A Novel Federated & Ensembled Learning-Based Battery State-of-Health Estimation for Connected Electric Vehicles

Electric vehicles (EV) are gaining wide traction and popularity despite the operational range and charging time limitations. Therefore, to ensure the reliability of EVs for realizing improved customer satisfaction, it is necessary to monitor and track its battery condition. This paper introduces a n...

Full description

Saved in:
Bibliographic Details
Published inIEEE open journal of intelligent transportation systems Vol. 5; pp. 445 - 453
Main Authors Abbaraju, Praveen, Kundu, Subrata Kumar
Format Journal Article
LanguageEnglish
Published New York IEEE 2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2687-7813
2687-7813
DOI10.1109/OJITS.2024.3430843

Cover

Abstract Electric vehicles (EV) are gaining wide traction and popularity despite the operational range and charging time limitations. Therefore, to ensure the reliability of EVs for realizing improved customer satisfaction, it is necessary to monitor and track its battery condition. This paper introduces a novel federated & ensembled learning (FEL) algorithm for precise estimation of battery State of Health (SoH). FEL algorithm leverages real-world data from diverse stakeholders and geographical factors like traffic and weather data. A Long-Short Term Memory (LSTM) model has been implemented as a base-model for SoH estimation, continuously updating for each trip as an edge scenario using data-centric federated learning strategy. A stacked ensemble learning algorithm is employed to combine data from heterogenous data sources for retraining the base-model. The effectiveness of the proposed FEL algorithm has been evaluated using NASA battery dataset, showing significant improvement in SoH estimations with a mean average error of 3.24% after 30 iterations. Comparative analysis, including LSTM model with and without ensembled stakeholder data, reveals up to 75% accuracy improvement. The proposed model-agnostic FEL algorithm shows its effectiveness in precise SoH estimation through efficient data sharing among stakeholders and could bring significant benefits for realizing data-centric intelligent solutions for connected EVs.
AbstractList Electric vehicles (EV) are gaining wide traction and popularity despite the operational range and charging time limitations. Therefore, to ensure the reliability of EVs for realizing improved customer satisfaction, it is necessary to monitor and track its battery condition. This paper introduces a novel federated & ensembled learning (FEL) algorithm for precise estimation of battery State of Health (SoH). FEL algorithm leverages real-world data from diverse stakeholders and geographical factors like traffic and weather data. A Long-Short Term Memory (LSTM) model has been implemented as a base-model for SoH estimation, continuously updating for each trip as an edge scenario using data-centric federated learning strategy. A stacked ensemble learning algorithm is employed to combine data from heterogenous data sources for retraining the base-model. The effectiveness of the proposed FEL algorithm has been evaluated using NASA battery dataset, showing significant improvement in SoH estimations with a mean average error of 3.24% after 30 iterations. Comparative analysis, including LSTM model with and without ensembled stakeholder data, reveals up to 75% accuracy improvement. The proposed model-agnostic FEL algorithm shows its effectiveness in precise SoH estimation through efficient data sharing among stakeholders and could bring significant benefits for realizing data-centric intelligent solutions for connected EVs.
Author Abbaraju, Praveen
Kundu, Subrata Kumar
Author_xml – sequence: 1
  givenname: Praveen
  orcidid: 0000-0002-2530-2027
  surname: Abbaraju
  fullname: Abbaraju, Praveen
  email: praveen.abbaraju.oj@hitachiastemo.com
  organization: Advanced Technology Development Department, Hitachi Astemo Americas, Inc., Farmington Hills, MI, USA
– sequence: 2
  givenname: Subrata Kumar
  orcidid: 0009-0002-2249-5115
  surname: Kundu
  fullname: Kundu, Subrata Kumar
  organization: Advanced Technology Development Department, Hitachi Astemo Americas, Inc., Farmington Hills, MI, USA
BookMark eNptUU1rGzEQXUoKTdP8gdLDQqG3dfS92mNinMbBNIekvQp9zCYym5UryS3-95W9IQTT04zEe2_ezPtYnYxhhKr6jNEMY9Rd3N0uH-5nBBE2o4wiyei76pQI2TatxPTkTf-hOk9pjRAiHGOCutMqXNY_wh8Y6mtwEHUGV3-rF2OCZzOUfgU6jn58bK50Ks8rnTPEXX2fC7IJfXMDeshP9SJl_6yzD2Pdh1jPwziC3WsthlKjt_UvePJ2gPSpet_rIcH5Sz2rfl4vHuY3zeru-3J-uWosQyI3HSJI0q4VjjpGjKVWS2EIaOKolpLvVzDEdJx1RHAjhMC25cwUmDUd0fSsWk66Lui12sRiL-5U0F4dPkJ8VDrmvSUFxrSacgYSO8Z4a8pluLSOgHOsR7ho0UlrO2707q8ehldBjNQ-AhXWPie1j0C9RFBYXyfWJobfW0hZrcM2jmVpVQAtQ4gLVlByQtkYUorQK-vz4ZI5aj-8DjhkfDyAHFGPXf2X9GUieQB4QxCId4jRfw9escg
CODEN IOJICL
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3486989
crossref_primary_10_1016_j_electacta_2024_145454
crossref_primary_10_1109_ACCESS_2025_3530351
Cites_doi 10.1016/j.ress.2023.109787
10.1016/j.est.2020.102122
10.1016/j.apenergy.2019.113813
10.1109/ACCESS.2019.2920932
10.1109/ojits.2021.3106863
10.1561/9781680837896
10.1016/j.rser.2019.109334
10.1109/ojits.2023.3311689
10.1109/VPPC.2018.8604987
10.1109/ojits.2021.3072220
10.1016/j.jpowsour.2020.228069
10.1016/j.rser.2019.109254
10.1016/j.ijepes.2020.105883
10.1016/j.est.2018.11.020
10.1109/tvt.2018.2864688
10.1016/j.jpowsour.2014.01.085
10.1016/j.jpowsour.2018.12.001
10.1016/j.energy.2023.129061
10.1016/j.rser.2015.11.042
10.1016/j.eswa.2011.03.063
10.1016/j.jpowsour.2018.10.019
10.1145/3298981
10.1016/j.rser.2019.109405
10.1016/j.jpowsour.2019.227118
10.1098/rsta.2010.0138
10.1109/access.2022.3221137
10.1016/j.jpowsour.2015.01.129
10.1109/ojits.2021.3112533
10.1016/j.energy.2018.06.220
10.1109/INTLEC.2004.1401519
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1109/OJITS.2024.3430843
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2687-7813
EndPage 453
ExternalDocumentID oai_doaj_org_article_ebb7a354e81d4457b12058cd2edd4f01
10.1109/ojits.2024.3430843
10_1109_OJITS_2024_3430843
10605904
Genre orig-research
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-902083976d3d42bc3ca86b2ea2d3a8850002b2b9549265b6661c754bca8cb92a3
IEDL.DBID UNPAY
ISSN 2687-7813
IngestDate Fri Oct 03 12:37:52 EDT 2025
Sun Sep 07 10:58:02 EDT 2025
Mon Jun 30 09:45:30 EDT 2025
Thu Apr 24 23:05:51 EDT 2025
Tue Jul 01 02:37:45 EDT 2025
Wed Aug 27 01:55:48 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-902083976d3d42bc3ca86b2ea2d3a8850002b2b9549265b6661c754bca8cb92a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2530-2027
0009-0002-2249-5115
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/ojits.2024.3430843
PQID 3087400564
PQPubID 5075787
PageCount 9
ParticipantIDs crossref_primary_10_1109_OJITS_2024_3430843
doaj_primary_oai_doaj_org_article_ebb7a354e81d4457b12058cd2edd4f01
proquest_journals_3087400564
ieee_primary_10605904
unpaywall_primary_10_1109_ojits_2024_3430843
crossref_citationtrail_10_1109_OJITS_2024_3430843
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240000
2024-00-00
20240101
2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 20240000
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE open journal of intelligent transportation systems
PublicationTitleAbbrev OJITS
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
McMahan (ref27)
ref14
ref31
Saha (ref36) 2024
ref11
ref10
ref32
ref2
ref1
Rajbhandari (ref34) 2023
ref17
ref16
ref19
ref18
Rajbhandari (ref33) 2022
ref24
ref23
ref26
ref25
ref20
Vo (ref35) 2023
ref22
ref21
ref28
Majcherczyk (ref30) 2020
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref22
  doi: 10.1016/j.ress.2023.109787
– volume-title: Electric vehicle battery state of health (SOH) value chain map
  year: 2023
  ident: ref34
– ident: ref8
  doi: 10.1016/j.est.2020.102122
– ident: ref21
  doi: 10.1016/j.apenergy.2019.113813
– ident: ref15
  doi: 10.1109/ACCESS.2019.2920932
– ident: ref32
  doi: 10.1109/ojits.2021.3106863
– ident: ref28
  doi: 10.1561/9781680837896
– volume-title: Battery state of health (SOH) business white paper
  year: 2022
  ident: ref33
– start-page: 1273
  volume-title: Proc. Int. Conf. Artif. Intell. Stat.
  ident: ref27
  article-title: Communication-efficient learning of deep networks from decentralized data
– year: 2020
  ident: ref30
  article-title: Flow-FL: Data-driven federated learning for spatio-temporal predictions in multi-robot systems
  publication-title: arXiv:2010.08595
– volume-title: Battery Data Set, NASA AMES Prognostics Data Repository
  year: 2024
  ident: ref36
– ident: ref2
  doi: 10.1016/j.rser.2019.109334
– ident: ref1
  doi: 10.1109/ojits.2023.3311689
– ident: ref16
  doi: 10.1109/VPPC.2018.8604987
– ident: ref25
  doi: 10.1109/ojits.2021.3072220
– ident: ref23
  doi: 10.1016/j.jpowsour.2020.228069
– ident: ref10
  doi: 10.1016/j.rser.2019.109254
– ident: ref18
  doi: 10.1016/j.ijepes.2020.105883
– ident: ref4
  doi: 10.1016/j.est.2018.11.020
– ident: ref12
  doi: 10.1109/tvt.2018.2864688
– ident: ref7
  doi: 10.1016/j.jpowsour.2014.01.085
– ident: ref13
  doi: 10.1016/j.jpowsour.2018.12.001
– ident: ref17
  doi: 10.1016/j.energy.2023.129061
– ident: ref5
  doi: 10.1016/j.rser.2015.11.042
– ident: ref14
  doi: 10.1016/j.eswa.2011.03.063
– ident: ref6
  doi: 10.1016/j.jpowsour.2018.10.019
– ident: ref29
  doi: 10.1145/3298981
– ident: ref9
  doi: 10.1016/j.rser.2019.109405
– ident: ref24
  doi: 10.1016/j.jpowsour.2019.227118
– ident: ref31
  doi: 10.1098/rsta.2010.0138
– ident: ref3
  doi: 10.1109/access.2022.3221137
– ident: ref11
  doi: 10.1016/j.jpowsour.2015.01.129
– ident: ref26
  doi: 10.1109/ojits.2021.3112533
– ident: ref19
  doi: 10.1016/j.energy.2018.06.220
– volume-title: MOBI (mobility open blockchain initiative) consortium
  year: 2023
  ident: ref35
– ident: ref20
  doi: 10.1109/INTLEC.2004.1401519
SSID ssj0002511209
Score 2.3205752
Snippet Electric vehicles (EV) are gaining wide traction and popularity despite the operational range and charging time limitations. Therefore, to ensure the...
SourceID doaj
unpaywall
proquest
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 445
SubjectTerms Accuracy
Algorithms
Batteries
Connected vehicles
Customer satisfaction
Data models
Data-centric AI
Effectiveness
Electric vehicle charging
Electric vehicles
Ensemble learning
Error analysis
Estimation
Federated learning
Integrated circuit modeling
Machine learning
Machine learning algorithms
Meteorological data
Stakeholders
state of health (SoH)
Trip estimation
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl7aHirZU3UIrH7iBS9YeJ_ERql1RJOAAVNwsf21Llc0idqHi39fjeFdZVWov3KLEcUaemfiN7XlDyJ71SPkRVHRxUTIA7pmaTBwzE1NZcDIUFtc7zs7Lk2s4vZE3vVJfeCasowfuBu4wWFsZISFEYAUgKzvkhayd58F7yJlbRa16wRT-gxE480Its2QKdXhx-u3qMsaDHL4IEEUNYm0mSoT9ucLKGth88dDemaffpml68854i7zOgJEedYK-IRuhfUte9WgE35HpET2fPYaGjpEZIoJHT0ftPExtE68ygeoPdhznK087Ps0nmkAmm01Yl4dER9HVuyxGGmEsTedfXOop1cm5dfR7-JmO0G2T6_Ho6usJy2UUmIuz9YIprMOJsMMLD9w64UxdWh4M98LUNVZE4JZb3O_jpbQxnhm6SoKNzZxV3Ij3ZLOdteEDoS66uwKDRTVxx3aogpMCbCFqI6WpxIAMl0OqXeYYx1IXjU6xRqF0UoNGNeishgHZX71z1zFs_LP1MWpq1RLZsdONaDM624z-n80MyDbqufe5EnNwYUB2l4rX2ZXnGikTARlT4-ODlTH8Jers1-1ivibqx-cQdYe8xD67RZ9dsrm4fwifIgxa2M_J4v8AVxL_zg
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8ChvIpYKMgHxAW8ZP1I4mOLdlUqsRxoUW-WX4FCSKpuFlR-PR7bu9oFgbhZySRxNDOez4_5BqHnxgHlh5fBxVlJOKeOyKaxRDe6MtwKXxhY73g3L4_P-Mm5OM_J6jEXxnsfD5_5MTTjXr7r7RKWyoKHl5AryXfQTlWXKVlrvaACWJkWcpUYU8jX70_enn4IU0DKx4yzouZsK_hEjv5cVGULX95cdpf6-odu241QM7uD5qtOphMmX8fLwYztz9_4G__7L-6ivQw68WGyknvohu_uo9sbVIQPUH-I5_133-IZsEsEAOrwCzztFv6baUM707B-Ikch6jmcWDmvcYSqpG9IymbC0zBgpFxIHMAwjqdoLLxrGqvtXFj80X-OB_H20dlsevrmmORiDMSGmD8QCdU8Abw45jg1llldl4Z6TR3TdQ11FaihBnYNaSlMmBVNbCW4CWLWSKrZQ7Tb9Z1_hLANg4bkGkpzwr7vRHorGDcFq7UQumIjNFlpSdnMVA4FM1oVZyyFVFGzCjSrsmZH6OX6mcvE0_FP6SNQ_loSOLbjhaAolV1WeWMqzQT3AdJzLioTzEvU1lHvHG-KyQjtg3I3Ppf0OkIHK1tSeUBYKCBe5MC7Gm6_WtvXH13tv1wMi62uPv7LV56gWyCWVoMO0O5wtfRPAz4azLPoF78AVIcJuQ
  priority: 102
  providerName: IEEE
Title A Novel Federated & Ensembled Learning-Based Battery State-of-Health Estimation for Connected Electric Vehicles
URI https://ieeexplore.ieee.org/document/10605904
https://www.proquest.com/docview/3087400564
https://doi.org/10.1109/ojits.2024.3430843
https://doaj.org/article/ebb7a354e81d4457b12058cd2edd4f01
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2687-7813
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511209
  issn: 2687-7813
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2687-7813
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002511209
  issn: 2687-7813
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegOyAOMGCIolH5gLhASuKPfBw7lGqbtILEisbJ8lfGICQTTZm2A387fo5btYAQXKIoeXYc-9nv-eP9fgg9VwYgP2zhujhNI8aIiYqq0pGsZKaY5jZWsN5xMksP5-z4jJ8FmByIhdncv0_i4nX7-aIDVG3CxpTROGf0NtpJuct_gHbms3eTj8Ael7qekuUJXUXF_DHhluXxAP2BUWXLubyzbC7l9ZWs6w07M73fExYtPDwhHC_5Ml52aqxvfgFv_Ldf2EX3gruJJ71-PEC3bPMQ3d0AIXyE2gmetd9tjaeAK-FcT4Nf4LJZ2K-qdvcBgPU8OnD2zuAej_Maeyc1aquoj2PCpRsq-ihI7Nxg7M_PaMir9Dw7Fxp_sJ_8Ebw9NJ-Wp28Oo0DDEGln7buoAB5PcFsMNYwoTbXMU0WsJIbKPAdGBaKIgv1CknLl5kOJzjhTTkyrgkj6GA2atrFPENZuuCiYBFJO2PFNCqs5ZSqmueRcZnSIklUTCR0wyoEqoxZ-rhIX4u3x0el7AZUpQmUO0ct1msseoeOv0gfQ8mtJQNf2D1yLidBZhVUqk5Qz65x5xnimEhLzXBtijWFVnAzRHujNxudSiOFlQ7S_UiQRhoKFAMhFBoir7vWrtXL9VlSvJVtFffp_4vto0H1b2mfOR-rUyK8tuOvJj3LkgxpHobv8BNalDEM
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHEoPlEdRQwv4gLiA040f-zi2VaK0tOFAinqz_FooLLsV2VCVX4_H60QJCMTN2rXXXs3Y89me-QahV9oC5Ycr_BRnKeGcWlKUpSGqVJnmRrhEw3nH-SQdX_DTS3EZg9VDLIxzLjifuT4Uw12-bcwcjsr8DE8hVpLfRfcE51x04VrLIxVAyzQpFqExSXHw_vRk-sFvAinvM86SnLM18xNY-mNalTWEuTmvr9XtjaqqFWMz2kaTxTA7H5Ov_Xmr--bnbwyO__0fD9GDCDvxYacnj9AdVz9GWytkhE9Qc4gnzQ9X4RHwS3gIavFrPKxn7puufDkSsX4iR97uWdzxct7iAFZJU5IungkP_ZLRRUNiD4dx8KMx8K1hyLdzZfBH9zm44u2gi9FwejwmMR0DMd7qt6SAfJ4AXyyznGrDjMpTTZ2ilqk8h8wKVFMN94Y0FdrviwYmE1z7akYXVLGnaKNuareLsPHLRsEVJOeEm99B4YxgXCcsV0KojPXQYCElaSJXOaTMqGTYsySFDJKVIFkZJdtDb5Ztrjumjn_WPgLhL2sCy3Z44AUl46SVTutMMcGdB_Ve3TLt1UvkxlJnLS-TQQ_tgHBXuuvk2kP7C12ScUmYSaBe5MC86l-_XerXH0Ntvly1s7WhPvtLLy_R5nh6fibPTibv9tB9aNKdDe2jjfb73D33aKnVL8Ic-QVejA0G
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge0AcWh5FXVSQD4gLeEn8yOO4RbsqlViQ6KJysvwKtISk6mapyq_H43hXu4AQ3KJk7Dj2jGcce74PoWfaAuSHK72Js4xwTi0pq8oQValccyNcouF_x9tZdjznJ2fiLMLkQC7M5v59mpSv2ovzDlC1KR8xzpKCs9toJxO-_gHamc_ejz8Be1zmLSUvUrbKivljwS3PEwD6I6PKVnB5Z9lcqptrVdcbfma61xMWLQI8IRwv-TpadnpkfvwC3vhvn3AP7cZwE497_biPbrnmAbq7AUL4ELVjPGu_uxpPAVfCh54WP8eTZuG-6dpfRwDWz-TI-zuLezzOGxyCVNJWpM9jwhM_VfRZkNiHwTicnzFQ1yTw7Jwb_NF9CUfw9tF8Ojl9fUwiDQMx3tt3pAQeTwhbLLOcasOMKjJNnaKWqaIARgWqqYb9QpoJ7ddDqckF117M6JIq9ggNmrZxBwgbP12UXAEpJ-z4pqUzgnGdsEIJoXI2ROlqiKSJGOVAlVHLsFZJSvnu5M3pBwmdKWNnDtGLdZnLHqHjr9JHMPJrSUDXDjf8iMlorNJpnSsmuPPBPOci1ylNRGEsddbyKkmHaB_0ZuN1GeTw8iE6XCmSjFPBQgLkIgfEVf_45Vq5fmtq0JKtpj7-P_FDNOiulu6Jj5E6_TQax08dUwkc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Federated+%26+Ensembled+Learning-Based+Battery+State-of-Health+Estimation+for+Connected+Electric+Vehicles&rft.jtitle=IEEE+open+journal+of+intelligent+transportation+systems&rft.au=Abbaraju%2C+Praveen&rft.au=Kundu%2C+Subrata+Kumar&rft.date=2024&rft.issn=2687-7813&rft.eissn=2687-7813&rft.volume=5&rft.spage=445&rft.epage=453&rft_id=info:doi/10.1109%2FOJITS.2024.3430843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJITS_2024_3430843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2687-7813&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2687-7813&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2687-7813&client=summon