Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites

In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at room temperature. Fabrication of a novel nanocomposite film based on tin oxide (SnO2) nanosheets with polyaniline (PANI) doped with palladium...

Full description

Saved in:
Bibliographic Details
Published inMicro and Nano Engineering Vol. 12; p. 100086
Main Authors Pippara, Rohit Kumar, Chauhan, Pankaj Singh, Yadav, Anshul, Kishnani, Vinay, Gupta, Ankur
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2021
Elsevier
Subjects
Online AccessGet full text
ISSN2590-0072
2590-0072
DOI10.1016/j.mne.2021.100086

Cover

Abstract In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at room temperature. Fabrication of a novel nanocomposite film based on tin oxide (SnO2) nanosheets with polyaniline (PANI) doped with palladium (Pd) is performed using the hydrothermal synthesis technique. Functional aspects of the fabricated films are investigated with XRD, Raman spectra, FESEM, and FTIR spectral analysis. Interactions of the H2 gas molecules with SnO2, SnO2-Pd, PANI, PANI-SnO2, PANI-SnO2-Pd nanocomposite are also theoretically studied. Using first-principles density functional theory, the effects of gas adsorption on the electronic and transport properties of the sensor are examined. The computations show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and, the sensitivity of the PANI to the H2gas molecules is considerably improved after hybridisation with SnO2.Gas sensing characteristics of fabricated films of SnO2, PANI and composite of SnO2/PANI/Pd are also experimentally investigated at room temperature with varying concentration level ranging from 50 to 400 ppm. The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor (the ratio of response percentage to total cycle time) is evaluated highest in Pd doped PANI-SnO2 film. Our results reveal the promising future of SnO2, PANI and Pd associated hybrid films in the development of ultra-high sensitive gas sensors. [Display omitted] •We report unique hybrid composite film fabricated with the novel nanocomposite film based on tin oxide (SnO2) nanosheets, polyaniline (PANI) doped with palladium (Pd) for room temperature hydrogen sensor.•Results obtained from the first-principles density functional theory show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and the sensitivity of the PANI to the H2 gas molecules is considerably improved after hybridisation with SnO2.•The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor is evaluated as highest in Pd doped PANI-SnO2 film.
AbstractList In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at room temperature. Fabrication of a novel nanocomposite film based on tin oxide (SnO2) nanosheets with polyaniline (PANI) doped with palladium (Pd) is performed using the hydrothermal synthesis technique. Functional aspects of the fabricated films are investigated with XRD, Raman spectra, FESEM, and FTIR spectral analysis. Interactions of the H2 gas molecules with SnO2, SnO2-Pd, PANI, PANI-SnO2, PANI-SnO2-Pd nanocomposite are also theoretically studied. Using first-principles density functional theory, the effects of gas adsorption on the electronic and transport properties of the sensor are examined. The computations show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and, the sensitivity of the PANI to the H2gas molecules is considerably improved after hybridisation with SnO2.Gas sensing characteristics of fabricated films of SnO2, PANI and composite of SnO2/PANI/Pd are also experimentally investigated at room temperature with varying concentration level ranging from 50 to 400 ppm. The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor (the ratio of response percentage to total cycle time) is evaluated highest in Pd doped PANI-SnO2 film. Our results reveal the promising future of SnO2, PANI and Pd associated hybrid films in the development of ultra-high sensitive gas sensors. [Display omitted] •We report unique hybrid composite film fabricated with the novel nanocomposite film based on tin oxide (SnO2) nanosheets, polyaniline (PANI) doped with palladium (Pd) for room temperature hydrogen sensor.•Results obtained from the first-principles density functional theory show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and the sensitivity of the PANI to the H2 gas molecules is considerably improved after hybridisation with SnO2.•The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor is evaluated as highest in Pd doped PANI-SnO2 film.
In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at room temperature. Fabrication of a novel nanocomposite film based on tin oxide (SnO2) nanosheets with polyaniline (PANI) doped with palladium (Pd) is performed using the hydrothermal synthesis technique. Functional aspects of the fabricated films are investigated with XRD, Raman spectra, FESEM, and FTIR spectral analysis. Interactions of the H2 gas molecules with SnO2, SnO2-Pd, PANI, PANI-SnO2, PANI-SnO2-Pd nanocomposite are also theoretically studied. Using first-principles density functional theory, the effects of gas adsorption on the electronic and transport properties of the sensor are examined. The computations show that the sensitivity of the SnO2 to the H2 gas molecules is considerably improved after hybridisation with Pd and, the sensitivity of the PANI to the H2gas molecules is considerably improved after hybridisation with SnO2.Gas sensing characteristics of fabricated films of SnO2, PANI and composite of SnO2/PANI/Pd are also experimentally investigated at room temperature with varying concentration level ranging from 50 to 400 ppm. The highest sensitivity among all the films at room temperature has been observed as ~540% for the SnO2/Pd film at 0.4% of the target gas and performance factor (the ratio of response percentage to total cycle time) is evaluated highest in Pd doped PANI-SnO2 film. Our results reveal the promising future of SnO2, PANI and Pd associated hybrid films in the development of ultra-high sensitive gas sensors.
ArticleNumber 100086
Author Pippara, Rohit Kumar
Chauhan, Pankaj Singh
Kishnani, Vinay
Yadav, Anshul
Gupta, Ankur
Author_xml – sequence: 1
  givenname: Rohit Kumar
  surname: Pippara
  fullname: Pippara, Rohit Kumar
  organization: School of Mechanical Sciences, Indian Institute of Technology Bhubaneswar, Odisha 752050, India
– sequence: 2
  givenname: Pankaj Singh
  surname: Chauhan
  fullname: Chauhan, Pankaj Singh
  organization: Department of Mechanical Engineering, Indian Institute of Technology Kanpur, India
– sequence: 3
  givenname: Anshul
  surname: Yadav
  fullname: Yadav, Anshul
  organization: Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
– sequence: 4
  givenname: Vinay
  surname: Kishnani
  fullname: Kishnani, Vinay
  organization: Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
– sequence: 5
  givenname: Ankur
  surname: Gupta
  fullname: Gupta, Ankur
  email: ankurgupta@iitj.ac.in
  organization: Department of Mechanical Engineering, Indian Institute of Technology Jodhpur, Rajasthan 342037, India
BookMark eNp9kMtKAzEUhoNU8NYHcDcv0DbJZJIMrkS8FAoVL-uQSc60KTNJSaLSt3e0CuKiq3PhfD-H7wyNfPCA0CXBU4IJn22mvYcpxZQMM8aSH6FTWtV4grGgoz_9CRqntBlOqKy4ZOIUzZ9C6IsM_Raizm8RivXOxrACXyTwyflV8eHyutiGbqe965yH2bNf0tmjLbz2wYR-G5LLkC7Qcau7BOOfeo5e725fbh4mi-X9_OZ6MTEM8zyRxlprmOSsNZY2rcCYlbJpALcGGlobyWgjRV1TWnFWWsGGphKNaXSFSanLczTf59qgN2obXa_jTgXt1PcixJXSMTvTgeK6LW0lBKnrmhnOpeRAS1tiCW1LKjxkiX2WiSGlCK0yLuvsgs9Ru04RrL4Eq40aBKsvwWoveCDJP_L3k0PM1Z6BQc-7g6iSceANWBfB5OF_d4D-BPYBlO4
CitedBy_id crossref_primary_10_1016_j_diamond_2024_111156
crossref_primary_10_1016_j_mssp_2024_109209
crossref_primary_10_1364_OE_504859
crossref_primary_10_1007_s10853_022_07319_0
crossref_primary_10_1016_j_sintl_2023_100240
crossref_primary_10_1002_slct_202302014
crossref_primary_10_1016_j_ijhydene_2021_11_101
crossref_primary_10_1080_25740881_2023_2301290
crossref_primary_10_1016_j_ijhydene_2022_12_053
crossref_primary_10_1016_j_ijhydene_2024_01_001
crossref_primary_10_1007_s10853_024_09562_z
crossref_primary_10_1016_j_jallcom_2024_175820
crossref_primary_10_1016_j_ijleo_2023_170604
crossref_primary_10_1016_j_chemphys_2022_111629
crossref_primary_10_1002_app_55426
crossref_primary_10_1007_s11664_022_09990_0
crossref_primary_10_1038_s41598_023_29312_6
crossref_primary_10_1016_j_comptc_2022_113676
crossref_primary_10_1016_j_colsurfa_2022_128795
crossref_primary_10_1021_acsomega_3c06533
crossref_primary_10_1016_j_surfin_2022_102560
crossref_primary_10_1080_00194506_2024_2334468
crossref_primary_10_1007_s12633_022_01987_y
crossref_primary_10_1016_j_ijhydene_2024_07_253
crossref_primary_10_1016_j_nxnano_2024_100057
crossref_primary_10_1109_JSEN_2023_3307797
crossref_primary_10_1002_aelm_202201047
crossref_primary_10_1016_j_sna_2023_114472
crossref_primary_10_1007_s13369_024_09416_5
crossref_primary_10_1016_j_apsusc_2023_156381
crossref_primary_10_1016_j_colsurfa_2021_127943
crossref_primary_10_1016_j_mtcomm_2023_106308
crossref_primary_10_1007_s11696_021_01948_6
crossref_primary_10_1166_mex_2022_2121
crossref_primary_10_3390_ma15228012
crossref_primary_10_1007_s11164_025_05524_5
crossref_primary_10_1007_s12633_022_01899_x
crossref_primary_10_1016_j_chemosphere_2022_133772
crossref_primary_10_1039_D4MA00813H
crossref_primary_10_5650_jos_ess21283
crossref_primary_10_1016_j_snb_2022_131579
crossref_primary_10_1080_25740881_2022_2129387
crossref_primary_10_1016_j_yofte_2023_103390
crossref_primary_10_1016_j_apsusc_2024_160693
crossref_primary_10_1016_j_matpr_2023_11_087
crossref_primary_10_2139_ssrn_4064417
crossref_primary_10_1016_j_cej_2024_154999
crossref_primary_10_1039_D4TA00055B
Cites_doi 10.1039/f19868201117
10.1016/j.matlet.2009.06.060
10.1063/1.4810215
10.1109/JSEN.2018.2811461
10.1039/c3ra45316b
10.1007/s00289-019-02915-8
10.1016/j.jallcom.2019.152086
10.1016/j.matchemphys.2008.11.005
10.1016/j.mspro.2015.06.040
10.1016/j.materresbull.2017.01.032
10.5185/amp.2017/114
10.1007/s10854-016-4304-0
10.1016/j.ijhydene.2011.01.141
10.1149/1945-7111/aba00d
10.1021/jp103134u
10.1016/j.snb.2009.02.051
10.1016/j.matlet.2018.01.056
10.1016/j.ijhydene.2010.08.026
10.3390/nano8020112
10.1149/1945-7111/abc4be
10.1002/slct.201702698
10.5772/63987
10.1016/j.vibspec.2004.05.006
10.1007/s11665-015-1637-4
10.1016/j.ijhydene.2019.05.180
10.1039/C6RA02334G
10.1016/j.sintl.2020.100072
ContentType Journal Article
Copyright 2021 The Author(s)
Copyright_xml – notice: 2021 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.mne.2021.100086
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2590-0072
ExternalDocumentID oai_doaj_org_article_6af3d57719994c66886e23d308eff150
10_1016_j_mne_2021_100086
S2590007221000071
GroupedDBID 0SF
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
OK1
ROL
SSZ
0R~
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
ID FETCH-LOGICAL-c406t-8cdddc4864fcd2bf700438bbe0fceb29c842b8799225643d7422557bcba5013a3
IEDL.DBID DOA
ISSN 2590-0072
IngestDate Wed Aug 27 01:22:16 EDT 2025
Tue Jul 01 00:35:31 EDT 2025
Thu Apr 24 23:11:17 EDT 2025
Tue Jul 25 21:00:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords PANI
SnO2
Hydrogen sensor
Gas sensor
DFT
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-8cdddc4864fcd2bf700438bbe0fceb29c842b8799225643d7422557bcba5013a3
OpenAccessLink https://doaj.org/article/6af3d57719994c66886e23d308eff150
ParticipantIDs doaj_primary_oai_doaj_org_article_6af3d57719994c66886e23d308eff150
crossref_citationtrail_10_1016_j_mne_2021_100086
crossref_primary_10_1016_j_mne_2021_100086
elsevier_sciencedirect_doi_10_1016_j_mne_2021_100086
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2021
2021-08-00
2021-08-01
PublicationDateYYYYMMDD 2021-08-01
PublicationDate_xml – month: 08
  year: 2021
  text: August 2021
PublicationDecade 2020
PublicationTitle Micro and Nano Engineering
PublicationYear 2021
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Sonwane, Maity, Kondawar (bb0160) 2019; 15
Gupta, Parida, Pal (bb0030) 2019
Nasresfahani, Sheikhi, Tohidi, Zarifkar (bb0085) 2017; 89
Mondal, Balasubramaniam, Gupta, Lahcen, Kwiatkowski (bb0010) 2019
Gupta, Srivastava, Mathai, Gangopadhyay, Gangopadhyay, Bhattacharya (bb0005) 2014; 12
Choudhary, Kumar, Pawar, Anupama, Bose, Sahoo (bb0070) Feb. 2018; 3
Kondawar, More, Sharma, Dongre (bb0100) 2017; 4
Kroutil, Laposa, Voves, Davydova, Nahlik, Kulha, Husak (bb0090) May 2018; 18
Sadek, Trinchi, Wlodarski, Kalantar-zadeh, Galatsis, Baker, Kaner (bb0155) 2005; 2005
Wang, Fan, Yu, Wang (bb0110) Sep. 2015; 24
Chauhan, Bhattacharya (bb0105) 2018; 217
Srivastava, Kumar, Singh, Singh, Vijay (bb0170) May 2011; 36
Gupta, Pandey, Nayak, Maity, Majumder, Bhattacharya (bb0040) 2014; 4
Chu, Young, Ji, Chu, Lam, Hsiao, Tang, Kuo (bb0060) Jul. 2020; 167
Gupta, Gangopadhyay, Gangopadhyay, Bhattacharya (bb0045) 2016; 6
Wan, Li, Ren, Zhao, Gao, Zhao (bb0135) Feb. 2018; 8
Kadhim, Hassan (bb0175) May 2016; 27
Liu, Chang, Lai, Tu, Young (bb0050) Apr. 2020
Chen, Zhou, Gao, Su, Wan (bb0130) 2013; 2013
Nylander, Armgarth, Lundström (bb0025) 1983, September; 17
Li, Guo, Tan, Cui, Li, Song (bb0075) Oct. 2009; 63
Gupta, Pandey, Bhattacharya (bb0015) 2013; 1536
Bafandeh, Larijani, Shafiekhani (bb0145) Jul. 2020; 77
Young, Chu (bb0055) Nov. 2020; 167
Hu, Xie, Wang, Mo, Yang, Zhang (bb0080) Apr. 2009; 114
Lee, Park, Kim, Kim, Lee, Kim, Lee (bb0180) Nov. 2010; 35
Sharma, Salorkar, Kondawar (bb0095) 2016; 2
Manjula, Satyanarayana, Swarnalatha, Manorama (bb0115) Apr. 2009; 138
Yoo, Lee, Park, Choi, Kim (bb0125) Apr. 2016; 6
Sharma, Jamkar, Kondawar (bb0165) Jan. 2015; 10
Miasik, Hooper, Tofield (bb0065) Jan 1986; 82
Taguchi, Myer, Geoffrey (bb0020) 1971
Al-Mashat, Shin, Kalantar-Zadeh, Plessis, Han, Kojima, Kaner, Li, Gou, Ippolito, Wlodarski (bb0150) Oct. 2010; 114
Choi, Jung, Bin Kim (bb0120) Jan. 2005; 37
Mirzaei, Yousefi, Falsafi, Bonyani, Lee, Kim, Kim, Kim (bb0140) 2019; 44
Chen, Hu, Yang, Fu, Wang, Yang, Xiong, Zhang, Hu, Gu (bb0185) Nov. 2019; 811
Pal, Yadav, Chauhan, Parida, Gupta (bb0035) Jan. 2021; 2
Choi (10.1016/j.mne.2021.100086_bb0120) 2005; 37
Nylander (10.1016/j.mne.2021.100086_bb0025) 1983; 17
Manjula (10.1016/j.mne.2021.100086_bb0115) 2009; 138
Taguchi (10.1016/j.mne.2021.100086_bb0020) 1971
Mondal (10.1016/j.mne.2021.100086_bb0010) 2019
Kadhim (10.1016/j.mne.2021.100086_bb0175) 2016; 27
Sadek (10.1016/j.mne.2021.100086_bb0155) 2005; 2005
Gupta (10.1016/j.mne.2021.100086_bb0015) 2013; 1536
Gupta (10.1016/j.mne.2021.100086_bb0005) 2014; 12
Li (10.1016/j.mne.2021.100086_bb0075) 2009; 63
Al-Mashat (10.1016/j.mne.2021.100086_bb0150) 2010; 114
Sharma (10.1016/j.mne.2021.100086_bb0165) 2015; 10
Chu (10.1016/j.mne.2021.100086_bb0060) 2020; 167
Srivastava (10.1016/j.mne.2021.100086_bb0170) 2011; 36
Gupta (10.1016/j.mne.2021.100086_bb0040) 2014; 4
Liu (10.1016/j.mne.2021.100086_bb0050) 2020
Wan (10.1016/j.mne.2021.100086_bb0135) 2018; 8
Chauhan (10.1016/j.mne.2021.100086_bb0105) 2018; 217
Chen (10.1016/j.mne.2021.100086_bb0185) 2019; 811
Young (10.1016/j.mne.2021.100086_bb0055) 2020; 167
Yoo (10.1016/j.mne.2021.100086_bb0125) 2016; 6
Gupta (10.1016/j.mne.2021.100086_bb0045) 2016; 6
Chen (10.1016/j.mne.2021.100086_bb0130) 2013; 2013
Lee (10.1016/j.mne.2021.100086_bb0180) 2010; 35
Hu (10.1016/j.mne.2021.100086_bb0080) 2009; 114
Wang (10.1016/j.mne.2021.100086_bb0110) 2015; 24
Choudhary (10.1016/j.mne.2021.100086_bb0070) 2018; 3
Nasresfahani (10.1016/j.mne.2021.100086_bb0085) 2017; 89
Sonwane (10.1016/j.mne.2021.100086_bb0160) 2019; 15
Sharma (10.1016/j.mne.2021.100086_bb0095) 2016; 2
Bafandeh (10.1016/j.mne.2021.100086_bb0145) 2020; 77
Gupta (10.1016/j.mne.2021.100086_bb0030) 2019
Mirzaei (10.1016/j.mne.2021.100086_bb0140) 2019; 44
Pal (10.1016/j.mne.2021.100086_bb0035) 2021; 2
Miasik (10.1016/j.mne.2021.100086_bb0065) 1986; 82
Kondawar (10.1016/j.mne.2021.100086_bb0100) 2017; 4
Kroutil (10.1016/j.mne.2021.100086_bb0090) 2018; 18
References_xml – volume: 27
  start-page: 4356
  year: May 2016
  end-page: 4362
  ident: bb0175
  article-title: Room temperature hydrogen gas sensor based on nanocrystalline SnO2 thin film using sol–gel spin coating technique
  publication-title: J. Mater. Sci. Mater. Electron.
– volume: 2005
  start-page: 207
  year: 2005
  end-page: 210
  ident: bb0155
  article-title: A room temperature polyaniline nanofiber hydrogen gas sensor
  publication-title: Proc. IEEE Sens.
– volume: 17
  start-page: 203
  year: 1983, September
  end-page: 207
  ident: bb0025
  article-title: An ammonia detector based on a conducting polymer
  publication-title: Anal. Chem. Symp. Ser.
– volume: 3
  start-page: 2120
  year: Feb. 2018
  end-page: 2130
  ident: bb0070
  article-title: Effect of coral-shaped yttrium Iron garnet particles on the EMI shielding behaviour of yttrium Iron garnet-polyaniline-wax composites
  publication-title: ChemistrySelect
– volume: 36
  start-page: 6343
  year: May 2011
  end-page: 6355
  ident: bb0170
  article-title: Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing
  publication-title: Int. J. Hydrog. Energy
– start-page: 7
  year: 2019
  end-page: 37
  ident: bb0030
  article-title: Functional Films for Gas Sensing Applications: A Review
– volume: 4
  start-page: 7476
  year: 2014
  end-page: 7482
  ident: bb0040
  article-title: Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nanobundles
  publication-title: RSC Adv.
– volume: 138
  start-page: 28
  year: Apr. 2009
  end-page: 34
  ident: bb0115
  article-title: Raman and MASNMR studies to support the mechanism of low temperature hydrogen sensing by Pd doped mesoporous SnO2
  publication-title: Sensors Actuators B Chem.
– volume: 89
  start-page: 161
  year: 2017
  end-page: 169
  ident: bb0085
  article-title: Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route
  publication-title: Mater. Res. Bull.
– volume: 4
  start-page: 13
  year: 2017
  end-page: 18
  ident: bb0100
  article-title: Ag-SnO2/polyaniline composite nanofibers for low operating temperature hydrogen gas sensor
  publication-title: J. Mater. Nanosci.
– volume: 6
  start-page: 37130
  year: Apr. 2016
  end-page: 37135
  ident: bb0125
  article-title: N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate
  publication-title: RSC Adv.
– volume: 24
  start-page: 3426
  year: Sep. 2015
  end-page: 3432
  ident: bb0110
  article-title: Synthesis and optical properties of SnO2 structures with different morphologies via hydrothermal method
  publication-title: J. Mater. Eng. Perform.
– volume: 63
  start-page: 2085
  year: Oct. 2009
  end-page: 2088
  ident: bb0075
  article-title: Synthesis of SnO2 nano-sheets by a template-free hydrothermal method
  publication-title: Mater. Lett.
– volume: 18
  start-page: 3759
  year: May 2018
  end-page: 3766
  ident: bb0090
  article-title: Performance evaluation of low-cost flexible gas sensor Array with nanocomposite polyaniline films
  publication-title: IEEE Sensors J.
– start-page: 1
  year: 1971
  end-page: 5
  ident: bb0020
  article-title: Gas Detective Device
– volume: 82
  start-page: 1117
  year: Jan 1986
  end-page: 1126
  ident: bb0065
  article-title: Conducting polymer gas sensors
  publication-title: J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases
– volume: 2
  start-page: 61
  year: 2016
  end-page: 66
  ident: bb0095
  article-title: H2 and CO gas sensor from SnO2/polyaniline composite nanofibers fabricated by electrospinning
  publication-title: Adv. Mater. Process.
– volume: 6
  start-page: 1
  year: 2016
  end-page: 11
  ident: bb0045
  article-title: Palladium-functionalized nanostructured platforms for enhanced hydrogen sensing
  publication-title: Nanomater. Nanotechnol.
– volume: 15
  start-page: 447
  year: 2019
  end-page: 453
  ident: bb0160
  article-title: Conducting polyaniline/SnO2 nanocomposite for room temperature hydrogen gas sensing
  publication-title: Mater. Today: Proceed.
– volume: 2
  start-page: 100072
  year: Jan. 2021
  ident: bb0035
  article-title: Reduced graphene oxide based hybrid functionalized films for hydrogen detection: theoretical and experimental studies
  publication-title: Sensors Int.
– start-page: 1
  year: Apr. 2020
  end-page: 6
  ident: bb0050
  article-title: Aluminum-doped zinc oxide nanorods and methyl alcohol gas sensor application
  publication-title: Microsyst. Technol.
– volume: 217
  start-page: 83
  year: 2018
  end-page: 87
  ident: bb0105
  article-title: Highly sensitive V2O5·1.6H2O nanostructures for sensing of helium gas at room temperature
  publication-title: Mater. Lett.
– volume: 114
  start-page: 990
  year: Apr. 2009
  end-page: 995
  ident: bb0080
  article-title: Polyaniline/SnO2 nanocomposite for supercapacitor applications
  publication-title: Mater. Chem. Phys.
– volume: 8
  year: Feb. 2018
  ident: bb0135
  article-title: 2D SnO2 nanosheets: synthesis, characterization, structures, and excellent sensing performance to ethylene glycol
  publication-title: Nanomaterials
– volume: 12
  start-page: 1
  year: 2014
  end-page: 7
  ident: bb0005
  article-title: Nano porous palladium sensor for sensitive and rapid detection of hydrogen
  publication-title: Sens. Lett.
– volume: 77
  start-page: 3697
  year: Jul. 2020
  end-page: 3706
  ident: bb0145
  article-title: Investigation on hydrogen sensing property of MWCNT/Pani nanocomposite films
  publication-title: Polym. Bull.
– volume: 1536
  start-page: 291
  year: 2013
  end-page: 292
  ident: bb0015
  article-title: High aspect ZnO nanostructures based hydrogen sensing
  publication-title: AIP Conf. Proceed.
– volume: 811
  start-page: 152086
  year: Nov. 2019
  ident: bb0185
  article-title: Hydrogen sensors based on Pt-decorated SnO2 nanorods with fast and sensitive room-temperature sensing performance
  publication-title: J. Alloys Compd.
– volume: 114
  start-page: 16168
  year: Oct. 2010
  end-page: 16173
  ident: bb0150
  article-title: Graphene/polyaniline nanocomposite for hydrogen sensing
  publication-title: J. Phys. Chem. C
– volume: 37
  start-page: 33
  year: Jan. 2005
  end-page: 38
  ident: bb0120
  article-title: Size effects in the Raman spectra of TiO2 nanoparticles
  publication-title: Vib. Spectrosc.
– volume: 167
  start-page: 117503
  year: Jul. 2020
  ident: bb0060
  article-title: Characteristics of gas sensors based on Co-doped ZnO nanorod arrays
  publication-title: J. Electrochem. Soc.
– volume: 10
  start-page: 186
  year: Jan. 2015
  end-page: 194
  ident: bb0165
  article-title: Electrospun nanofibers of conducting polyaniline/Al-SnO2 composites for hydrogen sensing applications
  publication-title: Procedia Mater. Sci.
– volume: 167
  start-page: 147508
  year: Nov. 2020
  ident: bb0055
  article-title: Platinum nanoparticle-decorated ZnO nanorods improved the performance of methanol gas sensor
  publication-title: J. Electrochem. Soc.
– volume: 2013
  year: 2013
  ident: bb0130
  article-title: Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil
  publication-title: J. Nanomater.
– volume: 44
  start-page: 20552
  year: 2019
  end-page: 20571
  ident: bb0140
  article-title: An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas
  publication-title: Int. J. Hydrog. Energy
– volume: 35
  start-page: 12568
  year: Nov. 2010
  end-page: 12573
  ident: bb0180
  article-title: Ultra-sensitive hydrogen gas sensors based on Pd-decorated tin dioxide nanostructures: room temperature operating sensors
  publication-title: Int. J. Hydrog. Energy
– start-page: 2019
  year: 2019
  ident: bb0010
  article-title: Carbon nanostructures for energy and sensing applications
  publication-title: J. Nanotechnol.
– volume: 17
  start-page: 203
  year: 1983
  ident: 10.1016/j.mne.2021.100086_bb0025
  article-title: An ammonia detector based on a conducting polymer
  publication-title: Anal. Chem. Symp. Ser.
– volume: 82
  start-page: 1117
  issue: 4
  year: 1986
  ident: 10.1016/j.mne.2021.100086_bb0065
  article-title: Conducting polymer gas sensors
  publication-title: J. Chem. Soc. Faraday Trans. 1: Phys. Chem. Condens. Phases
  doi: 10.1039/f19868201117
– volume: 63
  start-page: 2085
  issue: 24–25
  year: 2009
  ident: 10.1016/j.mne.2021.100086_bb0075
  article-title: Synthesis of SnO2 nano-sheets by a template-free hydrothermal method
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2009.06.060
– volume: 1536
  start-page: 291
  issue: 1
  year: 2013
  ident: 10.1016/j.mne.2021.100086_bb0015
  article-title: High aspect ZnO nanostructures based hydrogen sensing
  publication-title: AIP Conf. Proceed.
  doi: 10.1063/1.4810215
– volume: 18
  start-page: 3759
  issue: 9
  year: 2018
  ident: 10.1016/j.mne.2021.100086_bb0090
  article-title: Performance evaluation of low-cost flexible gas sensor Array with nanocomposite polyaniline films
  publication-title: IEEE Sensors J.
  doi: 10.1109/JSEN.2018.2811461
– volume: 15
  start-page: 447
  year: 2019
  ident: 10.1016/j.mne.2021.100086_bb0160
  article-title: Conducting polyaniline/SnO2 nanocomposite for room temperature hydrogen gas sensing
  publication-title: Mater. Today: Proceed.
– volume: 4
  start-page: 7476
  issue: 15
  year: 2014
  ident: 10.1016/j.mne.2021.100086_bb0040
  article-title: Hydrogen sensing based on nanoporous silica-embedded ultra dense ZnO nanobundles
  publication-title: RSC Adv.
  doi: 10.1039/c3ra45316b
– volume: 77
  start-page: 3697
  issue: 7
  year: 2020
  ident: 10.1016/j.mne.2021.100086_bb0145
  article-title: Investigation on hydrogen sensing property of MWCNT/Pani nanocomposite films
  publication-title: Polym. Bull.
  doi: 10.1007/s00289-019-02915-8
– volume: 811
  start-page: 152086
  year: 2019
  ident: 10.1016/j.mne.2021.100086_bb0185
  article-title: Hydrogen sensors based on Pt-decorated SnO2 nanorods with fast and sensitive room-temperature sensing performance
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2019.152086
– volume: 4
  start-page: 13
  issue: 1
  year: 2017
  ident: 10.1016/j.mne.2021.100086_bb0100
  article-title: Ag-SnO2/polyaniline composite nanofibers for low operating temperature hydrogen gas sensor
  publication-title: J. Mater. Nanosci.
– volume: 114
  start-page: 990
  issue: 2–3
  year: 2009
  ident: 10.1016/j.mne.2021.100086_bb0080
  article-title: Polyaniline/SnO2 nanocomposite for supercapacitor applications
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2008.11.005
– volume: 10
  start-page: 186
  year: 2015
  ident: 10.1016/j.mne.2021.100086_bb0165
  article-title: Electrospun nanofibers of conducting polyaniline/Al-SnO2 composites for hydrogen sensing applications
  publication-title: Procedia Mater. Sci.
  doi: 10.1016/j.mspro.2015.06.040
– volume: 89
  start-page: 161
  year: 2017
  ident: 10.1016/j.mne.2021.100086_bb0085
  article-title: Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2017.01.032
– volume: 2
  start-page: 61
  issue: 1
  year: 2016
  ident: 10.1016/j.mne.2021.100086_bb0095
  article-title: H2 and CO gas sensor from SnO2/polyaniline composite nanofibers fabricated by electrospinning
  publication-title: Adv. Mater. Process.
  doi: 10.5185/amp.2017/114
– volume: 27
  start-page: 4356
  issue: 5
  year: 2016
  ident: 10.1016/j.mne.2021.100086_bb0175
  article-title: Room temperature hydrogen gas sensor based on nanocrystalline SnO2 thin film using sol–gel spin coating technique
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-016-4304-0
– volume: 12
  start-page: 1
  issue: xx
  year: 2014
  ident: 10.1016/j.mne.2021.100086_bb0005
  article-title: Nano porous palladium sensor for sensitive and rapid detection of hydrogen
  publication-title: Sens. Lett.
– volume: 36
  start-page: 6343
  issue: 10
  year: 2011
  ident: 10.1016/j.mne.2021.100086_bb0170
  article-title: Synthesis and characterization of TiO2 doped polyaniline composites for hydrogen gas sensing
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.01.141
– volume: 167
  start-page: 117503
  issue: 11
  year: 2020
  ident: 10.1016/j.mne.2021.100086_bb0060
  article-title: Characteristics of gas sensors based on Co-doped ZnO nanorod arrays
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/aba00d
– volume: 114
  start-page: 16168
  issue: 39
  year: 2010
  ident: 10.1016/j.mne.2021.100086_bb0150
  article-title: Graphene/polyaniline nanocomposite for hydrogen sensing
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp103134u
– start-page: 7
  year: 2019
  ident: 10.1016/j.mne.2021.100086_bb0030
– start-page: 2019
  year: 2019
  ident: 10.1016/j.mne.2021.100086_bb0010
  article-title: Carbon nanostructures for energy and sensing applications
  publication-title: J. Nanotechnol.
– volume: 138
  start-page: 28
  issue: 1
  year: 2009
  ident: 10.1016/j.mne.2021.100086_bb0115
  article-title: Raman and MASNMR studies to support the mechanism of low temperature hydrogen sensing by Pd doped mesoporous SnO2
  publication-title: Sensors Actuators B Chem.
  doi: 10.1016/j.snb.2009.02.051
– volume: 217
  start-page: 83
  year: 2018
  ident: 10.1016/j.mne.2021.100086_bb0105
  article-title: Highly sensitive V2O5·1.6H2O nanostructures for sensing of helium gas at room temperature
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2018.01.056
– volume: 35
  start-page: 12568
  issue: 22
  year: 2010
  ident: 10.1016/j.mne.2021.100086_bb0180
  article-title: Ultra-sensitive hydrogen gas sensors based on Pd-decorated tin dioxide nanostructures: room temperature operating sensors
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.08.026
– volume: 8
  issue: 2
  year: 2018
  ident: 10.1016/j.mne.2021.100086_bb0135
  article-title: 2D SnO2 nanosheets: synthesis, characterization, structures, and excellent sensing performance to ethylene glycol
  publication-title: Nanomaterials
  doi: 10.3390/nano8020112
– volume: 167
  start-page: 147508
  issue: 14
  year: 2020
  ident: 10.1016/j.mne.2021.100086_bb0055
  article-title: Platinum nanoparticle-decorated ZnO nanorods improved the performance of methanol gas sensor
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abc4be
– volume: 3
  start-page: 2120
  issue: 7
  year: 2018
  ident: 10.1016/j.mne.2021.100086_bb0070
  article-title: Effect of coral-shaped yttrium Iron garnet particles on the EMI shielding behaviour of yttrium Iron garnet-polyaniline-wax composites
  publication-title: ChemistrySelect
  doi: 10.1002/slct.201702698
– volume: 6
  start-page: 1
  year: 2016
  ident: 10.1016/j.mne.2021.100086_bb0045
  article-title: Palladium-functionalized nanostructured platforms for enhanced hydrogen sensing
  publication-title: Nanomater. Nanotechnol.
  doi: 10.5772/63987
– start-page: 1
  year: 2020
  ident: 10.1016/j.mne.2021.100086_bb0050
  article-title: Aluminum-doped zinc oxide nanorods and methyl alcohol gas sensor application
  publication-title: Microsyst. Technol.
– volume: 37
  start-page: 33
  issue: 1
  year: 2005
  ident: 10.1016/j.mne.2021.100086_bb0120
  article-title: Size effects in the Raman spectra of TiO2 nanoparticles
  publication-title: Vib. Spectrosc.
  doi: 10.1016/j.vibspec.2004.05.006
– start-page: 1
  year: 1971
  ident: 10.1016/j.mne.2021.100086_bb0020
– volume: 24
  start-page: 3426
  issue: 9
  year: 2015
  ident: 10.1016/j.mne.2021.100086_bb0110
  article-title: Synthesis and optical properties of SnO2 structures with different morphologies via hydrothermal method
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-015-1637-4
– volume: 44
  start-page: 20552
  issue: 36
  year: 2019
  ident: 10.1016/j.mne.2021.100086_bb0140
  article-title: An overview on how Pd on resistive-based nanomaterial gas sensors can enhance response toward hydrogen gas
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2019.05.180
– volume: 6
  start-page: 37130
  issue: 43
  year: 2016
  ident: 10.1016/j.mne.2021.100086_bb0125
  article-title: N-type organic thermoelectric materials based on polyaniline doped with the aprotic ionic liquid 1-ethyl-3-methylimidazolium ethyl sulfate
  publication-title: RSC Adv.
  doi: 10.1039/C6RA02334G
– volume: 2013
  year: 2013
  ident: 10.1016/j.mne.2021.100086_bb0130
  article-title: Pd-doped SnO2-based sensor detecting characteristic fault hydrocarbon gases in transformer oil
  publication-title: J. Nanomater.
– volume: 2
  start-page: 100072
  year: 2021
  ident: 10.1016/j.mne.2021.100086_bb0035
  article-title: Reduced graphene oxide based hybrid functionalized films for hydrogen detection: theoretical and experimental studies
  publication-title: Sensors Int.
  doi: 10.1016/j.sintl.2020.100072
– volume: 2005
  start-page: 207
  year: 2005
  ident: 10.1016/j.mne.2021.100086_bb0155
  article-title: A room temperature polyaniline nanofiber hydrogen gas sensor
  publication-title: Proc. IEEE Sens.
SSID ssj0002856847
Score 2.4119947
Snippet In this work, we report unique hybrid composite film fabricated with the amalgamation of metal, semiconductor and polymers for hydrogen sensing application at...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 100086
SubjectTerms DFT
Gas sensor
Hydrogen sensor
PANI
SnO2
Title Room temperature hydrogen sensing with polyaniline/SnO2/Pd nanocomposites
URI https://dx.doi.org/10.1016/j.mne.2021.100086
https://doaj.org/article/6af3d57719994c66886e23d308eff150
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxYEAkT5kgcmpKiJ7TjOCIiqMAACKnWL4i9oVZyqLUP_PT4nQVmAhTVybOvO0r2z371D6EJppohKbJRTRSOWMx3lmmZRxiUpjRKpNoFt8cBHY3Y_SSedVl_ACavlgWvDDXhpqU6zDMrlmeJcCG4I1TQWxtomW4_zuJNMzcKVUcpF6C7m4T2UTmekfdIM5K4PBxKZJAGSQAx11J2gFLT7O7GpE2-Gu2inAYr4qt7gHtoybh_dPXuci0FOqtFCxu8bvaz8IcArYKK7NwwXq3hRzTelmwYRjBf3SAZPGrvSVUAgB5aWWR2g8fD29WYUNc0QIuVj7joSSmutmODMKk2kzcIbnpQmtspnx7kSjEiRgcxs6lGG9imvzxYyqWSZephX0kPUc5UzRwiLMqGaSULCIxy10pBYg2RxXvLEpnkfxa01CtUohUPDinnRUsJmhTdgAQYsagP20eX3L4taJuO3wddg4u-BoHAdPni_F43fi7_83kesdVDRgIUaBPippj-vffwfa5-gbZiy5gGeot56-WnOPDZZy_NwDL8Axofdnw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room+temperature+hydrogen+sensing+with+polyaniline%2FSnO2%2FPd+nanocomposites&rft.jtitle=Micro+and+Nano+Engineering&rft.au=Pippara%2C+Rohit+Kumar&rft.au=Chauhan%2C+Pankaj+Singh&rft.au=Yadav%2C+Anshul&rft.au=Kishnani%2C+Vinay&rft.date=2021-08-01&rft.pub=Elsevier+B.V&rft.issn=2590-0072&rft.volume=12&rft_id=info:doi/10.1016%2Fj.mne.2021.100086&rft.externalDocID=S2590007221000071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2590-0072&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2590-0072&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2590-0072&client=summon