Representation of Fractional Operators Using the Theory of Functional Connections

This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a su...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 11; no. 23; p. 4772
Main Author Mortari, Daniele
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2023
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math11234772

Cover

Abstract This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of α for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals.
AbstractList This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of α for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals.
This work considers fractional operators (derivatives and integrals) as surfaces  f(x,α)  subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of  α  for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals.
This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of α for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals.
Audience Academic
Author Mortari, Daniele
Author_xml – sequence: 1
  givenname: Daniele
  orcidid: 0000-0003-0787-4547
  surname: Mortari
  fullname: Mortari, Daniele
BookMark eNqFkU1rGzEQhkVJIGmSW37AQq_ddPWxlnQMpmkDgdCSnMVYO7Jl1tJWkin-91G8bQmlUOmg0eiZV8M778lJiAEJuabdDee6-7SDsqGUcSEle0fOGWOylfXh5E18Rq5y3nZ1acqV0Ofk23ecEmYMBYqPoYmuuUtgX2MYm8cJE5SYcvOcfVg3ZYPN0wZjOhzBffgNLmMIeLzkS3LqYMx49eu8IM93n5-WX9uHxy_3y9uH1opuUVrNtLJ2UAvlpAALjkLf65XiwgpUi1WlnOzowCkO1qoeKFJEpBStkIN0_ILcz7pDhK2Zkt9BOpgI3hwTMa0NpOLtiEbqleNM6g5UL7RWMCja2xVyOnSc933VametfZjg8BPG8Y8g7cyrveatvZX_MPNTij_2mIvZxn2qRmTDlNaCKdbpSt3M1BpqEz64WKq1dQ-487ZOz_mav5WyV5pSQWvBx7nApphzQve_LthfuPXzGOs_fvx30QujOKtL
CitedBy_id crossref_primary_10_3934_math_2024896
Cites_doi 10.1201/9780429284083
10.13189/ujes.2015.030401
10.1515/fca-2016-0062
10.1615/JAutomatInfScien.v40.i6.10
10.1137/0501026
10.1007/s12043-017-1368-1
10.3390/mca27040064
10.3390/math5040048
10.1016/j.cam.2021.113912
10.3390/math7030296
10.1016/S0016-0032(97)00048-3
10.1016/j.cam.2021.113777
10.1016/j.cnsns.2017.12.003
10.1007/978-3-662-61550-8
10.1155/2011/298628
10.1142/10639
10.3390/math7050407
10.2307/2370405
10.1016/j.apm.2009.04.006
10.3390/math5040057
10.1017/CBO9781139871495
10.1007/s12190-014-0765-6
10.3390/make1040060
10.3390/make2010004
10.1016/j.jcp.2019.03.008
10.1016/j.jnt.2012.06.008
10.1016/j.cam.2018.12.007
10.1016/j.asr.2023.03.030
10.1080/10652461003675737
10.1016/j.cnsns.2016.09.006
10.1016/j.eswa.2023.121750
10.3390/math11071721
10.1016/j.chaos.2020.109705
10.1016/j.camwa.2011.03.054
10.1016/j.chaos.2008.12.013
10.3390/math7090830
10.1007/BFb0067098
10.1016/0315-0860(77)90039-8
10.1098/rspa.2019.0498
10.1155/2021/2734230
10.1016/j.chaos.2018.10.006
10.1007/s40314-017-0536-8
10.1142/9789812817747_0001
10.1007/978-981-13-1159-8
10.1177/1077546316685228
10.1016/j.cnsns.2018.01.005
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math11234772
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef


Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_79bf32790a854998ad815cbe31d03355
10.3390/math11234772
A775891141
10_3390_math11234772
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
PUEGO
RNS
PMFND
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-9298ccd868f74acaf1a559b834c4e86bc40f701d31edcc85a1e1eee11ec47d7f3
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Wed Aug 27 01:11:35 EDT 2025
Wed Oct 01 15:40:37 EDT 2025
Sun Jul 13 05:37:34 EDT 2025
Tue Jun 10 21:03:47 EDT 2025
Thu Apr 24 23:05:34 EDT 2025
Wed Oct 01 02:37:37 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
License https://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-9298ccd868f74acaf1a559b834c4e86bc40f701d31edcc85a1e1eee11ec47d7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0787-4547
OpenAccessLink https://doaj.org/article/79bf32790a854998ad815cbe31d03355
PQID 2899428209
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_79bf32790a854998ad815cbe31d03355
unpaywall_primary_10_3390_math11234772
proquest_journals_2899428209
gale_infotracacademiconefile_A775891141
crossref_primary_10_3390_math11234772
crossref_citationtrail_10_3390_math11234772
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Yang (ref_8) 2010; 34
Anastassiou (ref_7) 2009; 42
ref_14
Hammond (ref_28) 1998; 335
Davis (ref_63) 1959; 66
ref_57
ref_56
ref_55
ref_10
Scherer (ref_23) 2011; 62
ref_54
ref_52
ref_51
Katugampola (ref_21) 2011; 218
Tomovski (ref_39) 2010; 21
Tavassoli (ref_27) 2013; 15
ref_19
ref_61
Baleanu (ref_6) 2020; 134
ref_24
Riemann (ref_2) 1876; 62
ref_67
Oliveira (ref_22) 2018; 37
ref_66
ref_65
ref_64
ref_62
Ahmad (ref_17) 2015; 47
ref_29
Jarad (ref_12) 2018; 117
Wang (ref_44) 2022; 401
Osler (ref_18) 1970; 1
Baleanu (ref_40) 2018; 59
Tarasov (ref_26) 2016; 19
Mortari (ref_36) 2019; 352
Sivalingam (ref_53) 2024; 238
Mai (ref_45) 2022; 406
Almeida (ref_5) 2017; 44
ref_35
ref_34
ref_33
Banerjee (ref_11) 2017; 88
ref_31
(ref_16) 2014; 2014
Li (ref_50) 2021; 2021
Agila (ref_20) 2018; 24
ref_37
Sousa (ref_9) 2018; 60
Patnaik (ref_32) 2020; 476
Teodoro (ref_13) 2019; 388
Pollack (ref_59) 2012; 132
Dickson (ref_60) 1913; 35
ref_47
ref_46
Leake (ref_38) 2020; 2
Chikriy (ref_15) 2008; 40
ref_43
Mezo (ref_58) 2011; 14
Haubold (ref_30) 2011; 2011
ref_42
ref_41
ref_3
Zhang (ref_49) 2023; 72
ref_48
(ref_25) 2015; 3
ref_4
Ross (ref_1) 1977; 4
References_xml – ident: ref_14
  doi: 10.1201/9780429284083
– volume: 3
  start-page: 53
  year: 2015
  ident: ref_25
  article-title: The physical and geometrical interpretation of fractional order derivatives
  publication-title: Univ. J. Eng. Sci.
  doi: 10.13189/ujes.2015.030401
– volume: 19
  start-page: 1200
  year: 2016
  ident: ref_26
  article-title: Geometric interpretation of fractional-order derivative
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0062
– ident: ref_55
– volume: 40
  start-page: 1
  year: 2008
  ident: ref_15
  article-title: Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross
  publication-title: J. Autom. Inf. Sci.
  doi: 10.1615/JAutomatInfScien.v40.i6.10
– volume: 1
  start-page: 288
  year: 1970
  ident: ref_18
  article-title: The fractional derivative of a composite function
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0501026
– volume: 88
  start-page: 1
  year: 2017
  ident: ref_11
  article-title: A study of fractional Schrödinger equation composed of Jumarie fractional derivative
  publication-title: Pramana
  doi: 10.1007/s12043-017-1368-1
– ident: ref_46
  doi: 10.3390/mca27040064
– ident: ref_35
  doi: 10.3390/math5040048
– volume: 406
  start-page: 113912
  year: 2022
  ident: ref_45
  article-title: Theory of Functional Connections Applied to Quadratic and Nonlinear Programming under Equality Constraints
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2021.113912
– ident: ref_65
– volume: 14
  start-page: A11
  year: 2011
  ident: ref_58
  article-title: The r-Bell numbers
  publication-title: J. Integer Seq.
– ident: ref_34
  doi: 10.3390/math7030296
– volume: 335
  start-page: 1077
  year: 1998
  ident: ref_28
  article-title: Physical and geometrical interpretation of fractional operators
  publication-title: J. Frankl. Inst.
  doi: 10.1016/S0016-0032(97)00048-3
– volume: 401
  start-page: 113777
  year: 2022
  ident: ref_44
  article-title: A TFC-based homotopy continuation algorithm with application to dynamics and control problems
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2021.113777
– ident: ref_61
– volume: 59
  start-page: 444
  year: 2018
  ident: ref_40
  article-title: On some new properties of fractional derivatives with Mittag-Leffler kernel
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2017.12.003
– ident: ref_29
  doi: 10.1007/978-3-662-61550-8
– volume: 2011
  start-page: 298628
  year: 2011
  ident: ref_30
  article-title: Mittag-Leffler functions and their applications
  publication-title: J. Appl. Math.
  doi: 10.1155/2011/298628
– volume: 66
  start-page: 849
  year: 1959
  ident: ref_63
  article-title: Leonhard Euler’s Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz
  publication-title: Am. Math. Mon.
– ident: ref_42
  doi: 10.1142/10639
– ident: ref_31
  doi: 10.3390/math7050407
– volume: 35
  start-page: 413
  year: 1913
  ident: ref_60
  article-title: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors
  publication-title: Am. J. Math.
  doi: 10.2307/2370405
– ident: ref_56
– ident: ref_52
– ident: ref_48
– volume: 34
  start-page: 200
  year: 2010
  ident: ref_8
  article-title: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2009.04.006
– ident: ref_41
– ident: ref_66
– ident: ref_62
– ident: ref_33
  doi: 10.3390/math5040057
– ident: ref_57
  doi: 10.1017/CBO9781139871495
– volume: 47
  start-page: 119
  year: 2015
  ident: ref_17
  article-title: On Hadamard fractional integrodifferential boundary value problems
  publication-title: J. Appl. Math. Comput.
  doi: 10.1007/s12190-014-0765-6
– volume: 218
  start-page: 860
  year: 2011
  ident: ref_21
  article-title: New approach to a generalized fractional integral
  publication-title: Appl. Math. Comput.
– ident: ref_37
  doi: 10.3390/make1040060
– volume: 2
  start-page: 37
  year: 2020
  ident: ref_38
  article-title: Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential Equations
  publication-title: Mach. Learn. Knowl. Extr.
  doi: 10.3390/make2010004
– volume: 388
  start-page: 195
  year: 2019
  ident: ref_13
  article-title: A review of definitions of fractional derivatives and other operators
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.03.008
– volume: 132
  start-page: 3037
  year: 2012
  ident: ref_59
  article-title: On Perfect and Near-Perfect Numbers
  publication-title: J. Number Theory
  doi: 10.1016/j.jnt.2012.06.008
– volume: 352
  start-page: 293
  year: 2019
  ident: ref_36
  article-title: High accuracy least-squares solutions of nonlinear differential equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2018.12.007
– ident: ref_3
– volume: 72
  start-page: 257
  year: 2023
  ident: ref_49
  article-title: Shaping low-thrust multi-target visit trajectories via theory of functional connections
  publication-title: Adv. Space Res.
  doi: 10.1016/j.asr.2023.03.030
– volume: 21
  start-page: 797
  year: 2010
  ident: ref_39
  article-title: Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions
  publication-title: Integral Transform. Spec. Funct.
  doi: 10.1080/10652461003675737
– ident: ref_47
– volume: 44
  start-page: 460
  year: 2017
  ident: ref_5
  article-title: A Caputo fractional derivative of a function with respect to another function
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.09.006
– volume: 238
  start-page: 121750
  year: 2024
  ident: ref_53
  article-title: A novel numerical approach for time-varying impulsive fractional differential equations using theory of functional connections and neural network
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.121750
– ident: ref_67
– ident: ref_51
  doi: 10.3390/math11071721
– volume: 134
  start-page: 109705
  year: 2020
  ident: ref_6
  article-title: A new study on the mathematical modeling of human liver with Caputo–Fabrizio fractional derivative
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.109705
– volume: 62
  start-page: 902
  year: 2011
  ident: ref_23
  article-title: The Grünwald–Letnikov method for fractional differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2011.03.054
– volume: 42
  start-page: 365
  year: 2009
  ident: ref_7
  article-title: On right fractional calculus
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2008.12.013
– ident: ref_24
  doi: 10.3390/math7090830
– volume: 62
  start-page: 331
  year: 1876
  ident: ref_2
  article-title: Versuch einer allgemeinen Auffassung der Integration und Differentiation
  publication-title: Gesammelte Werke
– ident: ref_54
– ident: ref_4
  doi: 10.1007/BFb0067098
– volume: 4
  start-page: 75
  year: 1977
  ident: ref_1
  article-title: The development of fractional calculus 1695–1900
  publication-title: Hist. Math.
  doi: 10.1016/0315-0860(77)90039-8
– volume: 15
  start-page: 93
  year: 2013
  ident: ref_27
  article-title: The geometric and physical interpretation of fractional order derivatives of polynomial functions
  publication-title: Differ. Geom. Dyn. Syst
– volume: 476
  start-page: 20190498
  year: 2020
  ident: ref_32
  article-title: Applications of variable-order fractional operators: A review
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2019.0498
– volume: 2014
  start-page: 238459
  year: 2014
  ident: ref_16
  article-title: A review of definitions for fractional derivatives and integral
  publication-title: Math. Probl. Eng.
– volume: 2021
  start-page: 2734230
  year: 2021
  ident: ref_50
  article-title: Fuel-optimal ascent trajectory problem for launch vehicle via theory of functional connections
  publication-title: Int. J. Aerosp. Eng.
  doi: 10.1155/2021/2734230
– volume: 117
  start-page: 16
  year: 2018
  ident: ref_12
  article-title: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.10.006
– volume: 37
  start-page: 3672
  year: 2018
  ident: ref_22
  article-title: Hilfer–Katugampola fractional derivatives
  publication-title: Comput. Appl. Math.
  doi: 10.1007/s40314-017-0536-8
– ident: ref_64
– ident: ref_43
– ident: ref_19
  doi: 10.1142/9789812817747_0001
– ident: ref_10
  doi: 10.1007/978-981-13-1159-8
– volume: 24
  start-page: 1228
  year: 2018
  ident: ref_20
  article-title: A freely damped oscillating fractional dynamic system modeled by fractional Euler–Lagrange equations
  publication-title: J. Vib. Control
  doi: 10.1177/1077546316685228
– volume: 60
  start-page: 72
  year: 2018
  ident: ref_9
  article-title: On the ψ-Hilfer fractional derivative
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2018.01.005
SSID ssj0000913849
Score 2.2571466
Snippet This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which...
This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which...
This work considers fractional operators (derivatives and integrals) as surfaces  f(x,α)  subject to the function constraints defined by integer operators,...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4772
SubjectTerms Boundary conditions
Constraints
Derivatives
Fractional calculus
fractional derivative
fractional integral
Functional analysis
functional interpolation
Infinite series
Integers
Integrals
Methods
Mittag–Leffler function
Operator theory
Operators (mathematics)
Tests, problems and exercises
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dByQKUPkZaiHGh7qCLWsTd2DghBxQohdduiInGz_ITDKrvdXYT49_U4TgChckw0jpwZex72zDcAe06wYGR9WThOygI96EKboAxJqSpuTOm9jVm-k-r0gp1dji7XYNLVwmBaZacTo6K2M4Nn5PsYGARXuRzWh_O_BXaNwtvVroWGSq0V7EGEGHsB66iS2QDWj08mv877UxdEwRSsbjPgaYj394NfeE2QlvPykW2KEP5PFfUGvLxp5uruVk2nDyzR-DVsJhcyP2plvgVrrnkDGz96_NXlW_h9HhNcU11Rk898Pl60JQxh5M-5i5fryzwmDORhYN7W6EfCYOkSYcyCiQ_Ld3AxPvnz_bRIzRMKE2z0qghujzDGikp4zpRRnqgQPGhBmWFOVDpQeT4klhJnjREjRRxxzhHiDOOWe_oeBs2scduQe10KwZQT1GjmBdXCVqLmnliFYC86g28d26RJyOLY4GIqQ4SBTJYPmZzB55563iJq_IfuGCXQ0yAOdnwxW1zJtK0kr7WnJa-HSmCgK5QVZGS0o8QOaXClMviK8pO4W8OUjEpFB-HHEPdKHnGObRUJIxnsdCKWaRsv5f2iy-BLL_Znp_3h-e98hFfYsL5NiNmBwWpx4z4Ft2ald9Na_Qey6fgR
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixNBEC4ke9A9-BZHV5mDj4PMJv3IdOckUQyL4PrAwHoa-rmKYRLyUPTXW9XTCVFRBI8zVDfVdHfVVzNVXwE8CFqik428CorxihB0ZR0aQ8ZNrZzjMfqU5Xtan0zly7Ph2V4VP6VVYij-KRlpqtOsFEblfcb6XPQlQsH-wsenX_K3JCITJ4ck0Qgf1EOMn3twMD19M_5APeW2o7t8d0HzIAr8iAhD0Ew_eaJE2P-7WT6Ei5t2Yb59NbPZnt-ZXAGz1bhLN_l8vFnbY_f9FzLH_1nSVbicQWk57k7RNbgQ2utw-GrH6Lq6AW_fpZTZXKnUlvNYTpZdUQSOfL0I6Xf9qkwpCCUOLLuq_ySIvjMLprya9LC6CdPJi_fPT6rcjqFy6PXXFQIp7ZzXtY5KGmciMxiOWC2kk0HXFqUiKu8FC945PTQssBACY8FJ5VUUt6DXzttwG8poudbSBC2clVELq32tRyoyb4g-xhbwZLs1jctc5dQyY9ZgzEIb2exvZAEPd9KLjqPjD3LPaJd3MsSsnV7Ml-dNvqiNGtkouBoNjKbQWRuv2dDZIJgfCARnBTymM9LQ_UeVnMllDLgwYtJqxkpRo0YmWQFH22PUZMOwaii-xYiPD0YFPNodrb-qfedfBe_CJY4QrEu2OYLeerkJ9xAyre39fCt-AOGHEC8
  priority: 102
  providerName: Unpaywall
Title Representation of Fractional Operators Using the Theory of Functional Connections
URI https://www.proquest.com/docview/2899428209
https://www.mdpi.com/2227-7390/11/23/4772/pdf?version=1701061342
https://doaj.org/article/79bf32790a854998ad815cbe31d03355
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB619EA5oLa0qimNfChwQBZZ78Y7PgZEiio1UEQkOK32KQ6RiUhQxb_v7NpEQYj20qOtWWk8MzsPeeYbgG8eBQXZUBZesrKIGXRhLDlDVupKWluG4FKX77g6nYgfV4OrlVVfsSeshQduBXcoaxN4Keu-xljKoHbIBtZ4zlyfU7CM3pfC2EoxlXxwzTiKuu1051TXH1L-d0O5BRdSlk9iUILqf-6QN2D9vpnph996Ol2JOKN3sNmlivmwZfE9vPLNB9j4ucRZnW_Br4vUyNrNDzX5bchHd-2oAp08m_n0E32ep8aAnA7m7Sx-IqSI1hGmbpf0MP8Ik9HJ5fFp0S1JKCzF4kVB6Q1a67DCIIW2OjBNRYJBLqzwWBmiCrLPHGfeWYsDzTzz3jPmrZBOBv4J1prbxn-GPJgSUWiP3BoRkBt0FdYyMKcjqIvJ4OBRbMp2COJxkcVUUSURhaxWhZzB7pJ61iJnvEB3FDWwpIl41-kFWYHqrED9ywoy2I_6U_FWEktWd8MF9GER30oNpYzrE5lgGew8qlh113WuYtVJdVjZrzPYW6r9r2xv_w-2v8DbuL6-bY_ZgbXF3b3_SknOwvTgNY6-9-DN0cn4_KKXrJueJuPz4fUf4LL9LQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9FB6QDxFSoE9UDigVdePxN5DhVpolNI2QNVKvS1-wiHapEmqqn-O38bY6yxFiN563NXY2vXYM5_tmW8A3jjJ0cl6mjtBaB4QdK4NGkNCVV8YQ723Mcp31B-e8c_nvfMV-LXMhQlhlUubGA21nZhwRr4dNgYIlWlRfphe5KFqVLhdXZbQUKm0gt2JFGMpsePQXV_hFm6-c_AJ9b1F6WD_9OMwT1UGcoPObJEjPpDGWNmXXnBllCcKUbaWjBvuZF-jlBcFsYw4a4zsKeKIc44QZ7iwwjPs9x6sIuygvAOre_ujryftKU9g3ZS8bCLuGSuLbcShPxHjMC4E_csXxpIB_zqGdVi7rKfq-kqNxzc83-AhPEiQNdtt5tgjWHH1Y1g_bvle50_g20kMqE15THU28dlg1qRMYMsvUxcv8-dZDFDIsGHWcAJEQfSsSTBG3cSH-VM4u5NhfAadelK755B5TaXkyklmNPeSaWn7shSeWBXIZXQX3i-HrTKJyTwU1BhXuKMJg1zdHOQubLXS04bB4z9ye0EDrUzg3Y4vJrMfVVrGlSi1Z1SUhZJhYy2VlaRntGPEFgyhWxfeBf1VwTrgJxmVkhzwxwLPVrUrRCjjSDjpwuZSxVUyG_PqzyTvwttW7bd-9sbt_byGteHp8VF1dDA6fAH3KUK0JhhnEzqL2aV7iZBqoV-leZvB97teKr8BICU2wQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUCAHCgcUbfzY2DkgVCihpVAeolJvwU84rLLLZquqf41fx9h5UITorcdEYyuZsWe-secB8MRJjkbW08wJQrOAoDNtUBkSqgphDPXexijfg2L3kL87mh6twa8hFyaEVQ46MSpqOzfhjHwSHAOEyjQvJ74Pi_i0U71c_MxCB6lw0zq00-iWyL47PUH3rX2xt4Oy3qK0evP19W7WdxjIDBqyVYbYQBpjZSG94MooTxQibC0ZN9zJQiOVFzmxjDhrjJwq4ohzjhBnuLDCM5z3ElwWDF29kKVevR3Pd0K9TcnLLtaesTKfIAL9geiGcSHoX1YwNgv41yRswNXjZqFOT9RsdsbmVTfgeg9W0-1udd2ENdfcgo0PY6XX9jZ8_hJDafsMpiad-7RadskSOPLjwsVr_DaNoQkpDky7agCREG1qTxjjbeJDewcOL4SJd2G9mTfuHqReUym5cpIZzb1kWtpClsITq0JZGZ3A84FttelrmIdWGrMafZnA5PoskxPYGqkXXe2O_9C9ChIYaULF7fhivvxe9xu4FqX2jIoyVzK41FJZSaZGO0ZszhC0JfAsyK8OegE_yag-vQF_LFTYqreFCA0cCScJbA4irnuF0dZ_lncCT0exn_vZ98-f5zFcwQ1Sv9872H8A1yhisy4KZxPWV8tj9xCx1Eo_ios2hW8XvUt-A7KsNFw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixNBEC4ke9A9-BZHV5mDj4PMJv3IdOckUQyL4PrAwHoa-rmKYRLyUPTXW9XTCVFRBI8zVDfVdHfVVzNVXwE8CFqik428CorxihB0ZR0aQ8ZNrZzjMfqU5Xtan0zly7Ph2V4VP6VVYij-KRlpqtOsFEblfcb6XPQlQsH-wsenX_K3JCITJ4ck0Qgf1EOMn3twMD19M_5APeW2o7t8d0HzIAr8iAhD0Ew_eaJE2P-7WT6Ei5t2Yb59NbPZnt-ZXAGz1bhLN_l8vFnbY_f9FzLH_1nSVbicQWk57k7RNbgQ2utw-GrH6Lq6AW_fpZTZXKnUlvNYTpZdUQSOfL0I6Xf9qkwpCCUOLLuq_ySIvjMLprya9LC6CdPJi_fPT6rcjqFy6PXXFQIp7ZzXtY5KGmciMxiOWC2kk0HXFqUiKu8FC945PTQssBACY8FJ5VUUt6DXzttwG8poudbSBC2clVELq32tRyoyb4g-xhbwZLs1jctc5dQyY9ZgzEIb2exvZAEPd9KLjqPjD3LPaJd3MsSsnV7Ml-dNvqiNGtkouBoNjKbQWRuv2dDZIJgfCARnBTymM9LQ_UeVnMllDLgwYtJqxkpRo0YmWQFH22PUZMOwaii-xYiPD0YFPNodrb-qfedfBe_CJY4QrEu2OYLeerkJ9xAyre39fCt-AOGHEC8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+of+Fractional+Operators+Using+the+Theory+of+Functional+Connections&rft.jtitle=Mathematics+%28Basel%29&rft.au=Daniele+Mortari&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=23&rft.spage=4772&rft_id=info:doi/10.3390%2Fmath11234772&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79bf32790a854998ad815cbe31d03355
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon