The structure of steady shock waves in porous metals
•A fundamental approach of steady shock waves in porous metals is proposed.•Micro-inertia effects related to rapid pore collapse are accounted for.•In addition to viscoplastic effects, the key role of micro-inertia on the shock layer is discussed.•A new scaling law relating the shock width to the in...
Saved in:
Published in | Journal of the mechanics and physics of solids Vol. 107; pp. 204 - 228 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Elsevier Ltd
01.10.2017
Elsevier BV Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0022-5096 1873-4782 1873-4782 |
DOI | 10.1016/j.jmps.2017.06.005 |
Cover
Abstract | •A fundamental approach of steady shock waves in porous metals is proposed.•Micro-inertia effects related to rapid pore collapse are accounted for.•In addition to viscoplastic effects, the key role of micro-inertia on the shock layer is discussed.•A new scaling law relating the shock width to the initial void radius and porosity is obtained.•The theoretical shock-speed/particle velocity relationship is correlated to experiments.
The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant. |
---|---|
AbstractList | The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant. •A fundamental approach of steady shock waves in porous metals is proposed.•Micro-inertia effects related to rapid pore collapse are accounted for.•In addition to viscoplastic effects, the key role of micro-inertia on the shock layer is discussed.•A new scaling law relating the shock width to the initial void radius and porosity is obtained.•The theoretical shock-speed/particle velocity relationship is correlated to experiments. The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant. |
Author | Molinari, Alain Mercier, Sébastien Czarnota, Christophe |
Author_xml | – sequence: 1 givenname: Christophe surname: Czarnota fullname: Czarnota, Christophe email: christophe.czarnota@univ-lorraine.fr – sequence: 2 givenname: Alain surname: Molinari fullname: Molinari, Alain email: alain.molinari@univ-lorraine.fr – sequence: 3 givenname: Sébastien surname: Mercier fullname: Mercier, Sébastien email: sebastien.mercier@univ-lorraine.fr |
BackLink | https://hal.univ-lorraine.fr/hal-03279917$$DView record in HAL |
BookMark | eNqNkEFr2zAUgMXIYGm7P7CTYacd7D7JlizDLqWs6yDQS3sWivRM5CWWJ8kp-fdV8GCwQ-jpIfF94n26IqvRj0jIFwoVBSpuh2o4TLFiQNsKRAXAP5A1lW1dNq1kK7IGYKzk0IlP5CrGATIBLV2T5nmHRUxhNmkOWPg-H1DbUxF33vwuXvURY-HGYvLBz7E4YNL7eEM-9nng57_zmrw8_Hi-fyw3Tz9_3d9tStOASGXX1HYrZNcZTrkBI1jfc4nMMi4os1JY3luklAuQdsv0NvNda0G3ssba9PU1qZd353HSp1e936spuIMOJ0VBncPVoM7h6hyuQKicla1vi7XT_3ivnXq826jzHdSs7TraHmlmvy7sFPyfGWNSg5_DmKMU7bhoZJN3yxRbKBN8jAH7960h_5OMSzo5P6ag3f6y-n1RMX_u0WFQ0TgcDVoX0CRlvbukvwHYSKBI |
CitedBy_id | crossref_primary_10_1016_j_ijplas_2021_102999 crossref_primary_10_1016_j_ijimpeng_2024_105039 crossref_primary_10_1016_j_ijimpeng_2018_01_011 crossref_primary_10_1063_5_0143744 crossref_primary_10_1016_j_ijplas_2020_102816 crossref_primary_10_1016_j_jeurceramsoc_2024_117172 crossref_primary_10_1063_5_0078182 crossref_primary_10_1007_s11666_024_01875_4 crossref_primary_10_1016_j_ijsolstr_2022_111598 crossref_primary_10_1371_journal_pone_0247172 crossref_primary_10_1016_j_ijplas_2019_102656 crossref_primary_10_1016_j_jcp_2022_111901 crossref_primary_10_3390_applmech1010003 crossref_primary_10_1016_j_ijplas_2022_103363 crossref_primary_10_1016_j_mechrescom_2021_103690 crossref_primary_10_1016_j_jmps_2022_105032 crossref_primary_10_1016_j_ijplas_2021_103102 crossref_primary_10_1016_j_mechmat_2023_104710 crossref_primary_10_1016_j_mechmat_2024_104953 crossref_primary_10_1007_s00707_022_03172_z crossref_primary_10_1016_j_ijmecsci_2022_107320 crossref_primary_10_1016_j_ijplas_2025_104314 crossref_primary_10_1007_s00707_020_02646_2 crossref_primary_10_1016_j_ijplas_2022_103418 crossref_primary_10_1016_j_ijplas_2019_08_005 crossref_primary_10_1016_j_jmps_2021_104508 crossref_primary_10_1016_j_jmps_2020_104189 crossref_primary_10_1016_j_apm_2024_115745 crossref_primary_10_1016_j_ijsolstr_2020_06_027 crossref_primary_10_1016_j_jmps_2019_103743 crossref_primary_10_1016_j_jmps_2020_104108 crossref_primary_10_1051_epjconf_201818301041 crossref_primary_10_1016_j_mechmat_2024_105112 crossref_primary_10_1016_j_mechmat_2019_04_017 crossref_primary_10_1016_j_jmps_2023_105520 crossref_primary_10_1016_j_ijmecsci_2018_04_008 crossref_primary_10_1063_5_0234896 crossref_primary_10_1016_j_ijimpeng_2019_103325 crossref_primary_10_1016_j_ijimpeng_2023_104817 crossref_primary_10_1016_j_ijplas_2023_103678 crossref_primary_10_1016_j_ijplas_2024_103899 crossref_primary_10_1007_s10704_020_00440_8 crossref_primary_10_1007_s10704_020_00441_7 crossref_primary_10_1016_j_mechmat_2020_103674 |
Cites_doi | 10.1007/BF00789370 10.1016/j.commatsci.2004.09.005 10.1007/BF00850666 10.1007/BF00013502 10.1016/j.ijsolstr.2015.06.002 10.1016/S0022-5096(01)00003-5 10.1063/1.1640452 10.1063/1.321319 10.1007/BF00910554 10.1063/1.329011 10.1063/1.3133237 10.1007/s10704-006-0070-y 10.1016/j.ijsolstr.2016.07.005 10.1063/1.1663877 10.1063/1.1661372 10.1115/1.3443401 10.1063/1.336426 10.1016/j.ijsolstr.2005.06.023 10.1115/1.2899463 10.1007/BF00036191 10.1063/1.1658021 10.1016/j.jmps.2007.07.017 10.1007/s10704-009-9436-2 |
ContentType | Journal Article |
Copyright | 2017 Elsevier Ltd Copyright Elsevier BV Oct 2017 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: 2017 Elsevier Ltd – notice: Copyright Elsevier BV Oct 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | AAYXX CITATION 7SR 7TB 7U5 8BQ 8FD FR3 JG9 KR7 L7M 1XC VOOES ADTOC UNPAY |
DOI | 10.1016/j.jmps.2017.06.005 |
DatabaseName | CrossRef Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace METADEX |
DatabaseTitleList | Materials Research Database |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-4782 |
EndPage | 228 |
ExternalDocumentID | oai:HAL:hal-03279917v1 oai_HAL_hal_03279917v1 10_1016_j_jmps_2017_06_005 S0022509616307360 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABFSI ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ H~9 IHE J1W JJJVA KOM LY7 M24 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SMS SPC SPCBC SPD SPG SST SSZ T5K VH1 WUQ XFK XPP YQT ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SR 7TB 7U5 8BQ 8FD AFXIZ AGCQF AGRNS FR3 JG9 KR7 L7M SSH 1XC VOOES ADTOC UNPAY |
ID | FETCH-LOGICAL-c406t-943db6899c515c0c62ff58e2d25612d86d5fde115608db2ab43d97d0a783e3cf3 |
IEDL.DBID | UNPAY |
ISSN | 0022-5096 1873-4782 |
IngestDate | Sun Sep 07 11:27:49 EDT 2025 Fri Sep 12 12:52:25 EDT 2025 Mon Jul 14 08:12:22 EDT 2025 Thu Apr 24 23:10:18 EDT 2025 Wed Oct 01 01:32:36 EDT 2025 Fri Feb 23 02:21:45 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Shock waves Porous material Inertia effects |
Language | English |
License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-943db6899c515c0c62ff58e2d25612d86d5fde115608db2ab43d97d0a783e3cf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5640-3306 0000-0002-2957-7220 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hal.univ-lorraine.fr/hal-03279917 |
PQID | 1956484608 |
PQPubID | 2045442 |
PageCount | 25 |
ParticipantIDs | unpaywall_primary_10_1016_j_jmps_2017_06_005 hal_primary_oai_HAL_hal_03279917v1 proquest_journals_1956484608 crossref_primary_10_1016_j_jmps_2017_06_005 crossref_citationtrail_10_1016_j_jmps_2017_06_005 elsevier_sciencedirect_doi_10_1016_j_jmps_2017_06_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2017 2017-10-00 20171001 2017-10 |
PublicationDateYYYYMMDD | 2017-10-01 |
PublicationDate_xml | – month: 10 year: 2017 text: October 2017 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of the mechanics and physics of solids |
PublicationYear | 2017 |
Publisher | Elsevier Ltd Elsevier BV Elsevier |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV – name: Elsevier |
References | Johnson (bib0018) 1981; 52 Czarnota, Molinari, Mercier (bib0012) 2016 Tvergaard (bib0031) 1981; 17 Ortiz, Molinari (bib0029) 1992; 114 Needleman, Tvergaard (bib0026) 1991; 49 Cohen, Durban (bib0009) 2015; 71 Weinberg, Ortiz (bib0032) 2005; 32 Gurson (bib0015) 1977; 99 Butcher, Hicks, Holdridge (bib0004) 1972 Asay (bib0001) 1975; 46 Carroll, Kim, Nesterenko (bib0007) 1986; 59 Molinari, Ravichandran (bib0024) 2004; 95 Knowles (bib0020) 2002; 62 Molinari, Mercier (bib0023) 2001; 49 Butcher, Carroll, Holt (bib0005) 1974; 45 Carroll, Holt (bib0006) 1972; 43 Clifton (bib0008) 1970 Dunin, Surkov (bib0013) 1979; 20 Jacques, Czarnota, Mercier, Molinari (bib0017) 2010; 162 Bakanova, Dudoladov, Sutulov (bib0002) 1974; 15 Barthélémy, Jacques, Kerampran, Vermeersch (bib0003) 2016; 97–98 Czarnota, Mercier, Molinari (bib0011) 2006; 141 Marsh (bib0022) 1980 Simo, Hughes (bib0030) 1998 Nesterenko (bib0028) 2001 Kiselev (bib0019) 1995; 31 Needleman, Tvergaard, Hutchinson (bib0027) 1992 Morgan, Rockowitz, Atkinson (bib0025) 1965 Czarnota, Jacques, Mercier, Molinari (bib0010) 2008; 56 Făciu, Molinari (bib0014) 2006; 43 Herrmann (bib0016) 1969; 40 Kraus, Chapman, Proud, Swift (bib0021) 2009; 105 Molinari (10.1016/j.jmps.2017.06.005_bib0024) 2004; 95 Jacques (10.1016/j.jmps.2017.06.005_bib0017) 2010; 162 Bakanova (10.1016/j.jmps.2017.06.005_bib0002) 1974; 15 Czarnota (10.1016/j.jmps.2017.06.005_bib0011) 2006; 141 Barthélémy (10.1016/j.jmps.2017.06.005_bib0003) 2016; 97–98 Herrmann (10.1016/j.jmps.2017.06.005_bib0016) 1969; 40 Dunin (10.1016/j.jmps.2017.06.005_bib0013) 1979; 20 Kiselev (10.1016/j.jmps.2017.06.005_bib0019) 1995; 31 Weinberg (10.1016/j.jmps.2017.06.005_bib0032) 2005; 32 Johnson (10.1016/j.jmps.2017.06.005_bib0018) 1981; 52 Carroll (10.1016/j.jmps.2017.06.005_bib0007) 1986; 59 Czarnota (10.1016/j.jmps.2017.06.005_bib0012) 2016 Ortiz (10.1016/j.jmps.2017.06.005_bib0029) 1992; 114 Tvergaard (10.1016/j.jmps.2017.06.005_bib0031) 1981; 17 Carroll (10.1016/j.jmps.2017.06.005_bib0006) 1972; 43 Simo (10.1016/j.jmps.2017.06.005_bib0030) 1998 Czarnota (10.1016/j.jmps.2017.06.005_bib0010) 2008; 56 Knowles (10.1016/j.jmps.2017.06.005_bib0020) 2002; 62 Needleman (10.1016/j.jmps.2017.06.005_bib0026) 1991; 49 Needleman (10.1016/j.jmps.2017.06.005_bib0027) 1992 Cohen (10.1016/j.jmps.2017.06.005_bib0009) 2015; 71 Butcher (10.1016/j.jmps.2017.06.005_sbref0004) 1972 Butcher (10.1016/j.jmps.2017.06.005_bib0005) 1974; 45 Clifton (10.1016/j.jmps.2017.06.005_bib0008) 1970 Făciu (10.1016/j.jmps.2017.06.005_bib0014) 2006; 43 Molinari (10.1016/j.jmps.2017.06.005_bib0023) 2001; 49 Marsh (10.1016/j.jmps.2017.06.005_bib0022) 1980 Nesterenko (10.1016/j.jmps.2017.06.005_bib0028) 2001 Kraus (10.1016/j.jmps.2017.06.005_bib0021) 2009; 105 Gurson (10.1016/j.jmps.2017.06.005_bib0015) 1977; 99 Asay (10.1016/j.jmps.2017.06.005_bib0001) 1975; 46 Morgan (10.1016/j.jmps.2017.06.005_sbref0025) 1965 |
References_xml | – volume: 62 start-page: 1153 year: 2002 end-page: 1175 ident: bib0020 article-title: Impact-induced tensile waves in a rubberlike material publication-title: J. Appl. Math. – volume: 40 start-page: 2490 year: 1969 end-page: 2499 ident: bib0016 article-title: Constitutive equation for the dynamic compaction of ductile porous materials publication-title: J. Appl. Phys. – volume: 32 start-page: 588 year: 2005 end-page: 593 ident: bib0032 article-title: Shock wave induced damage in kidney tissue publication-title: Comput. Mater. Sci. – year: 1980 ident: bib0022 article-title: LASL shock Hugoniot data publication-title: Los Alamos Scientific Laboratory Series on Dynamic Material Properties, Vol 5. – volume: 162 start-page: 159 year: 2010 end-page: 175 ident: bib0017 article-title: A micromechanical constitutive model for dynamic damage and fracture of ductile materials publication-title: Int. J. Fract. – year: 1965 ident: bib0025 article-title: Measurement of the Grüneisen Parameter and the Internal Energy Dependence of the Solid Equation of State for Aluminium and Teflon publication-title: Technical Report, AFWL-TR-65-11 – volume: 15 start-page: 241 year: 1974 end-page: 245 ident: bib0002 article-title: Shock compressibility of porous tungsten, molybdenum, copper, and aluminum in the low pressure domain publication-title: J. Appl. Mech. Tech. Phys. – volume: 97–98 start-page: 445 year: 2016 end-page: 457 ident: bib0003 article-title: Modelling of micro-inertia effects in closed-cell foams with application to acoustic and shock wave propagation publication-title: Int. J. Solids Struct. – volume: 20 start-page: 612 year: 1979 end-page: 618 ident: bib0013 article-title: Structure of a shock wave front in a porous solid publication-title: J. Appl. Mech. Tech. Phys. – year: 2001 ident: bib0028 article-title: Dynamics of heterogeneous materials publication-title: Shock Wave and High Pressure Phenomena. – volume: 59 start-page: 1962 year: 1986 end-page: 1967 ident: bib0007 article-title: The effect of temperature on viscoplastic pore collapse publication-title: J. Appl. Phys. – volume: 31 start-page: 473 year: 1995 end-page: 477 ident: bib0019 article-title: On propagation of a shock wave in a porous material upon collision of plates publication-title: Combust. Explosion Shock Waves – volume: 56 start-page: 1624 year: 2008 end-page: 1650 ident: bib0010 article-title: Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum publication-title: J. Mech. Phys. Solids – start-page: 73 year: 1970 end-page: 116 ident: bib0008 article-title: On the analysis of elastic/visco-plastic waves of finite uniaxial strain publication-title: Shock Waves and the Mechanical Properties of Solids – start-page: 145 year: 1992 end-page: 179 ident: bib0027 article-title: Void growth in plastic solids publication-title: Topics in Fracture and Fatigue – volume: 43 start-page: 497 year: 2006 end-page: 522 ident: bib0014 article-title: On the longitudinal impact of two phase transforming bars. Elastic versus a rate-type approach. Part I: the elastic case publication-title: Int. J. Solids Struct. – volume: 49 start-page: 41 year: 1991 end-page: 67 ident: bib0026 article-title: An analysis of dynamic, ductile crack growth in a double edge cracked specimen publication-title: Int. J. Fract. – volume: 46 start-page: 197 year: 1975 end-page: 203 ident: bib0001 article-title: Shock and release behavior in porous 1100 aluminum publication-title: J. Appl. Phys. – year: 1998 ident: bib0030 article-title: Computational inelasticity publication-title: Interdisciplinary Applied Mathematics – volume: 95 start-page: 1718 year: 2004 end-page: 1732 ident: bib0024 article-title: Fundamental structure of steady plastic shock waves in metals publication-title: J. Appl. Phys. – volume: 52 start-page: 2812 year: 1981 end-page: 2825 ident: bib0018 article-title: Dynamic fracture and spallation in ductile solids publication-title: J. Appl. Phys. – volume: 114 start-page: 48 year: 1992 end-page: 53 ident: bib0029 article-title: Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material publication-title: J. Appl. Mech. – volume: 49 start-page: 1497 year: 2001 end-page: 1516 ident: bib0023 article-title: Micromechanical modelling of porous materials under dynamic loading publication-title: J. Mech. Phys. Solids – volume: 45 start-page: 3864 year: 1974 end-page: 3875 ident: bib0005 article-title: Shock-wave compaction of porous aluminum publication-title: J. Appl. Phys. – volume: 43 start-page: 1626 year: 1972 end-page: 1636 ident: bib0006 article-title: Static and dynamic pore collapse relations for ductile porous materials publication-title: J. Appl. Phys. – year: 2016 ident: bib0012 article-title: Shock wave structures in porous media accounting for micro-inertia effects publication-title: 24th International Congress of Theoretical and Applied Mechanics (ICTAM), Montreal, Canada, August 21–26 – volume: 105 year: 2009 ident: bib0021 article-title: Hugoniot and spall strength measurements of porous aluminum publication-title: J. Appl. Phys. – year: 1972 ident: bib0004 article-title: Elastic Precursor Decay and Steady Wave Evolution in Porous Aluminium and Porous Polyurethane publication-title: Technical Report, SC-RR-72 0627 – volume: 99 start-page: 2 year: 1977 end-page: 15 ident: bib0015 article-title: Continuum theory of ductile rupture by void nucleation and growth : part I - yield criteria and flow rules for porous ductile media publication-title: J. Eng. Mater. Technol. – volume: 17 start-page: 389 year: 1981 end-page: 407 ident: bib0031 article-title: Influence of voids on shear bands instabilities under plane strain conditions publication-title: Int. J. Fract. – volume: 71 start-page: 70 year: 2015 end-page: 78 ident: bib0009 article-title: Steady shock waves in porous plastic solids publication-title: Int. J. Solids Struct. – volume: 141 start-page: 177 year: 2006 end-page: 194 ident: bib0011 article-title: Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum publication-title: Int. J. Fract. – volume: 31 start-page: 473 year: 1995 ident: 10.1016/j.jmps.2017.06.005_bib0019 article-title: On propagation of a shock wave in a porous material upon collision of plates publication-title: Combust. Explosion Shock Waves doi: 10.1007/BF00789370 – volume: 32 start-page: 588 year: 2005 ident: 10.1016/j.jmps.2017.06.005_bib0032 article-title: Shock wave induced damage in kidney tissue publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2004.09.005 – year: 1972 ident: 10.1016/j.jmps.2017.06.005_sbref0004 article-title: Elastic Precursor Decay and Steady Wave Evolution in Porous Aluminium and Porous Polyurethane – volume: 15 start-page: 241 year: 1974 ident: 10.1016/j.jmps.2017.06.005_bib0002 article-title: Shock compressibility of porous tungsten, molybdenum, copper, and aluminum in the low pressure domain publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1007/BF00850666 – volume: 49 start-page: 41 year: 1991 ident: 10.1016/j.jmps.2017.06.005_bib0026 article-title: An analysis of dynamic, ductile crack growth in a double edge cracked specimen publication-title: Int. J. Fract. doi: 10.1007/BF00013502 – start-page: 145 year: 1992 ident: 10.1016/j.jmps.2017.06.005_bib0027 article-title: Void growth in plastic solids – volume: 71 start-page: 70 year: 2015 ident: 10.1016/j.jmps.2017.06.005_bib0009 article-title: Steady shock waves in porous plastic solids publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.06.002 – volume: 49 start-page: 1497 year: 2001 ident: 10.1016/j.jmps.2017.06.005_bib0023 article-title: Micromechanical modelling of porous materials under dynamic loading publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(01)00003-5 – volume: 95 start-page: 1718 year: 2004 ident: 10.1016/j.jmps.2017.06.005_bib0024 article-title: Fundamental structure of steady plastic shock waves in metals publication-title: J. Appl. Phys. doi: 10.1063/1.1640452 – volume: 46 start-page: 197 year: 1975 ident: 10.1016/j.jmps.2017.06.005_bib0001 article-title: Shock and release behavior in porous 1100 aluminum publication-title: J. Appl. Phys. doi: 10.1063/1.321319 – volume: 20 start-page: 612 year: 1979 ident: 10.1016/j.jmps.2017.06.005_bib0013 article-title: Structure of a shock wave front in a porous solid publication-title: J. Appl. Mech. Tech. Phys. doi: 10.1007/BF00910554 – volume: 52 start-page: 2812 year: 1981 ident: 10.1016/j.jmps.2017.06.005_bib0018 article-title: Dynamic fracture and spallation in ductile solids publication-title: J. Appl. Phys. doi: 10.1063/1.329011 – volume: 105 year: 2009 ident: 10.1016/j.jmps.2017.06.005_bib0021 article-title: Hugoniot and spall strength measurements of porous aluminum publication-title: J. Appl. Phys. doi: 10.1063/1.3133237 – volume: 141 start-page: 177 year: 2006 ident: 10.1016/j.jmps.2017.06.005_bib0011 article-title: Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum publication-title: Int. J. Fract. doi: 10.1007/s10704-006-0070-y – year: 1965 ident: 10.1016/j.jmps.2017.06.005_sbref0025 article-title: Measurement of the Grüneisen Parameter and the Internal Energy Dependence of the Solid Equation of State for Aluminium and Teflon – year: 1980 ident: 10.1016/j.jmps.2017.06.005_bib0022 article-title: LASL shock Hugoniot data – volume: 97–98 start-page: 445 year: 2016 ident: 10.1016/j.jmps.2017.06.005_bib0003 article-title: Modelling of micro-inertia effects in closed-cell foams with application to acoustic and shock wave propagation publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.07.005 – volume: 62 start-page: 1153 year: 2002 ident: 10.1016/j.jmps.2017.06.005_bib0020 article-title: Impact-induced tensile waves in a rubberlike material publication-title: J. Appl. Math. – year: 2001 ident: 10.1016/j.jmps.2017.06.005_bib0028 article-title: Dynamics of heterogeneous materials – volume: 45 start-page: 3864 year: 1974 ident: 10.1016/j.jmps.2017.06.005_bib0005 article-title: Shock-wave compaction of porous aluminum publication-title: J. Appl. Phys. doi: 10.1063/1.1663877 – volume: 43 start-page: 1626 year: 1972 ident: 10.1016/j.jmps.2017.06.005_bib0006 article-title: Static and dynamic pore collapse relations for ductile porous materials publication-title: J. Appl. Phys. doi: 10.1063/1.1661372 – volume: 99 start-page: 2 year: 1977 ident: 10.1016/j.jmps.2017.06.005_bib0015 article-title: Continuum theory of ductile rupture by void nucleation and growth : part I - yield criteria and flow rules for porous ductile media publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3443401 – year: 2016 ident: 10.1016/j.jmps.2017.06.005_bib0012 article-title: Shock wave structures in porous media accounting for micro-inertia effects – volume: 59 start-page: 1962 year: 1986 ident: 10.1016/j.jmps.2017.06.005_bib0007 article-title: The effect of temperature on viscoplastic pore collapse publication-title: J. Appl. Phys. doi: 10.1063/1.336426 – volume: 43 start-page: 497 year: 2006 ident: 10.1016/j.jmps.2017.06.005_bib0014 article-title: On the longitudinal impact of two phase transforming bars. Elastic versus a rate-type approach. Part I: the elastic case publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2005.06.023 – volume: 114 start-page: 48 year: 1992 ident: 10.1016/j.jmps.2017.06.005_bib0029 article-title: Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material publication-title: J. Appl. Mech. doi: 10.1115/1.2899463 – volume: 17 start-page: 389 year: 1981 ident: 10.1016/j.jmps.2017.06.005_bib0031 article-title: Influence of voids on shear bands instabilities under plane strain conditions publication-title: Int. J. Fract. doi: 10.1007/BF00036191 – volume: 40 start-page: 2490 year: 1969 ident: 10.1016/j.jmps.2017.06.005_bib0016 article-title: Constitutive equation for the dynamic compaction of ductile porous materials publication-title: J. Appl. Phys. doi: 10.1063/1.1658021 – year: 1998 ident: 10.1016/j.jmps.2017.06.005_bib0030 article-title: Computational inelasticity – volume: 56 start-page: 1624 year: 2008 ident: 10.1016/j.jmps.2017.06.005_bib0010 article-title: Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2007.07.017 – volume: 162 start-page: 159 year: 2010 ident: 10.1016/j.jmps.2017.06.005_bib0017 article-title: A micromechanical constitutive model for dynamic damage and fracture of ductile materials publication-title: Int. J. Fract. doi: 10.1007/s10704-009-9436-2 – start-page: 73 year: 1970 ident: 10.1016/j.jmps.2017.06.005_bib0008 article-title: On the analysis of elastic/visco-plastic waves of finite uniaxial strain |
SSID | ssj0005071 |
Score | 2.4326265 |
Snippet | •A fundamental approach of steady shock waves in porous metals is proposed.•Micro-inertia effects related to rapid pore collapse are accounted for.•In addition... The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less... |
SourceID | unpaywall hal proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 204 |
SubjectTerms | Damage assessment Dynamic response Engineering Sciences High acceleration Inertia Inertia effects Mechanics Metals Porosity Porous material Porous materials Porous media Porous metals Scaling laws Shock wave propagation Shock waves Voids |
SummonAdditionalLinks | – databaseName: ScienceDirect Freedom Collection 2013 dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qL-pBfGK0yiLeNDbZvI-lWIqoJwu9LZvNhra0aTB90Iu_3Zk8SgQp4jFhlywzX2a_gZlvCLm3hbJCoKG68kNHt2MW6MDClc4CTwZM2EFsYL_z27vbH9gvQ2fYIN2qFwbLKsvYX8T0PFqXb9qlNdvpeIw9voBFnFjiIk5dzNtR_Qsw_fRVK_MwPLNSDMfVZeNMUeM1maUo2W16uYYnjrD7_XLaG2GVZI2C7i-TVGzWYjqt3Ua9Y3JU0kjaKU56QhoqOSWHNXHBM2IDAmghD7v8VHQe09yhG5qNIAbStVipjI4TCgQcsn86U0DDs3My6D1_dPt6OSNBl3AVL_TAtqLQhaRJAjGRhnRZHDu-YhHDsZeR70ZOHCkT-6X9KGQihPWBFxnC8y1lydi6IM1knqhLQkNgJsyNgYAZEkhWKAxLOczxmXDtCDIfjZiVcbgsBcRxjsWUV5ViE44G5WhQnpfLORp52O5JC_mMnaudyub8Bwg4xPed--7AQdsPoGJ2v_PK8Z1hMQ8osLcyNdKq_MfL_zTj2C1pAwUzfI08bn36h6Ne_fOo1-QAn4pywBZpAgrUDdCaRXib4_Ybx0DxiA priority: 102 providerName: Elsevier |
Title | The structure of steady shock waves in porous metals |
URI | https://dx.doi.org/10.1016/j.jmps.2017.06.005 https://www.proquest.com/docview/1956484608 https://hal.univ-lorraine.fr/hal-03279917 |
UnpaywallVersion | submittedVersion |
Volume | 107 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005071 issn: 0022-5096 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1873-4782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005071 issn: 0022-5096 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005071 issn: 0022-5096 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 customDbUrl: eissn: 1873-4782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005071 issn: 0022-5096 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4782 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005071 issn: 0022-5096 databaseCode: AKRWK dateStart: 19521001 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3La9tAEIeH2j6UHpo-qUtqltJbu0ZarV5HUxLcuDWl1DQ9LburFU7qyCayHJJD__bMWJIxJYT0JBC76DGzmm_RzG8APkjtAoMYyl1iQi5zkXKkcMdFGttUaJnmHtU7f5tG45k8OQ1PG7FoqoWZI3FWxdmG426VeiS4YX5JJ7kXiBhZJu5AL6J_SV3ozabfR79bNXCSMaHNVRIHXGLYawpk6lyu84sVSXP78Vark1rV3R2EOnPKhtxDzcdVsdLXV3qx2Is6xwd1vla5FSukZJM_w2pthvbmHynHBz3QM3jasCcb1c7yHB654gU82VMkfAkS3YbVmrLVpWPLnG294JqVc_xwsiu9cSU7KxhS-7Iq2YVDdi9fwez46OfnMW8aK3CL8XvNUxlkJsKdlkWasZ6NRJ6HiROZoF6ZWRJlYZ45n4qsk8wIbXB8GmeejpPABTYPXkO3WBbuDTCDOCOiHKnNs0hmRnuBC0WYCB3JDLdLffDbN61sozpOzS8Wqk0vO1dkHUXWUdscu7APH3dzVrXmxr2jw9aAqqGGmgYUBoV7571HM-wuQDLb49FXReda02z8Phy2zqCaxV0qKrGUyG1e0odPOwd5wK2-_b_hh9BFe7t3SD1rM4DO8K8_gN7oy2Q8pePkx6_JoFkFt3_eAog |
linkProvider | Unpaywall |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YnrM4g3LbZp0sdxEaXquicFbyFtU1xZu4t1Ff-9M9t0XUFEvKYJDTOTyRf45huAY6GNnyIMdUyUSkcUPHYQhRuHx2EWcy3iwqV659tekNyL6wf5MAfnTS0M0Spt7q9z-iRb25Eza82zUb9PNb4Yi9SxJKA4DfDdviAk5uQWLHSubpLeF9PDDb1GNJwW2NqZmub19Dwi1W4vnMh4Uhe7n--n-UciSs6g0MVxOdIf73owmLmQLldhxSJJ1qk3uwZzplyH5Rl9wQ0QGASsVogdvxg2LNjEpx-sesQ0yN71m6lYv2SIwYfjij0bROLVJtxfXtydJ45tk-BkeBu_OrHw8zTAd1OG2CRzs4AXhYwMzzl1vsyjIJdFbjwqmY7ylOsU58dh7uow8o2fFf4WtMphabaBpQhOeFAgBnMzxFmpdn0juYy4DkSOj582eI1xVGY1xKmVxUA1ZLEnRQZVZFA1YczJNpxM14xqBY1fZ8vG5upbHChM8b-uO0IHTX9AotlJp6tozPV5iCg4fPPasNf4T9mjWikqmBSIwtyoDadTn_5hqzv_3OohLCZ3t13Vverd7MISfanZgXvQwogw-4hyXtMDG8Wfprn1wQ |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMcXrQfx4FusqCziTbekm83rWEQpouLBgp6W3c0uVdu0mKain96ZJilFRPQadsljJpnfkJn_EHIqlPU1YCizsQ6YcDxhQOGW8SQyCVcicR72O9_ehd2euH4MHiuxaOyF6QNxFtnzlEG2ijMSbMu94UHm-TwClomWyUqI_5IaZKV3d995qtXAUcYEk6s48pmAsFc1yJS1XC_DMUpzt6OZVieOqvs5CC33sRpyATVXi2ysPt7VYLAQda42ynqtfCZWiMUmr61iolvm85uU459uaJOsV-xJO6WzbJElm22TtQVFwh0iwG1oqSlbvFk6cnTmBR8078OHk76rqc3pc0aB2kdFTocW2D3fJb2ry4eLLqsGKzAD8XvCEuGnOoRMywDNGM-E3LkgtjzlOCszjcM0cKltY5N1nGquNKxPotRTUexb3zh_jzSyUWb3CdWAMzx0QG2eATLTyvNtwIOYq1CkkC41Sbt-0tJUquM4_GIg6_KyF4nWkWgdOauxC5rkbL5nXGpu_Lo6qA0oK2ooaUBCUPh13wmYYX4ClNnudm4kHqtNM203yWHtDLJ6uXOJLZYCuM2Lm-R87iB_uNSD_y0_JA2wtz0C6pno48rfvwB-df5K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+structure+of+steady+shock+waves+in+porous+metals&rft.jtitle=Journal+of+the+mechanics+and+physics+of+solids&rft.au=Czarnota%2C+Christophe&rft.au=Molinari%2C+Alain&rft.au=Mercier%2C+S%C3%A9bastien&rft.date=2017-10-01&rft.pub=Elsevier+BV&rft.issn=0022-5096&rft.eissn=1873-4782&rft.volume=107&rft.spage=204&rft_id=info:doi/10.1016%2Fj.jmps.2017.06.005&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5096&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5096&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5096&client=summon |