The structure of steady shock waves in porous metals

•A fundamental approach of steady shock waves in porous metals is proposed.•Micro-inertia effects related to rapid pore collapse are accounted for.•In addition to viscoplastic effects, the key role of micro-inertia on the shock layer is discussed.•A new scaling law relating the shock width to the in...

Full description

Saved in:
Bibliographic Details
Published inJournal of the mechanics and physics of solids Vol. 107; pp. 204 - 228
Main Authors Czarnota, Christophe, Molinari, Alain, Mercier, Sébastien
Format Journal Article
LanguageEnglish
Published London Elsevier Ltd 01.10.2017
Elsevier BV
Elsevier
Subjects
Online AccessGet full text
ISSN0022-5096
1873-4782
1873-4782
DOI10.1016/j.jmps.2017.06.005

Cover

Abstract •A fundamental approach of steady shock waves in porous metals is proposed.•Micro-inertia effects related to rapid pore collapse are accounted for.•In addition to viscoplastic effects, the key role of micro-inertia on the shock layer is discussed.•A new scaling law relating the shock width to the initial void radius and porosity is obtained.•The theoretical shock-speed/particle velocity relationship is correlated to experiments. The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.
AbstractList The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.
•A fundamental approach of steady shock waves in porous metals is proposed.•Micro-inertia effects related to rapid pore collapse are accounted for.•In addition to viscoplastic effects, the key role of micro-inertia on the shock layer is discussed.•A new scaling law relating the shock width to the initial void radius and porosity is obtained.•The theoretical shock-speed/particle velocity relationship is correlated to experiments. The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less than 0.3 and voids are not connected (foams are not considered). As the shock wave is traveling in the porous medium, the voids are facing a rapid collapse. During this dynamic compaction process, material particles are subjected to very high acceleration in the vicinity of voids, thus generating acceleration forces at the microscale that influence the overall response of the porous material. Analyzing how stationary shocks are influenced by these micro-inertia effects is the main goal of this work. The focus is essentially on the shock structure, ignoring oscillatory motion of pores prevailing at the tail of the shock wave. Following the constitutive framework developed by Molinari and Ravichandran (2004) for the analysis of steady shock waves in dense metals, an analytical approach of steady state propagation of plastic shocks in porous metals is proposed. The initial void size appears as a characteristic internal length that scales the overall dynamic response, thereby contributing to the structuring of the shock front. This key feature is not captured by standard damage models where the porosity stands for the single damage parameter with no contribution of the void size. The results obtained in this work provide a new insight in the fundamental understanding of shock waves in porous media. In particular, a new scaling law relating the shock width to the initial void radius is obtained when micro-inertia effects are significant.
Author Molinari, Alain
Mercier, Sébastien
Czarnota, Christophe
Author_xml – sequence: 1
  givenname: Christophe
  surname: Czarnota
  fullname: Czarnota, Christophe
  email: christophe.czarnota@univ-lorraine.fr
– sequence: 2
  givenname: Alain
  surname: Molinari
  fullname: Molinari, Alain
  email: alain.molinari@univ-lorraine.fr
– sequence: 3
  givenname: Sébastien
  surname: Mercier
  fullname: Mercier, Sébastien
  email: sebastien.mercier@univ-lorraine.fr
BackLink https://hal.univ-lorraine.fr/hal-03279917$$DView record in HAL
BookMark eNqNkEFr2zAUgMXIYGm7P7CTYacd7D7JlizDLqWs6yDQS3sWivRM5CWWJ8kp-fdV8GCwQ-jpIfF94n26IqvRj0jIFwoVBSpuh2o4TLFiQNsKRAXAP5A1lW1dNq1kK7IGYKzk0IlP5CrGATIBLV2T5nmHRUxhNmkOWPg-H1DbUxF33vwuXvURY-HGYvLBz7E4YNL7eEM-9nng57_zmrw8_Hi-fyw3Tz9_3d9tStOASGXX1HYrZNcZTrkBI1jfc4nMMi4os1JY3luklAuQdsv0NvNda0G3ssba9PU1qZd353HSp1e936spuIMOJ0VBncPVoM7h6hyuQKicla1vi7XT_3ivnXq826jzHdSs7TraHmlmvy7sFPyfGWNSg5_DmKMU7bhoZJN3yxRbKBN8jAH7960h_5OMSzo5P6ag3f6y-n1RMX_u0WFQ0TgcDVoX0CRlvbukvwHYSKBI
CitedBy_id crossref_primary_10_1016_j_ijplas_2021_102999
crossref_primary_10_1016_j_ijimpeng_2024_105039
crossref_primary_10_1016_j_ijimpeng_2018_01_011
crossref_primary_10_1063_5_0143744
crossref_primary_10_1016_j_ijplas_2020_102816
crossref_primary_10_1016_j_jeurceramsoc_2024_117172
crossref_primary_10_1063_5_0078182
crossref_primary_10_1007_s11666_024_01875_4
crossref_primary_10_1016_j_ijsolstr_2022_111598
crossref_primary_10_1371_journal_pone_0247172
crossref_primary_10_1016_j_ijplas_2019_102656
crossref_primary_10_1016_j_jcp_2022_111901
crossref_primary_10_3390_applmech1010003
crossref_primary_10_1016_j_ijplas_2022_103363
crossref_primary_10_1016_j_mechrescom_2021_103690
crossref_primary_10_1016_j_jmps_2022_105032
crossref_primary_10_1016_j_ijplas_2021_103102
crossref_primary_10_1016_j_mechmat_2023_104710
crossref_primary_10_1016_j_mechmat_2024_104953
crossref_primary_10_1007_s00707_022_03172_z
crossref_primary_10_1016_j_ijmecsci_2022_107320
crossref_primary_10_1016_j_ijplas_2025_104314
crossref_primary_10_1007_s00707_020_02646_2
crossref_primary_10_1016_j_ijplas_2022_103418
crossref_primary_10_1016_j_ijplas_2019_08_005
crossref_primary_10_1016_j_jmps_2021_104508
crossref_primary_10_1016_j_jmps_2020_104189
crossref_primary_10_1016_j_apm_2024_115745
crossref_primary_10_1016_j_ijsolstr_2020_06_027
crossref_primary_10_1016_j_jmps_2019_103743
crossref_primary_10_1016_j_jmps_2020_104108
crossref_primary_10_1051_epjconf_201818301041
crossref_primary_10_1016_j_mechmat_2024_105112
crossref_primary_10_1016_j_mechmat_2019_04_017
crossref_primary_10_1016_j_jmps_2023_105520
crossref_primary_10_1016_j_ijmecsci_2018_04_008
crossref_primary_10_1063_5_0234896
crossref_primary_10_1016_j_ijimpeng_2019_103325
crossref_primary_10_1016_j_ijimpeng_2023_104817
crossref_primary_10_1016_j_ijplas_2023_103678
crossref_primary_10_1016_j_ijplas_2024_103899
crossref_primary_10_1007_s10704_020_00440_8
crossref_primary_10_1007_s10704_020_00441_7
crossref_primary_10_1016_j_mechmat_2020_103674
Cites_doi 10.1007/BF00789370
10.1016/j.commatsci.2004.09.005
10.1007/BF00850666
10.1007/BF00013502
10.1016/j.ijsolstr.2015.06.002
10.1016/S0022-5096(01)00003-5
10.1063/1.1640452
10.1063/1.321319
10.1007/BF00910554
10.1063/1.329011
10.1063/1.3133237
10.1007/s10704-006-0070-y
10.1016/j.ijsolstr.2016.07.005
10.1063/1.1663877
10.1063/1.1661372
10.1115/1.3443401
10.1063/1.336426
10.1016/j.ijsolstr.2005.06.023
10.1115/1.2899463
10.1007/BF00036191
10.1063/1.1658021
10.1016/j.jmps.2007.07.017
10.1007/s10704-009-9436-2
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier BV Oct 2017
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier BV Oct 2017
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
KR7
L7M
1XC
VOOES
ADTOC
UNPAY
DOI 10.1016/j.jmps.2017.06.005
DatabaseName CrossRef
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList Materials Research Database


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4782
EndPage 228
ExternalDocumentID oai:HAL:hal-03279917v1
oai_HAL_hal_03279917v1
10_1016_j_jmps_2017_06_005
S0022509616307360
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
E.L
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY7
M24
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SMS
SPC
SPCBC
SPD
SPG
SST
SSZ
T5K
VH1
WUQ
XFK
XPP
YQT
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SR
7TB
7U5
8BQ
8FD
AFXIZ
AGCQF
AGRNS
FR3
JG9
KR7
L7M
SSH
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-943db6899c515c0c62ff58e2d25612d86d5fde115608db2ab43d97d0a783e3cf3
IEDL.DBID UNPAY
ISSN 0022-5096
1873-4782
IngestDate Sun Sep 07 11:27:49 EDT 2025
Fri Sep 12 12:52:25 EDT 2025
Mon Jul 14 08:12:22 EDT 2025
Thu Apr 24 23:10:18 EDT 2025
Wed Oct 01 01:32:36 EDT 2025
Fri Feb 23 02:21:45 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Shock waves
Porous material
Inertia effects
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-943db6899c515c0c62ff58e2d25612d86d5fde115608db2ab43d97d0a783e3cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5640-3306
0000-0002-2957-7220
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hal.univ-lorraine.fr/hal-03279917
PQID 1956484608
PQPubID 2045442
PageCount 25
ParticipantIDs unpaywall_primary_10_1016_j_jmps_2017_06_005
hal_primary_oai_HAL_hal_03279917v1
proquest_journals_1956484608
crossref_primary_10_1016_j_jmps_2017_06_005
crossref_citationtrail_10_1016_j_jmps_2017_06_005
elsevier_sciencedirect_doi_10_1016_j_jmps_2017_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2017
2017-10-00
20171001
2017-10
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: October 2017
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of the mechanics and physics of solids
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References Johnson (bib0018) 1981; 52
Czarnota, Molinari, Mercier (bib0012) 2016
Tvergaard (bib0031) 1981; 17
Ortiz, Molinari (bib0029) 1992; 114
Needleman, Tvergaard (bib0026) 1991; 49
Cohen, Durban (bib0009) 2015; 71
Weinberg, Ortiz (bib0032) 2005; 32
Gurson (bib0015) 1977; 99
Butcher, Hicks, Holdridge (bib0004) 1972
Asay (bib0001) 1975; 46
Carroll, Kim, Nesterenko (bib0007) 1986; 59
Molinari, Ravichandran (bib0024) 2004; 95
Knowles (bib0020) 2002; 62
Molinari, Mercier (bib0023) 2001; 49
Butcher, Carroll, Holt (bib0005) 1974; 45
Carroll, Holt (bib0006) 1972; 43
Clifton (bib0008) 1970
Dunin, Surkov (bib0013) 1979; 20
Jacques, Czarnota, Mercier, Molinari (bib0017) 2010; 162
Bakanova, Dudoladov, Sutulov (bib0002) 1974; 15
Barthélémy, Jacques, Kerampran, Vermeersch (bib0003) 2016; 97–98
Czarnota, Mercier, Molinari (bib0011) 2006; 141
Marsh (bib0022) 1980
Simo, Hughes (bib0030) 1998
Nesterenko (bib0028) 2001
Kiselev (bib0019) 1995; 31
Needleman, Tvergaard, Hutchinson (bib0027) 1992
Morgan, Rockowitz, Atkinson (bib0025) 1965
Czarnota, Jacques, Mercier, Molinari (bib0010) 2008; 56
Făciu, Molinari (bib0014) 2006; 43
Herrmann (bib0016) 1969; 40
Kraus, Chapman, Proud, Swift (bib0021) 2009; 105
Molinari (10.1016/j.jmps.2017.06.005_bib0024) 2004; 95
Jacques (10.1016/j.jmps.2017.06.005_bib0017) 2010; 162
Bakanova (10.1016/j.jmps.2017.06.005_bib0002) 1974; 15
Czarnota (10.1016/j.jmps.2017.06.005_bib0011) 2006; 141
Barthélémy (10.1016/j.jmps.2017.06.005_bib0003) 2016; 97–98
Herrmann (10.1016/j.jmps.2017.06.005_bib0016) 1969; 40
Dunin (10.1016/j.jmps.2017.06.005_bib0013) 1979; 20
Kiselev (10.1016/j.jmps.2017.06.005_bib0019) 1995; 31
Weinberg (10.1016/j.jmps.2017.06.005_bib0032) 2005; 32
Johnson (10.1016/j.jmps.2017.06.005_bib0018) 1981; 52
Carroll (10.1016/j.jmps.2017.06.005_bib0007) 1986; 59
Czarnota (10.1016/j.jmps.2017.06.005_bib0012) 2016
Ortiz (10.1016/j.jmps.2017.06.005_bib0029) 1992; 114
Tvergaard (10.1016/j.jmps.2017.06.005_bib0031) 1981; 17
Carroll (10.1016/j.jmps.2017.06.005_bib0006) 1972; 43
Simo (10.1016/j.jmps.2017.06.005_bib0030) 1998
Czarnota (10.1016/j.jmps.2017.06.005_bib0010) 2008; 56
Knowles (10.1016/j.jmps.2017.06.005_bib0020) 2002; 62
Needleman (10.1016/j.jmps.2017.06.005_bib0026) 1991; 49
Needleman (10.1016/j.jmps.2017.06.005_bib0027) 1992
Cohen (10.1016/j.jmps.2017.06.005_bib0009) 2015; 71
Butcher (10.1016/j.jmps.2017.06.005_sbref0004) 1972
Butcher (10.1016/j.jmps.2017.06.005_bib0005) 1974; 45
Clifton (10.1016/j.jmps.2017.06.005_bib0008) 1970
Făciu (10.1016/j.jmps.2017.06.005_bib0014) 2006; 43
Molinari (10.1016/j.jmps.2017.06.005_bib0023) 2001; 49
Marsh (10.1016/j.jmps.2017.06.005_bib0022) 1980
Nesterenko (10.1016/j.jmps.2017.06.005_bib0028) 2001
Kraus (10.1016/j.jmps.2017.06.005_bib0021) 2009; 105
Gurson (10.1016/j.jmps.2017.06.005_bib0015) 1977; 99
Asay (10.1016/j.jmps.2017.06.005_bib0001) 1975; 46
Morgan (10.1016/j.jmps.2017.06.005_sbref0025) 1965
References_xml – volume: 62
  start-page: 1153
  year: 2002
  end-page: 1175
  ident: bib0020
  article-title: Impact-induced tensile waves in a rubberlike material
  publication-title: J. Appl. Math.
– volume: 40
  start-page: 2490
  year: 1969
  end-page: 2499
  ident: bib0016
  article-title: Constitutive equation for the dynamic compaction of ductile porous materials
  publication-title: J. Appl. Phys.
– volume: 32
  start-page: 588
  year: 2005
  end-page: 593
  ident: bib0032
  article-title: Shock wave induced damage in kidney tissue
  publication-title: Comput. Mater. Sci.
– year: 1980
  ident: bib0022
  article-title: LASL shock Hugoniot data
  publication-title: Los Alamos Scientific Laboratory Series on Dynamic Material Properties, Vol 5.
– volume: 162
  start-page: 159
  year: 2010
  end-page: 175
  ident: bib0017
  article-title: A micromechanical constitutive model for dynamic damage and fracture of ductile materials
  publication-title: Int. J. Fract.
– year: 1965
  ident: bib0025
  article-title: Measurement of the Grüneisen Parameter and the Internal Energy Dependence of the Solid Equation of State for Aluminium and Teflon
  publication-title: Technical Report, AFWL-TR-65-11
– volume: 15
  start-page: 241
  year: 1974
  end-page: 245
  ident: bib0002
  article-title: Shock compressibility of porous tungsten, molybdenum, copper, and aluminum in the low pressure domain
  publication-title: J. Appl. Mech. Tech. Phys.
– volume: 97–98
  start-page: 445
  year: 2016
  end-page: 457
  ident: bib0003
  article-title: Modelling of micro-inertia effects in closed-cell foams with application to acoustic and shock wave propagation
  publication-title: Int. J. Solids Struct.
– volume: 20
  start-page: 612
  year: 1979
  end-page: 618
  ident: bib0013
  article-title: Structure of a shock wave front in a porous solid
  publication-title: J. Appl. Mech. Tech. Phys.
– year: 2001
  ident: bib0028
  article-title: Dynamics of heterogeneous materials
  publication-title: Shock Wave and High Pressure Phenomena.
– volume: 59
  start-page: 1962
  year: 1986
  end-page: 1967
  ident: bib0007
  article-title: The effect of temperature on viscoplastic pore collapse
  publication-title: J. Appl. Phys.
– volume: 31
  start-page: 473
  year: 1995
  end-page: 477
  ident: bib0019
  article-title: On propagation of a shock wave in a porous material upon collision of plates
  publication-title: Combust. Explosion Shock Waves
– volume: 56
  start-page: 1624
  year: 2008
  end-page: 1650
  ident: bib0010
  article-title: Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum
  publication-title: J. Mech. Phys. Solids
– start-page: 73
  year: 1970
  end-page: 116
  ident: bib0008
  article-title: On the analysis of elastic/visco-plastic waves of finite uniaxial strain
  publication-title: Shock Waves and the Mechanical Properties of Solids
– start-page: 145
  year: 1992
  end-page: 179
  ident: bib0027
  article-title: Void growth in plastic solids
  publication-title: Topics in Fracture and Fatigue
– volume: 43
  start-page: 497
  year: 2006
  end-page: 522
  ident: bib0014
  article-title: On the longitudinal impact of two phase transforming bars. Elastic versus a rate-type approach. Part I: the elastic case
  publication-title: Int. J. Solids Struct.
– volume: 49
  start-page: 41
  year: 1991
  end-page: 67
  ident: bib0026
  article-title: An analysis of dynamic, ductile crack growth in a double edge cracked specimen
  publication-title: Int. J. Fract.
– volume: 46
  start-page: 197
  year: 1975
  end-page: 203
  ident: bib0001
  article-title: Shock and release behavior in porous 1100 aluminum
  publication-title: J. Appl. Phys.
– year: 1998
  ident: bib0030
  article-title: Computational inelasticity
  publication-title: Interdisciplinary Applied Mathematics
– volume: 95
  start-page: 1718
  year: 2004
  end-page: 1732
  ident: bib0024
  article-title: Fundamental structure of steady plastic shock waves in metals
  publication-title: J. Appl. Phys.
– volume: 52
  start-page: 2812
  year: 1981
  end-page: 2825
  ident: bib0018
  article-title: Dynamic fracture and spallation in ductile solids
  publication-title: J. Appl. Phys.
– volume: 114
  start-page: 48
  year: 1992
  end-page: 53
  ident: bib0029
  article-title: Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material
  publication-title: J. Appl. Mech.
– volume: 49
  start-page: 1497
  year: 2001
  end-page: 1516
  ident: bib0023
  article-title: Micromechanical modelling of porous materials under dynamic loading
  publication-title: J. Mech. Phys. Solids
– volume: 45
  start-page: 3864
  year: 1974
  end-page: 3875
  ident: bib0005
  article-title: Shock-wave compaction of porous aluminum
  publication-title: J. Appl. Phys.
– volume: 43
  start-page: 1626
  year: 1972
  end-page: 1636
  ident: bib0006
  article-title: Static and dynamic pore collapse relations for ductile porous materials
  publication-title: J. Appl. Phys.
– year: 2016
  ident: bib0012
  article-title: Shock wave structures in porous media accounting for micro-inertia effects
  publication-title: 24th International Congress of Theoretical and Applied Mechanics (ICTAM), Montreal, Canada, August 21–26
– volume: 105
  year: 2009
  ident: bib0021
  article-title: Hugoniot and spall strength measurements of porous aluminum
  publication-title: J. Appl. Phys.
– year: 1972
  ident: bib0004
  article-title: Elastic Precursor Decay and Steady Wave Evolution in Porous Aluminium and Porous Polyurethane
  publication-title: Technical Report, SC-RR-72 0627
– volume: 99
  start-page: 2
  year: 1977
  end-page: 15
  ident: bib0015
  article-title: Continuum theory of ductile rupture by void nucleation and growth : part I - yield criteria and flow rules for porous ductile media
  publication-title: J. Eng. Mater. Technol.
– volume: 17
  start-page: 389
  year: 1981
  end-page: 407
  ident: bib0031
  article-title: Influence of voids on shear bands instabilities under plane strain conditions
  publication-title: Int. J. Fract.
– volume: 71
  start-page: 70
  year: 2015
  end-page: 78
  ident: bib0009
  article-title: Steady shock waves in porous plastic solids
  publication-title: Int. J. Solids Struct.
– volume: 141
  start-page: 177
  year: 2006
  end-page: 194
  ident: bib0011
  article-title: Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum
  publication-title: Int. J. Fract.
– volume: 31
  start-page: 473
  year: 1995
  ident: 10.1016/j.jmps.2017.06.005_bib0019
  article-title: On propagation of a shock wave in a porous material upon collision of plates
  publication-title: Combust. Explosion Shock Waves
  doi: 10.1007/BF00789370
– volume: 32
  start-page: 588
  year: 2005
  ident: 10.1016/j.jmps.2017.06.005_bib0032
  article-title: Shock wave induced damage in kidney tissue
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2004.09.005
– year: 1972
  ident: 10.1016/j.jmps.2017.06.005_sbref0004
  article-title: Elastic Precursor Decay and Steady Wave Evolution in Porous Aluminium and Porous Polyurethane
– volume: 15
  start-page: 241
  year: 1974
  ident: 10.1016/j.jmps.2017.06.005_bib0002
  article-title: Shock compressibility of porous tungsten, molybdenum, copper, and aluminum in the low pressure domain
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1007/BF00850666
– volume: 49
  start-page: 41
  year: 1991
  ident: 10.1016/j.jmps.2017.06.005_bib0026
  article-title: An analysis of dynamic, ductile crack growth in a double edge cracked specimen
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00013502
– start-page: 145
  year: 1992
  ident: 10.1016/j.jmps.2017.06.005_bib0027
  article-title: Void growth in plastic solids
– volume: 71
  start-page: 70
  year: 2015
  ident: 10.1016/j.jmps.2017.06.005_bib0009
  article-title: Steady shock waves in porous plastic solids
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.06.002
– volume: 49
  start-page: 1497
  year: 2001
  ident: 10.1016/j.jmps.2017.06.005_bib0023
  article-title: Micromechanical modelling of porous materials under dynamic loading
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(01)00003-5
– volume: 95
  start-page: 1718
  year: 2004
  ident: 10.1016/j.jmps.2017.06.005_bib0024
  article-title: Fundamental structure of steady plastic shock waves in metals
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1640452
– volume: 46
  start-page: 197
  year: 1975
  ident: 10.1016/j.jmps.2017.06.005_bib0001
  article-title: Shock and release behavior in porous 1100 aluminum
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.321319
– volume: 20
  start-page: 612
  year: 1979
  ident: 10.1016/j.jmps.2017.06.005_bib0013
  article-title: Structure of a shock wave front in a porous solid
  publication-title: J. Appl. Mech. Tech. Phys.
  doi: 10.1007/BF00910554
– volume: 52
  start-page: 2812
  year: 1981
  ident: 10.1016/j.jmps.2017.06.005_bib0018
  article-title: Dynamic fracture and spallation in ductile solids
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.329011
– volume: 105
  year: 2009
  ident: 10.1016/j.jmps.2017.06.005_bib0021
  article-title: Hugoniot and spall strength measurements of porous aluminum
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3133237
– volume: 141
  start-page: 177
  year: 2006
  ident: 10.1016/j.jmps.2017.06.005_bib0011
  article-title: Modelling of nucleation and void growth in dynamic pressure loading, application to spall test on tantalum
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-006-0070-y
– year: 1965
  ident: 10.1016/j.jmps.2017.06.005_sbref0025
  article-title: Measurement of the Grüneisen Parameter and the Internal Energy Dependence of the Solid Equation of State for Aluminium and Teflon
– year: 1980
  ident: 10.1016/j.jmps.2017.06.005_bib0022
  article-title: LASL shock Hugoniot data
– volume: 97–98
  start-page: 445
  year: 2016
  ident: 10.1016/j.jmps.2017.06.005_bib0003
  article-title: Modelling of micro-inertia effects in closed-cell foams with application to acoustic and shock wave propagation
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2016.07.005
– volume: 62
  start-page: 1153
  year: 2002
  ident: 10.1016/j.jmps.2017.06.005_bib0020
  article-title: Impact-induced tensile waves in a rubberlike material
  publication-title: J. Appl. Math.
– year: 2001
  ident: 10.1016/j.jmps.2017.06.005_bib0028
  article-title: Dynamics of heterogeneous materials
– volume: 45
  start-page: 3864
  year: 1974
  ident: 10.1016/j.jmps.2017.06.005_bib0005
  article-title: Shock-wave compaction of porous aluminum
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1663877
– volume: 43
  start-page: 1626
  year: 1972
  ident: 10.1016/j.jmps.2017.06.005_bib0006
  article-title: Static and dynamic pore collapse relations for ductile porous materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1661372
– volume: 99
  start-page: 2
  year: 1977
  ident: 10.1016/j.jmps.2017.06.005_bib0015
  article-title: Continuum theory of ductile rupture by void nucleation and growth : part I - yield criteria and flow rules for porous ductile media
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3443401
– year: 2016
  ident: 10.1016/j.jmps.2017.06.005_bib0012
  article-title: Shock wave structures in porous media accounting for micro-inertia effects
– volume: 59
  start-page: 1962
  year: 1986
  ident: 10.1016/j.jmps.2017.06.005_bib0007
  article-title: The effect of temperature on viscoplastic pore collapse
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.336426
– volume: 43
  start-page: 497
  year: 2006
  ident: 10.1016/j.jmps.2017.06.005_bib0014
  article-title: On the longitudinal impact of two phase transforming bars. Elastic versus a rate-type approach. Part I: the elastic case
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2005.06.023
– volume: 114
  start-page: 48
  year: 1992
  ident: 10.1016/j.jmps.2017.06.005_bib0029
  article-title: Effect of strain hardening and rate sensitivity on the dynamic growth of a void in a plastic material
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.2899463
– volume: 17
  start-page: 389
  year: 1981
  ident: 10.1016/j.jmps.2017.06.005_bib0031
  article-title: Influence of voids on shear bands instabilities under plane strain conditions
  publication-title: Int. J. Fract.
  doi: 10.1007/BF00036191
– volume: 40
  start-page: 2490
  year: 1969
  ident: 10.1016/j.jmps.2017.06.005_bib0016
  article-title: Constitutive equation for the dynamic compaction of ductile porous materials
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1658021
– year: 1998
  ident: 10.1016/j.jmps.2017.06.005_bib0030
  article-title: Computational inelasticity
– volume: 56
  start-page: 1624
  year: 2008
  ident: 10.1016/j.jmps.2017.06.005_bib0010
  article-title: Modelling of dynamic ductile fracture and application to the simulation of plate impact tests on tantalum
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2007.07.017
– volume: 162
  start-page: 159
  year: 2010
  ident: 10.1016/j.jmps.2017.06.005_bib0017
  article-title: A micromechanical constitutive model for dynamic damage and fracture of ductile materials
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-009-9436-2
– start-page: 73
  year: 1970
  ident: 10.1016/j.jmps.2017.06.005_bib0008
  article-title: On the analysis of elastic/visco-plastic waves of finite uniaxial strain
SSID ssj0005071
Score 2.4326265
Snippet •A fundamental approach of steady shock waves in porous metals is proposed.•Micro-inertia effects related to rapid pore collapse are accounted for.•In addition...
The paper aims at developing an understanding of steady shock wave propagation in a ductile metallic material containing voids. Porosity is assumed to be less...
SourceID unpaywall
hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 204
SubjectTerms Damage assessment
Dynamic response
Engineering Sciences
High acceleration
Inertia
Inertia effects
Mechanics
Metals
Porosity
Porous material
Porous materials
Porous media
Porous metals
Scaling laws
Shock wave propagation
Shock waves
Voids
SummonAdditionalLinks – databaseName: ScienceDirect Freedom Collection 2013
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5qL-pBfGK0yiLeNDbZvI-lWIqoJwu9LZvNhra0aTB90Iu_3Zk8SgQp4jFhlywzX2a_gZlvCLm3hbJCoKG68kNHt2MW6MDClc4CTwZM2EFsYL_z27vbH9gvQ2fYIN2qFwbLKsvYX8T0PFqXb9qlNdvpeIw9voBFnFjiIk5dzNtR_Qsw_fRVK_MwPLNSDMfVZeNMUeM1maUo2W16uYYnjrD7_XLaG2GVZI2C7i-TVGzWYjqt3Ua9Y3JU0kjaKU56QhoqOSWHNXHBM2IDAmghD7v8VHQe09yhG5qNIAbStVipjI4TCgQcsn86U0DDs3My6D1_dPt6OSNBl3AVL_TAtqLQhaRJAjGRhnRZHDu-YhHDsZeR70ZOHCkT-6X9KGQihPWBFxnC8y1lydi6IM1knqhLQkNgJsyNgYAZEkhWKAxLOczxmXDtCDIfjZiVcbgsBcRxjsWUV5ViE44G5WhQnpfLORp52O5JC_mMnaudyub8Bwg4xPed--7AQdsPoGJ2v_PK8Z1hMQ8osLcyNdKq_MfL_zTj2C1pAwUzfI08bn36h6Ne_fOo1-QAn4pywBZpAgrUDdCaRXib4_Ybx0DxiA
  priority: 102
  providerName: Elsevier
Title The structure of steady shock waves in porous metals
URI https://dx.doi.org/10.1016/j.jmps.2017.06.005
https://www.proquest.com/docview/1956484608
https://hal.univ-lorraine.fr/hal-03279917
UnpaywallVersion submittedVersion
Volume 107
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005071
  issn: 0022-5096
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1873-4782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005071
  issn: 0022-5096
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005071
  issn: 0022-5096
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  customDbUrl:
  eissn: 1873-4782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005071
  issn: 0022-5096
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4782
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005071
  issn: 0022-5096
  databaseCode: AKRWK
  dateStart: 19521001
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3La9tAEIeH2j6UHpo-qUtqltJbu0ZarV5HUxLcuDWl1DQ9LburFU7qyCayHJJD__bMWJIxJYT0JBC76DGzmm_RzG8APkjtAoMYyl1iQi5zkXKkcMdFGttUaJnmHtU7f5tG45k8OQ1PG7FoqoWZI3FWxdmG426VeiS4YX5JJ7kXiBhZJu5AL6J_SV3ozabfR79bNXCSMaHNVRIHXGLYawpk6lyu84sVSXP78Vark1rV3R2EOnPKhtxDzcdVsdLXV3qx2Is6xwd1vla5FSukZJM_w2pthvbmHynHBz3QM3jasCcb1c7yHB654gU82VMkfAkS3YbVmrLVpWPLnG294JqVc_xwsiu9cSU7KxhS-7Iq2YVDdi9fwez46OfnMW8aK3CL8XvNUxlkJsKdlkWasZ6NRJ6HiROZoF6ZWRJlYZ45n4qsk8wIbXB8GmeejpPABTYPXkO3WBbuDTCDOCOiHKnNs0hmRnuBC0WYCB3JDLdLffDbN61sozpOzS8Wqk0vO1dkHUXWUdscu7APH3dzVrXmxr2jw9aAqqGGmgYUBoV7571HM-wuQDLb49FXReda02z8Phy2zqCaxV0qKrGUyG1e0odPOwd5wK2-_b_hh9BFe7t3SD1rM4DO8K8_gN7oy2Q8pePkx6_JoFkFt3_eAog
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50PagH8YnrM4g3LbZp0sdxEaXquicFbyFtU1xZu4t1Ff-9M9t0XUFEvKYJDTOTyRf45huAY6GNnyIMdUyUSkcUPHYQhRuHx2EWcy3iwqV659tekNyL6wf5MAfnTS0M0Spt7q9z-iRb25Eza82zUb9PNb4Yi9SxJKA4DfDdviAk5uQWLHSubpLeF9PDDb1GNJwW2NqZmub19Dwi1W4vnMh4Uhe7n--n-UciSs6g0MVxOdIf73owmLmQLldhxSJJ1qk3uwZzplyH5Rl9wQ0QGASsVogdvxg2LNjEpx-sesQ0yN71m6lYv2SIwYfjij0bROLVJtxfXtydJ45tk-BkeBu_OrHw8zTAd1OG2CRzs4AXhYwMzzl1vsyjIJdFbjwqmY7ylOsU58dh7uow8o2fFf4WtMphabaBpQhOeFAgBnMzxFmpdn0juYy4DkSOj582eI1xVGY1xKmVxUA1ZLEnRQZVZFA1YczJNpxM14xqBY1fZ8vG5upbHChM8b-uO0IHTX9AotlJp6tozPV5iCg4fPPasNf4T9mjWikqmBSIwtyoDadTn_5hqzv_3OohLCZ3t13Vverd7MISfanZgXvQwogw-4hyXtMDG8Wfprn1wQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS8NAEMcXrQfx4FusqCziTbekm83rWEQpouLBgp6W3c0uVdu0mKain96ZJilFRPQadsljJpnfkJn_EHIqlPU1YCizsQ6YcDxhQOGW8SQyCVcicR72O9_ehd2euH4MHiuxaOyF6QNxFtnzlEG2ijMSbMu94UHm-TwClomWyUqI_5IaZKV3d995qtXAUcYEk6s48pmAsFc1yJS1XC_DMUpzt6OZVieOqvs5CC33sRpyATVXi2ysPt7VYLAQda42ynqtfCZWiMUmr61iolvm85uU459uaJOsV-xJO6WzbJElm22TtQVFwh0iwG1oqSlbvFk6cnTmBR8078OHk76rqc3pc0aB2kdFTocW2D3fJb2ry4eLLqsGKzAD8XvCEuGnOoRMywDNGM-E3LkgtjzlOCszjcM0cKltY5N1nGquNKxPotRTUexb3zh_jzSyUWb3CdWAMzx0QG2eATLTyvNtwIOYq1CkkC41Sbt-0tJUquM4_GIg6_KyF4nWkWgdOauxC5rkbL5nXGpu_Lo6qA0oK2ooaUBCUPh13wmYYX4ClNnudm4kHqtNM203yWHtDLJ6uXOJLZYCuM2Lm-R87iB_uNSD_y0_JA2wtz0C6pno48rfvwB-df5K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+structure+of+steady+shock+waves+in+porous+metals&rft.jtitle=Journal+of+the+mechanics+and+physics+of+solids&rft.au=Czarnota%2C+Christophe&rft.au=Molinari%2C+Alain&rft.au=Mercier%2C+S%C3%A9bastien&rft.date=2017-10-01&rft.pub=Elsevier+BV&rft.issn=0022-5096&rft.eissn=1873-4782&rft.volume=107&rft.spage=204&rft_id=info:doi/10.1016%2Fj.jmps.2017.06.005&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-5096&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-5096&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-5096&client=summon