQCtVFbqzfI6TrtS66yS3QP9E_3Lncmj2yKoxCkHjxMnn-35nBl_JuS9trlNVKlYLsuKxaIsWZ7IlFmNG0UTJ5XFiO6Pn-nxLP52mpwO-7jbMdt9DEl2M_VmsxustzFNUjEhVMLUFnmcoJoXdOKZLMbpN-VxdyYyEJOEJTBDj6HMv93injPaqmx9j2f-ERrtPM7kOXk2UEVa9Ni-II982CU7xVkzyGX4XfLkaDyvDUruSAu-JNfTBkMw-NlpXdHpAAftNTN-06nFrCyU1sTiSVNf-UBPzpvF5ZJ--A7DfOmD9euWAtMOYLn4-IUWoWtMrzlBUdaju3R55C21oaQoYg2tpcXFWd0sVueXtBg0y1-R2eTrr6NjNhy-wBz4-BWzwmnhuUsxEaq04Om4i7X1ZemAAikeW6BuVsZ-XmknuU5Tq1VeKYX_VUXq1GuyHerg9widS1RN49oBnUStm7mIq4xnPpOWa6gUET6iYNygTI4HZFyYjaYyAmfg1gaBMyoin26rLHtZjoeM9wBaYwGf1sxOJC4qcSmXxSIiByPeZhi8rQFSw9FxKx6Rd7fFgCbGUmzw9bo1QgPRAuqcpw_YAPnOkQBlEfk89qXNY_7Z3jf_Zb1PnuIb9UmYB2R71az9IRCl1fxtNzBuAKt2BbI priority: 102 providerName: Springer Nature  | 
    
| Title | Prediction of Physical Quality Parameters of Frozen Shrimp (Litopenaeus vannamei): An Artificial Neural Networks and Genetic Algorithm Approach | 
    
| URI | https://link.springer.com/article/10.1007/s11947-013-1135-3 https://www.proquest.com/docview/2410801230 https://www.proquest.com/docview/1709177496 https://www.proquest.com/docview/1999926618  | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1935-5149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060413 issn: 1935-5130 databaseCode: AFBBN dateStart: 20080301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1935-5149 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0060413 issn: 1935-5130 databaseCode: BENPR dateStart: 20080301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1935-5149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0060413 issn: 1935-5130 databaseCode: AGYKE dateStart: 20070101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1935-5149 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0060413 issn: 1935-5130 databaseCode: U2A dateStart: 20080301 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwEB51d1_gAXGqKWVlJB44ZOHYOZEQCmi3FcdqRVmpPFlex2krtcmyxwP8Cf4yMzm6FIl9ihQ7ieOxZz57xt8APItNakKVK57KvOCBn-c8DWXETUwHRUMrlSGP7pdJdDwLPp6Gp3sw6c7CUFhlpxNrRZ1XlvbIX6OlEaRNlXi3-MEpaxR5V7sUGqZNrZC_rSnGejCQxIzVh8H70WT6tdPNkQjqhMmIWkIeovru_Jz1YTpcz1MYpuK-j8XqhqXqFaa6AUL_8ZvW5mh8F-60OJJljeDvwZ4r78Ptv9gFH8Dv6ZK8MNTzrCrYtJUIa2gzfrKpocAsYtek4vGy-uVKdnK-vLhasOefcaYvXGncZsUQbJdY8-LFG5aV9Scb2glGzB71pQ4lXzFT5ox4rLFNLLs8w-5bn1-xrKUtfwiz8ejbh2Pe5l_gFs38mhvfxr4TNqJYqNygsRM2iI3Lc4soSInAIHozMnDzIrZSxFFkYpUWStHWqh9Z9Qj6ZVW6fWBzScRpIraIKInuZu4HRSISl0gjYnzIA9H1tbYtOTnlyLjUW1plEo_GV2sSj1YevLx-ZNEwc-yqvI8C1OYMNaeenUhaV9JqLgl8Dw47qep2_q70drR58PS6GGceuVNM6arNSvsxYi1Ez2m0ow7i75QwUOLBq27EbD_z3_Ye7G7UY7hFv9AEXh5Cf73cuCcIjtbzIfSS8dEQBtnR90-jYTv-8e5MZn8A29QKfA | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF71eAAeEKdqKHSRQOLQCu_hC6mqAjRKaRpFtJH6tmzW67ZSa4c4ESp_gn_Eb2PGR0ORyFuf_LBre-0Zz3zjmf2GkJeRSUwgU8kSkWZM8TRlSSBCZiLcKBpYIQ1mdA8GYW-kvhwHxyvkd7sXBssqW5tYGeq0sPiP_D14Gh-tqfR3Jt8Zdo3C7GrbQsM0rRXS7YpirNnYse8uf0AIV27vfQZ5vxKiu3v0qceaLgPMgjObMcNtxJ1vQ6z4SQ2YdN-qyLg0teDrIdo3gFGMUG6cRVZA2B-aSCaZlPgDkYdWwnVXybqSKoHgb_3j7mD4tfUFoa-qBs2AkgIWgLto86rV5j2eKCz7lIxzGJbXPONqZoproPefPG3l_rr3yN0Gt9JOrWj3yYrLH5A7f7EZPiS_hlPM-qCkaZHRYaMBtKbpuKRDg4VgyOaJw91p8dPl9PB0enYxoa_7YFkmLjduXlIA9znMPHvzgXby6pY1zQVFJpHqUJWul9TkKUXebFgT7ZyfgLhmpxe009CkPyKjG5HEY7KWF7nbIHQskKjNjywgWKTXGXOVxX7sYmH8CE7yiN--a20bMnTsyXGuFzTOKB4Nl9YoHi098vbqlEnNBLJs8gYIUJsTsNR6dCgwjsXoMVbcI5utVHVjL0q90G6PvLgahi8d0zcmd8W81DwCbAdoPQmXzAG8nyDmij3yrtWYxW3-u94nyxe1RW71jg76ur832H9KbuPj1EWfm2RtNp27ZwDMZuPnjfZT8u2mP7g_xZpCyw | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZokXgcEBRQAwWMxIGHrDpxEifcosKqQKlWKiv1Znltp12pdVZJ9tD-Cf4yM3l0KYJKnHLwI44-2_M5M_6GkDdS5zoRVrA8siWLQ2tZnkQp0xIviiYmEho9ut8P0_1Z_PU4OR7ynDZjtPvokuzvNKBKk293l7bcXV98g7M3hkwKFoYiYWKD3I5RJwEm9Cwqxq045XGXHxlISsIS2K1Ht-bfurhmmDZKXV3jnH-4STvrM3lIHgy0kRY9zo_ILee3yP3ipB6kM9wWubs35m6Dkt9kBh-Tn9Ma3TEIAa1KOh2gob1-xgWdaozQQplNLJ7U1aXz9Oi0Xpwv6dsDWPJL57VbNRRYt4eai3cfaeG7wfT6ExQlPrpHF1PeUO0tRUFrGC0tzk6qetGentNi0C9_QmaTzz_29tmQiIEZsPct06GRoeMmxaAoq8HqcRNL7aw1QIcEjzXQOB3Fbl5KE3GZplqKvBQC_7GGqRFPyaavvNsmdB6hghqXBqgl6t7Mw7jMeOaySHMJjQLCRxSUGVTKMVnGmVrrKyNwCrpWCJwSAXl_1WTZS3TcVHkboFUa8GnU7CjCAyYe67I4DMjOiLcaFnKjgOBwNOKCB-T1VTGgiX4V7V21alQogXQBjc7TG-oAEc-RDGUB-TDOpfVr_jneZ_9V-xW5M_00UQdfDr89J_fw4_rYzB2y2dYr9wL4Uzt_2a2RX1UhDNo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Physical+Quality+Parameters+of+Frozen+Shrimp+%28Litopenaeus+vannamei%29%3A+An+Artificial+Neural+Networks+and+Genetic+Algorithm+Approach&rft.jtitle=Food+and+bioprocess+technology&rft.au=Ahmad%2C+Imran&rft.au=Jeenanunta+Chawalit&rft.au=Chanvarasuth+Pisit&rft.au=Somrote%2C+Komolavanij&rft.date=2014-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1935-5130&rft.eissn=1935-5149&rft.volume=7&rft.issue=5&rft.spage=1433&rft.epage=1444&rft_id=info:doi/10.1007%2Fs11947-013-1135-3 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-5130&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-5130&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-5130&client=summon |