A Novel Federated & Ensembled Learning-Based Battery State-of-Health Estimation for Connected Electric Vehicles
Electric vehicles (EV) are gaining wide traction and popularity despite the operational range and charging time limitations. Therefore, to ensure the reliability of EVs for realizing improved customer satisfaction, it is necessary to monitor and track its battery condition. This paper introduces a n...
Saved in:
| Published in | IEEE open journal of intelligent transportation systems Vol. 5; pp. 445 - 453 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2687-7813 2687-7813 |
| DOI | 10.1109/OJITS.2024.3430843 |
Cover
| Abstract | Electric vehicles (EV) are gaining wide traction and popularity despite the operational range and charging time limitations. Therefore, to ensure the reliability of EVs for realizing improved customer satisfaction, it is necessary to monitor and track its battery condition. This paper introduces a novel federated & ensembled learning (FEL) algorithm for precise estimation of battery State of Health (SoH). FEL algorithm leverages real-world data from diverse stakeholders and geographical factors like traffic and weather data. A Long-Short Term Memory (LSTM) model has been implemented as a base-model for SoH estimation, continuously updating for each trip as an edge scenario using data-centric federated learning strategy. A stacked ensemble learning algorithm is employed to combine data from heterogenous data sources for retraining the base-model. The effectiveness of the proposed FEL algorithm has been evaluated using NASA battery dataset, showing significant improvement in SoH estimations with a mean average error of 3.24% after 30 iterations. Comparative analysis, including LSTM model with and without ensembled stakeholder data, reveals up to 75% accuracy improvement. The proposed model-agnostic FEL algorithm shows its effectiveness in precise SoH estimation through efficient data sharing among stakeholders and could bring significant benefits for realizing data-centric intelligent solutions for connected EVs. |
|---|---|
| AbstractList | Electric vehicles (EV) are gaining wide traction and popularity despite the operational range and charging time limitations. Therefore, to ensure the reliability of EVs for realizing improved customer satisfaction, it is necessary to monitor and track its battery condition. This paper introduces a novel federated & ensembled learning (FEL) algorithm for precise estimation of battery State of Health (SoH). FEL algorithm leverages real-world data from diverse stakeholders and geographical factors like traffic and weather data. A Long-Short Term Memory (LSTM) model has been implemented as a base-model for SoH estimation, continuously updating for each trip as an edge scenario using data-centric federated learning strategy. A stacked ensemble learning algorithm is employed to combine data from heterogenous data sources for retraining the base-model. The effectiveness of the proposed FEL algorithm has been evaluated using NASA battery dataset, showing significant improvement in SoH estimations with a mean average error of 3.24% after 30 iterations. Comparative analysis, including LSTM model with and without ensembled stakeholder data, reveals up to 75% accuracy improvement. The proposed model-agnostic FEL algorithm shows its effectiveness in precise SoH estimation through efficient data sharing among stakeholders and could bring significant benefits for realizing data-centric intelligent solutions for connected EVs. |
| Author | Abbaraju, Praveen Kundu, Subrata Kumar |
| Author_xml | – sequence: 1 givenname: Praveen orcidid: 0000-0002-2530-2027 surname: Abbaraju fullname: Abbaraju, Praveen email: praveen.abbaraju.oj@hitachiastemo.com organization: Advanced Technology Development Department, Hitachi Astemo Americas, Inc., Farmington Hills, MI, USA – sequence: 2 givenname: Subrata Kumar orcidid: 0009-0002-2249-5115 surname: Kundu fullname: Kundu, Subrata Kumar organization: Advanced Technology Development Department, Hitachi Astemo Americas, Inc., Farmington Hills, MI, USA |
| BookMark | eNptUU1rGzEQXUoKTdP8gdLDQqG3dfS92mNinMbBNIekvQp9zCYym5UryS3-95W9IQTT04zEe2_ezPtYnYxhhKr6jNEMY9Rd3N0uH-5nBBE2o4wiyei76pQI2TatxPTkTf-hOk9pjRAiHGOCutMqXNY_wh8Y6mtwEHUGV3-rF2OCZzOUfgU6jn58bK50Ks8rnTPEXX2fC7IJfXMDeshP9SJl_6yzD2Pdh1jPwziC3WsthlKjt_UvePJ2gPSpet_rIcH5Sz2rfl4vHuY3zeru-3J-uWosQyI3HSJI0q4VjjpGjKVWS2EIaOKolpLvVzDEdJx1RHAjhMC25cwUmDUd0fSsWk66Lui12sRiL-5U0F4dPkJ8VDrmvSUFxrSacgYSO8Z4a8pluLSOgHOsR7ho0UlrO2707q8ehldBjNQ-AhXWPie1j0C9RFBYXyfWJobfW0hZrcM2jmVpVQAtQ4gLVlByQtkYUorQK-vz4ZI5aj-8DjhkfDyAHFGPXf2X9GUieQB4QxCId4jRfw9escg |
| CODEN | IOJICL |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3486989 crossref_primary_10_1016_j_electacta_2024_145454 crossref_primary_10_1109_ACCESS_2025_3530351 |
| Cites_doi | 10.1016/j.ress.2023.109787 10.1016/j.est.2020.102122 10.1016/j.apenergy.2019.113813 10.1109/ACCESS.2019.2920932 10.1109/ojits.2021.3106863 10.1561/9781680837896 10.1016/j.rser.2019.109334 10.1109/ojits.2023.3311689 10.1109/VPPC.2018.8604987 10.1109/ojits.2021.3072220 10.1016/j.jpowsour.2020.228069 10.1016/j.rser.2019.109254 10.1016/j.ijepes.2020.105883 10.1016/j.est.2018.11.020 10.1109/tvt.2018.2864688 10.1016/j.jpowsour.2014.01.085 10.1016/j.jpowsour.2018.12.001 10.1016/j.energy.2023.129061 10.1016/j.rser.2015.11.042 10.1016/j.eswa.2011.03.063 10.1016/j.jpowsour.2018.10.019 10.1145/3298981 10.1016/j.rser.2019.109405 10.1016/j.jpowsour.2019.227118 10.1098/rsta.2010.0138 10.1109/access.2022.3221137 10.1016/j.jpowsour.2015.01.129 10.1109/ojits.2021.3112533 10.1016/j.energy.2018.06.220 10.1109/INTLEC.2004.1401519 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1109/OJITS.2024.3430843 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2687-7813 |
| EndPage | 453 |
| ExternalDocumentID | oai_doaj_org_article_ebb7a354e81d4457b12058cd2edd4f01 10.1109/ojits.2024.3430843 10_1109_OJITS_2024_3430843 10605904 |
| Genre | orig-research |
| GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c406t-902083976d3d42bc3ca86b2ea2d3a8850002b2b9549265b6661c754bca8cb92a3 |
| IEDL.DBID | UNPAY |
| ISSN | 2687-7813 |
| IngestDate | Fri Oct 03 12:37:52 EDT 2025 Sun Sep 07 10:58:02 EDT 2025 Mon Jun 30 09:45:30 EDT 2025 Thu Apr 24 23:05:51 EDT 2025 Tue Jul 01 02:37:45 EDT 2025 Wed Aug 27 01:55:48 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-902083976d3d42bc3ca86b2ea2d3a8850002b2b9549265b6661c754bca8cb92a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2530-2027 0009-0002-2249-5115 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1109/ojits.2024.3430843 |
| PQID | 3087400564 |
| PQPubID | 5075787 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1109_OJITS_2024_3430843 doaj_primary_oai_doaj_org_article_ebb7a354e81d4457b12058cd2edd4f01 proquest_journals_3087400564 ieee_primary_10605904 unpaywall_primary_10_1109_ojits_2024_3430843 crossref_citationtrail_10_1109_OJITS_2024_3430843 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240000 2024-00-00 20240101 2024-01-01 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 20240000 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE open journal of intelligent transportation systems |
| PublicationTitleAbbrev | OJITS |
| PublicationYear | 2024 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 McMahan (ref27) ref14 ref31 Saha (ref36) 2024 ref11 ref10 ref32 ref2 ref1 Rajbhandari (ref34) 2023 ref17 ref16 ref19 ref18 Rajbhandari (ref33) 2022 ref24 ref23 ref26 ref25 ref20 Vo (ref35) 2023 ref22 ref21 ref28 Majcherczyk (ref30) 2020 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref22 doi: 10.1016/j.ress.2023.109787 – volume-title: Electric vehicle battery state of health (SOH) value chain map year: 2023 ident: ref34 – ident: ref8 doi: 10.1016/j.est.2020.102122 – ident: ref21 doi: 10.1016/j.apenergy.2019.113813 – ident: ref15 doi: 10.1109/ACCESS.2019.2920932 – ident: ref32 doi: 10.1109/ojits.2021.3106863 – ident: ref28 doi: 10.1561/9781680837896 – volume-title: Battery state of health (SOH) business white paper year: 2022 ident: ref33 – start-page: 1273 volume-title: Proc. Int. Conf. Artif. Intell. Stat. ident: ref27 article-title: Communication-efficient learning of deep networks from decentralized data – year: 2020 ident: ref30 article-title: Flow-FL: Data-driven federated learning for spatio-temporal predictions in multi-robot systems publication-title: arXiv:2010.08595 – volume-title: Battery Data Set, NASA AMES Prognostics Data Repository year: 2024 ident: ref36 – ident: ref2 doi: 10.1016/j.rser.2019.109334 – ident: ref1 doi: 10.1109/ojits.2023.3311689 – ident: ref16 doi: 10.1109/VPPC.2018.8604987 – ident: ref25 doi: 10.1109/ojits.2021.3072220 – ident: ref23 doi: 10.1016/j.jpowsour.2020.228069 – ident: ref10 doi: 10.1016/j.rser.2019.109254 – ident: ref18 doi: 10.1016/j.ijepes.2020.105883 – ident: ref4 doi: 10.1016/j.est.2018.11.020 – ident: ref12 doi: 10.1109/tvt.2018.2864688 – ident: ref7 doi: 10.1016/j.jpowsour.2014.01.085 – ident: ref13 doi: 10.1016/j.jpowsour.2018.12.001 – ident: ref17 doi: 10.1016/j.energy.2023.129061 – ident: ref5 doi: 10.1016/j.rser.2015.11.042 – ident: ref14 doi: 10.1016/j.eswa.2011.03.063 – ident: ref6 doi: 10.1016/j.jpowsour.2018.10.019 – ident: ref29 doi: 10.1145/3298981 – ident: ref9 doi: 10.1016/j.rser.2019.109405 – ident: ref24 doi: 10.1016/j.jpowsour.2019.227118 – ident: ref31 doi: 10.1098/rsta.2010.0138 – ident: ref3 doi: 10.1109/access.2022.3221137 – ident: ref11 doi: 10.1016/j.jpowsour.2015.01.129 – ident: ref26 doi: 10.1109/ojits.2021.3112533 – ident: ref19 doi: 10.1016/j.energy.2018.06.220 – volume-title: MOBI (mobility open blockchain initiative) consortium year: 2023 ident: ref35 – ident: ref20 doi: 10.1109/INTLEC.2004.1401519 |
| SSID | ssj0002511209 |
| Score | 2.3205752 |
| Snippet | Electric vehicles (EV) are gaining wide traction and popularity despite the operational range and charging time limitations. Therefore, to ensure the... |
| SourceID | doaj unpaywall proquest crossref ieee |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 445 |
| SubjectTerms | Accuracy Algorithms Batteries Connected vehicles Customer satisfaction Data models Data-centric AI Effectiveness Electric vehicle charging Electric vehicles Ensemble learning Error analysis Estimation Federated learning Integrated circuit modeling Machine learning Machine learning algorithms Meteorological data Stakeholders state of health (SoH) Trip estimation |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUQl7aHirZU3UIrH7iBS9YeJ_ERql1RJOAAVNwsf21Llc0idqHi39fjeFdZVWov3KLEcUaemfiN7XlDyJ71SPkRVHRxUTIA7pmaTBwzE1NZcDIUFtc7zs7Lk2s4vZE3vVJfeCasowfuBu4wWFsZISFEYAUgKzvkhayd58F7yJlbRa16wRT-gxE480Its2QKdXhx-u3qMsaDHL4IEEUNYm0mSoT9ucLKGth88dDemaffpml68854i7zOgJEedYK-IRuhfUte9WgE35HpET2fPYaGjpEZIoJHT0ftPExtE68ygeoPdhznK087Ps0nmkAmm01Yl4dER9HVuyxGGmEsTedfXOop1cm5dfR7-JmO0G2T6_Ho6usJy2UUmIuz9YIprMOJsMMLD9w64UxdWh4M98LUNVZE4JZb3O_jpbQxnhm6SoKNzZxV3Ij3ZLOdteEDoS66uwKDRTVxx3aogpMCbCFqI6WpxIAMl0OqXeYYx1IXjU6xRqF0UoNGNeishgHZX71z1zFs_LP1MWpq1RLZsdONaDM624z-n80MyDbqufe5EnNwYUB2l4rX2ZXnGikTARlT4-ODlTH8Jers1-1ivibqx-cQdYe8xD67RZ9dsrm4fwifIgxa2M_J4v8AVxL_zg priority: 102 providerName: Directory of Open Access Journals – databaseName: IEEE Electronic Library (IEL) dbid: RIE link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoL8ChvIpYKMgHxAW8ZP1I4mOLdlUqsRxoUW-WX4FCSKpuFlR-PR7bu9oFgbhZySRxNDOez4_5BqHnxgHlh5fBxVlJOKeOyKaxRDe6MtwKXxhY73g3L4_P-Mm5OM_J6jEXxnsfD5_5MTTjXr7r7RKWyoKHl5AryXfQTlWXKVlrvaACWJkWcpUYU8jX70_enn4IU0DKx4yzouZsK_hEjv5cVGULX95cdpf6-odu241QM7uD5qtOphMmX8fLwYztz9_4G__7L-6ivQw68WGyknvohu_uo9sbVIQPUH-I5_133-IZsEsEAOrwCzztFv6baUM707B-Ikch6jmcWDmvcYSqpG9IymbC0zBgpFxIHMAwjqdoLLxrGqvtXFj80X-OB_H20dlsevrmmORiDMSGmD8QCdU8Abw45jg1llldl4Z6TR3TdQ11FaihBnYNaSlMmBVNbCW4CWLWSKrZQ7Tb9Z1_hLANg4bkGkpzwr7vRHorGDcFq7UQumIjNFlpSdnMVA4FM1oVZyyFVFGzCjSrsmZH6OX6mcvE0_FP6SNQ_loSOLbjhaAolV1WeWMqzQT3AdJzLioTzEvU1lHvHG-KyQjtg3I3Ppf0OkIHK1tSeUBYKCBe5MC7Gm6_WtvXH13tv1wMi62uPv7LV56gWyCWVoMO0O5wtfRPAz4azLPoF78AVIcJuQ priority: 102 providerName: IEEE |
| Title | A Novel Federated & Ensembled Learning-Based Battery State-of-Health Estimation for Connected Electric Vehicles |
| URI | https://ieeexplore.ieee.org/document/10605904 https://www.proquest.com/docview/3087400564 https://doi.org/10.1109/ojits.2024.3430843 https://doaj.org/article/ebb7a354e81d4457b12058cd2edd4f01 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2687-7813 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511209 issn: 2687-7813 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2687-7813 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002511209 issn: 2687-7813 databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFLegOyAOMGCIolH5gLhASuKPfBw7lGqbtILEisbJ8lfGICQTTZm2A387fo5btYAQXKIoeXYc-9nv-eP9fgg9VwYgP2zhujhNI8aIiYqq0pGsZKaY5jZWsN5xMksP5-z4jJ8FmByIhdncv0_i4nX7-aIDVG3CxpTROGf0NtpJuct_gHbms3eTj8Ael7qekuUJXUXF_DHhluXxAP2BUWXLubyzbC7l9ZWs6w07M73fExYtPDwhHC_5Ml52aqxvfgFv_Ldf2EX3gruJJ71-PEC3bPMQ3d0AIXyE2gmetd9tjaeAK-FcT4Nf4LJZ2K-qdvcBgPU8OnD2zuAej_Maeyc1aquoj2PCpRsq-ihI7Nxg7M_PaMir9Dw7Fxp_sJ_8Ebw9NJ-Wp28Oo0DDEGln7buoAB5PcFsMNYwoTbXMU0WsJIbKPAdGBaKIgv1CknLl5kOJzjhTTkyrgkj6GA2atrFPENZuuCiYBFJO2PFNCqs5ZSqmueRcZnSIklUTCR0wyoEqoxZ-rhIX4u3x0el7AZUpQmUO0ct1msseoeOv0gfQ8mtJQNf2D1yLidBZhVUqk5Qz65x5xnimEhLzXBtijWFVnAzRHujNxudSiOFlQ7S_UiQRhoKFAMhFBoir7vWrtXL9VlSvJVtFffp_4vto0H1b2mfOR-rUyK8tuOvJj3LkgxpHobv8BNalDEM |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LbxMxELagHEoPlEdRQwv4gLiA040f-zi2VaK0tOFAinqz_FooLLsV2VCVX4_H60QJCMTN2rXXXs3Y89me-QahV9oC5Ycr_BRnKeGcWlKUpSGqVJnmRrhEw3nH-SQdX_DTS3EZg9VDLIxzLjifuT4Uw12-bcwcjsr8DE8hVpLfRfcE51x04VrLIxVAyzQpFqExSXHw_vRk-sFvAinvM86SnLM18xNY-mNalTWEuTmvr9XtjaqqFWMz2kaTxTA7H5Ov_Xmr--bnbwyO__0fD9GDCDvxYacnj9AdVz9GWytkhE9Qc4gnzQ9X4RHwS3gIavFrPKxn7puufDkSsX4iR97uWdzxct7iAFZJU5IungkP_ZLRRUNiD4dx8KMx8K1hyLdzZfBH9zm44u2gi9FwejwmMR0DMd7qt6SAfJ4AXyyznGrDjMpTTZ2ilqk8h8wKVFMN94Y0FdrviwYmE1z7akYXVLGnaKNuareLsPHLRsEVJOeEm99B4YxgXCcsV0KojPXQYCElaSJXOaTMqGTYsySFDJKVIFkZJdtDb5Ztrjumjn_WPgLhL2sCy3Z44AUl46SVTutMMcGdB_Ve3TLt1UvkxlJnLS-TQQ_tgHBXuuvk2kP7C12ScUmYSaBe5MC86l-_XerXH0Ntvly1s7WhPvtLLy_R5nh6fibPTibv9tB9aNKdDe2jjfb73D33aKnVL8Ic-QVejA0G |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZge0AcWh5FXVSQD4gLeEn8yOO4RbsqlViQ6KJysvwKtISk6mapyq_H43hXu4AQ3KJk7Dj2jGcce74PoWfaAuSHK72Js4xwTi0pq8oQValccyNcouF_x9tZdjznJ2fiLMLkQC7M5v59mpSv2ovzDlC1KR8xzpKCs9toJxO-_gHamc_ejz8Be1zmLSUvUrbKivljwS3PEwD6I6PKVnB5Z9lcqptrVdcbfma61xMWLQI8IRwv-TpadnpkfvwC3vhvn3AP7cZwE497_biPbrnmAbq7AUL4ELVjPGu_uxpPAVfCh54WP8eTZuG-6dpfRwDWz-TI-zuLezzOGxyCVNJWpM9jwhM_VfRZkNiHwTicnzFQ1yTw7Jwb_NF9CUfw9tF8Ojl9fUwiDQMx3tt3pAQeTwhbLLOcasOMKjJNnaKWqaIARgWqqYb9QpoJ7ddDqckF117M6JIq9ggNmrZxBwgbP12UXAEpJ-z4pqUzgnGdsEIJoXI2ROlqiKSJGOVAlVHLsFZJSvnu5M3pBwmdKWNnDtGLdZnLHqHjr9JHMPJrSUDXDjf8iMlorNJpnSsmuPPBPOci1ylNRGEsddbyKkmHaB_0ZuN1GeTw8iE6XCmSjFPBQgLkIgfEVf_45Vq5fmtq0JKtpj7-P_FDNOiulu6Jj5E6_TQax08dUwkc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Federated+%26+Ensembled+Learning-Based+Battery+State-of-Health+Estimation+for+Connected+Electric+Vehicles&rft.jtitle=IEEE+open+journal+of+intelligent+transportation+systems&rft.au=Abbaraju%2C+Praveen&rft.au=Kundu%2C+Subrata+Kumar&rft.date=2024&rft.issn=2687-7813&rft.eissn=2687-7813&rft.volume=5&rft.spage=445&rft.epage=453&rft_id=info:doi/10.1109%2FOJITS.2024.3430843&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJITS_2024_3430843 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2687-7813&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2687-7813&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2687-7813&client=summon |