Representation of Fractional Operators Using the Theory of Functional Connections
This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a su...
Saved in:
Published in | Mathematics (Basel) Vol. 11; no. 23; p. 4772 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.12.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2227-7390 2227-7390 |
DOI | 10.3390/math11234772 |
Cover
Abstract | This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of α for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals. |
---|---|
AbstractList | This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of α for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals. This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of α for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals. This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which is a mandatory requirement of any fractional operator definition. In this respect, the problem can be seen as the problem of generating a surface constrained at some positive integer values of α for fractional derivatives and at some negative integer values for fractional integrals. This paper shows that by using the Theory of Functional Connections, all (past, present, and future) fractional operators can be approximated at a high level of accuracy by smooth surfaces and with no continuity issues. This practical approach provides a simple and unified tool to simulate nonlocal fractional operators that are usually defined by infinite series and/or complicated integrals. |
Audience | Academic |
Author | Mortari, Daniele |
Author_xml | – sequence: 1 givenname: Daniele orcidid: 0000-0003-0787-4547 surname: Mortari fullname: Mortari, Daniele |
BookMark | eNqFkU1rGzEQhkVJIGmSW37AQq_ddPWxlnQMpmkDgdCSnMVYO7Jl1tJWkin-91G8bQmlUOmg0eiZV8M778lJiAEJuabdDee6-7SDsqGUcSEle0fOGWOylfXh5E18Rq5y3nZ1acqV0Ofk23ecEmYMBYqPoYmuuUtgX2MYm8cJE5SYcvOcfVg3ZYPN0wZjOhzBffgNLmMIeLzkS3LqYMx49eu8IM93n5-WX9uHxy_3y9uH1opuUVrNtLJ2UAvlpAALjkLf65XiwgpUi1WlnOzowCkO1qoeKFJEpBStkIN0_ILcz7pDhK2Zkt9BOpgI3hwTMa0NpOLtiEbqleNM6g5UL7RWMCja2xVyOnSc933VametfZjg8BPG8Y8g7cyrveatvZX_MPNTij_2mIvZxn2qRmTDlNaCKdbpSt3M1BpqEz64WKq1dQ-487ZOz_mav5WyV5pSQWvBx7nApphzQve_LthfuPXzGOs_fvx30QujOKtL |
CitedBy_id | crossref_primary_10_3934_math_2024896 |
Cites_doi | 10.1201/9780429284083 10.13189/ujes.2015.030401 10.1515/fca-2016-0062 10.1615/JAutomatInfScien.v40.i6.10 10.1137/0501026 10.1007/s12043-017-1368-1 10.3390/mca27040064 10.3390/math5040048 10.1016/j.cam.2021.113912 10.3390/math7030296 10.1016/S0016-0032(97)00048-3 10.1016/j.cam.2021.113777 10.1016/j.cnsns.2017.12.003 10.1007/978-3-662-61550-8 10.1155/2011/298628 10.1142/10639 10.3390/math7050407 10.2307/2370405 10.1016/j.apm.2009.04.006 10.3390/math5040057 10.1017/CBO9781139871495 10.1007/s12190-014-0765-6 10.3390/make1040060 10.3390/make2010004 10.1016/j.jcp.2019.03.008 10.1016/j.jnt.2012.06.008 10.1016/j.cam.2018.12.007 10.1016/j.asr.2023.03.030 10.1080/10652461003675737 10.1016/j.cnsns.2016.09.006 10.1016/j.eswa.2023.121750 10.3390/math11071721 10.1016/j.chaos.2020.109705 10.1016/j.camwa.2011.03.054 10.1016/j.chaos.2008.12.013 10.3390/math7090830 10.1007/BFb0067098 10.1016/0315-0860(77)90039-8 10.1098/rspa.2019.0498 10.1155/2021/2734230 10.1016/j.chaos.2018.10.006 10.1007/s40314-017-0536-8 10.1142/9789812817747_0001 10.1007/978-981-13-1159-8 10.1177/1077546316685228 10.1016/j.cnsns.2018.01.005 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
DOI | 10.3390/math11234772 |
DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2227-7390 |
ExternalDocumentID | oai_doaj_org_article_79bf32790a854998ad815cbe31d03355 10.3390/math11234772 A775891141 10_3390_math11234772 |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS PUEGO RNS PMFND 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
ID | FETCH-LOGICAL-c406t-9298ccd868f74acaf1a559b834c4e86bc40f701d31edcc85a1e1eee11ec47d7f3 |
IEDL.DBID | DOA |
ISSN | 2227-7390 |
IngestDate | Wed Aug 27 01:11:35 EDT 2025 Wed Oct 01 15:40:37 EDT 2025 Sun Jul 13 05:37:34 EDT 2025 Tue Jun 10 21:03:47 EDT 2025 Thu Apr 24 23:05:34 EDT 2025 Wed Oct 01 02:37:37 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-9298ccd868f74acaf1a559b834c4e86bc40f701d31edcc85a1e1eee11ec47d7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0787-4547 |
OpenAccessLink | https://doaj.org/article/79bf32790a854998ad815cbe31d03355 |
PQID | 2899428209 |
PQPubID | 2032364 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_79bf32790a854998ad815cbe31d03355 unpaywall_primary_10_3390_math11234772 proquest_journals_2899428209 gale_infotracacademiconefile_A775891141 crossref_primary_10_3390_math11234772 crossref_citationtrail_10_3390_math11234772 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-01 |
PublicationDateYYYYMMDD | 2023-12-01 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Mathematics (Basel) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Yang (ref_8) 2010; 34 Anastassiou (ref_7) 2009; 42 ref_14 Hammond (ref_28) 1998; 335 Davis (ref_63) 1959; 66 ref_57 ref_56 ref_55 ref_10 Scherer (ref_23) 2011; 62 ref_54 ref_52 ref_51 Katugampola (ref_21) 2011; 218 Tomovski (ref_39) 2010; 21 Tavassoli (ref_27) 2013; 15 ref_19 ref_61 Baleanu (ref_6) 2020; 134 ref_24 Riemann (ref_2) 1876; 62 ref_67 Oliveira (ref_22) 2018; 37 ref_66 ref_65 ref_64 ref_62 Ahmad (ref_17) 2015; 47 ref_29 Jarad (ref_12) 2018; 117 Wang (ref_44) 2022; 401 Osler (ref_18) 1970; 1 Baleanu (ref_40) 2018; 59 Tarasov (ref_26) 2016; 19 Mortari (ref_36) 2019; 352 Sivalingam (ref_53) 2024; 238 Mai (ref_45) 2022; 406 Almeida (ref_5) 2017; 44 ref_35 ref_34 ref_33 Banerjee (ref_11) 2017; 88 ref_31 (ref_16) 2014; 2014 Li (ref_50) 2021; 2021 Agila (ref_20) 2018; 24 ref_37 Sousa (ref_9) 2018; 60 Patnaik (ref_32) 2020; 476 Teodoro (ref_13) 2019; 388 Pollack (ref_59) 2012; 132 Dickson (ref_60) 1913; 35 ref_47 ref_46 Leake (ref_38) 2020; 2 Chikriy (ref_15) 2008; 40 ref_43 Mezo (ref_58) 2011; 14 Haubold (ref_30) 2011; 2011 ref_42 ref_41 ref_3 Zhang (ref_49) 2023; 72 ref_48 (ref_25) 2015; 3 ref_4 Ross (ref_1) 1977; 4 |
References_xml | – ident: ref_14 doi: 10.1201/9780429284083 – volume: 3 start-page: 53 year: 2015 ident: ref_25 article-title: The physical and geometrical interpretation of fractional order derivatives publication-title: Univ. J. Eng. Sci. doi: 10.13189/ujes.2015.030401 – volume: 19 start-page: 1200 year: 2016 ident: ref_26 article-title: Geometric interpretation of fractional-order derivative publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2016-0062 – ident: ref_55 – volume: 40 start-page: 1 year: 2008 ident: ref_15 article-title: Presentation of solutions of linear systems with fractional derivatives in the sense of Riemann-Liouville, Caputo and Miller-Ross publication-title: J. Autom. Inf. Sci. doi: 10.1615/JAutomatInfScien.v40.i6.10 – volume: 1 start-page: 288 year: 1970 ident: ref_18 article-title: The fractional derivative of a composite function publication-title: SIAM J. Math. Anal. doi: 10.1137/0501026 – volume: 88 start-page: 1 year: 2017 ident: ref_11 article-title: A study of fractional Schrödinger equation composed of Jumarie fractional derivative publication-title: Pramana doi: 10.1007/s12043-017-1368-1 – ident: ref_46 doi: 10.3390/mca27040064 – ident: ref_35 doi: 10.3390/math5040048 – volume: 406 start-page: 113912 year: 2022 ident: ref_45 article-title: Theory of Functional Connections Applied to Quadratic and Nonlinear Programming under Equality Constraints publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2021.113912 – ident: ref_65 – volume: 14 start-page: A11 year: 2011 ident: ref_58 article-title: The r-Bell numbers publication-title: J. Integer Seq. – ident: ref_34 doi: 10.3390/math7030296 – volume: 335 start-page: 1077 year: 1998 ident: ref_28 article-title: Physical and geometrical interpretation of fractional operators publication-title: J. Frankl. Inst. doi: 10.1016/S0016-0032(97)00048-3 – volume: 401 start-page: 113777 year: 2022 ident: ref_44 article-title: A TFC-based homotopy continuation algorithm with application to dynamics and control problems publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2021.113777 – ident: ref_61 – volume: 59 start-page: 444 year: 2018 ident: ref_40 article-title: On some new properties of fractional derivatives with Mittag-Leffler kernel publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2017.12.003 – ident: ref_29 doi: 10.1007/978-3-662-61550-8 – volume: 2011 start-page: 298628 year: 2011 ident: ref_30 article-title: Mittag-Leffler functions and their applications publication-title: J. Appl. Math. doi: 10.1155/2011/298628 – volume: 66 start-page: 849 year: 1959 ident: ref_63 article-title: Leonhard Euler’s Integral: A Historical Profile of the Gamma Function: In Memoriam: Milton Abramowitz publication-title: Am. Math. Mon. – ident: ref_42 doi: 10.1142/10639 – ident: ref_31 doi: 10.3390/math7050407 – volume: 35 start-page: 413 year: 1913 ident: ref_60 article-title: Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors publication-title: Am. J. Math. doi: 10.2307/2370405 – ident: ref_56 – ident: ref_52 – ident: ref_48 – volume: 34 start-page: 200 year: 2010 ident: ref_8 article-title: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2009.04.006 – ident: ref_41 – ident: ref_66 – ident: ref_62 – ident: ref_33 doi: 10.3390/math5040057 – ident: ref_57 doi: 10.1017/CBO9781139871495 – volume: 47 start-page: 119 year: 2015 ident: ref_17 article-title: On Hadamard fractional integrodifferential boundary value problems publication-title: J. Appl. Math. Comput. doi: 10.1007/s12190-014-0765-6 – volume: 218 start-page: 860 year: 2011 ident: ref_21 article-title: New approach to a generalized fractional integral publication-title: Appl. Math. Comput. – ident: ref_37 doi: 10.3390/make1040060 – volume: 2 start-page: 37 year: 2020 ident: ref_38 article-title: Deep Theory of Functional Connections: A New Method for Estimating the Solutions of Partial Differential Equations publication-title: Mach. Learn. Knowl. Extr. doi: 10.3390/make2010004 – volume: 388 start-page: 195 year: 2019 ident: ref_13 article-title: A review of definitions of fractional derivatives and other operators publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.03.008 – volume: 132 start-page: 3037 year: 2012 ident: ref_59 article-title: On Perfect and Near-Perfect Numbers publication-title: J. Number Theory doi: 10.1016/j.jnt.2012.06.008 – volume: 352 start-page: 293 year: 2019 ident: ref_36 article-title: High accuracy least-squares solutions of nonlinear differential equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2018.12.007 – ident: ref_3 – volume: 72 start-page: 257 year: 2023 ident: ref_49 article-title: Shaping low-thrust multi-target visit trajectories via theory of functional connections publication-title: Adv. Space Res. doi: 10.1016/j.asr.2023.03.030 – volume: 21 start-page: 797 year: 2010 ident: ref_39 article-title: Fractional and operational calculus with generalized fractional derivative operators and Mittag–Leffler type functions publication-title: Integral Transform. Spec. Funct. doi: 10.1080/10652461003675737 – ident: ref_47 – volume: 44 start-page: 460 year: 2017 ident: ref_5 article-title: A Caputo fractional derivative of a function with respect to another function publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.09.006 – volume: 238 start-page: 121750 year: 2024 ident: ref_53 article-title: A novel numerical approach for time-varying impulsive fractional differential equations using theory of functional connections and neural network publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.121750 – ident: ref_67 – ident: ref_51 doi: 10.3390/math11071721 – volume: 134 start-page: 109705 year: 2020 ident: ref_6 article-title: A new study on the mathematical modeling of human liver with Caputo–Fabrizio fractional derivative publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.109705 – volume: 62 start-page: 902 year: 2011 ident: ref_23 article-title: The Grünwald–Letnikov method for fractional differential equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2011.03.054 – volume: 42 start-page: 365 year: 2009 ident: ref_7 article-title: On right fractional calculus publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2008.12.013 – ident: ref_24 doi: 10.3390/math7090830 – volume: 62 start-page: 331 year: 1876 ident: ref_2 article-title: Versuch einer allgemeinen Auffassung der Integration und Differentiation publication-title: Gesammelte Werke – ident: ref_54 – ident: ref_4 doi: 10.1007/BFb0067098 – volume: 4 start-page: 75 year: 1977 ident: ref_1 article-title: The development of fractional calculus 1695–1900 publication-title: Hist. Math. doi: 10.1016/0315-0860(77)90039-8 – volume: 15 start-page: 93 year: 2013 ident: ref_27 article-title: The geometric and physical interpretation of fractional order derivatives of polynomial functions publication-title: Differ. Geom. Dyn. Syst – volume: 476 start-page: 20190498 year: 2020 ident: ref_32 article-title: Applications of variable-order fractional operators: A review publication-title: Proc. R. Soc. A doi: 10.1098/rspa.2019.0498 – volume: 2014 start-page: 238459 year: 2014 ident: ref_16 article-title: A review of definitions for fractional derivatives and integral publication-title: Math. Probl. Eng. – volume: 2021 start-page: 2734230 year: 2021 ident: ref_50 article-title: Fuel-optimal ascent trajectory problem for launch vehicle via theory of functional connections publication-title: Int. J. Aerosp. Eng. doi: 10.1155/2021/2734230 – volume: 117 start-page: 16 year: 2018 ident: ref_12 article-title: On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.10.006 – volume: 37 start-page: 3672 year: 2018 ident: ref_22 article-title: Hilfer–Katugampola fractional derivatives publication-title: Comput. Appl. Math. doi: 10.1007/s40314-017-0536-8 – ident: ref_64 – ident: ref_43 – ident: ref_19 doi: 10.1142/9789812817747_0001 – ident: ref_10 doi: 10.1007/978-981-13-1159-8 – volume: 24 start-page: 1228 year: 2018 ident: ref_20 article-title: A freely damped oscillating fractional dynamic system modeled by fractional Euler–Lagrange equations publication-title: J. Vib. Control doi: 10.1177/1077546316685228 – volume: 60 start-page: 72 year: 2018 ident: ref_9 article-title: On the ψ-Hilfer fractional derivative publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2018.01.005 |
SSID | ssj0000913849 |
Score | 2.2571466 |
Snippet | This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which... This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators, which... This work considers fractional operators (derivatives and integrals) as surfaces f(x,α) subject to the function constraints defined by integer operators,... |
SourceID | doaj unpaywall proquest gale crossref |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
StartPage | 4772 |
SubjectTerms | Boundary conditions Constraints Derivatives Fractional calculus fractional derivative fractional integral Functional analysis functional interpolation Infinite series Integers Integrals Methods Mittag–Leffler function Operator theory Operators (mathematics) Tests, problems and exercises |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dByQKUPkZaiHGh7qCLWsTd2DghBxQohdduiInGz_ITDKrvdXYT49_U4TgChckw0jpwZex72zDcAe06wYGR9WThOygI96EKboAxJqSpuTOm9jVm-k-r0gp1dji7XYNLVwmBaZacTo6K2M4Nn5PsYGARXuRzWh_O_BXaNwtvVroWGSq0V7EGEGHsB66iS2QDWj08mv877UxdEwRSsbjPgaYj394NfeE2QlvPykW2KEP5PFfUGvLxp5uruVk2nDyzR-DVsJhcyP2plvgVrrnkDGz96_NXlW_h9HhNcU11Rk898Pl60JQxh5M-5i5fryzwmDORhYN7W6EfCYOkSYcyCiQ_Ld3AxPvnz_bRIzRMKE2z0qghujzDGikp4zpRRnqgQPGhBmWFOVDpQeT4klhJnjREjRRxxzhHiDOOWe_oeBs2scduQe10KwZQT1GjmBdXCVqLmnliFYC86g28d26RJyOLY4GIqQ4SBTJYPmZzB55563iJq_IfuGCXQ0yAOdnwxW1zJtK0kr7WnJa-HSmCgK5QVZGS0o8QOaXClMviK8pO4W8OUjEpFB-HHEPdKHnGObRUJIxnsdCKWaRsv5f2iy-BLL_Znp_3h-e98hFfYsL5NiNmBwWpx4z4Ft2ald9Na_Qey6fgR priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixNBEC4ke9A9-BZHV5mDj4PMJv3IdOckUQyL4PrAwHoa-rmKYRLyUPTXW9XTCVFRBI8zVDfVdHfVVzNVXwE8CFqik428CorxihB0ZR0aQ8ZNrZzjMfqU5Xtan0zly7Ph2V4VP6VVYij-KRlpqtOsFEblfcb6XPQlQsH-wsenX_K3JCITJ4ck0Qgf1EOMn3twMD19M_5APeW2o7t8d0HzIAr8iAhD0Ew_eaJE2P-7WT6Ei5t2Yb59NbPZnt-ZXAGz1bhLN_l8vFnbY_f9FzLH_1nSVbicQWk57k7RNbgQ2utw-GrH6Lq6AW_fpZTZXKnUlvNYTpZdUQSOfL0I6Xf9qkwpCCUOLLuq_ySIvjMLprya9LC6CdPJi_fPT6rcjqFy6PXXFQIp7ZzXtY5KGmciMxiOWC2kk0HXFqUiKu8FC945PTQssBACY8FJ5VUUt6DXzttwG8poudbSBC2clVELq32tRyoyb4g-xhbwZLs1jctc5dQyY9ZgzEIb2exvZAEPd9KLjqPjD3LPaJd3MsSsnV7Ml-dNvqiNGtkouBoNjKbQWRuv2dDZIJgfCARnBTymM9LQ_UeVnMllDLgwYtJqxkpRo0YmWQFH22PUZMOwaii-xYiPD0YFPNodrb-qfedfBe_CJY4QrEu2OYLeerkJ9xAyre39fCt-AOGHEC8 priority: 102 providerName: Unpaywall |
Title | Representation of Fractional Operators Using the Theory of Functional Connections |
URI | https://www.proquest.com/docview/2899428209 https://www.mdpi.com/2227-7390/11/23/4772/pdf?version=1701061342 https://doaj.org/article/79bf32790a854998ad815cbe31d03355 |
UnpaywallVersion | publishedVersion |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9tAEB619EA5oLa0qimNfChwQBZZ78Y7PgZEiio1UEQkOK32KQ6RiUhQxb_v7NpEQYj20qOtWWk8MzsPeeYbgG8eBQXZUBZesrKIGXRhLDlDVupKWluG4FKX77g6nYgfV4OrlVVfsSeshQduBXcoaxN4Keu-xljKoHbIBtZ4zlyfU7CM3pfC2EoxlXxwzTiKuu1051TXH1L-d0O5BRdSlk9iUILqf-6QN2D9vpnph996Ol2JOKN3sNmlivmwZfE9vPLNB9j4ucRZnW_Br4vUyNrNDzX5bchHd-2oAp08m_n0E32ep8aAnA7m7Sx-IqSI1hGmbpf0MP8Ik9HJ5fFp0S1JKCzF4kVB6Q1a67DCIIW2OjBNRYJBLqzwWBmiCrLPHGfeWYsDzTzz3jPmrZBOBv4J1prbxn-GPJgSUWiP3BoRkBt0FdYyMKcjqIvJ4OBRbMp2COJxkcVUUSURhaxWhZzB7pJ61iJnvEB3FDWwpIl41-kFWYHqrED9ywoy2I_6U_FWEktWd8MF9GER30oNpYzrE5lgGew8qlh113WuYtVJdVjZrzPYW6r9r2xv_w-2v8DbuL6-bY_ZgbXF3b3_SknOwvTgNY6-9-DN0cn4_KKXrJueJuPz4fUf4LL9LQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9FB6QDxFSoE9UDigVdePxN5DhVpolNI2QNVKvS1-wiHapEmqqn-O38bY6yxFiN563NXY2vXYM5_tmW8A3jjJ0cl6mjtBaB4QdK4NGkNCVV8YQ723Mcp31B-e8c_nvfMV-LXMhQlhlUubGA21nZhwRr4dNgYIlWlRfphe5KFqVLhdXZbQUKm0gt2JFGMpsePQXV_hFm6-c_AJ9b1F6WD_9OMwT1UGcoPObJEjPpDGWNmXXnBllCcKUbaWjBvuZF-jlBcFsYw4a4zsKeKIc44QZ7iwwjPs9x6sIuygvAOre_ujryftKU9g3ZS8bCLuGSuLbcShPxHjMC4E_csXxpIB_zqGdVi7rKfq-kqNxzc83-AhPEiQNdtt5tgjWHH1Y1g_bvle50_g20kMqE15THU28dlg1qRMYMsvUxcv8-dZDFDIsGHWcAJEQfSsSTBG3cSH-VM4u5NhfAadelK755B5TaXkyklmNPeSaWn7shSeWBXIZXQX3i-HrTKJyTwU1BhXuKMJg1zdHOQubLXS04bB4z9ye0EDrUzg3Y4vJrMfVVrGlSi1Z1SUhZJhYy2VlaRntGPEFgyhWxfeBf1VwTrgJxmVkhzwxwLPVrUrRCjjSDjpwuZSxVUyG_PqzyTvwttW7bd-9sbt_byGteHp8VF1dDA6fAH3KUK0JhhnEzqL2aV7iZBqoV-leZvB97teKr8BICU2wQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ4iUCAHCgcUbfzY2DkgVCihpVAeolJvwU84rLLLZquqf41fx9h5UITorcdEYyuZsWe-secB8MRJjkbW08wJQrOAoDNtUBkSqgphDPXexijfg2L3kL87mh6twa8hFyaEVQ46MSpqOzfhjHwSHAOEyjQvJ74Pi_i0U71c_MxCB6lw0zq00-iWyL47PUH3rX2xt4Oy3qK0evP19W7WdxjIDBqyVYbYQBpjZSG94MooTxQibC0ZN9zJQiOVFzmxjDhrjJwq4ohzjhBnuLDCM5z3ElwWDF29kKVevR3Pd0K9TcnLLtaesTKfIAL9geiGcSHoX1YwNgv41yRswNXjZqFOT9RsdsbmVTfgeg9W0-1udd2ENdfcgo0PY6XX9jZ8_hJDafsMpiad-7RadskSOPLjwsVr_DaNoQkpDky7agCREG1qTxjjbeJDewcOL4SJd2G9mTfuHqReUym5cpIZzb1kWtpClsITq0JZGZ3A84FttelrmIdWGrMafZnA5PoskxPYGqkXXe2O_9C9ChIYaULF7fhivvxe9xu4FqX2jIoyVzK41FJZSaZGO0ZszhC0JfAsyK8OegE_yag-vQF_LFTYqreFCA0cCScJbA4irnuF0dZ_lncCT0exn_vZ98-f5zFcwQ1Sv9872H8A1yhisy4KZxPWV8tj9xCx1Eo_ios2hW8XvUt-A7KsNFw |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LixNBEC4ke9A9-BZHV5mDj4PMJv3IdOckUQyL4PrAwHoa-rmKYRLyUPTXW9XTCVFRBI8zVDfVdHfVVzNVXwE8CFqik428CorxihB0ZR0aQ8ZNrZzjMfqU5Xtan0zly7Ph2V4VP6VVYij-KRlpqtOsFEblfcb6XPQlQsH-wsenX_K3JCITJ4ck0Qgf1EOMn3twMD19M_5APeW2o7t8d0HzIAr8iAhD0Ew_eaJE2P-7WT6Ei5t2Yb59NbPZnt-ZXAGz1bhLN_l8vFnbY_f9FzLH_1nSVbicQWk57k7RNbgQ2utw-GrH6Lq6AW_fpZTZXKnUlvNYTpZdUQSOfL0I6Xf9qkwpCCUOLLuq_ySIvjMLprya9LC6CdPJi_fPT6rcjqFy6PXXFQIp7ZzXtY5KGmciMxiOWC2kk0HXFqUiKu8FC945PTQssBACY8FJ5VUUt6DXzttwG8poudbSBC2clVELq32tRyoyb4g-xhbwZLs1jctc5dQyY9ZgzEIb2exvZAEPd9KLjqPjD3LPaJd3MsSsnV7Ml-dNvqiNGtkouBoNjKbQWRuv2dDZIJgfCARnBTymM9LQ_UeVnMllDLgwYtJqxkpRo0YmWQFH22PUZMOwaii-xYiPD0YFPNodrb-qfedfBe_CJY4QrEu2OYLeerkJ9xAyre39fCt-AOGHEC8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Representation+of+Fractional+Operators+Using+the+Theory+of+Functional+Connections&rft.jtitle=Mathematics+%28Basel%29&rft.au=Daniele+Mortari&rft.date=2023-12-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=23&rft.spage=4772&rft_id=info:doi/10.3390%2Fmath11234772&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_79bf32790a854998ad815cbe31d03355 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |