Prediction of Physical Quality Parameters of Frozen Shrimp (Litopenaeus vannamei): An Artificial Neural Networks and Genetic Algorithm Approach

Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage t...

Full description

Saved in:
Bibliographic Details
Published inFood and bioprocess technology Vol. 7; no. 5; pp. 1433 - 1444
Main Authors Ahmad, Imran, Jeenanunta, Chawalit, Chanvarasuth, Pisit, Komolavanij, Somrote
Format Journal Article
LanguageEnglish
Published Boston Springer-Verlag 01.05.2014
Springer US
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1935-5130
1935-5149
DOI10.1007/s11947-013-1135-3

Cover

Abstract Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R ², of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R ².
AbstractList Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R², of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R².
Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R2, of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R2.
Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp ( Litopenaeus vannamei ), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L * a * b * values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R 2 , of >0.9 and root mean square error (RMSE) of <1.6. The redness ( a *) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R 2 .
Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l’ Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm–artificial neural network (GANN) which included one hidden layer with 3–17 neurons successfully predicted color and textural values with correlation coefficient, R ², of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R ².
Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (Litopenaeus vannamei), which influence consumer purchase decisions, is demonstrated in this paper. Freezing rate (FR), thawing rate (TR), storage time, width, thickness, and length of frozen shrimp were measured and chosen as input variables to train the ANN against Commission International de l' Eclairage Color L*a*b* values, and textural properties (hardness, cohesiveness, and chewiness) as dependent variables. Experimentally obtained randomized data points (500) were used to develop the network, of which 20 % were used for testing the network, as an unseen environment. The developed genetic algorithm-artificial neural network (GANN) which included one hidden layer with 3-17 neurons successfully predicted color and textural values with correlation coefficient, R super(2), of >0.9 and root mean square error (RMSE) of <1.6. The redness (a*) and cohesiveness took the longest training time and highest number of generations, as compared to the other parameters. Percent relative importance of input variables to output variables indicated that TR, FR, and storage time were the most important variables for the prediction of color and texture parameters. The results are compared with multiple linear regression (MLR) and ANN trained with backpropagation (BP) algorithm. The results indicate that the GANN model shows much better prediction, as compared to MLR and BP with smallest RMSE and highest R super(2).
Author Jeenanunta, Chawalit
Chanvarasuth, Pisit
Komolavanij, Somrote
Ahmad, Imran
Author_xml – sequence: 1
  fullname: Ahmad, Imran
– sequence: 2
  fullname: Jeenanunta, Chawalit
– sequence: 3
  fullname: Chanvarasuth, Pisit
– sequence: 4
  fullname: Komolavanij, Somrote
BookMark eNqFksFu1DAQhiNUJNqFB-CEJS7lEJiJkzjhFlW0IK1gUenZGhxn1yVrB9sBLS_BK-MlCKQeii8zkv9vZjy_z7IT66zOsqcILxFAvAqIbSlyQJ4j8irnD7JTbFNSYdme_M05PMrOQrgFqKFEfpr93HjdGxWNs8wNbLM7BKNoZB9nGk08sA152uuofTheX3r3Q1t2vfNmP7HztYlu0pb0HNg3sjYpzYvXrLOs89EMRplU6b2e_e8Qvzv_JTCyPbvSVkejWDdunTdxt2fdNHlHavc4ezjQGPSTP3GV3Vy--XTxNl9_uHp30a1zVUIdc0IlUIOqW2ianjhwUKUg3feqwopDSbwqqCj150GoAkRdk-DtwHlakMZa8VV2vtRNbb_OOkS5N0HpcSSr3RwktukUdY3N_6UCWhSibOskfX5Heutmb9NDZFEiNIBFGnWV4aJS3oXg9SCntE_yB4kgj27KxU2ZhpVHNyVPjLjDKBPpaFv0ZMZ7yWIhQ-pit9r_m-k-6NkCDeQkbb0J8ua6ACwBoKmb9HV-AYnIvok
CitedBy_id crossref_primary_10_1007_s11356_021_13548_8
crossref_primary_10_1515_cppm_2016_0053
crossref_primary_10_1080_15428052_2020_1840474
crossref_primary_10_3390_foods13193025
crossref_primary_10_1016_j_biosystemseng_2018_03_005
crossref_primary_10_1016_j_lwt_2015_01_018
crossref_primary_10_1080_10408398_2023_2245899
crossref_primary_10_1007_s11947_014_1377_8
crossref_primary_10_1080_10498850_2020_1766616
crossref_primary_10_1016_j_eswa_2014_07_039
Cites_doi 10.1016/S0952-1976(00)00021-X
10.1016/j.neunet.2005.03.010
10.1109/10.752940
10.1016/S0168-1699(97)00030-6
10.1016/j.lwt.2008.07.010
10.1007/s11947-010-0452-z
10.1016/j.aquaeng.2005.03.003
10.1016/S0304-3800(02)00064-9
10.1007/s11947-012-0867-9
10.1016/S0963-9969(00)00091-0
10.1111/j.1745-4603.1999.tb00216.x
10.1111/j.1365-2621.1997.tb04379.x
10.1016/j.foodcont.2006.05.010
10.1007/s11947-009-0222-y
10.1111/j.1745-4603.2008.00134.x
10.1111/j.1365-2621.1999.tb09869.x
10.1016/j.tifs.2012.08.004
10.1016/j.jfoodeng.2007.05.006
10.1006/fstl.1998.0416
10.1016/S0260-8774(01)00159-5
10.1111/j.1745-4530.1996.tb00396.x
10.1300/J030v09n04_07
10.1016/j.jfoodeng.2005.08.044
10.3173/air.19.64
10.1111/j.1365-2621.2005.tb11493.x
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
Springer Science+Business Media New York 2013.
Copyright_xml – notice: Springer Science+Business Media New York 2013
– notice: Springer Science+Business Media New York 2013.
DBID FBQ
AAYXX
CITATION
3V.
7X2
8FE
8FG
8FH
8FK
ABJCF
AEUYN
AFKRA
ATCPS
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
HCIFZ
L6V
M0K
M7S
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7QO
8FD
FR3
P64
7S9
L.6
DOI 10.1007/s11947-013-1135-3
DatabaseName AGRIS
CrossRef
ProQuest Central (Corporate)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Database
ProQuest One Sustainability
ProQuest Central
Agricultural & Environmental Science Collection
ProQuest Central
ProQuest Technology Collection (LUT)
Natural Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
ProQuest Engineering Collection
Agricultural Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Technology Collection
ProQuest One Academic Middle East (New)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Agricultural Science Collection
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
Agricultural Science Database


Engineering Research Database
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 2
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1935-5149
EndPage 1444
ExternalDocumentID 10_1007_s11947_013_1135_3
US201400086841
GroupedDBID -58
-5G
-BR
-EM
-Y2
-~C
.86
06C
06D
0R~
0VY
1N0
203
29H
2JN
2JY
2KG
2VQ
2~H
30V
4.4
406
408
409
40D
5GY
5VS
67Z
6NX
7X2
875
8TC
8UJ
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBXA
ABDZT
ABECU
ABFGW
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACTTH
ACVWB
ACWMK
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFKRA
AFLOW
AFNRJ
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ATCPS
AUKKA
AXYYD
AYJHY
B-.
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FBQ
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HLICF
HMJXF
HQYDN
HRMNR
HZ~
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
IZQ
I~X
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M0K
M4Y
M7S
MA-
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
P9N
PT4
PTHSS
QOR
QOS
R89
RLLFE
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCM
SDH
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SQXTU
SRMVM
SSLCW
STPWE
T13
TSG
TSK
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z45
Z7U
Z7V
Z7W
Z7Y
Z7Z
Z81
Z83
ZMTXR
~A9
~KM
AACDK
AAHBH
AAJBT
AASML
AAYZH
ABAKF
ACAOD
ACDTI
ACPIV
ACZOJ
AEFQL
AEMSY
AEUYN
AFBBN
AGQEE
AGRTI
AIGIU
H13
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
3V.
8FE
8FG
8FH
8FK
DWQXO
L6V
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7QO
8FD
FR3
P64
7S9
L.6
ID FETCH-LOGICAL-c406t-a1c71e0c69088da3030c47aeddc515304a352a24ebf7c20766a739f33013e16c3
IEDL.DBID BENPR
ISSN 1935-5130
IngestDate Thu Oct 02 06:18:29 EDT 2025
Tue Oct 07 09:43:30 EDT 2025
Fri Jul 25 11:14:05 EDT 2025
Wed Oct 01 02:48:01 EDT 2025
Thu Apr 24 23:02:49 EDT 2025
Fri Feb 21 02:41:26 EST 2025
Wed Dec 27 19:19:56 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Frozen shrimp
Thawing rate
Genetic algorithm
Artificial neural networks
Freezing rate
Storage temperature
GANN
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-a1c71e0c69088da3030c47aeddc515304a352a24ebf7c20766a739f33013e16c3
Notes http://dx.doi.org/10.1007/s11947-013-1135-3
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2410801230
PQPubID 2043651
PageCount 12
ParticipantIDs proquest_miscellaneous_1999926618
proquest_miscellaneous_1709177496
proquest_journals_2410801230
crossref_primary_10_1007_s11947_013_1135_3
crossref_citationtrail_10_1007_s11947_013_1135_3
springer_journals_10_1007_s11947_013_1135_3
fao_agris_US201400086841
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-05-01
PublicationDateYYYYMMDD 2014-05-01
PublicationDate_xml – month: 05
  year: 2014
  text: 2014-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: New York
PublicationSubtitle An International Journal
PublicationTitle Food and bioprocess technology
PublicationTitleAbbrev Food Bioprocess Technol
PublicationYear 2014
Publisher Springer-Verlag
Springer US
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer US
– name: Springer Nature B.V
References FathiMMohebbiMRazaviSMAApplication of image analysis and artificial neural network to predict mass transfer kinetics and colour changes of osmotically dehydrated kiwifruitFood Bioprocess Technology201141357136610.1007/s11947-009-0222-y
MonacoR. D.CavellaR.MasiP.Predicting sensory cohesiveness, hardness and springiness of solid foods from instrumental measurementsJournal of Texture Studies2007392129149
TaoukisPSLabuzaTPSaguyISValentasKJRotsteinESinghRPKinetics of food deterioration and shelf-life predictionHandbook of food engineering practice1997New YorkCRC361403
Giannakourou, M. C., Taoukis, P. S., & Nychas, G. J. E. (2006). Monitoring and control of the cold chain. In D-W. Sun (Ed.), Handbook of frozen food processing and packaging (pp. 279). CRC.
LuzuriagaADMuratOLuzuriagaAMuratDBalabanOSencerYAnalysis of visual quality attributes of white shrimp by machine visionJournal of Food Science19976211131181:CAS:528:DyaK2sXhtFWns78%3D10.1111/j.1365-2621.1997.tb04379.x
RameshM. N.KumarM. A.RaoP. N. S.Application of artificial neural networks to investigate the drying of cooked riceJournal of Food Process Engineering199619321329
FerentinoseKPBiological engineering application of feed forward neural network designed by genetic algorithmNeural Networks20051893410.1016/j.neunet.2005.03.010
Vongsawasdi, P. (1996). Effects of handling and preservation methods on qualities of giant freshwater prawns. Ph.D. Diss., Asian Institute of Technology, Thailand.
EnitanAMAdeyemoJFood processing optimization using evolutionary algorithmsAfrican Journal of Biotechnology201110721612016127
ErdoğduFBalabanaMOThermal processing effects on the textural attributes of previously frozen shrimpJournal of Aquatic Food Product Technology2000914
YuRLeungPBienfangPPredicting shrimp growth: artificial neural network versus nonlinear regression modelsAquacultural Engineering200634263210.1016/j.aquaeng.2005.03.003
FathiMMohebbiMRazaviSMAEffect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithmFood Bioprocess Technology201141519152610.1007/s11947-010-0452-z
Jindal, V. K., & Chauhan, V. (2002). Neural networks approach to modeling food processing operations. In: J. Irudayaraj (Ed.), Food processing operations modeling: design and analysis. New York: Marcel Dekker Inc.
Wu, D., and Sun, D-W. (2012). Colour measurements by computer vision for food quality control—a review. Trends in Food Science & Technology, 1–16 doi:10.1016/j.tifs.2012.08.004.
Ahmad, I., Komolavanij, S., and Chanvarasuth, P. (2010). Prediction of raw milk microbial quality using data mining techniques. Agricultural Information Research, 19(3), 64–70. www.jstage.jst.go.jp on 23/10/2012.
Thai Frozen Food Association Thailand. (2011). Downloaded from http://www.thai-frozen.or.th/index.asp on 21/9/2011.
ThyboAKMartensMInstrumental and sensory characterization of potato textureJ Texture Studies19993025927810.1111/j.1745-4603.1999.tb00216.x
PatharePBOparaULFahad Al-SaidAColour measurement and analysis in fresh and processed foods: a reviewFood Bioprocess Technology2013636601:CAS:528:DC%2BC3sXjslSmuw%3D%3D10.1007/s11947-012-0867-9
ChenCRRamaswamyHSModeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithmsJournal of Food Engineering20025320922010.1016/S0260-8774(01)00159-5
OldenJDJacksonDAIlluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networksEcological Modeling200215413515010.1016/S0304-3800(02)00064-9
SigurgisladottirSHafsteinssonHJonssonALieONortvedtRThomassenMTextural properties of raw salmon fillets as related to sampling methodJournal of Food Science1999641991041:CAS:528:DyaK1MXhvFSmsbo%3D10.1111/j.1365-2621.1999.tb09869.x
TsironiT.DermesonlouoglouE.GiannakourouM.TaoukisP.Shelf life modelling of frozen shrimp at variable temperature conditionsLWT - Food Science and Technology2009422664671
LiuXChenXWuWPengGA neural network for predicting moisture content of grain drying process using genetic algorithmFood Control20071892893310.1016/j.foodcont.2006.05.010
GarsonGDInterpreting neural-network connection weightsArtificial Intelligence Expert199164751
ZengQZThorarinsdottirKAOlafsdottirGQuality changes of shrimp (Pandalus borealis) stored under different cooling conditionsJ. Food Science200570745946610.1111/j.1365-2621.2005.tb11493.x
TsironiTDermesonlouoglouEGiannakourouMTaoukisPShelf life modeling of frozen shrimp at variable temperature conditionsLWT- Food Science and Technology2009426646711:CAS:528:DC%2BD1cXhtl2qu73L10.1016/j.lwt.2008.07.010
GoldbergDEGenetic algorithms in search, optimization, and machine learning1989New YorkAddison-Wesley
IzadifarMJahromiMZApplication of genetic algorithm for optimization of vegetable oil hydrogenation processJournal of Food Engineering200778181:CAS:528:DC%2BD28XhtFWgur%2FF10.1016/j.jfoodeng.2005.08.044
XieGXiongRChurchIComparison of kinetics, neural network and fuzzy logic in modelling texture changes of dry peas in long time cookingLWT- Food Science and Technology1998316396471:CAS:528:DyaK1MXht12mu7k%3D10.1006/fstl.1998.0416
GoniSMOddonedSSeguraJAMascheroniRHSalvadoriVOPrediction of foods freezing and thawing times: artificial neural networks and genetic algorithm approachJournal of Food Engineering20088316417810.1016/j.jfoodeng.2007.05.006
International Institute of Refrigeration. (1986). Recommendations for the processing and handling of frozen foods (3rd ed.). Paris: IIR. pp. 32–39.
MorimotoTBaerdemaekerJDHashimotoYAn intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithmsComputers and Electronics in Agriculture19971820522410.1016/S0168-1699(97)00030-6
KermaniB. G.SchiffmanS. S.NagleH. T.Using neural networks and genetic algorithms to enhance performance in an electronic noseIEEE Transactions on Biomedical Engineering1999464429439
CookCTRagsdaleMajorRLCombining a neural network with a genetic algorithm for process parameter optimizationEngineering Applications of Artificial Intelligence20001339139610.1016/S0952-1976(00)00021-X
MittalGSZhangJPrediction of freezing time for food products using a neural networkFood Research International20003355756210.1016/S0963-9969(00)00091-0
TaoukisPSFuBLabuzaTPTime–temperature indicatorsFood Technology19914570821:CAS:528:DyaK38XhsFShs7o%3D
BourneMCTexture profile analysisFood Technology1978326272
PB Pathare (1135_CR24) 2013; 6
SM Goni (1135_CR13) 2008; 83
KP Ferentinose (1135_CR9) 2005; 18
PS Taoukis (1135_CR27) 1991; 45
T Morimoto (1135_CR22) 1997; 18
1135_CR29
AK Thybo (1135_CR30) 1999; 30
CR Chen (1135_CR3) 2002; 53
1135_CR21
G Xie (1135_CR35) 1998; 31
1135_CR25
T Tsironi (1135_CR32) 2009; 42
R Yu (1135_CR36) 2006; 34
GD Garson (1135_CR10) 1991; 6
X Liu (1135_CR18) 2007; 18
GS Mittal (1135_CR20) 2000; 33
CT Cook (1135_CR4) 2000; 13
MC Bourne (1135_CR2) 1978; 32
S Sigurgisladottir (1135_CR26) 1999; 64
M Fathi (1135_CR8) 2011; 4
1135_CR17
1135_CR16
1135_CR1
M Fathi (1135_CR7) 2011; 4
JD Olden (1135_CR23) 2002; 154
DE Goldberg (1135_CR12) 1989
1135_CR31
F Erdoğdu (1135_CR6) 2000; 9
1135_CR14
1135_CR34
1135_CR11
1135_CR33
AD Luzuriaga (1135_CR19) 1997; 62
M Izadifar (1135_CR15) 2007; 78
AM Enitan (1135_CR5) 2011; 10
PS Taoukis (1135_CR28) 1997
QZ Zeng (1135_CR37) 2005; 70
References_xml – reference: YuRLeungPBienfangPPredicting shrimp growth: artificial neural network versus nonlinear regression modelsAquacultural Engineering200634263210.1016/j.aquaeng.2005.03.003
– reference: Vongsawasdi, P. (1996). Effects of handling and preservation methods on qualities of giant freshwater prawns. Ph.D. Diss., Asian Institute of Technology, Thailand.
– reference: FathiMMohebbiMRazaviSMAApplication of image analysis and artificial neural network to predict mass transfer kinetics and colour changes of osmotically dehydrated kiwifruitFood Bioprocess Technology201141357136610.1007/s11947-009-0222-y
– reference: FathiMMohebbiMRazaviSMAEffect of osmotic dehydration and air drying on physicochemical properties of dried kiwifruit and modeling of dehydration process using neural network and genetic algorithmFood Bioprocess Technology201141519152610.1007/s11947-010-0452-z
– reference: FerentinoseKPBiological engineering application of feed forward neural network designed by genetic algorithmNeural Networks20051893410.1016/j.neunet.2005.03.010
– reference: Thai Frozen Food Association Thailand. (2011). Downloaded from http://www.thai-frozen.or.th/index.asp on 21/9/2011.
– reference: MittalGSZhangJPrediction of freezing time for food products using a neural networkFood Research International20003355756210.1016/S0963-9969(00)00091-0
– reference: TaoukisPSFuBLabuzaTPTime–temperature indicatorsFood Technology19914570821:CAS:528:DyaK38XhsFShs7o%3D
– reference: ErdoğduFBalabanaMOThermal processing effects on the textural attributes of previously frozen shrimpJournal of Aquatic Food Product Technology2000914
– reference: Ahmad, I., Komolavanij, S., and Chanvarasuth, P. (2010). Prediction of raw milk microbial quality using data mining techniques. Agricultural Information Research, 19(3), 64–70. www.jstage.jst.go.jp on 23/10/2012.
– reference: GoldbergDEGenetic algorithms in search, optimization, and machine learning1989New YorkAddison-Wesley
– reference: TaoukisPSLabuzaTPSaguyISValentasKJRotsteinESinghRPKinetics of food deterioration and shelf-life predictionHandbook of food engineering practice1997New YorkCRC361403
– reference: GoniSMOddonedSSeguraJAMascheroniRHSalvadoriVOPrediction of foods freezing and thawing times: artificial neural networks and genetic algorithm approachJournal of Food Engineering20088316417810.1016/j.jfoodeng.2007.05.006
– reference: PatharePBOparaULFahad Al-SaidAColour measurement and analysis in fresh and processed foods: a reviewFood Bioprocess Technology2013636601:CAS:528:DC%2BC3sXjslSmuw%3D%3D10.1007/s11947-012-0867-9
– reference: Giannakourou, M. C., Taoukis, P. S., & Nychas, G. J. E. (2006). Monitoring and control of the cold chain. In D-W. Sun (Ed.), Handbook of frozen food processing and packaging (pp. 279). CRC.
– reference: MonacoR. D.CavellaR.MasiP.Predicting sensory cohesiveness, hardness and springiness of solid foods from instrumental measurementsJournal of Texture Studies2007392129149
– reference: GarsonGDInterpreting neural-network connection weightsArtificial Intelligence Expert199164751
– reference: Jindal, V. K., & Chauhan, V. (2002). Neural networks approach to modeling food processing operations. In: J. Irudayaraj (Ed.), Food processing operations modeling: design and analysis. New York: Marcel Dekker Inc.
– reference: Wu, D., and Sun, D-W. (2012). Colour measurements by computer vision for food quality control—a review. Trends in Food Science & Technology, 1–16 doi:10.1016/j.tifs.2012.08.004.
– reference: ChenCRRamaswamyHSModeling and optimization of variable retort temperature (VRT) thermal processing using coupled neural networks and genetic algorithmsJournal of Food Engineering20025320922010.1016/S0260-8774(01)00159-5
– reference: ThyboAKMartensMInstrumental and sensory characterization of potato textureJ Texture Studies19993025927810.1111/j.1745-4603.1999.tb00216.x
– reference: SigurgisladottirSHafsteinssonHJonssonALieONortvedtRThomassenMTextural properties of raw salmon fillets as related to sampling methodJournal of Food Science1999641991041:CAS:528:DyaK1MXhvFSmsbo%3D10.1111/j.1365-2621.1999.tb09869.x
– reference: International Institute of Refrigeration. (1986). Recommendations for the processing and handling of frozen foods (3rd ed.). Paris: IIR. pp. 32–39.
– reference: KermaniB. G.SchiffmanS. S.NagleH. T.Using neural networks and genetic algorithms to enhance performance in an electronic noseIEEE Transactions on Biomedical Engineering1999464429439
– reference: CookCTRagsdaleMajorRLCombining a neural network with a genetic algorithm for process parameter optimizationEngineering Applications of Artificial Intelligence20001339139610.1016/S0952-1976(00)00021-X
– reference: IzadifarMJahromiMZApplication of genetic algorithm for optimization of vegetable oil hydrogenation processJournal of Food Engineering200778181:CAS:528:DC%2BD28XhtFWgur%2FF10.1016/j.jfoodeng.2005.08.044
– reference: LiuXChenXWuWPengGA neural network for predicting moisture content of grain drying process using genetic algorithmFood Control20071892893310.1016/j.foodcont.2006.05.010
– reference: TsironiT.DermesonlouoglouE.GiannakourouM.TaoukisP.Shelf life modelling of frozen shrimp at variable temperature conditionsLWT - Food Science and Technology2009422664671
– reference: LuzuriagaADMuratOLuzuriagaAMuratDBalabanOSencerYAnalysis of visual quality attributes of white shrimp by machine visionJournal of Food Science19976211131181:CAS:528:DyaK2sXhtFWns78%3D10.1111/j.1365-2621.1997.tb04379.x
– reference: ZengQZThorarinsdottirKAOlafsdottirGQuality changes of shrimp (Pandalus borealis) stored under different cooling conditionsJ. Food Science200570745946610.1111/j.1365-2621.2005.tb11493.x
– reference: EnitanAMAdeyemoJFood processing optimization using evolutionary algorithmsAfrican Journal of Biotechnology201110721612016127
– reference: MorimotoTBaerdemaekerJDHashimotoYAn intelligent approach for optimal control of fruit-storage process using neural networks and genetic algorithmsComputers and Electronics in Agriculture19971820522410.1016/S0168-1699(97)00030-6
– reference: BourneMCTexture profile analysisFood Technology1978326272
– reference: TsironiTDermesonlouoglouEGiannakourouMTaoukisPShelf life modeling of frozen shrimp at variable temperature conditionsLWT- Food Science and Technology2009426646711:CAS:528:DC%2BD1cXhtl2qu73L10.1016/j.lwt.2008.07.010
– reference: OldenJDJacksonDAIlluminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networksEcological Modeling200215413515010.1016/S0304-3800(02)00064-9
– reference: XieGXiongRChurchIComparison of kinetics, neural network and fuzzy logic in modelling texture changes of dry peas in long time cookingLWT- Food Science and Technology1998316396471:CAS:528:DyaK1MXht12mu7k%3D10.1006/fstl.1998.0416
– reference: RameshM. N.KumarM. A.RaoP. N. S.Application of artificial neural networks to investigate the drying of cooked riceJournal of Food Process Engineering199619321329
– volume: 13
  start-page: 391
  year: 2000
  ident: 1135_CR4
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/S0952-1976(00)00021-X
– volume: 18
  start-page: 934
  year: 2005
  ident: 1135_CR9
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2005.03.010
– ident: 1135_CR17
  doi: 10.1109/10.752940
– volume: 18
  start-page: 205
  year: 1997
  ident: 1135_CR22
  publication-title: Computers and Electronics in Agriculture
  doi: 10.1016/S0168-1699(97)00030-6
– volume: 10
  start-page: 16120
  issue: 72
  year: 2011
  ident: 1135_CR5
  publication-title: African Journal of Biotechnology
– ident: 1135_CR31
  doi: 10.1016/j.lwt.2008.07.010
– ident: 1135_CR16
– volume: 4
  start-page: 1519
  year: 2011
  ident: 1135_CR8
  publication-title: Food Bioprocess Technology
  doi: 10.1007/s11947-010-0452-z
– ident: 1135_CR14
– volume: 34
  start-page: 26
  year: 2006
  ident: 1135_CR36
  publication-title: Aquacultural Engineering
  doi: 10.1016/j.aquaeng.2005.03.003
– volume: 154
  start-page: 135
  year: 2002
  ident: 1135_CR23
  publication-title: Ecological Modeling
  doi: 10.1016/S0304-3800(02)00064-9
– volume: 6
  start-page: 36
  year: 2013
  ident: 1135_CR24
  publication-title: Food Bioprocess Technology
  doi: 10.1007/s11947-012-0867-9
– volume: 33
  start-page: 557
  year: 2000
  ident: 1135_CR20
  publication-title: Food Research International
  doi: 10.1016/S0963-9969(00)00091-0
– volume: 45
  start-page: 70
  year: 1991
  ident: 1135_CR27
  publication-title: Food Technology
– volume: 30
  start-page: 259
  year: 1999
  ident: 1135_CR30
  publication-title: J Texture Studies
  doi: 10.1111/j.1745-4603.1999.tb00216.x
– volume: 6
  start-page: 47
  year: 1991
  ident: 1135_CR10
  publication-title: Artificial Intelligence Expert
– volume: 62
  start-page: 113
  issue: 1
  year: 1997
  ident: 1135_CR19
  publication-title: Journal of Food Science
  doi: 10.1111/j.1365-2621.1997.tb04379.x
– volume: 18
  start-page: 928
  year: 2007
  ident: 1135_CR18
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2006.05.010
– volume: 4
  start-page: 1357
  year: 2011
  ident: 1135_CR7
  publication-title: Food Bioprocess Technology
  doi: 10.1007/s11947-009-0222-y
– ident: 1135_CR21
  doi: 10.1111/j.1745-4603.2008.00134.x
– volume: 64
  start-page: 99
  issue: 1
  year: 1999
  ident: 1135_CR26
  publication-title: Journal of Food Science
  doi: 10.1111/j.1365-2621.1999.tb09869.x
– ident: 1135_CR34
  doi: 10.1016/j.tifs.2012.08.004
– start-page: 361
  volume-title: Handbook of food engineering practice
  year: 1997
  ident: 1135_CR28
– volume: 83
  start-page: 164
  year: 2008
  ident: 1135_CR13
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2007.05.006
– volume: 31
  start-page: 639
  year: 1998
  ident: 1135_CR35
  publication-title: LWT- Food Science and Technology
  doi: 10.1006/fstl.1998.0416
– ident: 1135_CR11
– volume: 53
  start-page: 209
  year: 2002
  ident: 1135_CR3
  publication-title: Journal of Food Engineering
  doi: 10.1016/S0260-8774(01)00159-5
– ident: 1135_CR25
  doi: 10.1111/j.1745-4530.1996.tb00396.x
– ident: 1135_CR29
– volume: 32
  start-page: 62
  year: 1978
  ident: 1135_CR2
  publication-title: Food Technology
– volume: 9
  start-page: 1
  year: 2000
  ident: 1135_CR6
  publication-title: Journal of Aquatic Food Product Technology
  doi: 10.1300/J030v09n04_07
– volume: 78
  start-page: 1
  year: 2007
  ident: 1135_CR15
  publication-title: Journal of Food Engineering
  doi: 10.1016/j.jfoodeng.2005.08.044
– ident: 1135_CR33
– volume: 42
  start-page: 664
  year: 2009
  ident: 1135_CR32
  publication-title: LWT- Food Science and Technology
  doi: 10.1016/j.lwt.2008.07.010
– ident: 1135_CR1
  doi: 10.3173/air.19.64
– volume-title: Genetic algorithms in search, optimization, and machine learning
  year: 1989
  ident: 1135_CR12
– volume: 70
  start-page: 459
  issue: 7
  year: 2005
  ident: 1135_CR37
  publication-title: J. Food Science
  doi: 10.1111/j.1365-2621.2005.tb11493.x
SSID ssj0060413
Score 2.0878563
Snippet Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp...
Application of genetic algorithm to optimize an artificial neural network (ANN) model for predicting end-of-storage quality parameters of frozen shrimp (...
SourceID proquest
crossref
springer
fao
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1433
SubjectTerms Agriculture
Algorithms
Artificial neural networks
Back propagation
Biotechnology
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
chewiness
cohesion
Color
correlation
Correlation coefficient
Correlation coefficients
Data points
Decapoda
Dependent variables
Food Science
Freezing
Frozen foods
Genetic algorithms
hardness
linear models
Litopenaeus vannamei
Mathematical models
Neural networks
Original Paper
Parameters
prediction
Predictions
Root-mean-square errors
shrimp
storage time
texture
Thawing
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZoOUAPCAqooS0yEgcesuRHEifcoopVhQCtVFbqzfI6TrtS66yS3QP9E_3Lncmj2yKoxCkHjxMnn-35nBl_JuS9trlNVKlYLsuKxaIsWZ7IlFmNG0UTJ5XFiO6Pn-nxLP52mpwO-7jbMdt9DEl2M_VmsxustzFNUjEhVMLUFnmcoJoXdOKZLMbpN-VxdyYyEJOEJTBDj6HMv93injPaqmx9j2f-ERrtPM7kOXk2UEVa9Ni-II982CU7xVkzyGX4XfLkaDyvDUruSAu-JNfTBkMw-NlpXdHpAAftNTN-06nFrCyU1sTiSVNf-UBPzpvF5ZJ--A7DfOmD9euWAtMOYLn4-IUWoWtMrzlBUdaju3R55C21oaQoYg2tpcXFWd0sVueXtBg0y1-R2eTrr6NjNhy-wBz4-BWzwmnhuUsxEaq04Om4i7X1ZemAAikeW6BuVsZ-XmknuU5Tq1VeKYX_VUXq1GuyHerg9widS1RN49oBnUStm7mIq4xnPpOWa6gUET6iYNygTI4HZFyYjaYyAmfg1gaBMyoin26rLHtZjoeM9wBaYwGf1sxOJC4qcSmXxSIiByPeZhi8rQFSw9FxKx6Rd7fFgCbGUmzw9bo1QgPRAuqcpw_YAPnOkQBlEfk89qXNY_7Z3jf_Zb1PnuIb9UmYB2R71az9IRCl1fxtNzBuAKt2BbI
  priority: 102
  providerName: Springer Nature
Title Prediction of Physical Quality Parameters of Frozen Shrimp (Litopenaeus vannamei): An Artificial Neural Networks and Genetic Algorithm Approach
URI https://link.springer.com/article/10.1007/s11947-013-1135-3
https://www.proquest.com/docview/2410801230
https://www.proquest.com/docview/1709177496
https://www.proquest.com/docview/1999926618
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1935-5149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060413
  issn: 1935-5130
  databaseCode: AFBBN
  dateStart: 20080301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1935-5149
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0060413
  issn: 1935-5130
  databaseCode: BENPR
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1935-5149
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0060413
  issn: 1935-5130
  databaseCode: AGYKE
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1935-5149
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0060413
  issn: 1935-5130
  databaseCode: U2A
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwEB51d1_gAXGqKWVlJB44ZOHYOZEQCmi3FcdqRVmpPFlex2krtcmyxwP8Cf4yMzm6FIl9ihQ7ieOxZz57xt8APItNakKVK57KvOCBn-c8DWXETUwHRUMrlSGP7pdJdDwLPp6Gp3sw6c7CUFhlpxNrRZ1XlvbIX6OlEaRNlXi3-MEpaxR5V7sUGqZNrZC_rSnGejCQxIzVh8H70WT6tdPNkQjqhMmIWkIeovru_Jz1YTpcz1MYpuK-j8XqhqXqFaa6AUL_8ZvW5mh8F-60OJJljeDvwZ4r78Ptv9gFH8Dv6ZK8MNTzrCrYtJUIa2gzfrKpocAsYtek4vGy-uVKdnK-vLhasOefcaYvXGncZsUQbJdY8-LFG5aV9Scb2glGzB71pQ4lXzFT5ox4rLFNLLs8w-5bn1-xrKUtfwiz8ejbh2Pe5l_gFs38mhvfxr4TNqJYqNygsRM2iI3Lc4soSInAIHozMnDzIrZSxFFkYpUWStHWqh9Z9Qj6ZVW6fWBzScRpIraIKInuZu4HRSISl0gjYnzIA9H1tbYtOTnlyLjUW1plEo_GV2sSj1YevLx-ZNEwc-yqvI8C1OYMNaeenUhaV9JqLgl8Dw47qep2_q70drR58PS6GGceuVNM6arNSvsxYi1Ez2m0ow7i75QwUOLBq27EbD_z3_Ye7G7UY7hFv9AEXh5Cf73cuCcIjtbzIfSS8dEQBtnR90-jYTv-8e5MZn8A29QKfA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF71eAAeEKdqKHSRQOLQCu_hC6mqAjRKaRpFtJH6tmzW67ZSa4c4ESp_gn_Eb2PGR0ORyFuf_LBre-0Zz3zjmf2GkJeRSUwgU8kSkWZM8TRlSSBCZiLcKBpYIQ1mdA8GYW-kvhwHxyvkd7sXBssqW5tYGeq0sPiP_D14Gh-tqfR3Jt8Zdo3C7GrbQsM0rRXS7YpirNnYse8uf0AIV27vfQZ5vxKiu3v0qceaLgPMgjObMcNtxJ1vQ6z4SQ2YdN-qyLg0teDrIdo3gFGMUG6cRVZA2B-aSCaZlPgDkYdWwnVXybqSKoHgb_3j7mD4tfUFoa-qBs2AkgIWgLto86rV5j2eKCz7lIxzGJbXPONqZoproPefPG3l_rr3yN0Gt9JOrWj3yYrLH5A7f7EZPiS_hlPM-qCkaZHRYaMBtKbpuKRDg4VgyOaJw91p8dPl9PB0enYxoa_7YFkmLjduXlIA9znMPHvzgXby6pY1zQVFJpHqUJWul9TkKUXebFgT7ZyfgLhmpxe009CkPyKjG5HEY7KWF7nbIHQskKjNjywgWKTXGXOVxX7sYmH8CE7yiN--a20bMnTsyXGuFzTOKB4Nl9YoHi098vbqlEnNBLJs8gYIUJsTsNR6dCgwjsXoMVbcI5utVHVjL0q90G6PvLgahi8d0zcmd8W81DwCbAdoPQmXzAG8nyDmij3yrtWYxW3-u94nyxe1RW71jg76ur832H9KbuPj1EWfm2RtNp27ZwDMZuPnjfZT8u2mP7g_xZpCyw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZokXgcEBRQAwWMxIGHrDpxEifcosKqQKlWKiv1Znltp12pdVZJ9tD-Cf4yM3l0KYJKnHLwI44-2_M5M_6GkDdS5zoRVrA8siWLQ2tZnkQp0xIviiYmEho9ut8P0_1Z_PU4OR7ynDZjtPvokuzvNKBKk293l7bcXV98g7M3hkwKFoYiYWKD3I5RJwEm9Cwqxq045XGXHxlISsIS2K1Ht-bfurhmmDZKXV3jnH-4STvrM3lIHgy0kRY9zo_ILee3yP3ipB6kM9wWubs35m6Dkt9kBh-Tn9Ma3TEIAa1KOh2gob1-xgWdaozQQplNLJ7U1aXz9Oi0Xpwv6dsDWPJL57VbNRRYt4eai3cfaeG7wfT6ExQlPrpHF1PeUO0tRUFrGC0tzk6qetGentNi0C9_QmaTzz_29tmQiIEZsPct06GRoeMmxaAoq8HqcRNL7aw1QIcEjzXQOB3Fbl5KE3GZplqKvBQC_7GGqRFPyaavvNsmdB6hghqXBqgl6t7Mw7jMeOaySHMJjQLCRxSUGVTKMVnGmVrrKyNwCrpWCJwSAXl_1WTZS3TcVHkboFUa8GnU7CjCAyYe67I4DMjOiLcaFnKjgOBwNOKCB-T1VTGgiX4V7V21alQogXQBjc7TG-oAEc-RDGUB-TDOpfVr_jneZ_9V-xW5M_00UQdfDr89J_fw4_rYzB2y2dYr9wL4Uzt_2a2RX1UhDNo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+Physical+Quality+Parameters+of+Frozen+Shrimp+%28Litopenaeus+vannamei%29%3A+An+Artificial+Neural+Networks+and+Genetic+Algorithm+Approach&rft.jtitle=Food+and+bioprocess+technology&rft.au=Ahmad%2C+Imran&rft.au=Jeenanunta+Chawalit&rft.au=Chanvarasuth+Pisit&rft.au=Somrote%2C+Komolavanij&rft.date=2014-05-01&rft.pub=Springer+Nature+B.V&rft.issn=1935-5130&rft.eissn=1935-5149&rft.volume=7&rft.issue=5&rft.spage=1433&rft.epage=1444&rft_id=info:doi/10.1007%2Fs11947-013-1135-3
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1935-5130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1935-5130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1935-5130&client=summon