QM/MM study of the conversion of biliverdin into verdoheme by heme oxygenase

It has been shown that after production of oxophlorin, the first step of intermediate, both production of biliverdin and production of verdoheme occur simultaneously (Alavi et al. in Dalton Trans 47:8283–8291, 2018 ). So the mechanism that converts biliverdin into verdoheme is the subject of some co...

Full description

Saved in:
Bibliographic Details
Published inTheoretical chemistry accounts Vol. 138; no. 5; pp. 1 - 8
Main Authors Alavi, Fatemeh Sadat, Zahedi, Mansour, Safari, Nasser, Ryde, Ulf
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.05.2019
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1432-881X
1432-2234
1432-2234
DOI10.1007/s00214-019-2461-y

Cover

Abstract It has been shown that after production of oxophlorin, the first step of intermediate, both production of biliverdin and production of verdoheme occur simultaneously (Alavi et al. in Dalton Trans 47:8283–8291, 2018 ). So the mechanism that converts biliverdin into verdoheme is the subject of some controversy. The detailed conversion of verdoheme to biliverdin was demonstrated before by the Jerusalem group, using combined quantum mechanical and molecular mechanical (QM/MM) calculations. Conversion of iron biliverdin to iron verdoheme in the presence of H + was investigated using the B3LYP method and the def2-QZVP basis set, considering dispersion effects with the DFT-D3 approach, obtaining accurate energies with large QM regions of almost 1000 atoms. Two spin states, singlet and triplet, were considered for the conversion of biliverdin to verdoheme. The reactant and product are triplet and singlet in their ground states, respectively. The potential energy surface suggests that a spin inversion takes place during the course of reaction after TS2. The ring closing process is exothermic by 5.8 kcal/mol with a kinetic barrier of 16.5 kcal/mol. The activation barrier for removing OH from the ring to produce iron verdoheme is estimated to be 23.2 kcal/mol.
AbstractList It has been shown that after production of oxophlorin, the first step of intermediate, both production of biliverdin and production of verdoheme occur simultaneously (Alavi et al. in Dalton Trans 47:8283–8291, 2018). So the mechanism that converts biliverdin into verdoheme is the subject of some controversy. The detailed conversion of verdoheme to biliverdin was demonstrated before by the Jerusalem group, using combined quantum mechanical and molecular mechanical (QM/MM) calculations. Conversion of iron biliverdin to iron verdoheme in the presence of H+ was investigated using the B3LYP method and the def2-QZVP basis set, considering dispersion effects with the DFT-D3 approach, obtaining accurate energies with large QM regions of almost 1000 atoms. Two spin states, singlet and triplet, were considered for the conversion of biliverdin to verdoheme. The reactant and product are triplet and singlet in their ground states, respectively. The potential energy surface suggests that a spin inversion takes place during the course of reaction after TS2. The ring closing process is exothermic by 5.8 kcal/mol with a kinetic barrier of 16.5 kcal/mol. The activation barrier for removing OH from the ring to produce iron verdoheme is estimated to be 23.2 kcal/mol.
It has been shown that after production of oxophlorin, the first step of intermediate, both production of biliverdin and production of verdoheme occur simultaneously (Alavi et al. in Dalton Trans 47:8283–8291, 2018 ). So the mechanism that converts biliverdin into verdoheme is the subject of some controversy. The detailed conversion of verdoheme to biliverdin was demonstrated before by the Jerusalem group, using combined quantum mechanical and molecular mechanical (QM/MM) calculations. Conversion of iron biliverdin to iron verdoheme in the presence of H + was investigated using the B3LYP method and the def2-QZVP basis set, considering dispersion effects with the DFT-D3 approach, obtaining accurate energies with large QM regions of almost 1000 atoms. Two spin states, singlet and triplet, were considered for the conversion of biliverdin to verdoheme. The reactant and product are triplet and singlet in their ground states, respectively. The potential energy surface suggests that a spin inversion takes place during the course of reaction after TS2. The ring closing process is exothermic by 5.8 kcal/mol with a kinetic barrier of 16.5 kcal/mol. The activation barrier for removing OH from the ring to produce iron verdoheme is estimated to be 23.2 kcal/mol.
It has been shown that after production of oxophlorin, the first step of intermediate, both production of biliverdin and production of verdoheme occur simultaneously (Alavi et al. in Dalton Trans 47:8283–8291, 2018). So the mechanism that converts biliverdin into verdoheme is the subject of some controversy. The detailed conversion of verdoheme to biliverdin was demonstrated before by the Jerusalem group, using combined quantum mechanical and molecular mechanical (QM/MM) calculations. Conversion of iron biliverdin to iron verdoheme in the presence of H + was investigated using the B3LYP method and the def2-QZVP basis set, considering dispersion effects with the DFT-D3 approach, obtaining accurate energies with large QM regions of almost 1000 atoms. Two spin states, singlet and triplet, were considered for the conversion of biliverdin to verdoheme. The reactant and product are triplet and singlet in their ground states, respectively. The potential energy surface suggests that a spin inversion takes place during the course of reaction after TS2. The ring closing process is exothermic by 5.8 kcal/mol with a kinetic barrier of 16.5 kcal/mol. The activation barrier for removing OH from the ring to produce iron verdoheme is estimated to be 23.2 kcal/mol.
ArticleNumber 72
Author Safari, Nasser
Alavi, Fatemeh Sadat
Zahedi, Mansour
Ryde, Ulf
Author_xml – sequence: 1
  givenname: Fatemeh Sadat
  surname: Alavi
  fullname: Alavi, Fatemeh Sadat
  organization: Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin
– sequence: 2
  givenname: Mansour
  orcidid: 0000-0002-2903-9043
  surname: Zahedi
  fullname: Zahedi, Mansour
  email: mansourzahedi57@gmail.com
  organization: Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin
– sequence: 3
  givenname: Nasser
  surname: Safari
  fullname: Safari, Nasser
  organization: Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, G.C., Evin
– sequence: 4
  givenname: Ulf
  surname: Ryde
  fullname: Ryde, Ulf
  organization: Department of Theoretical Chemistry, Chemical Centre, Lund University
BookMark eNp9kUtr3DAUhUVJIa_-gOwMXbvRy5a9LKFtCjOUQBbZXSTNVUbBkaaS3Nb_PprMlEKhXd0r8R0dHc45OQkxICFXjH5glKrrTClnsqVsbLnsWbu8IWdMCt5yLuTJcR8G9nBKznN-ohXnnTojq7v19Xrd5DJvlia6pmyxsTH8wJR9DPsb4ydfjxsfGh9KbPZ73OIzNmZpXmf8tTxi0BkvyVunp4zvjvOC3H_-dH9z266-ffl683HVWkn70o6Cq0GaQaBRPdXUdUYhRY1qUFYqbQVTEq3jFK1SnXBqMGakm0E74ZgQF0Qfns0_cTcb2CX_rNMCUXvYxVT0BAkz6mS3MM2QESo1eatLjZShx04PIxPALWUguXQwGE1hdLJjskPa97J6vD947FL8PmMu8BTnFGoq4JxLSTvOWKXUgbIp5pzQgfXl1aYk7SdgFPbtwKEdqO3Avh1YqpL9pfyd4n8afsxd2fCI6c-f_i16AWLGpQE
CitedBy_id crossref_primary_10_1142_S108842462150084X
crossref_primary_10_1016_j_jcat_2021_07_022
Cites_doi 10.1021/ic402754y
10.1021/ct100530r
10.1002/jcc.21759
10.1039/C4CP00253A
10.1021/cr400388t
10.1021/ct301094r
10.1039/B614448A
10.1021/ja104674q
10.1006/jmbi.2000.3569
10.1063/1.464913
10.1002/1097-461X(2001)81:5<335::AID-QUA1003>3.0.CO;2-Q
10.1002/jcc.10093
10.1074/jbc.M211450200
10.1103/PhysRevLett.91.146401
10.1016/S0009-2614(97)00207-8
10.1007/s002140050244
10.1074/jbc.272.11.6909
10.1021/acs.jpcb.7b08332
10.1021/ja000747p
10.1021/jp8071712
10.1016/j.ccr.2008.05.014
10.1002/anie.200802019
10.1021/ja0512428
10.1007/s00775-009-0511-y
10.1021/ja991541v
10.1016/j.cbpa.2007.02.026
10.1063/1.469408
10.1039/C6DT04250C
10.1016/B978-0-08-092386-4.50013-7
10.1146/annurev.physchem.59.032607.093618
10.1007/BF00402823
10.1007/s00775-016-1348-9
10.1039/C8DT00064F
10.1021/ct400339c
10.1016/S0021-9258(19)85506-0
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2019
Copyright Springer Nature B.V. 2019
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2019
– notice: Copyright Springer Nature B.V. 2019
CorporateAuthor Beräkningskemi
Lunds universitet
Naturvetenskapliga fakulteten
Profile areas and other strong research environments
Physical and theoretical chemistry
Faculty of Science
Lund University
Computational Chemistry
Department of Chemistry
Kemiska institutionen
Strategiska forskningsområden (SFO)
Strategic research areas (SRA)
eSSENCE: The e-Science Collaboration
Enheten för fysikalisk och teoretisk kemi
Profilområden och andra starka forskningsmiljöer
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Strategiska forskningsområden (SFO)
– name: Physical and theoretical chemistry
– name: Department of Chemistry
– name: Enheten för fysikalisk och teoretisk kemi
– name: Kemiska institutionen
– name: Strategic research areas (SRA)
– name: Faculty of Science
– name: Lunds universitet
– name: Beräkningskemi
– name: Profilområden och andra starka forskningsmiljöer
– name: Lund University
– name: Computational Chemistry
– name: Profile areas and other strong research environments
– name: eSSENCE: The e-Science Collaboration
DBID AAYXX
CITATION
ADTPV
AOWAS
D95
DOI 10.1007/s00214-019-2461-y
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1432-2234
EndPage 8
ExternalDocumentID oai_portal_research_lu_se_publications_6e5a8913_2c01_424f_8ba0_9f45145e0664
10_1007_s00214_019_2461_y
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
28-
29Q
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
78A
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPAXT
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAS
LLZTM
M4Y
MA-
ML-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W4F
WIP
WJK
WK8
YLTOR
Z45
Z5O
Z7S
Z7V
Z7X
Z7Y
Z83
Z86
Z8N
Z8P
Z8S
Z8W
Z92
ZCG
ZMTXR
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c406t-932784b83eb760a0f5b7e0eae787c47ac3174ecf20ec7753f78bb90d8af3f133
IEDL.DBID U2A
ISSN 1432-881X
1432-2234
IngestDate Tue Sep 09 23:58:54 EDT 2025
Thu Sep 25 00:39:30 EDT 2025
Thu Apr 24 23:00:03 EDT 2025
Tue Jul 01 02:59:54 EDT 2025
Fri Feb 21 02:33:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Biliverdin
Verdoheme
Quantum mechanical and molecular mechanical (QM/MM)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-932784b83eb760a0f5b7e0eae787c47ac3174ecf20ec7753f78bb90d8af3f133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2903-9043
PQID 2224405211
PQPubID 2043579
PageCount 8
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_6e5a8913_2c01_424f_8ba0_9f45145e0664
proquest_journals_2224405211
crossref_citationtrail_10_1007_s00214_019_2461_y
crossref_primary_10_1007_s00214_019_2461_y
springer_journals_10_1007_s00214_019_2461_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle Theory, Computation, and Modeling
PublicationTitle Theoretical chemistry accounts
PublicationTitleAbbrev Theor Chem Acc
PublicationYear 2019
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References Dong, Ryde (CR36) 2016; 21
Eichkorn, Treutler, Oehm, Häser, Ahlrichs (CR24) 1995; 240
Sumner, Söderhjelm, Ryde (CR29) 2013; 9
Alavi, Zahedi, Safari, Ryde (CR6) 2017; 121
Green (CR30) 1999; 121
Liu, Moënne-Loccoz, Loehr, De Montellano (CR2) 1997; 272
Treutler, Ahlrichs (CR19) 1995; 102
Tao, Perdew, Staroverov, Scuseria (CR22) 2003; 91
Case, Darden, Cheatham, Simmerling, Wang, Duke, Luo, Merz, Pearlman, Crowley (CR20) 2006
Hu, Söderhjelm, Ryde (CR28) 2011; 7
Li, Mata, Ryde (CR37) 2013; 9
De Montellanoa, Auclairb, Kadish, Smith, Guilard (CR4) 2003
Ryde, Olsen, Nilsson (CR18) 2002; 23
Eichkorn, Weigend, Treutler, Ahlrichs (CR27) 1997; 97
Gheidi, Safari, Zahedi (CR5) 2014; 53
Ryde, Olsson (CR17) 2001; 81
Kirchner, Wennmohs, Ye, Neese (CR8) 2007; 11
Ryde (CR34) 2007; 6
Senn, Thiel (CR12) 2009; 48
Grimme, Ehrlich, Goerigk (CR23) 2011; 32
Hertwig, Koch (CR26) 1997; 268
Ryde (CR16) 1996; 10
Neese (CR11) 2009; 253
Becke (CR25) 1993; 98
Blomberg, Borowski, Himo, Liao, Siegbahn (CR33) 2014; 114
Hu, Yang (CR9) 2008; 59
Siegbahn, Himo (CR13) 2009; 14
Ghosh, Wondimagegn (CR31) 2000; 122
Lai, Chen, Matsui, Omori, Unno, Ikeda-Saito, Shaik (CR14) 2010; 132
Lecerof, Fodje, Hansson, Hansson, Al-Karadaghi (CR21) 2000; 297
Yoshida, Noguchi, Kikuchi (CR3) 1980; 255
Alavi, Gheidi, Zahedi, Safari, Ryde (CR1) 2018; 47
Gheidi, Safari, Zahedi (CR7) 2017; 46
Kamerlin, Haranczyk, Warshel (CR10) 2008; 113
Lad, Schuller, Shimizu, Friedman, Li, de Montellano, Poulos (CR15) 2003; 278
Kumar, Hirao, Que, Shaik (CR32) 2005; 127
Delcey, Pierloot, Phung, Vancoillie, Lindh, Ryde (CR35) 2014; 16
SC Kamerlin (2461_CR10) 2008; 113
PRO De Montellanoa (2461_CR4) 2003
L Lad (2461_CR15) 2003; 278
S Grimme (2461_CR23) 2011; 32
MR Blomberg (2461_CR33) 2014; 114
M Gheidi (2461_CR7) 2017; 46
J-L Li (2461_CR37) 2013; 9
K Eichkorn (2461_CR24) 1995; 240
HM Senn (2461_CR12) 2009; 48
U Ryde (2461_CR18) 2002; 23
AD Becke (2461_CR25) 1993; 98
U Ryde (2461_CR17) 2001; 81
MG Delcey (2461_CR35) 2014; 16
FS Alavi (2461_CR1) 2018; 47
D Kumar (2461_CR32) 2005; 127
B Kirchner (2461_CR8) 2007; 11
D Lecerof (2461_CR21) 2000; 297
G Dong (2461_CR36) 2016; 21
W Lai (2461_CR14) 2010; 132
RH Hertwig (2461_CR26) 1997; 268
L Hu (2461_CR28) 2011; 7
F Neese (2461_CR11) 2009; 253
A Ghosh (2461_CR31) 2000; 122
U Ryde (2461_CR16) 1996; 10
M Gheidi (2461_CR5) 2014; 53
O Treutler (2461_CR19) 1995; 102
K Eichkorn (2461_CR27) 1997; 97
U Ryde (2461_CR34) 2007; 6
T Yoshida (2461_CR3) 1980; 255
MT Green (2461_CR30) 1999; 121
FS Alavi (2461_CR6) 2017; 121
DA Case (2461_CR20) 2006
S Sumner (2461_CR29) 2013; 9
H Hu (2461_CR9) 2008; 59
Y Liu (2461_CR2) 1997; 272
PE Siegbahn (2461_CR13) 2009; 14
J Tao (2461_CR22) 2003; 91
References_xml – volume: 53
  start-page: 2766
  issue: 6
  year: 2014
  end-page: 2775
  ident: CR5
  article-title: Chameleonic nature of hydroxyheme in heme oxygenase and its reactivity: a density functional theory study
  publication-title: Inorg Chem
  doi: 10.1021/ic402754y
– volume: 7
  start-page: 761
  issue: 3
  year: 2011
  end-page: 777
  ident: CR28
  article-title: On the convergence of QM/MM energies
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct100530r
– volume: 32
  start-page: 1456
  issue: 7
  year: 2011
  end-page: 1465
  ident: CR23
  article-title: Effect of the damping function in dispersion corrected density functional theory
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21759
– volume: 16
  start-page: 7927
  issue: 17
  year: 2014
  end-page: 7938
  ident: CR35
  article-title: Accurate calculations of geometries and singlet–triplet energy differences for active-site models of [NiFe] hydrogenase
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP00253A
– volume: 114
  start-page: 3601
  issue: 7
  year: 2014
  end-page: 3658
  ident: CR33
  article-title: Quantum chemical studies of mechanisms for metalloenzymes
  publication-title: Chem Rev
  doi: 10.1021/cr400388t
– volume: 9
  start-page: 1799
  issue: 3
  year: 2013
  end-page: 1807
  ident: CR37
  article-title: Large density-functional and basis-set effects for the dmso reductase catalyzed oxo-transfer reaction
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct301094r
– volume: 6
  start-page: 607
  year: 2007
  end-page: 625
  ident: CR34
  article-title: Accurate metal-site structures in proteins obtained by combining experimental data and quantum chemistry
  publication-title: Dalton Trans
  doi: 10.1039/B614448A
– volume: 132
  start-page: 12960
  issue: 37
  year: 2010
  end-page: 12970
  ident: CR14
  article-title: Enzymatic ring-opening mechanism of verdoheme by the heme oxygenase: a combined X-ray crystallography and QM/MM study
  publication-title: J Am Chem Soc
  doi: 10.1021/ja104674q
– volume: 297
  start-page: 221
  issue: 1
  year: 2000
  end-page: 232
  ident: CR21
  article-title: Structural and mechanistic basis of porphyrin metallation by ferrochelatase
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3569
– volume: 98
  start-page: 5648
  issue: 7
  year: 1993
  end-page: 5652
  ident: CR25
  article-title: Density-functional thermochemistry. III. The role of exact exchange
  publication-title: J Chem Phys
  doi: 10.1063/1.464913
– start-page: 45
  year: 2006
  ident: CR20
  publication-title: AMBER 9
– volume: 81
  start-page: 335
  issue: 5
  year: 2001
  end-page: 347
  ident: CR17
  article-title: Structure, strain, and reorganization energy of blue copper models in the protein
  publication-title: Int J Quantum Chem
  doi: 10.1002/1097-461X(2001)81:5<335::AID-QUA1003>3.0.CO;2-Q
– volume: 23
  start-page: 1058
  issue: 11
  year: 2002
  end-page: 1070
  ident: CR18
  article-title: Quantum chemical geometry optimizations in proteins using crystallographic raw data
  publication-title: J Comput Chem
  doi: 10.1002/jcc.10093
– volume: 278
  start-page: 7834
  issue: 10
  year: 2003
  end-page: 7843
  ident: CR15
  article-title: Comparison of the heme-free and-bound crystal structures of human heme oxygenase-1
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M211450200
– volume: 91
  start-page: 146401
  issue: 14
  year: 2003
  ident: CR22
  article-title: Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.91.146401
– volume: 268
  start-page: 345
  issue: 5–6
  year: 1997
  end-page: 351
  ident: CR26
  article-title: On the parameterization of the local correlation functional. What is Becke-3-LYP?
  publication-title: Chem Phys Lett
  doi: 10.1016/S0009-2614(97)00207-8
– volume: 97
  start-page: 119
  issue: 1–4
  year: 1997
  end-page: 124
  ident: CR27
  article-title: Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials
  publication-title: Theor Chem Acc
  doi: 10.1007/s002140050244
– volume: 272
  start-page: 6909
  issue: 11
  year: 1997
  end-page: 6917
  ident: CR2
  article-title: Heme oxygenase-1, intermediates in verdoheme formation and the requirement for reduction equivalents
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.11.6909
– volume: 121
  start-page: 11427
  issue: 51
  year: 2017
  end-page: 11436
  ident: CR6
  article-title: QM/MM study of the conversion of oxophlorin into verdoheme by heme oxygenase
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.7b08332
– volume: 122
  start-page: 8101
  issue: 33
  year: 2000
  end-page: 8102
  ident: CR31
  article-title: A theoretical study of axial tilting and equatorial asymmetry in metalloporphyrin–nitrosyl complexes
  publication-title: J Am Chem Soc
  doi: 10.1021/ja000747p
– volume: 113
  start-page: 1253
  issue: 5
  year: 2008
  end-page: 1272
  ident: CR10
  article-title: Progress in ab initio QM/MM free-energy simulations of electrostatic energies in proteins: accelerated QM/MM studies of p K a, redox reactions and solvation free energies
  publication-title: J Phys Chem B
  doi: 10.1021/jp8071712
– volume: 255
  start-page: 4418
  issue: 10
  year: 1980
  end-page: 4420
  ident: CR3
  article-title: Oxygenated form of heme. Heme oxygenase complex and requirement for second electron to initiate heme degradation from the oxygenated complex
  publication-title: J Biol Chem
– volume: 253
  start-page: 526
  issue: 5–6
  year: 2009
  end-page: 563
  ident: CR11
  article-title: Prediction of molecular properties and molecular spectroscopy with density functional theory: from fundamental theory to exchange-coupling
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2008.05.014
– volume: 48
  start-page: 1198
  issue: 7
  year: 2009
  end-page: 1229
  ident: CR12
  article-title: QM/MM methods for biomolecular systems
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200802019
– volume: 127
  start-page: 8026
  issue: 22
  year: 2005
  end-page: 8027
  ident: CR32
  article-title: Theoretical investigation of C–H hydroxylation by (N4Py) Fe O  : an oxidant more powerful than P450?
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0512428
– volume: 14
  start-page: 643
  issue: 5
  year: 2009
  end-page: 651
  ident: CR13
  article-title: Recent developments of the quantum chemical cluster approach for modeling enzyme reactions
  publication-title: J Biol Inorg Chem
  doi: 10.1007/s00775-009-0511-y
– volume: 240
  start-page: 283
  issue: 4
  year: 1995
  end-page: 290
  ident: CR24
  article-title: Auxiliary basis sets to approximate Coulomb potentials
  publication-title: Chem Phys
– volume: 121
  start-page: 7939
  issue: 34
  year: 1999
  end-page: 7940
  ident: CR30
  article-title: Evidence for sulfur-based radicals in thiolate compound I intermediates
  publication-title: J Am Chem Soc
  doi: 10.1021/ja991541v
– volume: 11
  start-page: 134
  issue: 2
  year: 2007
  end-page: 141
  ident: CR8
  article-title: Theoretical bioinorganic chemistry: the electronic structure makes a difference
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2007.02.026
– volume: 102
  start-page: 346
  issue: 1
  year: 1995
  end-page: 354
  ident: CR19
  article-title: Efficient molecular numerical integration schemes
  publication-title: J Chem Phys
  doi: 10.1063/1.469408
– volume: 46
  start-page: 2146
  issue: 7
  year: 2017
  end-page: 2158
  ident: CR7
  article-title: Density functional theory studies on the conversion of hydroxyheme to iron-verdoheme in the presence of dioxygen
  publication-title: Dalton Trans
  doi: 10.1039/C6DT04250C
– start-page: 183
  year: 2003
  end-page: 210
  ident: CR4
  article-title: Heme oxygenase structure and mechanism
  publication-title: The porphyrin handbook
  doi: 10.1016/B978-0-08-092386-4.50013-7
– volume: 59
  start-page: 573
  year: 2008
  end-page: 601
  ident: CR9
  article-title: Free energies of chemical reactions in solution and in enzymes with ab initio quantum mechanics/molecular mechanics methods
  publication-title: Annu Rev Phys Chem
  doi: 10.1146/annurev.physchem.59.032607.093618
– volume: 10
  start-page: 153
  issue: 2
  year: 1996
  end-page: 164
  ident: CR16
  article-title: The coordination of the catalytic zinc ion in alcohol dehydrogenase studied by combined quantum-chemical and molecular mechanics calculations
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/BF00402823
– volume: 21
  start-page: 383
  issue: 3
  year: 2016
  end-page: 394
  ident: CR36
  article-title: Protonation states of intermediates in the reaction mechanism of [NiFe] hydrogenase studied by computational methods
  publication-title: J Biol Inorg Chem
  doi: 10.1007/s00775-016-1348-9
– volume: 47
  start-page: 8283
  year: 2018
  end-page: 8291
  ident: CR1
  article-title: A novel mechanism of heme degradation to biliverdin studied by QM/MM and QM calculations
  publication-title: Dalton Trans
  doi: 10.1039/C8DT00064F
– volume: 9
  start-page: 4205
  issue: 9
  year: 2013
  end-page: 4214
  ident: CR29
  article-title: Effect of geometry optimizations on QM-cluster and QM/MM studies of reaction energies in proteins
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct400339c
– volume: 53
  start-page: 2766
  issue: 6
  year: 2014
  ident: 2461_CR5
  publication-title: Inorg Chem
  doi: 10.1021/ic402754y
– volume: 6
  start-page: 607
  year: 2007
  ident: 2461_CR34
  publication-title: Dalton Trans
  doi: 10.1039/B614448A
– volume: 48
  start-page: 1198
  issue: 7
  year: 2009
  ident: 2461_CR12
  publication-title: Angew Chem Int Ed
  doi: 10.1002/anie.200802019
– start-page: 45
  volume-title: AMBER 9
  year: 2006
  ident: 2461_CR20
– volume: 122
  start-page: 8101
  issue: 33
  year: 2000
  ident: 2461_CR31
  publication-title: J Am Chem Soc
  doi: 10.1021/ja000747p
– volume: 11
  start-page: 134
  issue: 2
  year: 2007
  ident: 2461_CR8
  publication-title: Curr Opin Chem Biol
  doi: 10.1016/j.cbpa.2007.02.026
– volume: 240
  start-page: 283
  issue: 4
  year: 1995
  ident: 2461_CR24
  publication-title: Chem Phys
– volume: 21
  start-page: 383
  issue: 3
  year: 2016
  ident: 2461_CR36
  publication-title: J Biol Inorg Chem
  doi: 10.1007/s00775-016-1348-9
– volume: 253
  start-page: 526
  issue: 5–6
  year: 2009
  ident: 2461_CR11
  publication-title: Coord Chem Rev
  doi: 10.1016/j.ccr.2008.05.014
– volume: 46
  start-page: 2146
  issue: 7
  year: 2017
  ident: 2461_CR7
  publication-title: Dalton Trans
  doi: 10.1039/C6DT04250C
– volume: 32
  start-page: 1456
  issue: 7
  year: 2011
  ident: 2461_CR23
  publication-title: J Comput Chem
  doi: 10.1002/jcc.21759
– volume: 9
  start-page: 4205
  issue: 9
  year: 2013
  ident: 2461_CR29
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct400339c
– start-page: 183
  volume-title: The porphyrin handbook
  year: 2003
  ident: 2461_CR4
  doi: 10.1016/B978-0-08-092386-4.50013-7
– volume: 14
  start-page: 643
  issue: 5
  year: 2009
  ident: 2461_CR13
  publication-title: J Biol Inorg Chem
  doi: 10.1007/s00775-009-0511-y
– volume: 121
  start-page: 7939
  issue: 34
  year: 1999
  ident: 2461_CR30
  publication-title: J Am Chem Soc
  doi: 10.1021/ja991541v
– volume: 272
  start-page: 6909
  issue: 11
  year: 1997
  ident: 2461_CR2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.272.11.6909
– volume: 91
  start-page: 146401
  issue: 14
  year: 2003
  ident: 2461_CR22
  publication-title: Phys Rev Lett
  doi: 10.1103/PhysRevLett.91.146401
– volume: 81
  start-page: 335
  issue: 5
  year: 2001
  ident: 2461_CR17
  publication-title: Int J Quantum Chem
  doi: 10.1002/1097-461X(2001)81:5<335::AID-QUA1003>3.0.CO;2-Q
– volume: 127
  start-page: 8026
  issue: 22
  year: 2005
  ident: 2461_CR32
  publication-title: J Am Chem Soc
  doi: 10.1021/ja0512428
– volume: 255
  start-page: 4418
  issue: 10
  year: 1980
  ident: 2461_CR3
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(19)85506-0
– volume: 23
  start-page: 1058
  issue: 11
  year: 2002
  ident: 2461_CR18
  publication-title: J Comput Chem
  doi: 10.1002/jcc.10093
– volume: 114
  start-page: 3601
  issue: 7
  year: 2014
  ident: 2461_CR33
  publication-title: Chem Rev
  doi: 10.1021/cr400388t
– volume: 59
  start-page: 573
  year: 2008
  ident: 2461_CR9
  publication-title: Annu Rev Phys Chem
  doi: 10.1146/annurev.physchem.59.032607.093618
– volume: 278
  start-page: 7834
  issue: 10
  year: 2003
  ident: 2461_CR15
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M211450200
– volume: 97
  start-page: 119
  issue: 1–4
  year: 1997
  ident: 2461_CR27
  publication-title: Theor Chem Acc
  doi: 10.1007/s002140050244
– volume: 9
  start-page: 1799
  issue: 3
  year: 2013
  ident: 2461_CR37
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct301094r
– volume: 47
  start-page: 8283
  year: 2018
  ident: 2461_CR1
  publication-title: Dalton Trans
  doi: 10.1039/C8DT00064F
– volume: 132
  start-page: 12960
  issue: 37
  year: 2010
  ident: 2461_CR14
  publication-title: J Am Chem Soc
  doi: 10.1021/ja104674q
– volume: 268
  start-page: 345
  issue: 5–6
  year: 1997
  ident: 2461_CR26
  publication-title: Chem Phys Lett
  doi: 10.1016/S0009-2614(97)00207-8
– volume: 16
  start-page: 7927
  issue: 17
  year: 2014
  ident: 2461_CR35
  publication-title: Phys Chem Chem Phys
  doi: 10.1039/C4CP00253A
– volume: 102
  start-page: 346
  issue: 1
  year: 1995
  ident: 2461_CR19
  publication-title: J Chem Phys
  doi: 10.1063/1.469408
– volume: 113
  start-page: 1253
  issue: 5
  year: 2008
  ident: 2461_CR10
  publication-title: J Phys Chem B
  doi: 10.1021/jp8071712
– volume: 121
  start-page: 11427
  issue: 51
  year: 2017
  ident: 2461_CR6
  publication-title: J Phys Chem B
  doi: 10.1021/acs.jpcb.7b08332
– volume: 10
  start-page: 153
  issue: 2
  year: 1996
  ident: 2461_CR16
  publication-title: J Comput Aided Mol Des
  doi: 10.1007/BF00402823
– volume: 297
  start-page: 221
  issue: 1
  year: 2000
  ident: 2461_CR21
  publication-title: J Mol Biol
  doi: 10.1006/jmbi.2000.3569
– volume: 98
  start-page: 5648
  issue: 7
  year: 1993
  ident: 2461_CR25
  publication-title: J Chem Phys
  doi: 10.1063/1.464913
– volume: 7
  start-page: 761
  issue: 3
  year: 2011
  ident: 2461_CR28
  publication-title: J Chem Theory Comput
  doi: 10.1021/ct100530r
SSID ssj0002257
Score 2.256193
Snippet It has been shown that after production of oxophlorin, the first step of intermediate, both production of biliverdin and production of verdoheme occur...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Atomic/Molecular Structure and Spectra
Chemical Sciences
Chemistry
Chemistry and Materials Science
Conversion
Exothermic reactions
Inorganic Chemistry
Iron
Kemi
Natural Sciences
Naturvetenskap
Organic Chemistry
Physical Chemistry
Potential energy
Quantum mechanics
Regular Article
Teoretisk kemi (Här ingår: Beräkningskemi)
Theoretical and Computational Chemistry
Theoretical Chemistry (including Computational Chemistry)
Title QM/MM study of the conversion of biliverdin into verdoheme by heme oxygenase
URI https://link.springer.com/article/10.1007/s00214-019-2461-y
https://www.proquest.com/docview/2224405211
Volume 138
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5qD3oRn1itJQdPymK6zT56bMVa1BaEFqqXkEkTFMpusRXsv3eSfVRFCp52N7ubXSaP-SYz84WQiwlMgIMJPcQe4HEFEw-Ykl7UlH4TAgXa2Nzh_iDsjfj9OBjnedzzItq9cEm6mbpMdnP0Xmj6Wo9A2PCWm6QSWDop7MQjv11Ov35G74k4AId63BgXrsy_qvipjFYIs3SK_iIQdUqnu0d2c7RI21nz7pMNnRyQ7Ztik7ZD8vjUv-73qSOJpamhCOeoCyR3q2C2xAa_4iWqKPqWLFJqz1OsQFNYUndMP5fYi1CbHZFh93Z40_PyDRI8hXp44SH2imIOcVNDFDLJTACRZlpqHIWKR1IhOOBaGZ9pFaFdYqIYoMUmsTRNg8bpMdlK0kSfEBoyLrEcAK07zuKWtDT1LSOVggghZFAlrBCUUDl5uN3DYipK2mMnW4GyFVa2Ylkll-Urs4w5Y93DtUL6Ih9Ec4HQhXObXNyokquiRVa311T2kjVa-V3LoZ2ZMyLnUHoV0w8x12L2bXFUhDqQ1m0rfMUagvvciBgkEy3DEVcGGuEZP_3Xr5yRHd92NxchWSNbi_cPfY4oZgF1Uml3O52BPd49P9zWXS_-Ak2G7hE
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aD_UiPrE-c_CkLKbb7KNHEUvVriBUKF6GTJqgIF2xLdh_7yT78IEInnY3u5tdJo_5JjPzhbGTMY5Roo0Dwh4YSI3jAIVWQdJRYQcjjca63OHsLu4_yJtRNCrzuKdVtHvlkvQzdZ3s5um9yPR1HoG4HSyW2YrzMjqL6yG8qKffsKD3JBxAQz1tjypX5m9VfFdGnwizdor-IBD1Sqe3ztZKtMgviubdYEtmssmal9UmbVtscJ-dZxn3JLE8t5zgHPeB5H4VzJW44Fe6JBXFnyeznLvznCowHBfcH_P3BfUi0mbbbNi7Gl72g3KDhECTHp4FhL2SVGLaMZjEQgkbYWKEUYZGoZaJ0gQOpNE2FEYnZJfYJEXsinGqbMeScbrDGpN8YnYZj4VUVI5I1p0UaVc5mvquVVpjQhAyajFRCQp0SR7u9rB4gZr22MsWSLbgZAuLFjutX3ktmDP-evigkj6Ug2gKBF2kdMnF7RY7q1rk8_YflT0WjVZ_13FoF-YMlBxKT_Ayh6mB1y-LoxCbSDm3LYRatEGG0kKKSkDXSsKVkSF4Jvf-9SvHrNkfZgMYXN_d7rPV0HU9Hy15wBqzt7k5JEQzwyPfgz8AlVjt5A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dT9swED9tRdp4YZ-IMsb8sKdNoW7qfPQRMQoMijaJSd1ebj7H1iZQWtH0ofz1nPPFQAgJ7SmJkziOz879Lnf-HcDHjDJS5OKAsQcFylAWkDQ6SAY6HFBkyDq_dnh8Gh_-UF8n0aTOczpvot0bl2S1psGzNOVFb5a5XrvwraT6YjPYewfifrB8CivKp5DowMruwc_j_fZjHFZkn4wKeOKn_Unj2Lyvktuq6QZvti7SO3SipQoavYDfTeOryJPznUVBO-bqDq_jf7zdS1ir4anYrcbTK3hi89fwfK_JCvcGTr6Pe-OxKFlpxdQJxo-ijFwvf7v5Eh9ty4esE8XfvJgKvz_lCqygpSi33Hwetqw-38LZaP9s7zCoMzIEhhV_ETDYS1JF6cBSEkstXUSJlVZbnvZGJdowGlHWuFBak7Ah5JKUaCizVLuBY2t4HTr5NLcbIGKpNJcTsTnJkhtqz4s_dNoYShizRl2QjSzQ1GzlPmnGBbY8y2UvIfcS-l7CZRc-tbfMKqqOhy7eagSM9aydI2Mlpfxq5n4XPjdiujn9QGW_qnHRPteTdlf2E9akTX_wYoFzi7N__sZibCPt_cQYGtlHFSqHKWmJQ6cYyEaW8aDafFRTPsCzb19GeHJ0evwOVkM_hsrozC3oFJcL-54RVEHb9Sy5BiozE9U
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=QM%2FMM+study+of+the+conversion+of+biliverdin+into+verdoheme+by+heme+oxygenase&rft.jtitle=Theoretical+chemistry+accounts&rft.au=Alavi%2C+Fatemeh+Sadat&rft.au=Zahedi%2C+Mansour&rft.au=Safari%2C+Nasser&rft.au=Ryde%2C+Ulf&rft.date=2019-05-01&rft.issn=1432-881X&rft.eissn=1432-2234&rft.volume=138&rft.issue=5&rft_id=info:doi/10.1007%2Fs00214-019-2461-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00214_019_2461_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1432-881X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1432-881X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1432-881X&client=summon