Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites
In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at room temperature. Fabrication of a novel nanocomposite film based on tin oxide (SnO2) nanosheets with polyaniline (PANI) doped with palladium...
Saved in:
Published in | Micro and Nano Engineering Vol. 12; p. 100086 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.08.2021
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 2590-0072 2590-0072 |
DOI | 10.1016/j.mne.2021.100086 |
Cover
Abstract | In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at room temperature. Fabrication of a novel nanocomposite film based on tin oxide (SnO2) nanosheets with polyaniline (PANI) doped with palladium (Pd) is performed using the hydrothermal synthesis technique. Functional aspects of the fabricated films are investigated with XRD, Raman spectra, FESEM, and FTIR spectral analysis. Interactions of the H2 gas molecules with SnO2, SnO2-Pd, PANI, PANI-SnO2, PANI-SnO2-Pd nanocomposite are also theoretically studied. Using first-principles density functional theory, the effects of gas adsorption on the electronic and transport properties of the sensor are examined. The computations show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and, the sensitivity of the PANI to the H2gas molecules is considerably improved after hybridisation with SnO2.Gas sensing characteristics of fabricated films of SnO2, PANI and composite of SnO2/PANI/Pd are also experimentally investigated at room temperature with varying concentration level ranging from 50 to 400 ppm. The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor (the ratio of response percentage to total cycle time) is evaluated highest in Pd doped PANI-SnO2 film. Our results reveal the promising future of SnO2, PANI and Pd associated hybrid films in the development of ultra-high sensitive gas sensors.
[Display omitted]
•We report unique hybrid composite film fabricated with the novel nanocomposite film based on tin oxide (SnO2) nanosheets, polyaniline (PANI) doped with palladium (Pd) for room temperature hydrogen sensor.•Results obtained from the first-principles density functional theory show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and the sensitivity of the PANI to the H2 gas molecules is considerably improved after hybridisation with SnO2.•The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor is evaluated as highest in Pd doped PANI-SnO2 film. |
---|---|
AbstractList | In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at room temperature. Fabrication of a novel nanocomposite film based on tin oxide (SnO2) nanosheets with polyaniline (PANI) doped with palladium (Pd) is performed using the hydrothermal synthesis technique. Functional aspects of the fabricated films are investigated with XRD, Raman spectra, FESEM, and FTIR spectral analysis. Interactions of the H2 gas molecules with SnO2, SnO2-Pd, PANI, PANI-SnO2, PANI-SnO2-Pd nanocomposite are also theoretically studied. Using first-principles density functional theory, the effects of gas adsorption on the electronic and transport properties of the sensor are examined. The computations show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and, the sensitivity of the PANI to the H2gas molecules is considerably improved after hybridisation with SnO2.Gas sensing characteristics of fabricated films of SnO2, PANI and composite of SnO2/PANI/Pd are also experimentally investigated at room temperature with varying concentration level ranging from 50 to 400 ppm. The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor (the ratio of response percentage to total cycle time) is evaluated highest in Pd doped PANI-SnO2 film. Our results reveal the promising future of SnO2, PANI and Pd associated hybrid films in the development of ultra-high sensitive gas sensors.
[Display omitted]
•We report unique hybrid composite film fabricated with the novel nanocomposite film based on tin oxide (SnO2) nanosheets, polyaniline (PANI) doped with palladium (Pd) for room temperature hydrogen sensor.•Results obtained from the first-principles density functional theory show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and the sensitivity of the PANI to the H2 gas molecules is considerably improved after hybridisation with SnO2.•The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor is evaluated as highest in Pd doped PANI-SnO2 film. In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at room temperature. Fabrication of a novel nanocomposite film based on tin oxide (SnO2) nanosheets with polyaniline (PANI) doped with palladium (Pd) is performed using the hydrothermal synthesis technique. Functional aspects of the fabricated films are investigated with XRD, Raman spectra, FESEM, and FTIR spectral analysis. Interactions of the H2 gas molecules with SnO2, SnO2-Pd, PANI, PANI-SnO2, PANI-SnO2-Pd nanocomposite are also theoretically studied. Using first-principles density functional theory, the effects of gas adsorption on the electronic and transport properties of the sensor are examined. The computations show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and, the sensitivity of the PANI to the H2gas molecules is considerably improved after hybridisation with SnO2.Gas sensing characteristics of fabricated films of SnO2, PANI and composite of SnO2/PANI/Pd are also experimentally investigated at room temperature with varying concentration level ranging from 50 to 400 ppm. The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor (the ratio of response percentage to total cycle time) is evaluated highest in Pd doped PANI-SnO2 film. Our results reveal the promising future of SnO2, PANI and Pd associated hybrid films in the development of ultra-high sensitive gas sensors. |
ArticleNumber | 100086 |
Author | Pippara, Rohit Kumar Chauhan, Pankaj Singh Kishnani, Vinay Yadav, Anshul Gupta, Ankur |
Author_xml | – sequence: 1 givenname: Rohit Kumar surname: Pippara fullname: Pippara, Rohit Kumar organization: School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India – sequence: 2 givenname: Pankaj Singh surname: Chauhan fullname: Chauhan, Pankaj Singh organization: Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India – sequence: 3 givenname: Anshul surname: Yadav fullname: Yadav, Anshul organization: Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India – sequence: 4 givenname: Vinay surname: Kishnani fullname: Kishnani, Vinay organization: Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342037, India – sequence: 5 givenname: Ankur surname: Gupta fullname: Gupta, Ankur email: ankurgupta@iitj.ac.in organization: Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342037, India |
BookMark | eNp9kMtKAzEUhoNU8NYHcDcv0DbJZJIMrkS8FAoVL-uQSc60KTNJSaLSt3e0CuKiq3PhfD-H7wyNfPCA0CXBU4IJn22mvYcpxZQMM8aSH6FTWtV4grGgoz_9CRqntBlOqKy4ZOIUzZ9C6IsM_Raizm8RivXOxrACXyTwyflV8eHyutiGbqe965yH2bNf0tmjLbz2wYR-G5LLkC7Qcau7BOOfeo5e725fbh4mi-X9_OZ6MTEM8zyRxlprmOSsNZY2rcCYlbJpALcGGlobyWgjRV1TWnFWWsGGphKNaXSFSanLczTf59qgN2obXa_jTgXt1PcixJXSMTvTgeK6LW0lBKnrmhnOpeRAS1tiCW1LKjxkiX2WiSGlCK0yLuvsgs9Ru04RrL4Eq40aBKsvwWoveCDJP_L3k0PM1Z6BQc-7g6iSceANWBfB5OF_d4D-BPYBlO4 |
CitedBy_id | crossref_primary_10_1016_j_diamond_2024_111156 crossref_primary_10_1016_j_mssp_2024_109209 crossref_primary_10_1364_OE_504859 crossref_primary_10_1007_s10853_022_07319_0 crossref_primary_10_1016_j_sintl_2023_100240 crossref_primary_10_1002_slct_202302014 crossref_primary_10_1016_j_ijhydene_2021_11_101 crossref_primary_10_1080_25740881_2023_2301290 crossref_primary_10_1016_j_ijhydene_2022_12_053 crossref_primary_10_1016_j_ijhydene_2024_01_001 crossref_primary_10_1007_s10853_024_09562_z crossref_primary_10_1016_j_jallcom_2024_175820 crossref_primary_10_1016_j_ijleo_2023_170604 crossref_primary_10_1016_j_chemphys_2022_111629 crossref_primary_10_1002_app_55426 crossref_primary_10_1007_s11664_022_09990_0 crossref_primary_10_1038_s41598_023_29312_6 crossref_primary_10_1016_j_comptc_2022_113676 crossref_primary_10_1016_j_colsurfa_2022_128795 crossref_primary_10_1021_acsomega_3c06533 crossref_primary_10_1016_j_surfin_2022_102560 crossref_primary_10_1080_00194506_2024_2334468 crossref_primary_10_1007_s12633_022_01987_y crossref_primary_10_1016_j_ijhydene_2024_07_253 crossref_primary_10_1016_j_nxnano_2024_100057 crossref_primary_10_1109_JSEN_2023_3307797 crossref_primary_10_1002_aelm_202201047 crossref_primary_10_1016_j_sna_2023_114472 crossref_primary_10_1007_s13369_024_09416_5 crossref_primary_10_1016_j_apsusc_2023_156381 crossref_primary_10_1016_j_colsurfa_2021_127943 crossref_primary_10_1016_j_mtcomm_2023_106308 crossref_primary_10_1007_s11696_021_01948_6 crossref_primary_10_1166_mex_2022_2121 crossref_primary_10_3390_ma15228012 crossref_primary_10_1007_s11164_025_05524_5 crossref_primary_10_1007_s12633_022_01899_x crossref_primary_10_1016_j_chemosphere_2022_133772 crossref_primary_10_1039_D4MA00813H crossref_primary_10_5650_jos_ess21283 crossref_primary_10_1016_j_snb_2022_131579 crossref_primary_10_1080_25740881_2022_2129387 crossref_primary_10_1016_j_yofte_2023_103390 crossref_primary_10_1016_j_apsusc_2024_160693 crossref_primary_10_1016_j_matpr_2023_11_087 crossref_primary_10_2139_ssrn_4064417 crossref_primary_10_1016_j_cej_2024_154999 crossref_primary_10_1039_D4TA00055B |
Cites_doi | 10.1039/f19868201117 10.1016/j.matlet.2009.06.060 10.1063/1.4810215 10.1109/JSEN.2018.2811461 10.1039/c3ra45316b 10.1007/s00289-019-02915-8 10.1016/j.jallcom.2019.152086 10.1016/j.matchemphys.2008.11.005 10.1016/j.mspro.2015.06.040 10.1016/j.materresbull.2017.01.032 10.5185/amp.2017/114 10.1007/s10854-016-4304-0 10.1016/j.ijhydene.2011.01.141 10.1149/1945-7111/aba00d 10.1021/jp103134u 10.1016/j.snb.2009.02.051 10.1016/j.matlet.2018.01.056 10.1016/j.ijhydene.2010.08.026 10.3390/nano8020112 10.1149/1945-7111/abc4be 10.1002/slct.201702698 10.5772/63987 10.1016/j.vibspec.2004.05.006 10.1007/s11665-015-1637-4 10.1016/j.ijhydene.2019.05.180 10.1039/C6RA02334G 10.1016/j.sintl.2020.100072 |
ContentType | Journal Article |
Copyright | 2021 The Author(s) |
Copyright_xml | – notice: 2021 The Author(s) |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.mne.2021.100086 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2590-0072 |
ExternalDocumentID | oai_doaj_org_article_6af3d57719994c66886e23d308eff150 10_1016_j_mne_2021_100086 S2590007221000071 |
GroupedDBID | 0SF 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ M41 M~E NCXOZ OK1 ROL SSZ 0R~ AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKYEP APXCP CITATION |
ID | FETCH-LOGICAL-c406t-8cdddc4864fcd2bf700438bbe0fceb29c842b8799225643d7422557bcba5013a3 |
IEDL.DBID | DOA |
ISSN | 2590-0072 |
IngestDate | Wed Aug 27 01:22:16 EDT 2025 Tue Jul 01 00:35:31 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Tue Jul 25 21:00:44 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | PANI SnO2 Hydrogen sensor Gas sensor DFT |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-8cdddc4864fcd2bf700438bbe0fceb29c842b8799225643d7422557bcba5013a3 |
OpenAccessLink | https://doaj.org/article/6af3d57719994c66886e23d308eff150 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6af3d57719994c66886e23d308eff150 crossref_citationtrail_10_1016_j_mne_2021_100086 crossref_primary_10_1016_j_mne_2021_100086 elsevier_sciencedirect_doi_10_1016_j_mne_2021_100086 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | August 2021 2021-08-00 2021-08-01 |
PublicationDateYYYYMMDD | 2021-08-01 |
PublicationDate_xml | – month: 08 year: 2021 text: August 2021 |
PublicationDecade | 2020 |
PublicationTitle | Micro and Nano Engineering |
PublicationYear | 2021 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Sonwane, Maity, Kondawar (bb0160) 2019; 15 Gupta, Parida, Pal (bb0030) 2019 Nasresfahani, Sheikhi, Tohidi, Zarifkar (bb0085) 2017; 89 Mondal, Balasubramaniam, Gupta, Lahcen, Kwiatkowski (bb0010) 2019 Gupta, Srivastava, Mathai, Gangopadhyay, Gangopadhyay, Bhattacharya (bb0005) 2014; 12 Choudhary, Kumar, Pawar, Anupama, Bose, Sahoo (bb0070) Feb. 2018; 3 Kondawar, More, Sharma, Dongre (bb0100) 2017; 4 Kroutil, Laposa, Voves, Davydova, Nahlik, Kulha, Husak (bb0090) May 2018; 18 Sadek, Trinchi, Wlodarski, Kalantar-zadeh, Galatsis, Baker, Kaner (bb0155) 2005; 2005 Wang, Fan, Yu, Wang (bb0110) Sep. 2015; 24 Chauhan, Bhattacharya (bb0105) 2018; 217 Srivastava, Kumar, Singh, Singh, Vijay (bb0170) May 2011; 36 Gupta, Pandey, Nayak, Maity, Majumder, Bhattacharya (bb0040) 2014; 4 Chu, Young, Ji, Chu, Lam, Hsiao, Tang, Kuo (bb0060) Jul. 2020; 167 Gupta, Gangopadhyay, Gangopadhyay, Bhattacharya (bb0045) 2016; 6 Wan, Li, Ren, Zhao, Gao, Zhao (bb0135) Feb. 2018; 8 Kadhim, Hassan (bb0175) May 2016; 27 Liu, Chang, Lai, Tu, Young (bb0050) Apr. 2020 Chen, Zhou, Gao, Su, Wan (bb0130) 2013; 2013 Nylander, Armgarth, Lundström (bb0025) 1983, September; 17 Li, Guo, Tan, Cui, Li, Song (bb0075) Oct. 2009; 63 Gupta, Pandey, Bhattacharya (bb0015) 2013; 1536 Bafandeh, Larijani, Shafiekhani (bb0145) Jul. 2020; 77 Young, Chu (bb0055) Nov. 2020; 167 Hu, Xie, Wang, Mo, Yang, Zhang (bb0080) Apr. 2009; 114 Lee, Park, Kim, Kim, Lee, Kim, Lee (bb0180) Nov. 2010; 35 Sharma, Salorkar, Kondawar (bb0095) 2016; 2 Manjula, Satyanarayana, Swarnalatha, Manorama (bb0115) Apr. 2009; 138 Yoo, Lee, Park, Choi, Kim (bb0125) Apr. 2016; 6 Sharma, Jamkar, Kondawar (bb0165) Jan. 2015; 10 Miasik, Hooper, Tofield (bb0065) Jan 1986; 82 Taguchi, Myer, Geoffrey (bb0020) 1971 Al-Mashat, Shin, Kalantar-Zadeh, Plessis, Han, Kojima, Kaner, Li, Gou, Ippolito, Wlodarski (bb0150) Oct. 2010; 114 Choi, Jung, Bin Kim (bb0120) Jan. 2005; 37 Mirzaei, Yousefi, Falsafi, Bonyani, Lee, Kim, Kim, Kim (bb0140) 2019; 44 Chen, Hu, Yang, Fu, Wang, Yang, Xiong, Zhang, Hu, Gu (bb0185) Nov. 2019; 811 Pal, Yadav, Chauhan, Parida, Gupta (bb0035) Jan. 2021; 2 Choi (10.1016/j.mne.2021.100086_bb0120) 2005; 37 Nylander (10.1016/j.mne.2021.100086_bb0025) 1983; 17 Manjula (10.1016/j.mne.2021.100086_bb0115) 2009; 138 Taguchi (10.1016/j.mne.2021.100086_bb0020) 1971 Mondal (10.1016/j.mne.2021.100086_bb0010) 2019 Kadhim (10.1016/j.mne.2021.100086_bb0175) 2016; 27 Sadek (10.1016/j.mne.2021.100086_bb0155) 2005; 2005 Gupta (10.1016/j.mne.2021.100086_bb0015) 2013; 1536 Gupta (10.1016/j.mne.2021.100086_bb0005) 2014; 12 Li (10.1016/j.mne.2021.100086_bb0075) 2009; 63 Al-Mashat (10.1016/j.mne.2021.100086_bb0150) 2010; 114 Sharma (10.1016/j.mne.2021.100086_bb0165) 2015; 10 Chu (10.1016/j.mne.2021.100086_bb0060) 2020; 167 Srivastava (10.1016/j.mne.2021.100086_bb0170) 2011; 36 Gupta (10.1016/j.mne.2021.100086_bb0040) 2014; 4 Liu (10.1016/j.mne.2021.100086_bb0050) 2020 Wan (10.1016/j.mne.2021.100086_bb0135) 2018; 8 Chauhan (10.1016/j.mne.2021.100086_bb0105) 2018; 217 Chen (10.1016/j.mne.2021.100086_bb0185) 2019; 811 Young (10.1016/j.mne.2021.100086_bb0055) 2020; 167 Yoo (10.1016/j.mne.2021.100086_bb0125) 2016; 6 Gupta (10.1016/j.mne.2021.100086_bb0045) 2016; 6 Chen (10.1016/j.mne.2021.100086_bb0130) 2013; 2013 Lee (10.1016/j.mne.2021.100086_bb0180) 2010; 35 Hu (10.1016/j.mne.2021.100086_bb0080) 2009; 114 Wang (10.1016/j.mne.2021.100086_bb0110) 2015; 24 Choudhary (10.1016/j.mne.2021.100086_bb0070) 2018; 3 Nasresfahani (10.1016/j.mne.2021.100086_bb0085) 2017; 89 Sonwane (10.1016/j.mne.2021.100086_bb0160) 2019; 15 Sharma (10.1016/j.mne.2021.100086_bb0095) 2016; 2 Bafandeh (10.1016/j.mne.2021.100086_bb0145) 2020; 77 Gupta (10.1016/j.mne.2021.100086_bb0030) 2019 Mirzaei (10.1016/j.mne.2021.100086_bb0140) 2019; 44 Pal (10.1016/j.mne.2021.100086_bb0035) 2021; 2 Miasik (10.1016/j.mne.2021.100086_bb0065) 1986; 82 Kondawar (10.1016/j.mne.2021.100086_bb0100) 2017; 4 Kroutil (10.1016/j.mne.2021.100086_bb0090) 2018; 18 |
References_xml | – volume: 27 start-page: 4356 year: May 2016 end-page: 4362 ident: bb0175 article-title: Room temperature hydrogen gas sensor based on nanocrystalline SnO2 thin film using sol–gel spin coating technique publication-title: J. Mater. Sci. Mater. Electron. – volume: 2005 start-page: 207 year: 2005 end-page: 210 ident: bb0155 article-title: A room temperature polyaniline nanofiber hydrogen gas sensor publication-title: Proc. IEEE Sens. – volume: 17 start-page: 203 year: 1983, September end-page: 207 ident: bb0025 article-title: An ammonia detector based on a conducting polymer publication-title: Anal. Chem. Symp. Ser. – volume: 3 start-page: 2120 year: Feb. 2018 end-page: 2130 ident: bb0070 article-title: Effect of coral-shaped yttrium Iron garnet particles on the EMI shielding behaviour of yttrium Iron garnet-polyaniline-wax composites publication-title: ChemistrySelect – volume: 36 start-page: 6343 year: May 2011 end-page: 6355 ident: bb0170 article-title: Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing publication-title: Int. J. Hydrog. Energy – start-page: 7 year: 2019 end-page: 37 ident: bb0030 article-title: Functional Films for Gas Sensing Applications: A Review – volume: 4 start-page: 7476 year: 2014 end-page: 7482 ident: bb0040 article-title: Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nanobundles publication-title: RSC Adv. – volume: 138 start-page: 28 year: Apr. 2009 end-page: 34 ident: bb0115 article-title: Raman and MASNMR studies to support the mechanism of low temperature hydrogen sensing by Pd doped mesoporous SnO2 publication-title: Sensors Actuators B Chem. – volume: 89 start-page: 161 year: 2017 end-page: 169 ident: bb0085 article-title: Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route publication-title: Mater. Res. Bull. – volume: 4 start-page: 13 year: 2017 end-page: 18 ident: bb0100 article-title: Ag-SnO2/polyaniline composite nanofibers for low operating temperature hydrogen gas sensor publication-title: J. Mater. Nanosci. – volume: 6 start-page: 37130 year: Apr. 2016 end-page: 37135 ident: bb0125 article-title: N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate publication-title: RSC Adv. – volume: 24 start-page: 3426 year: Sep. 2015 end-page: 3432 ident: bb0110 article-title: Synthesis and optical properties of SnO2 structures with different morphologies via hydrothermal method publication-title: J. Mater. Eng. Perform. – volume: 63 start-page: 2085 year: Oct. 2009 end-page: 2088 ident: bb0075 article-title: Synthesis of SnO2 nano-sheets by a template-free hydrothermal method publication-title: Mater. Lett. – volume: 18 start-page: 3759 year: May 2018 end-page: 3766 ident: bb0090 article-title: Performance evaluation of low-cost flexible gas sensor Array with nanocomposite polyaniline films publication-title: IEEE Sensors J. – start-page: 1 year: 1971 end-page: 5 ident: bb0020 article-title: Gas Detective Device – volume: 82 start-page: 1117 year: Jan 1986 end-page: 1126 ident: bb0065 article-title: Conducting polymer gas sensors publication-title: J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases – volume: 2 start-page: 61 year: 2016 end-page: 66 ident: bb0095 article-title: H2 and CO gas sensor from SnO2/polyaniline composite nanofibers fabricated by electrospinning publication-title: Adv. Mater. Process. – volume: 6 start-page: 1 year: 2016 end-page: 11 ident: bb0045 article-title: Palladium-functionalized nanostructured platforms for enhanced hydrogen sensing publication-title: Nanomater. Nanotechnol. – volume: 15 start-page: 447 year: 2019 end-page: 453 ident: bb0160 article-title: Conducting polyaniline/SnO2 nanocomposite for room temperature hydrogen gas sensing publication-title: Mater. Today: Proceed. – volume: 2 start-page: 100072 year: Jan. 2021 ident: bb0035 article-title: Reduced graphene oxide based hybrid functionalized films for hydrogen detection: theoretical and experimental studies publication-title: Sensors Int. – start-page: 1 year: Apr. 2020 end-page: 6 ident: bb0050 article-title: Aluminum-doped zinc oxide nanorods and methyl alcohol gas sensor application publication-title: Microsyst. Technol. – volume: 217 start-page: 83 year: 2018 end-page: 87 ident: bb0105 article-title: Highly sensitive V2O5·1.6H2O nanostructures for sensing of helium gas at room temperature publication-title: Mater. Lett. – volume: 114 start-page: 990 year: Apr. 2009 end-page: 995 ident: bb0080 article-title: Polyaniline/SnO2 nanocomposite for supercapacitor applications publication-title: Mater. Chem. Phys. – volume: 8 year: Feb. 2018 ident: bb0135 article-title: 2D SnO2 nanosheets: synthesis, characterization, structures, and excellent sensing performance to ethylene glycol publication-title: Nanomaterials – volume: 12 start-page: 1 year: 2014 end-page: 7 ident: bb0005 article-title: Nano porous palladium sensor for sensitive and rapid detection of hydrogen publication-title: Sens. Lett. – volume: 77 start-page: 3697 year: Jul. 2020 end-page: 3706 ident: bb0145 article-title: Investigation on hydrogen sensing property of MWCNT/Pani nanocomposite films publication-title: Polym. Bull. – volume: 1536 start-page: 291 year: 2013 end-page: 292 ident: bb0015 article-title: High aspect ZnO nanostructures based hydrogen sensing publication-title: AIP Conf. Proceed. – volume: 811 start-page: 152086 year: Nov. 2019 ident: bb0185 article-title: Hydrogen sensors based on Pt-decorated SnO2 nanorods with fast and sensitive room-temperature sensing performance publication-title: J. Alloys Compd. – volume: 114 start-page: 16168 year: Oct. 2010 end-page: 16173 ident: bb0150 article-title: Graphene/polyaniline nanocomposite for hydrogen sensing publication-title: J. Phys. Chem. C – volume: 37 start-page: 33 year: Jan. 2005 end-page: 38 ident: bb0120 article-title: Size effects in the Raman spectra of TiO2 nanoparticles publication-title: Vib. Spectrosc. – volume: 167 start-page: 117503 year: Jul. 2020 ident: bb0060 article-title: Characteristics of gas sensors based on Co-doped ZnO nanorod arrays publication-title: J. Electrochem. Soc. – volume: 10 start-page: 186 year: Jan. 2015 end-page: 194 ident: bb0165 article-title: Electrospun nanofibers of conducting polyaniline/Al-SnO2 composites for hydrogen sensing applications publication-title: Procedia Mater. Sci. – volume: 167 start-page: 147508 year: Nov. 2020 ident: bb0055 article-title: Platinum nanoparticle-decorated ZnO nanorods improved the performance of methanol gas sensor publication-title: J. Electrochem. Soc. – volume: 2013 year: 2013 ident: bb0130 article-title: Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil publication-title: J. Nanomater. – volume: 44 start-page: 20552 year: 2019 end-page: 20571 ident: bb0140 article-title: An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas publication-title: Int. J. Hydrog. Energy – volume: 35 start-page: 12568 year: Nov. 2010 end-page: 12573 ident: bb0180 article-title: Ultra-sensitive hydrogen gas sensors based on Pd-decorated tin dioxide nanostructures: room temperature operating sensors publication-title: Int. J. Hydrog. Energy – start-page: 2019 year: 2019 ident: bb0010 article-title: Carbon nanostructures for energy and sensing applications publication-title: J. Nanotechnol. – volume: 17 start-page: 203 year: 1983 ident: 10.1016/j.mne.2021.100086_bb0025 article-title: An ammonia detector based on a conducting polymer publication-title: Anal. Chem. Symp. Ser. – volume: 82 start-page: 1117 issue: 4 year: 1986 ident: 10.1016/j.mne.2021.100086_bb0065 article-title: Conducting polymer gas sensors publication-title: J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases doi: 10.1039/f19868201117 – volume: 63 start-page: 2085 issue: 24–25 year: 2009 ident: 10.1016/j.mne.2021.100086_bb0075 article-title: Synthesis of SnO2 nano-sheets by a template-free hydrothermal method publication-title: Mater. Lett. doi: 10.1016/j.matlet.2009.06.060 – volume: 1536 start-page: 291 issue: 1 year: 2013 ident: 10.1016/j.mne.2021.100086_bb0015 article-title: High aspect ZnO nanostructures based hydrogen sensing publication-title: AIP Conf. Proceed. doi: 10.1063/1.4810215 – volume: 18 start-page: 3759 issue: 9 year: 2018 ident: 10.1016/j.mne.2021.100086_bb0090 article-title: Performance evaluation of low-cost flexible gas sensor Array with nanocomposite polyaniline films publication-title: IEEE Sensors J. doi: 10.1109/JSEN.2018.2811461 – volume: 15 start-page: 447 year: 2019 ident: 10.1016/j.mne.2021.100086_bb0160 article-title: Conducting polyaniline/SnO2 nanocomposite for room temperature hydrogen gas sensing publication-title: Mater. Today: Proceed. – volume: 4 start-page: 7476 issue: 15 year: 2014 ident: 10.1016/j.mne.2021.100086_bb0040 article-title: Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nanobundles publication-title: RSC Adv. doi: 10.1039/c3ra45316b – volume: 77 start-page: 3697 issue: 7 year: 2020 ident: 10.1016/j.mne.2021.100086_bb0145 article-title: Investigation on hydrogen sensing property of MWCNT/Pani nanocomposite films publication-title: Polym. Bull. doi: 10.1007/s00289-019-02915-8 – volume: 811 start-page: 152086 year: 2019 ident: 10.1016/j.mne.2021.100086_bb0185 article-title: Hydrogen sensors based on Pt-decorated SnO2 nanorods with fast and sensitive room-temperature sensing performance publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2019.152086 – volume: 4 start-page: 13 issue: 1 year: 2017 ident: 10.1016/j.mne.2021.100086_bb0100 article-title: Ag-SnO2/polyaniline composite nanofibers for low operating temperature hydrogen gas sensor publication-title: J. Mater. Nanosci. – volume: 114 start-page: 990 issue: 2–3 year: 2009 ident: 10.1016/j.mne.2021.100086_bb0080 article-title: Polyaniline/SnO2 nanocomposite for supercapacitor applications publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2008.11.005 – volume: 10 start-page: 186 year: 2015 ident: 10.1016/j.mne.2021.100086_bb0165 article-title: Electrospun nanofibers of conducting polyaniline/Al-SnO2 composites for hydrogen sensing applications publication-title: Procedia Mater. Sci. doi: 10.1016/j.mspro.2015.06.040 – volume: 89 start-page: 161 year: 2017 ident: 10.1016/j.mne.2021.100086_bb0085 article-title: Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2017.01.032 – volume: 2 start-page: 61 issue: 1 year: 2016 ident: 10.1016/j.mne.2021.100086_bb0095 article-title: H2 and CO gas sensor from SnO2/polyaniline composite nanofibers fabricated by electrospinning publication-title: Adv. Mater. Process. doi: 10.5185/amp.2017/114 – volume: 27 start-page: 4356 issue: 5 year: 2016 ident: 10.1016/j.mne.2021.100086_bb0175 article-title: Room temperature hydrogen gas sensor based on nanocrystalline SnO2 thin film using sol–gel spin coating technique publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-016-4304-0 – volume: 12 start-page: 1 issue: xx year: 2014 ident: 10.1016/j.mne.2021.100086_bb0005 article-title: Nano porous palladium sensor for sensitive and rapid detection of hydrogen publication-title: Sens. Lett. – volume: 36 start-page: 6343 issue: 10 year: 2011 ident: 10.1016/j.mne.2021.100086_bb0170 article-title: Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.01.141 – volume: 167 start-page: 117503 issue: 11 year: 2020 ident: 10.1016/j.mne.2021.100086_bb0060 article-title: Characteristics of gas sensors based on Co-doped ZnO nanorod arrays publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/aba00d – volume: 114 start-page: 16168 issue: 39 year: 2010 ident: 10.1016/j.mne.2021.100086_bb0150 article-title: Graphene/polyaniline nanocomposite for hydrogen sensing publication-title: J. Phys. Chem. C doi: 10.1021/jp103134u – start-page: 7 year: 2019 ident: 10.1016/j.mne.2021.100086_bb0030 – start-page: 2019 year: 2019 ident: 10.1016/j.mne.2021.100086_bb0010 article-title: Carbon nanostructures for energy and sensing applications publication-title: J. Nanotechnol. – volume: 138 start-page: 28 issue: 1 year: 2009 ident: 10.1016/j.mne.2021.100086_bb0115 article-title: Raman and MASNMR studies to support the mechanism of low temperature hydrogen sensing by Pd doped mesoporous SnO2 publication-title: Sensors Actuators B Chem. doi: 10.1016/j.snb.2009.02.051 – volume: 217 start-page: 83 year: 2018 ident: 10.1016/j.mne.2021.100086_bb0105 article-title: Highly sensitive V2O5·1.6H2O nanostructures for sensing of helium gas at room temperature publication-title: Mater. Lett. doi: 10.1016/j.matlet.2018.01.056 – volume: 35 start-page: 12568 issue: 22 year: 2010 ident: 10.1016/j.mne.2021.100086_bb0180 article-title: Ultra-sensitive hydrogen gas sensors based on Pd-decorated tin dioxide nanostructures: room temperature operating sensors publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.08.026 – volume: 8 issue: 2 year: 2018 ident: 10.1016/j.mne.2021.100086_bb0135 article-title: 2D SnO2 nanosheets: synthesis, characterization, structures, and excellent sensing performance to ethylene glycol publication-title: Nanomaterials doi: 10.3390/nano8020112 – volume: 167 start-page: 147508 issue: 14 year: 2020 ident: 10.1016/j.mne.2021.100086_bb0055 article-title: Platinum nanoparticle-decorated ZnO nanorods improved the performance of methanol gas sensor publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abc4be – volume: 3 start-page: 2120 issue: 7 year: 2018 ident: 10.1016/j.mne.2021.100086_bb0070 article-title: Effect of coral-shaped yttrium Iron garnet particles on the EMI shielding behaviour of yttrium Iron garnet-polyaniline-wax composites publication-title: ChemistrySelect doi: 10.1002/slct.201702698 – volume: 6 start-page: 1 year: 2016 ident: 10.1016/j.mne.2021.100086_bb0045 article-title: Palladium-functionalized nanostructured platforms for enhanced hydrogen sensing publication-title: Nanomater. Nanotechnol. doi: 10.5772/63987 – start-page: 1 year: 2020 ident: 10.1016/j.mne.2021.100086_bb0050 article-title: Aluminum-doped zinc oxide nanorods and methyl alcohol gas sensor application publication-title: Microsyst. Technol. – volume: 37 start-page: 33 issue: 1 year: 2005 ident: 10.1016/j.mne.2021.100086_bb0120 article-title: Size effects in the Raman spectra of TiO2 nanoparticles publication-title: Vib. Spectrosc. doi: 10.1016/j.vibspec.2004.05.006 – start-page: 1 year: 1971 ident: 10.1016/j.mne.2021.100086_bb0020 – volume: 24 start-page: 3426 issue: 9 year: 2015 ident: 10.1016/j.mne.2021.100086_bb0110 article-title: Synthesis and optical properties of SnO2 structures with different morphologies via hydrothermal method publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-015-1637-4 – volume: 44 start-page: 20552 issue: 36 year: 2019 ident: 10.1016/j.mne.2021.100086_bb0140 article-title: An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2019.05.180 – volume: 6 start-page: 37130 issue: 43 year: 2016 ident: 10.1016/j.mne.2021.100086_bb0125 article-title: N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate publication-title: RSC Adv. doi: 10.1039/C6RA02334G – volume: 2013 year: 2013 ident: 10.1016/j.mne.2021.100086_bb0130 article-title: Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil publication-title: J. Nanomater. – volume: 2 start-page: 100072 year: 2021 ident: 10.1016/j.mne.2021.100086_bb0035 article-title: Reduced graphene oxide based hybrid functionalized films for hydrogen detection: theoretical and experimental studies publication-title: Sensors Int. doi: 10.1016/j.sintl.2020.100072 – volume: 2005 start-page: 207 year: 2005 ident: 10.1016/j.mne.2021.100086_bb0155 article-title: A room temperature polyaniline nanofiber hydrogen gas sensor publication-title: Proc. IEEE Sens. |
SSID | ssj0002856847 |
Score | 2.4119947 |
Snippet | In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 100086 |
SubjectTerms | DFT Gas sensor Hydrogen sensor PANI SnO2 |
Title | Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites |
URI | https://dx.doi.org/10.1016/j.mne.2021.100086 https://doaj.org/article/6af3d57719994c66886e23d308eff150 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgcmpKiJ7TjOCIiqMAACKnWL4i9oVZyqLUP_PT4nQVmAhTVybOvO0r2z371D6EJppohKbJRTRSOWMx3lmmZRxiUpjRKpNoFt8cBHY3Y_SSedVl_ACavlgWvDDXhpqU6zDMrlmeJcCG4I1TQWxtomW4_zuJNMzcKVUcpF6C7m4T2UTmekfdIM5K4PBxKZJAGSQAx11J2gFLT7O7GpE2-Gu2inAYr4qt7gHtoybh_dPXuci0FOqtFCxu8bvaz8IcArYKK7NwwXq3hRzTelmwYRjBf3SAZPGrvSVUAgB5aWWR2g8fD29WYUNc0QIuVj7joSSmutmODMKk2kzcIbnpQmtspnx7kSjEiRgcxs6lGG9imvzxYyqWSZephX0kPUc5UzRwiLMqGaSULCIxy10pBYg2RxXvLEpnkfxa01CtUohUPDinnRUsJmhTdgAQYsagP20eX3L4taJuO3wddg4u-BoHAdPni_F43fi7_83kesdVDRgIUaBPippj-vffwfa5-gbZiy5gGeot56-WnOPDZZy_NwDL8Axofdnw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room+temperature+hydrogen+sensing+with+polyaniline%2FSnO2%2FPd+nanocomposites&rft.jtitle=Micro+and+Nano+Engineering&rft.au=Pippara%2C+Rohit+Kumar&rft.au=Chauhan%2C+Pankaj+Singh&rft.au=Yadav%2C+Anshul&rft.au=Kishnani%2C+Vinay&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=2590-0072&rft.volume=12&rft_id=info:doi/10.1016%2Fj.mne.2021.100086&rft.externalDocID=S2590007221000071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0072&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0072&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0072&client=summon |