Deep Learning-Based Metaheuristic Weighted K-Nearest Neighbor Algorithm for the Severity Classification of Breast Cancer
The most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of suc...
Saved in:
| Published in | Ingénierie et recherche biomédicale Vol. 44; no. 3; p. 100749 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Masson SAS
01.06.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1959-0318 |
| DOI | 10.1016/j.irbm.2022.100749 |
Cover
| Abstract | The most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of such deadly cancer types. In order to improve the rate of survival and earlier diagnosis, an optimistic research methodology is required in the classification of breast cancer. Consequently, an improved methodology that integrates the principle of deep learning with metaheuristic and classification algorithms is proposed for the severity classification of breast cancer. Hence to enhance the recent findings, an improved CAD methodology is proposed for redressing the healthcare problem.
The work intends to cast a light-of-research towards classifying the severities present in digital mammogram images. For evaluating the work, the publicly available MIAS, INbreast, and WDBC databases are utilized. The proposed work employs transfer learning for extricating the features. The novelty of the work lies in improving the classification performance of the weighted k-nearest neighbor (wKNN) algorithm using particle swarm optimization (PSO), dragon-fly optimization algorithm (DFOA), and crow-search optimization algorithm (CSOA) as a transformation technique i.e., transforming non-linear input features into minimal linear separable feature vectors.
The results obtained for the proposed work are compared then with the Gaussian Naïve Bayes and linear Support Vector Machine algorithms, where the highest accuracy for classification is attained for the proposed work (CSOA-wKNN) with 84.35% for MIAS, 83.19% for INbreast, and 97.36% for WDBC datasets respectively.
The obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the severity classification of breast cancer.
•A novel deep learning-based classification framework is proposed for medical data.•Transfer learning with a novel feature transformation technique is implemented.•The metaheuristic algorithms are utilized for the feature transformation process.•The approach is evaluated for breast cancer classification using different datasets.•The results revealed that the approach is supreme over state-of-the-art techniques. |
|---|---|
| AbstractList | The most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of such deadly cancer types. In order to improve the rate of survival and earlier diagnosis, an optimistic research methodology is required in the classification of breast cancer. Consequently, an improved methodology that integrates the principle of deep learning with metaheuristic and classification algorithms is proposed for the severity classification of breast cancer. Hence to enhance the recent findings, an improved CAD methodology is proposed for redressing the healthcare problem.
The work intends to cast a light-of-research towards classifying the severities present in digital mammogram images. For evaluating the work, the publicly available MIAS, INbreast, and WDBC databases are utilized. The proposed work employs transfer learning for extricating the features. The novelty of the work lies in improving the classification performance of the weighted k-nearest neighbor (wKNN) algorithm using particle swarm optimization (PSO), dragon-fly optimization algorithm (DFOA), and crow-search optimization algorithm (CSOA) as a transformation technique i.e., transforming non-linear input features into minimal linear separable feature vectors.
The results obtained for the proposed work are compared then with the Gaussian Naïve Bayes and linear Support Vector Machine algorithms, where the highest accuracy for classification is attained for the proposed work (CSOA-wKNN) with 84.35% for MIAS, 83.19% for INbreast, and 97.36% for WDBC datasets respectively.
The obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the severity classification of breast cancer.
•A novel deep learning-based classification framework is proposed for medical data.•Transfer learning with a novel feature transformation technique is implemented.•The metaheuristic algorithms are utilized for the feature transformation process.•The approach is evaluated for breast cancer classification using different datasets.•The results revealed that the approach is supreme over state-of-the-art techniques. AbstractObjectiveThe most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of such deadly cancer types. In order to improve the rate of survival and earlier diagnosis, an optimistic research methodology is required in the classification of breast cancer. Consequently, an improved methodology that integrates the principle of deep learning with metaheuristic and classification algorithms is proposed for the severity classification of breast cancer. Hence to enhance the recent findings, an improved CAD methodology is proposed for redressing the healthcare problem. Material and MethodsThe work intends to cast a light-of-research towards classifying the severities present in digital mammogram images. For evaluating the work, the publicly available MIAS, INbreast, and WDBC databases are utilized. The proposed work employs transfer learning for extricating the features. The novelty of the work lies in improving the classification performance of the weighted k-nearest neighbor (wKNN) algorithm using particle swarm optimization (PSO), dragon-fly optimization algorithm (DFOA), and crow-search optimization algorithm (CSOA) as a transformation technique i.e., transforming non-linear input features into minimal linear separable feature vectors. ResultsThe results obtained for the proposed work are compared then with the Gaussian Naïve Bayes and linear Support Vector Machine algorithms, where the highest accuracy for classification is attained for the proposed work (CSOA-wKNN) with 84.35% for MIAS, 83.19% for INbreast, and 97.36% for WDBC datasets respectively. ConclusionThe obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the severity classification of breast cancer. |
| ArticleNumber | 100749 |
| Author | Rajaguru, H. Bharanidharan, N. Sannasi Chakravarthy, S.R. |
| Author_xml | – sequence: 1 givenname: S.R. orcidid: 0000-0002-0162-7206 surname: Sannasi Chakravarthy fullname: Sannasi Chakravarthy, S.R. email: elektroniqz@gmail.com organization: Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India – sequence: 2 givenname: N. orcidid: 0000-0001-9064-8238 surname: Bharanidharan fullname: Bharanidharan, N. email: bharani2410@gmail.com organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India – sequence: 3 givenname: H. surname: Rajaguru fullname: Rajaguru, H. email: harikumarrajaguru@gmail.com organization: Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India |
| BookMark | eNqFkctOAyEUhlnUxFZ9AVe8wFSgnQvGmGi9xqqLalwSyhzaU6czBqixby9jXTWxhgXhD98h_0ePdOqmBkKOOetzxrOTRR_ddNkXTIgYsHwoO6TLZSoTNuDFPul5v2AsG4gB75KvK4APOgbtaqxnyaX2UNJHCHoOK4c-oKFvgLN5iPFD8hTvgQ_0qY2mjaMX1axxGOZLauMpzIFO4BNisqajSnuPFo0O2NS0sfTSgY7wSNcG3CHZs7rycPS7H5DXm-uX0V0yfr69H12MEzNkWUgKyTWLy8qhKbM85VkhpiZPCy5hakuZasZ1YYpcFkMppBVZKbMMUmYNgGX54ICIzVzjGu8dWPXhcKndWnGmWl9qoVpfqvWlNr4iVGxBBsNPj-A0VrvRsw0KsdQnglPeIMTGJTowQZUN7sbPt3BTYR0lVu-wBr9oVq6OuhRXXiimJu2_tt8qBGNcpG3f078H_Pf6NxFUtAs |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2024_106374 crossref_primary_10_1016_j_measurement_2023_113230 crossref_primary_10_1109_JBHI_2024_3350245 crossref_primary_10_1007_s42979_024_02960_9 crossref_primary_10_1109_ACCESS_2023_3298294 crossref_primary_10_1007_s12652_024_04793_z crossref_primary_10_1007_s42835_023_01747_x crossref_primary_10_1038_s41598_024_60245_w crossref_primary_10_1145_3648363 crossref_primary_10_3390_electronics12244923 crossref_primary_10_3389_fonc_2024_1347856 crossref_primary_10_3390_biomimetics8060463 crossref_primary_10_1007_s11042_024_20011_6 crossref_primary_10_3103_S0146411623060093 crossref_primary_10_1049_cit2_12219 crossref_primary_10_1007_s10489_024_06039_z crossref_primary_10_1007_s13198_024_02363_2 crossref_primary_10_1007_s40846_024_00863_x crossref_primary_10_1111_exsy_13486 crossref_primary_10_1007_s00521_025_11051_6 crossref_primary_10_1007_s11220_024_00475_4 crossref_primary_10_4236_abcr_2023_124013 crossref_primary_10_3390_app132412995 crossref_primary_10_1093_jcde_qwae046 crossref_primary_10_1016_j_eswa_2024_126176 crossref_primary_10_1186_s12880_024_01394_2 |
| Cites_doi | 10.14257/ijdta.2014.7.1.06 10.1016/j.compind.2019.02.003 10.1002/ima.22364 10.1016/j.compbiomed.2020.103842 10.1080/03772063.2022.2028584 10.1016/j.tele.2017.01.007 10.31557/APJCP.2019.20.12.3777 10.1016/j.eswa.2008.09.013 10.3322/caac.21660 10.1016/j.compbiomed.2019.103366 10.1007/s13755-018-0057-x 10.1109/ACCESS.2018.2797872 10.1016/j.acra.2011.09.014 10.1109/ACCESS.2020.2973212 10.1016/j.procs.2014.05.310 10.1148/radiol.2019190872 10.1016/j.knosys.2018.08.003 10.1371/journal.pone.0086703 10.1148/radiol.2019190372 10.1016/j.bspc.2010.10.003 10.1007/s00521-015-1920-1 10.1016/j.asoc.2013.09.018 10.1016/j.eswa.2018.08.040 10.1016/j.irbm.2020.12.004 10.1016/j.jocs.2018.09.015 10.1002/ima.22570 10.1016/j.compstruc.2016.03.001 10.1016/j.cie.2019.106040 |
| ContentType | Journal Article |
| Copyright | 2022 AGBM AGBM |
| Copyright_xml | – notice: 2022 AGBM – notice: AGBM |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.irbm.2022.100749 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| EndPage | 100749 |
| ExternalDocumentID | 10_1016_j_irbm_2022_100749 S1959031822001257 1_s2_0_S1959031822001257 |
| GroupedDBID | --- --K --M .1- .FO .~1 0R~ 1B1 1P~ 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AATTM AAXKI AAXUO AAYWO ABBQC ABJNI ABMAC ABMZM ABWVN ABXDB ACDAQ ACGFS ACIEU ACLOT ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EP2 EP3 F0J FDB FEDTE FIRID FNPLU FYGXN GBLVA HVGLF HZ~ J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 ROL SDF SDG SEM SES SPC SPCBC SSH SST SSZ T5K Z5R ~G- ~HD AACTN AFKWA AJOXV AMFUW RIG AAIAV ABLVK ABYKQ AJBFU LCYCR AAYXX CITATION |
| ID | FETCH-LOGICAL-c406t-891a0a0af94cd6751682bc75819ebfd95a01a8c87984929f26d966e50fceef073 |
| IEDL.DBID | .~1 |
| ISSN | 1959-0318 |
| IngestDate | Wed Oct 01 01:31:11 EDT 2025 Thu Apr 24 23:05:16 EDT 2025 Fri Feb 23 02:35:39 EST 2024 Tue Feb 25 19:57:01 EST 2025 Tue Oct 14 19:24:50 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Dragonfly Deep-learning Mammograms Crow-search Breast cancer KNN Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-891a0a0af94cd6751682bc75819ebfd95a01a8c87984929f26d966e50fceef073 |
| ORCID | 0000-0001-9064-8238 0000-0002-0162-7206 |
| PageCount | 1 |
| ParticipantIDs | crossref_primary_10_1016_j_irbm_2022_100749 crossref_citationtrail_10_1016_j_irbm_2022_100749 elsevier_sciencedirect_doi_10_1016_j_irbm_2022_100749 elsevier_clinicalkeyesjournals_1_s2_0_S1959031822001257 elsevier_clinicalkey_doi_10_1016_j_irbm_2022_100749 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-06-01 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: 2023-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ingénierie et recherche biomédicale |
| PublicationYear | 2023 |
| Publisher | Elsevier Masson SAS |
| Publisher_xml | – name: Elsevier Masson SAS |
| References | Dua, Graff (br0210) 2019 Coulibaly, Kamsu-Foguem, Kamissoko, Traore (br0240) 2019; 108 Sannasi Chakravarthy, Rajaguru (br0120) 2020; 30 Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li (br0290) 2018; 161 Saçlı, Aydınalp, Cansız, Joof, Yilmaz, Çayören (br0160) 2019; 112 Moreira, Amaral, Domingues, Cardoso, Cardoso, Cardoso (br0200) 2012; 19 Buciu, Gacsadi (br0330) 2011; 6 Sadad, Munir, Saba, Hussain (br0380) 2018; 29 Das, Turkoglu, Sengur (br0430) 2009; 36 Sannasi Chakravarthy, Rajaguru (br0110) 2019; 20 Lotter, Diab, Haslam, Kim, Grisot, Wu (br0050) 2021; 11 Bijalwan, Kumar, Kumari, Pascual (br0150) 2014; 7 Deniz, Şengür, Kadiroğlu, Guo, Bajaj, Budak (br0230) 2018; 6 Mirjalili (br0280) 2016; 27 Lou, Wang, Chen, Chen, Jiang, Zhang (br0310) 2014; 9 Nilashi, Ibrahim, Ahmadi, Shahmoradi (br0370) 2017; 34 Dokeroglu, Sevinc, Kucukyilmaz, Cosar (br0080) 2019; 137 Imandoust, Bolandraftar (br0140) 2013; 3 Sannasi Chakravarthy, Rajaguru (br0020) 2021 Sannasi Chakravarthy, Rajaguru (br0100) 2020 Hepsağ, Özel, Yazıcı (br0360) 2017 Alkhatib, Najadat, Hmeidi, Shatnawi (br0180) 2013; 3 Eberhart, Kennedy (br0270) 1995; vol. 4 Lu, Wang, Yoon (br0400) 2019; 116 Sannasi Chakravarthy, Bharanidharan, Rajaguru (br0030) 2022 Wang, Gan, Liu, Yu, Jia, Huang (br0250) 2020; 8 Askarzadeh (br0300) 2016; 169 Xue, Zhang, Browne (br0350) 2014; 18 Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal (br0010) 2021 Dembrower, Liu, Azizpour, Eklund, Smith, Lindholm (br0070) 2020; 294 Suckling, Boggis, Hutt (br0190) Genlin (br0090) 2004; 2 Cao, Wu, Yan, Li (br0320) 2011 Zhou, Wu, Huang, Wu, Ye, Wei (br0060) 2020; 294 Sannasi Chakravarthy, Rajaguru (br0260) 2021; 37 Sannasi Chakravarthy, Rajaguru (br0420) 2021; 31 Saygili (br0390) 2018; 2 Sannasi Chakravarthy, Rajaguru (br0440) 2022 Mgboh, Ogbuokiri, Obaido, Aruleba (br0450) 2020 Chang, Jung, Ke, Song, Hwang (br0220) 2018; 25 Rampun, Morrow, Scotney, Wang (br0410) 2020; 122 Rajaguru (br0170) 2019; 20 Abirami, Harikumar, Chakravarthy (br0040) 2016 Chakravarthy, Rajaguru (br0130) 2022; 43 Bamakan, Gholami (br0340) 2014; 31 Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0020) 2021 Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0100) 2020 Sadad (10.1016/j.irbm.2022.100749_br0380) 2018; 29 Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0120) 2020; 30 Xue (10.1016/j.irbm.2022.100749_br0350) 2014; 18 Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0030) 2022 Askarzadeh (10.1016/j.irbm.2022.100749_br0300) 2016; 169 Moreira (10.1016/j.irbm.2022.100749_br0200) 2012; 19 Mafarja (10.1016/j.irbm.2022.100749_br0290) 2018; 161 Lou (10.1016/j.irbm.2022.100749_br0310) 2014; 9 Saçlı (10.1016/j.irbm.2022.100749_br0160) 2019; 112 Das (10.1016/j.irbm.2022.100749_br0430) 2009; 36 Cao (10.1016/j.irbm.2022.100749_br0320) 2011 Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0420) 2021; 31 Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0260) 2021; 37 Rampun (10.1016/j.irbm.2022.100749_br0410) 2020; 122 Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0440) 2022 Genlin (10.1016/j.irbm.2022.100749_br0090) 2004; 2 Zhou (10.1016/j.irbm.2022.100749_br0060) 2020; 294 Coulibaly (10.1016/j.irbm.2022.100749_br0240) 2019; 108 Suckling (10.1016/j.irbm.2022.100749_br0190) Imandoust (10.1016/j.irbm.2022.100749_br0140) 2013; 3 Abirami (10.1016/j.irbm.2022.100749_br0040) 2016 Alkhatib (10.1016/j.irbm.2022.100749_br0180) 2013; 3 Eberhart (10.1016/j.irbm.2022.100749_br0270) 1995; vol. 4 Nilashi (10.1016/j.irbm.2022.100749_br0370) 2017; 34 Chakravarthy (10.1016/j.irbm.2022.100749_br0130) 2022; 43 Rajaguru (10.1016/j.irbm.2022.100749_br0170) 2019; 20 Lu (10.1016/j.irbm.2022.100749_br0400) 2019; 116 Dua (10.1016/j.irbm.2022.100749_br0210) 2019 Buciu (10.1016/j.irbm.2022.100749_br0330) 2011; 6 Bamakan (10.1016/j.irbm.2022.100749_br0340) 2014; 31 Saygili (10.1016/j.irbm.2022.100749_br0390) 2018; 2 Hepsağ (10.1016/j.irbm.2022.100749_br0360) 2017 Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0110) 2019; 20 Mirjalili (10.1016/j.irbm.2022.100749_br0280) 2016; 27 Chang (10.1016/j.irbm.2022.100749_br0220) 2018; 25 Sung (10.1016/j.irbm.2022.100749_br0010) 2021 Mgboh (10.1016/j.irbm.2022.100749_br0450) 2020 Bijalwan (10.1016/j.irbm.2022.100749_br0150) 2014; 7 Lotter (10.1016/j.irbm.2022.100749_br0050) 2021; 11 Dembrower (10.1016/j.irbm.2022.100749_br0070) 2020; 294 Deniz (10.1016/j.irbm.2022.100749_br0230) 2018; 6 Wang (10.1016/j.irbm.2022.100749_br0250) 2020; 8 Dokeroglu (10.1016/j.irbm.2022.100749_br0080) 2019; 137 |
| References_xml | – volume: 31 start-page: 632 year: 2014 end-page: 638 ident: br0340 article-title: A novel feature selection method based on an integrated data envelopment analysis and entropy model publication-title: Proc Comput Sci – volume: 11 start-page: 1 year: 2021 end-page: 6 ident: br0050 article-title: Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach publication-title: Nat Med – volume: 161 start-page: 185 year: 2018 end-page: 204 ident: br0290 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl-Based Syst – start-page: 451 year: 2022 end-page: 460 ident: br0440 article-title: Ensemble-based weighted voting approach for the early diagnosis of diabetes mellitus publication-title: Sustainable communication networks and application – ident: br0190 article-title: Mammographic image analysis society (MIAS) database 2010 – volume: 3 start-page: 32 year: 2013 end-page: 44 ident: br0180 article-title: Stock price prediction using k-nearest neighbor (kNN) algorithm publication-title: Int J Bus Commun Humanit Technol – volume: 169 start-page: 1 year: 2016 end-page: 2 ident: br0300 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm publication-title: Comput Struct – volume: 137 year: 2019 ident: br0080 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput Ind Eng – volume: 6 start-page: 370 year: 2011 end-page: 378 ident: br0330 article-title: Directional features for automatic tumor classification of mammogram images publication-title: Biomed Signal Process Control – volume: 122 year: 2020 ident: br0410 article-title: Breast density classification in mammograms: an investigation of encoding techniques in binary-based local patterns publication-title: Comput Biol Med – volume: 2 start-page: 69 year: 2004 end-page: 73 ident: br0090 article-title: Survey on genetic algorithm publication-title: Comput Appl Softw – year: 2022 ident: br0030 article-title: Multi-deep CNN based experimentations for early diagnosis of breast cancer publication-title: IETE J Res – start-page: 1 year: 2020 end-page: 34 ident: br0100 article-title: A novel improved crow-search algorithm to classify the severity in digital mammograms publication-title: Int J Imaging Syst Technol – volume: 29 start-page: 34 year: 2018 end-page: 45 ident: br0380 article-title: Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature publication-title: J Comput Sci – start-page: 377 year: 2020 end-page: 391 ident: br0450 article-title: Visual data mining: a comparative analysis of selected datasets publication-title: International conference on intelligent systems design and applications – volume: 294 start-page: 19 year: 2020 end-page: 28 ident: br0060 article-title: Lymph node metastasis prediction from primary breast cancer US images using deep learning publication-title: Radiology – volume: 8 start-page: 30591 year: 2020 end-page: 30602 ident: br0250 article-title: A novel weighted KNN algorithm based on RSS similarity and position distance for Wi-Fi fingerprint positioning publication-title: IEEE Access – start-page: 2421 year: 2011 end-page: 2424 ident: br0320 article-title: Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos publication-title: 2011 18th IEEE international conference on image processing – volume: 112 year: 2019 ident: br0160 article-title: Microwave dielectric property based classification of renal calculi: application of a kNN algorithm publication-title: Comput Biol Med – start-page: 418 year: 2017 end-page: 423 ident: br0360 article-title: Using deep learning for mammography classification publication-title: 2017 international conference on computer science and engineering (UBMK) – volume: 294 start-page: 265 year: 2020 end-page: 272 ident: br0070 article-title: Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction publication-title: Radiology – volume: 31 start-page: 1861 year: 2021 end-page: 1881 ident: br0420 article-title: Deep-features with Bayesian optimized classifiers for the breast cancer diagnosis publication-title: Int J Imaging Syst Technol – volume: 6 start-page: 1 year: 2018 end-page: 7 ident: br0230 article-title: Transfer learning based histopathologic image classification for breast cancer detection publication-title: Health Inf Sci Syst – volume: 20 start-page: 2159 year: 2019 ident: br0110 article-title: Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pacific journal of cancer prevention publication-title: APJCP – volume: 116 start-page: 340 year: 2019 end-page: 350 ident: br0400 article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis publication-title: Expert Syst Appl – year: 2019 ident: br0210 article-title: UCI machine learning repository – volume: 2 start-page: 48 year: 2018 end-page: 56 ident: br0390 article-title: Classification and diagnostic prediction of breast cancers via different classifiers publication-title: Int Sci Vocat Stud J – start-page: 1 year: 2021 end-page: 4 ident: br0020 article-title: A systematic review on screening, examining and classification of breast cancer publication-title: 2021 smart technologies, communication and robotics (STCR) – volume: 19 start-page: 236 year: 2012 end-page: 248 ident: br0200 article-title: Inbreast: toward a full-field digital mammographic database publication-title: Acad Radiol – volume: 20 start-page: 3777 year: 2019 ident: br0170 article-title: Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer publication-title: Asian Pac J Cancer Prev – volume: 108 start-page: 115 year: 2019 end-page: 120 ident: br0240 article-title: Deep neural networks with transfer learning in Millet crop images publication-title: Comput Ind – volume: 30 start-page: 126 year: 2020 end-page: 146 ident: br0120 article-title: Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: a comparison publication-title: Int J Imaging Syst Technol – volume: 37 start-page: 83 year: 2021 end-page: 103 ident: br0260 article-title: A comparison of detrend fluctuation analysis, Gaussian mixture model and artificial neural network performance in the detection o f microcalcification from digital mammograms – volume: 18 start-page: 261 year: 2014 end-page: 276 ident: br0350 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl Soft Comput – volume: 3 start-page: 605 year: 2013 end-page: 610 ident: br0140 article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: theoretical background publication-title: Int J Eng Res Appl – volume: 7 start-page: 61 year: 2014 end-page: 70 ident: br0150 article-title: KNN based machine learning approach for text and document mining publication-title: Int J Database Theory Appl – volume: 27 start-page: 1053 year: 2016 end-page: 1073 ident: br0280 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput Appl – volume: 34 start-page: 133 year: 2017 end-page: 144 ident: br0370 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat Inform – volume: vol. 4 start-page: 1942 year: 1995 end-page: 1948 ident: br0270 article-title: Particle swarm optimization publication-title: Proceedings of the IEEE international conference on neural networks – volume: 25 start-page: 11782 year: 2018 end-page: 11792 ident: br0220 article-title: Automatic contrast-limited adaptive histogram equalization with dual gamma correction publication-title: IEEE Access – year: 2021 ident: br0010 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin – volume: 9 year: 2014 ident: br0310 article-title: Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naive Bayes publication-title: PLoS ONE – volume: 43 start-page: 49 year: 2022 end-page: 61 ident: br0130 article-title: Automatic detection and classification of mammograms using improved extreme learning machine with deep learning publication-title: IRBM – volume: 36 start-page: 7675 year: 2009 end-page: 7680 ident: br0430 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: Expert Syst Appl – start-page: 2327 year: 2016 end-page: 2331 ident: br0040 article-title: Performance analysis and detection of micro calcification in digital mammograms using wavelet features publication-title: 2016 international conference on wireless communications, signal processing and networking (WiSPNET) – volume: 7 start-page: 61 issue: 1 year: 2014 ident: 10.1016/j.irbm.2022.100749_br0150 article-title: KNN based machine learning approach for text and document mining publication-title: Int J Database Theory Appl doi: 10.14257/ijdta.2014.7.1.06 – volume: 108 start-page: 115 year: 2019 ident: 10.1016/j.irbm.2022.100749_br0240 article-title: Deep neural networks with transfer learning in Millet crop images publication-title: Comput Ind doi: 10.1016/j.compind.2019.02.003 – volume: 30 start-page: 126 year: 2020 ident: 10.1016/j.irbm.2022.100749_br0120 article-title: Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: a comparison publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22364 – volume: 122 year: 2020 ident: 10.1016/j.irbm.2022.100749_br0410 article-title: Breast density classification in mammograms: an investigation of encoding techniques in binary-based local patterns publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2020.103842 – year: 2022 ident: 10.1016/j.irbm.2022.100749_br0030 article-title: Multi-deep CNN based experimentations for early diagnosis of breast cancer publication-title: IETE J Res doi: 10.1080/03772063.2022.2028584 – start-page: 1 year: 2020 ident: 10.1016/j.irbm.2022.100749_br0100 article-title: A novel improved crow-search algorithm to classify the severity in digital mammograms publication-title: Int J Imaging Syst Technol – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.irbm.2022.100749_br0050 article-title: Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach publication-title: Nat Med – volume: 34 start-page: 133 issue: 4 year: 2017 ident: 10.1016/j.irbm.2022.100749_br0370 article-title: A knowledge-based system for breast cancer classification using fuzzy logic method publication-title: Telemat Inform doi: 10.1016/j.tele.2017.01.007 – volume: 20 start-page: 3777 issue: 12 year: 2019 ident: 10.1016/j.irbm.2022.100749_br0170 article-title: Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer publication-title: Asian Pac J Cancer Prev doi: 10.31557/APJCP.2019.20.12.3777 – volume: 36 start-page: 7675 issue: 4 year: 2009 ident: 10.1016/j.irbm.2022.100749_br0430 article-title: Effective diagnosis of heart disease through neural networks ensembles publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2008.09.013 – volume: 20 start-page: 2159 issue: 7 year: 2019 ident: 10.1016/j.irbm.2022.100749_br0110 article-title: Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pacific journal of cancer prevention publication-title: APJCP – volume: 37 start-page: 83 issue: 1 year: 2021 ident: 10.1016/j.irbm.2022.100749_br0260 article-title: A comparison of detrend fluctuation analysis, Gaussian mixture model and artificial neural network performance in the detection o f microcalcification from digital mammograms – volume: 2 start-page: 48 issue: 2 year: 2018 ident: 10.1016/j.irbm.2022.100749_br0390 article-title: Classification and diagnostic prediction of breast cancers via different classifiers publication-title: Int Sci Vocat Stud J – year: 2021 ident: 10.1016/j.irbm.2022.100749_br0010 article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J Clin doi: 10.3322/caac.21660 – volume: 3 start-page: 605 issue: 5 year: 2013 ident: 10.1016/j.irbm.2022.100749_br0140 article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: theoretical background publication-title: Int J Eng Res Appl – start-page: 2327 year: 2016 ident: 10.1016/j.irbm.2022.100749_br0040 article-title: Performance analysis and detection of micro calcification in digital mammograms using wavelet features – volume: 112 year: 2019 ident: 10.1016/j.irbm.2022.100749_br0160 article-title: Microwave dielectric property based classification of renal calculi: application of a kNN algorithm publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2019.103366 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.irbm.2022.100749_br0230 article-title: Transfer learning based histopathologic image classification for breast cancer detection publication-title: Health Inf Sci Syst doi: 10.1007/s13755-018-0057-x – volume: 25 start-page: 11782 issue: 6 year: 2018 ident: 10.1016/j.irbm.2022.100749_br0220 article-title: Automatic contrast-limited adaptive histogram equalization with dual gamma correction publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2797872 – volume: vol. 4 start-page: 1942 year: 1995 ident: 10.1016/j.irbm.2022.100749_br0270 article-title: Particle swarm optimization – volume: 19 start-page: 236 issue: 2 year: 2012 ident: 10.1016/j.irbm.2022.100749_br0200 article-title: Inbreast: toward a full-field digital mammographic database publication-title: Acad Radiol doi: 10.1016/j.acra.2011.09.014 – volume: 8 start-page: 30591 year: 2020 ident: 10.1016/j.irbm.2022.100749_br0250 article-title: A novel weighted KNN algorithm based on RSS similarity and position distance for Wi-Fi fingerprint positioning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973212 – volume: 31 start-page: 632 year: 2014 ident: 10.1016/j.irbm.2022.100749_br0340 article-title: A novel feature selection method based on an integrated data envelopment analysis and entropy model publication-title: Proc Comput Sci doi: 10.1016/j.procs.2014.05.310 – volume: 294 start-page: 265 issue: 2 year: 2020 ident: 10.1016/j.irbm.2022.100749_br0070 article-title: Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction publication-title: Radiology doi: 10.1148/radiol.2019190872 – volume: 161 start-page: 185 year: 2018 ident: 10.1016/j.irbm.2022.100749_br0290 article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2018.08.003 – start-page: 451 year: 2022 ident: 10.1016/j.irbm.2022.100749_br0440 article-title: Ensemble-based weighted voting approach for the early diagnosis of diabetes mellitus – start-page: 377 year: 2020 ident: 10.1016/j.irbm.2022.100749_br0450 article-title: Visual data mining: a comparative analysis of selected datasets – volume: 9 issue: 1 year: 2014 ident: 10.1016/j.irbm.2022.100749_br0310 article-title: Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naive Bayes publication-title: PLoS ONE doi: 10.1371/journal.pone.0086703 – volume: 294 start-page: 19 issue: 1 year: 2020 ident: 10.1016/j.irbm.2022.100749_br0060 article-title: Lymph node metastasis prediction from primary breast cancer US images using deep learning publication-title: Radiology doi: 10.1148/radiol.2019190372 – volume: 2 start-page: 69 year: 2004 ident: 10.1016/j.irbm.2022.100749_br0090 article-title: Survey on genetic algorithm publication-title: Comput Appl Softw – volume: 6 start-page: 370 issue: 4 year: 2011 ident: 10.1016/j.irbm.2022.100749_br0330 article-title: Directional features for automatic tumor classification of mammogram images publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2010.10.003 – start-page: 2421 year: 2011 ident: 10.1016/j.irbm.2022.100749_br0320 article-title: Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos – start-page: 418 year: 2017 ident: 10.1016/j.irbm.2022.100749_br0360 article-title: Using deep learning for mammography classification – start-page: 1 year: 2021 ident: 10.1016/j.irbm.2022.100749_br0020 article-title: A systematic review on screening, examining and classification of breast cancer – volume: 27 start-page: 1053 issue: 4 year: 2016 ident: 10.1016/j.irbm.2022.100749_br0280 article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1920-1 – volume: 18 start-page: 261 year: 2014 ident: 10.1016/j.irbm.2022.100749_br0350 article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2013.09.018 – volume: 3 start-page: 32 issue: 3 year: 2013 ident: 10.1016/j.irbm.2022.100749_br0180 article-title: Stock price prediction using k-nearest neighbor (kNN) algorithm publication-title: Int J Bus Commun Humanit Technol – volume: 116 start-page: 340 year: 2019 ident: 10.1016/j.irbm.2022.100749_br0400 article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.08.040 – volume: 43 start-page: 49 year: 2022 ident: 10.1016/j.irbm.2022.100749_br0130 article-title: Automatic detection and classification of mammograms using improved extreme learning machine with deep learning publication-title: IRBM doi: 10.1016/j.irbm.2020.12.004 – volume: 29 start-page: 34 year: 2018 ident: 10.1016/j.irbm.2022.100749_br0380 article-title: Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature publication-title: J Comput Sci doi: 10.1016/j.jocs.2018.09.015 – volume: 31 start-page: 1861 year: 2021 ident: 10.1016/j.irbm.2022.100749_br0420 article-title: Deep-features with Bayesian optimized classifiers for the breast cancer diagnosis publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22570 – year: 2019 ident: 10.1016/j.irbm.2022.100749_br0210 – volume: 169 start-page: 1 year: 2016 ident: 10.1016/j.irbm.2022.100749_br0300 article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm publication-title: Comput Struct doi: 10.1016/j.compstruc.2016.03.001 – volume: 137 year: 2019 ident: 10.1016/j.irbm.2022.100749_br0080 article-title: A survey on new generation metaheuristic algorithms publication-title: Comput Ind Eng doi: 10.1016/j.cie.2019.106040 – ident: 10.1016/j.irbm.2022.100749_br0190 |
| SSID | ssj0063231 |
| Score | 2.448907 |
| Snippet | The most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung... AbstractObjectiveThe most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women,... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 100749 |
| SubjectTerms | Breast cancer Crow-search Deep-learning Dragonfly Internal Medicine KNN Mammograms Particle swarm optimization |
| Title | Deep Learning-Based Metaheuristic Weighted K-Nearest Neighbor Algorithm for the Severity Classification of Breast Cancer |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S1959031822001257 https://www.clinicalkey.es/playcontent/1-s2.0-S1959031822001257 https://dx.doi.org/10.1016/j.irbm.2022.100749 |
| Volume | 44 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1959-0318 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0063231 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1959-0318 databaseCode: ACRLP dateStart: 20070301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0063231 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1959-0318 databaseCode: .~1 dateStart: 20070301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0063231 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 1959-0318 databaseCode: AIKHN dateStart: 20070301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0063231 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1959-0318 databaseCode: AKRWK dateStart: 20071101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0063231 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvXgxGjXig-zBm6m0Sx_bI6IEJXBBIrdNt7sLGAUCNfHkb3em3RKNBBPT22YnbWZnZ75pvpkh5MpNuGFxGoLxepCgMMkdGXPfSUwQ-bEBDGvwf0evH3aG_uMoGFVIq6yFQVql9f2FT8-9tV2pW23WF9NpfYBtUdAkGdKCwPKwgt2PcIrBzeea5hE2WD6TEDc7uNsWzhQcr-lSYjU6YzlZAPtpbgpO3wJO-4DsW6RIm8XHHJKKnh2RjzutF9Q2RR07txCDFO3pLJno96LnMn3Of3bCctfpY4PaVUb7uASHTZuv4_lymk3eKGBVCtiPDjTYMiBxmk_HRN5QflR0bugt8tUz2kK7WB6TYfv-qdVx7PAEJ4UYnTk89hIXHhP7qYKswAs5kylkB16spVFxkLhewlMewckARDIsVJD56MA1EDYNXPwTsjObz_QpoVxy7ckwgmAPeEMpmSRpoBQAC5U2IOGqEq_UmkhtZ3EccPEqSgrZi0BNC9S0KDRdJddrmUXRV2Pr7kZ5GKKsGAUfJ8Dtb5WKNknplb2mK-GJFROu-GVKVRKsJX9Y4x9vPPun3DnZwzH2BQXtguxky3d9CWAnk7Xcmmtkt_nQ7fS_AGNd_Ys |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HOCCQIAYzxy4obI26yM9jsE0GNsFENyipkm2obFNWydx4rdjt-kEYgIJ9RbFauU49ufqs03IuZtww-I0BOP1IEFhkjsy5r6TmCDyYwMY1uD_jk43bD35dy_BywpplLUwSKu0vr_w6bm3titVq83qZDCoPmBbFDRJhrQgsLxVsu4HLMIM7PJjwfMIaywfSoi7HdxuK2cKktdgKrEcnbGcLYANNZdFpy8Rp7lNtixUpPXia3bIih7tkvdrrSfUdkXtOVcQhBTt6Czp63nRdJk-5387YbntdLFD7SyjXVyC06b1YW88HWT9NwpglQL4ow8ajBmgOM3HYyJxKD8rOjb0CgnrGW2gYUz3yFPz5rHRcuz0BCeFIJ05PPYSFx4T-6mCtMALOZMppAderKVRcZC4XsJTHsHRAEYyLFSQ-ujANRA3Ddz8fbI2Go_0AaFccu3JMIJoD4BDKZkkaaAUIAuV1iDjqhCv1JpIbWtxnHAxFCWH7FWgpgVqWhSarpCLhcykaKzx6-5aeRiiLBkFJyfA7_8qFS2T0jN7T2fCEzMmXPHDliokWEh-M8c_3nj4T7kzstF67NyL-9tu-4hs4kz7go92TNay6VyfAPLJ5Glu2Z825P8g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Metaheuristic+Weighted+K-Nearest+Neighbor+Algorithm+for+the+Severity+Classification+of+Breast+Cancer&rft.jtitle=Ing%C3%A9nierie+et+recherche+biom%C3%A9dicale&rft.au=Sannasi+Chakravarthy%2C+S.R.&rft.au=Bharanidharan%2C+N.&rft.au=Rajaguru%2C+H.&rft.date=2023-06-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1959-0318&rft.volume=44&rft.issue=3&rft_id=info:doi/10.1016%2Fj.irbm.2022.100749&rft.externalDocID=S1959031822001257 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1959-0318&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1959-0318&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1959-0318&client=summon |