Deep Learning-Based Metaheuristic Weighted K-Nearest Neighbor Algorithm for the Severity Classification of Breast Cancer

The most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of suc...

Full description

Saved in:
Bibliographic Details
Published inIngénierie et recherche biomédicale Vol. 44; no. 3; p. 100749
Main Authors Sannasi Chakravarthy, S.R., Bharanidharan, N., Rajaguru, H.
Format Journal Article
LanguageEnglish
Published Elsevier Masson SAS 01.06.2023
Subjects
Online AccessGet full text
ISSN1959-0318
DOI10.1016/j.irbm.2022.100749

Cover

Abstract The most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of such deadly cancer types. In order to improve the rate of survival and earlier diagnosis, an optimistic research methodology is required in the classification of breast cancer. Consequently, an improved methodology that integrates the principle of deep learning with metaheuristic and classification algorithms is proposed for the severity classification of breast cancer. Hence to enhance the recent findings, an improved CAD methodology is proposed for redressing the healthcare problem. The work intends to cast a light-of-research towards classifying the severities present in digital mammogram images. For evaluating the work, the publicly available MIAS, INbreast, and WDBC databases are utilized. The proposed work employs transfer learning for extricating the features. The novelty of the work lies in improving the classification performance of the weighted k-nearest neighbor (wKNN) algorithm using particle swarm optimization (PSO), dragon-fly optimization algorithm (DFOA), and crow-search optimization algorithm (CSOA) as a transformation technique i.e., transforming non-linear input features into minimal linear separable feature vectors. The results obtained for the proposed work are compared then with the Gaussian Naïve Bayes and linear Support Vector Machine algorithms, where the highest accuracy for classification is attained for the proposed work (CSOA-wKNN) with 84.35% for MIAS, 83.19% for INbreast, and 97.36% for WDBC datasets respectively. The obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the severity classification of breast cancer. •A novel deep learning-based classification framework is proposed for medical data.•Transfer learning with a novel feature transformation technique is implemented.•The metaheuristic algorithms are utilized for the feature transformation process.•The approach is evaluated for breast cancer classification using different datasets.•The results revealed that the approach is supreme over state-of-the-art techniques.
AbstractList The most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of such deadly cancer types. In order to improve the rate of survival and earlier diagnosis, an optimistic research methodology is required in the classification of breast cancer. Consequently, an improved methodology that integrates the principle of deep learning with metaheuristic and classification algorithms is proposed for the severity classification of breast cancer. Hence to enhance the recent findings, an improved CAD methodology is proposed for redressing the healthcare problem. The work intends to cast a light-of-research towards classifying the severities present in digital mammogram images. For evaluating the work, the publicly available MIAS, INbreast, and WDBC databases are utilized. The proposed work employs transfer learning for extricating the features. The novelty of the work lies in improving the classification performance of the weighted k-nearest neighbor (wKNN) algorithm using particle swarm optimization (PSO), dragon-fly optimization algorithm (DFOA), and crow-search optimization algorithm (CSOA) as a transformation technique i.e., transforming non-linear input features into minimal linear separable feature vectors. The results obtained for the proposed work are compared then with the Gaussian Naïve Bayes and linear Support Vector Machine algorithms, where the highest accuracy for classification is attained for the proposed work (CSOA-wKNN) with 84.35% for MIAS, 83.19% for INbreast, and 97.36% for WDBC datasets respectively. The obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the severity classification of breast cancer. •A novel deep learning-based classification framework is proposed for medical data.•Transfer learning with a novel feature transformation technique is implemented.•The metaheuristic algorithms are utilized for the feature transformation process.•The approach is evaluated for breast cancer classification using different datasets.•The results revealed that the approach is supreme over state-of-the-art techniques.
AbstractObjectiveThe most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung cancer. This made the researchers to focus more on developing effective Computer-Aided Detection (CAD) methodologies for the classification of such deadly cancer types. In order to improve the rate of survival and earlier diagnosis, an optimistic research methodology is required in the classification of breast cancer. Consequently, an improved methodology that integrates the principle of deep learning with metaheuristic and classification algorithms is proposed for the severity classification of breast cancer. Hence to enhance the recent findings, an improved CAD methodology is proposed for redressing the healthcare problem. Material and MethodsThe work intends to cast a light-of-research towards classifying the severities present in digital mammogram images. For evaluating the work, the publicly available MIAS, INbreast, and WDBC databases are utilized. The proposed work employs transfer learning for extricating the features. The novelty of the work lies in improving the classification performance of the weighted k-nearest neighbor (wKNN) algorithm using particle swarm optimization (PSO), dragon-fly optimization algorithm (DFOA), and crow-search optimization algorithm (CSOA) as a transformation technique i.e., transforming non-linear input features into minimal linear separable feature vectors. ResultsThe results obtained for the proposed work are compared then with the Gaussian Naïve Bayes and linear Support Vector Machine algorithms, where the highest accuracy for classification is attained for the proposed work (CSOA-wKNN) with 84.35% for MIAS, 83.19% for INbreast, and 97.36% for WDBC datasets respectively. ConclusionThe obtained results reveal that the proposed Computer-Aided-Diagnosis (CAD) tool is robust for the severity classification of breast cancer.
ArticleNumber 100749
Author Rajaguru, H.
Bharanidharan, N.
Sannasi Chakravarthy, S.R.
Author_xml – sequence: 1
  givenname: S.R.
  orcidid: 0000-0002-0162-7206
  surname: Sannasi Chakravarthy
  fullname: Sannasi Chakravarthy, S.R.
  email: elektroniqz@gmail.com
  organization: Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India
– sequence: 2
  givenname: N.
  orcidid: 0000-0001-9064-8238
  surname: Bharanidharan
  fullname: Bharanidharan, N.
  email: bharani2410@gmail.com
  organization: School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India
– sequence: 3
  givenname: H.
  surname: Rajaguru
  fullname: Rajaguru, H.
  email: harikumarrajaguru@gmail.com
  organization: Department of ECE, Bannari Amman Institute of Technology, Sathyamangalam, India
BookMark eNqFkctOAyEUhlnUxFZ9AVe8wFSgnQvGmGi9xqqLalwSyhzaU6czBqixby9jXTWxhgXhD98h_0ePdOqmBkKOOetzxrOTRR_ddNkXTIgYsHwoO6TLZSoTNuDFPul5v2AsG4gB75KvK4APOgbtaqxnyaX2UNJHCHoOK4c-oKFvgLN5iPFD8hTvgQ_0qY2mjaMX1axxGOZLauMpzIFO4BNisqajSnuPFo0O2NS0sfTSgY7wSNcG3CHZs7rycPS7H5DXm-uX0V0yfr69H12MEzNkWUgKyTWLy8qhKbM85VkhpiZPCy5hakuZasZ1YYpcFkMppBVZKbMMUmYNgGX54ICIzVzjGu8dWPXhcKndWnGmWl9qoVpfqvWlNr4iVGxBBsNPj-A0VrvRsw0KsdQnglPeIMTGJTowQZUN7sbPt3BTYR0lVu-wBr9oVq6OuhRXXiimJu2_tt8qBGNcpG3f078H_Pf6NxFUtAs
CitedBy_id crossref_primary_10_1016_j_bspc_2024_106374
crossref_primary_10_1016_j_measurement_2023_113230
crossref_primary_10_1109_JBHI_2024_3350245
crossref_primary_10_1007_s42979_024_02960_9
crossref_primary_10_1109_ACCESS_2023_3298294
crossref_primary_10_1007_s12652_024_04793_z
crossref_primary_10_1007_s42835_023_01747_x
crossref_primary_10_1038_s41598_024_60245_w
crossref_primary_10_1145_3648363
crossref_primary_10_3390_electronics12244923
crossref_primary_10_3389_fonc_2024_1347856
crossref_primary_10_3390_biomimetics8060463
crossref_primary_10_1007_s11042_024_20011_6
crossref_primary_10_3103_S0146411623060093
crossref_primary_10_1049_cit2_12219
crossref_primary_10_1007_s10489_024_06039_z
crossref_primary_10_1007_s13198_024_02363_2
crossref_primary_10_1007_s40846_024_00863_x
crossref_primary_10_1111_exsy_13486
crossref_primary_10_1007_s00521_025_11051_6
crossref_primary_10_1007_s11220_024_00475_4
crossref_primary_10_4236_abcr_2023_124013
crossref_primary_10_3390_app132412995
crossref_primary_10_1093_jcde_qwae046
crossref_primary_10_1016_j_eswa_2024_126176
crossref_primary_10_1186_s12880_024_01394_2
Cites_doi 10.14257/ijdta.2014.7.1.06
10.1016/j.compind.2019.02.003
10.1002/ima.22364
10.1016/j.compbiomed.2020.103842
10.1080/03772063.2022.2028584
10.1016/j.tele.2017.01.007
10.31557/APJCP.2019.20.12.3777
10.1016/j.eswa.2008.09.013
10.3322/caac.21660
10.1016/j.compbiomed.2019.103366
10.1007/s13755-018-0057-x
10.1109/ACCESS.2018.2797872
10.1016/j.acra.2011.09.014
10.1109/ACCESS.2020.2973212
10.1016/j.procs.2014.05.310
10.1148/radiol.2019190872
10.1016/j.knosys.2018.08.003
10.1371/journal.pone.0086703
10.1148/radiol.2019190372
10.1016/j.bspc.2010.10.003
10.1007/s00521-015-1920-1
10.1016/j.asoc.2013.09.018
10.1016/j.eswa.2018.08.040
10.1016/j.irbm.2020.12.004
10.1016/j.jocs.2018.09.015
10.1002/ima.22570
10.1016/j.compstruc.2016.03.001
10.1016/j.cie.2019.106040
ContentType Journal Article
Copyright 2022 AGBM
AGBM
Copyright_xml – notice: 2022 AGBM
– notice: AGBM
DBID AAYXX
CITATION
DOI 10.1016/j.irbm.2022.100749
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
EndPage 100749
ExternalDocumentID 10_1016_j_irbm_2022_100749
S1959031822001257
1_s2_0_S1959031822001257
GroupedDBID ---
--K
--M
.1-
.FO
.~1
0R~
1B1
1P~
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EP2
EP3
F0J
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
ROL
SDF
SDG
SEM
SES
SPC
SPCBC
SSH
SST
SSZ
T5K
Z5R
~G-
~HD
AACTN
AFKWA
AJOXV
AMFUW
RIG
AAIAV
ABLVK
ABYKQ
AJBFU
LCYCR
AAYXX
CITATION
ID FETCH-LOGICAL-c406t-891a0a0af94cd6751682bc75819ebfd95a01a8c87984929f26d966e50fceef073
IEDL.DBID .~1
ISSN 1959-0318
IngestDate Wed Oct 01 01:31:11 EDT 2025
Thu Apr 24 23:05:16 EDT 2025
Fri Feb 23 02:35:39 EST 2024
Tue Feb 25 19:57:01 EST 2025
Tue Oct 14 19:24:50 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Dragonfly
Deep-learning
Mammograms
Crow-search
Breast cancer
KNN
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-891a0a0af94cd6751682bc75819ebfd95a01a8c87984929f26d966e50fceef073
ORCID 0000-0001-9064-8238
0000-0002-0162-7206
PageCount 1
ParticipantIDs crossref_primary_10_1016_j_irbm_2022_100749
crossref_citationtrail_10_1016_j_irbm_2022_100749
elsevier_sciencedirect_doi_10_1016_j_irbm_2022_100749
elsevier_clinicalkeyesjournals_1_s2_0_S1959031822001257
elsevier_clinicalkey_doi_10_1016_j_irbm_2022_100749
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-06-01
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: 2023-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Ingénierie et recherche biomédicale
PublicationYear 2023
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Dua, Graff (br0210) 2019
Coulibaly, Kamsu-Foguem, Kamissoko, Traore (br0240) 2019; 108
Sannasi Chakravarthy, Rajaguru (br0120) 2020; 30
Mafarja, Aljarah, Heidari, Faris, Fournier-Viger, Li (br0290) 2018; 161
Saçlı, Aydınalp, Cansız, Joof, Yilmaz, Çayören (br0160) 2019; 112
Moreira, Amaral, Domingues, Cardoso, Cardoso, Cardoso (br0200) 2012; 19
Buciu, Gacsadi (br0330) 2011; 6
Sadad, Munir, Saba, Hussain (br0380) 2018; 29
Das, Turkoglu, Sengur (br0430) 2009; 36
Sannasi Chakravarthy, Rajaguru (br0110) 2019; 20
Lotter, Diab, Haslam, Kim, Grisot, Wu (br0050) 2021; 11
Bijalwan, Kumar, Kumari, Pascual (br0150) 2014; 7
Deniz, Şengür, Kadiroğlu, Guo, Bajaj, Budak (br0230) 2018; 6
Mirjalili (br0280) 2016; 27
Lou, Wang, Chen, Chen, Jiang, Zhang (br0310) 2014; 9
Nilashi, Ibrahim, Ahmadi, Shahmoradi (br0370) 2017; 34
Dokeroglu, Sevinc, Kucukyilmaz, Cosar (br0080) 2019; 137
Imandoust, Bolandraftar (br0140) 2013; 3
Sannasi Chakravarthy, Rajaguru (br0020) 2021
Sannasi Chakravarthy, Rajaguru (br0100) 2020
Hepsağ, Özel, Yazıcı (br0360) 2017
Alkhatib, Najadat, Hmeidi, Shatnawi (br0180) 2013; 3
Eberhart, Kennedy (br0270) 1995; vol. 4
Lu, Wang, Yoon (br0400) 2019; 116
Sannasi Chakravarthy, Bharanidharan, Rajaguru (br0030) 2022
Wang, Gan, Liu, Yu, Jia, Huang (br0250) 2020; 8
Askarzadeh (br0300) 2016; 169
Xue, Zhang, Browne (br0350) 2014; 18
Sung, Ferlay, Siegel, Laversanne, Soerjomataram, Jemal (br0010) 2021
Dembrower, Liu, Azizpour, Eklund, Smith, Lindholm (br0070) 2020; 294
Suckling, Boggis, Hutt (br0190)
Genlin (br0090) 2004; 2
Cao, Wu, Yan, Li (br0320) 2011
Zhou, Wu, Huang, Wu, Ye, Wei (br0060) 2020; 294
Sannasi Chakravarthy, Rajaguru (br0260) 2021; 37
Sannasi Chakravarthy, Rajaguru (br0420) 2021; 31
Saygili (br0390) 2018; 2
Sannasi Chakravarthy, Rajaguru (br0440) 2022
Mgboh, Ogbuokiri, Obaido, Aruleba (br0450) 2020
Chang, Jung, Ke, Song, Hwang (br0220) 2018; 25
Rampun, Morrow, Scotney, Wang (br0410) 2020; 122
Rajaguru (br0170) 2019; 20
Abirami, Harikumar, Chakravarthy (br0040) 2016
Chakravarthy, Rajaguru (br0130) 2022; 43
Bamakan, Gholami (br0340) 2014; 31
Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0020) 2021
Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0100) 2020
Sadad (10.1016/j.irbm.2022.100749_br0380) 2018; 29
Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0120) 2020; 30
Xue (10.1016/j.irbm.2022.100749_br0350) 2014; 18
Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0030) 2022
Askarzadeh (10.1016/j.irbm.2022.100749_br0300) 2016; 169
Moreira (10.1016/j.irbm.2022.100749_br0200) 2012; 19
Mafarja (10.1016/j.irbm.2022.100749_br0290) 2018; 161
Lou (10.1016/j.irbm.2022.100749_br0310) 2014; 9
Saçlı (10.1016/j.irbm.2022.100749_br0160) 2019; 112
Das (10.1016/j.irbm.2022.100749_br0430) 2009; 36
Cao (10.1016/j.irbm.2022.100749_br0320) 2011
Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0420) 2021; 31
Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0260) 2021; 37
Rampun (10.1016/j.irbm.2022.100749_br0410) 2020; 122
Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0440) 2022
Genlin (10.1016/j.irbm.2022.100749_br0090) 2004; 2
Zhou (10.1016/j.irbm.2022.100749_br0060) 2020; 294
Coulibaly (10.1016/j.irbm.2022.100749_br0240) 2019; 108
Suckling (10.1016/j.irbm.2022.100749_br0190)
Imandoust (10.1016/j.irbm.2022.100749_br0140) 2013; 3
Abirami (10.1016/j.irbm.2022.100749_br0040) 2016
Alkhatib (10.1016/j.irbm.2022.100749_br0180) 2013; 3
Eberhart (10.1016/j.irbm.2022.100749_br0270) 1995; vol. 4
Nilashi (10.1016/j.irbm.2022.100749_br0370) 2017; 34
Chakravarthy (10.1016/j.irbm.2022.100749_br0130) 2022; 43
Rajaguru (10.1016/j.irbm.2022.100749_br0170) 2019; 20
Lu (10.1016/j.irbm.2022.100749_br0400) 2019; 116
Dua (10.1016/j.irbm.2022.100749_br0210) 2019
Buciu (10.1016/j.irbm.2022.100749_br0330) 2011; 6
Bamakan (10.1016/j.irbm.2022.100749_br0340) 2014; 31
Saygili (10.1016/j.irbm.2022.100749_br0390) 2018; 2
Hepsağ (10.1016/j.irbm.2022.100749_br0360) 2017
Sannasi Chakravarthy (10.1016/j.irbm.2022.100749_br0110) 2019; 20
Mirjalili (10.1016/j.irbm.2022.100749_br0280) 2016; 27
Chang (10.1016/j.irbm.2022.100749_br0220) 2018; 25
Sung (10.1016/j.irbm.2022.100749_br0010) 2021
Mgboh (10.1016/j.irbm.2022.100749_br0450) 2020
Bijalwan (10.1016/j.irbm.2022.100749_br0150) 2014; 7
Lotter (10.1016/j.irbm.2022.100749_br0050) 2021; 11
Dembrower (10.1016/j.irbm.2022.100749_br0070) 2020; 294
Deniz (10.1016/j.irbm.2022.100749_br0230) 2018; 6
Wang (10.1016/j.irbm.2022.100749_br0250) 2020; 8
Dokeroglu (10.1016/j.irbm.2022.100749_br0080) 2019; 137
References_xml – volume: 31
  start-page: 632
  year: 2014
  end-page: 638
  ident: br0340
  article-title: A novel feature selection method based on an integrated data envelopment analysis and entropy model
  publication-title: Proc Comput Sci
– volume: 11
  start-page: 1
  year: 2021
  end-page: 6
  ident: br0050
  article-title: Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach
  publication-title: Nat Med
– volume: 161
  start-page: 185
  year: 2018
  end-page: 204
  ident: br0290
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl-Based Syst
– start-page: 451
  year: 2022
  end-page: 460
  ident: br0440
  article-title: Ensemble-based weighted voting approach for the early diagnosis of diabetes mellitus
  publication-title: Sustainable communication networks and application
– ident: br0190
  article-title: Mammographic image analysis society (MIAS) database 2010
– volume: 3
  start-page: 32
  year: 2013
  end-page: 44
  ident: br0180
  article-title: Stock price prediction using k-nearest neighbor (kNN) algorithm
  publication-title: Int J Bus Commun Humanit Technol
– volume: 169
  start-page: 1
  year: 2016
  end-page: 2
  ident: br0300
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Comput Struct
– volume: 137
  year: 2019
  ident: br0080
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput Ind Eng
– volume: 6
  start-page: 370
  year: 2011
  end-page: 378
  ident: br0330
  article-title: Directional features for automatic tumor classification of mammogram images
  publication-title: Biomed Signal Process Control
– volume: 122
  year: 2020
  ident: br0410
  article-title: Breast density classification in mammograms: an investigation of encoding techniques in binary-based local patterns
  publication-title: Comput Biol Med
– volume: 2
  start-page: 69
  year: 2004
  end-page: 73
  ident: br0090
  article-title: Survey on genetic algorithm
  publication-title: Comput Appl Softw
– year: 2022
  ident: br0030
  article-title: Multi-deep CNN based experimentations for early diagnosis of breast cancer
  publication-title: IETE J Res
– start-page: 1
  year: 2020
  end-page: 34
  ident: br0100
  article-title: A novel improved crow-search algorithm to classify the severity in digital mammograms
  publication-title: Int J Imaging Syst Technol
– volume: 29
  start-page: 34
  year: 2018
  end-page: 45
  ident: br0380
  article-title: Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature
  publication-title: J Comput Sci
– start-page: 377
  year: 2020
  end-page: 391
  ident: br0450
  article-title: Visual data mining: a comparative analysis of selected datasets
  publication-title: International conference on intelligent systems design and applications
– volume: 294
  start-page: 19
  year: 2020
  end-page: 28
  ident: br0060
  article-title: Lymph node metastasis prediction from primary breast cancer US images using deep learning
  publication-title: Radiology
– volume: 8
  start-page: 30591
  year: 2020
  end-page: 30602
  ident: br0250
  article-title: A novel weighted KNN algorithm based on RSS similarity and position distance for Wi-Fi fingerprint positioning
  publication-title: IEEE Access
– start-page: 2421
  year: 2011
  end-page: 2424
  ident: br0320
  article-title: Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos
  publication-title: 2011 18th IEEE international conference on image processing
– volume: 112
  year: 2019
  ident: br0160
  article-title: Microwave dielectric property based classification of renal calculi: application of a kNN algorithm
  publication-title: Comput Biol Med
– start-page: 418
  year: 2017
  end-page: 423
  ident: br0360
  article-title: Using deep learning for mammography classification
  publication-title: 2017 international conference on computer science and engineering (UBMK)
– volume: 294
  start-page: 265
  year: 2020
  end-page: 272
  ident: br0070
  article-title: Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction
  publication-title: Radiology
– volume: 31
  start-page: 1861
  year: 2021
  end-page: 1881
  ident: br0420
  article-title: Deep-features with Bayesian optimized classifiers for the breast cancer diagnosis
  publication-title: Int J Imaging Syst Technol
– volume: 6
  start-page: 1
  year: 2018
  end-page: 7
  ident: br0230
  article-title: Transfer learning based histopathologic image classification for breast cancer detection
  publication-title: Health Inf Sci Syst
– volume: 20
  start-page: 2159
  year: 2019
  ident: br0110
  article-title: Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pacific journal of cancer prevention
  publication-title: APJCP
– volume: 116
  start-page: 340
  year: 2019
  end-page: 350
  ident: br0400
  article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis
  publication-title: Expert Syst Appl
– year: 2019
  ident: br0210
  article-title: UCI machine learning repository
– volume: 2
  start-page: 48
  year: 2018
  end-page: 56
  ident: br0390
  article-title: Classification and diagnostic prediction of breast cancers via different classifiers
  publication-title: Int Sci Vocat Stud J
– start-page: 1
  year: 2021
  end-page: 4
  ident: br0020
  article-title: A systematic review on screening, examining and classification of breast cancer
  publication-title: 2021 smart technologies, communication and robotics (STCR)
– volume: 19
  start-page: 236
  year: 2012
  end-page: 248
  ident: br0200
  article-title: Inbreast: toward a full-field digital mammographic database
  publication-title: Acad Radiol
– volume: 20
  start-page: 3777
  year: 2019
  ident: br0170
  article-title: Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer
  publication-title: Asian Pac J Cancer Prev
– volume: 108
  start-page: 115
  year: 2019
  end-page: 120
  ident: br0240
  article-title: Deep neural networks with transfer learning in Millet crop images
  publication-title: Comput Ind
– volume: 30
  start-page: 126
  year: 2020
  end-page: 146
  ident: br0120
  article-title: Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: a comparison
  publication-title: Int J Imaging Syst Technol
– volume: 37
  start-page: 83
  year: 2021
  end-page: 103
  ident: br0260
  article-title: A comparison of detrend fluctuation analysis, Gaussian mixture model and artificial neural network performance in the detection o f microcalcification from digital mammograms
– volume: 18
  start-page: 261
  year: 2014
  end-page: 276
  ident: br0350
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl Soft Comput
– volume: 3
  start-page: 605
  year: 2013
  end-page: 610
  ident: br0140
  article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: theoretical background
  publication-title: Int J Eng Res Appl
– volume: 7
  start-page: 61
  year: 2014
  end-page: 70
  ident: br0150
  article-title: KNN based machine learning approach for text and document mining
  publication-title: Int J Database Theory Appl
– volume: 27
  start-page: 1053
  year: 2016
  end-page: 1073
  ident: br0280
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
– volume: 34
  start-page: 133
  year: 2017
  end-page: 144
  ident: br0370
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telemat Inform
– volume: vol. 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: br0270
  article-title: Particle swarm optimization
  publication-title: Proceedings of the IEEE international conference on neural networks
– volume: 25
  start-page: 11782
  year: 2018
  end-page: 11792
  ident: br0220
  article-title: Automatic contrast-limited adaptive histogram equalization with dual gamma correction
  publication-title: IEEE Access
– year: 2021
  ident: br0010
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
– volume: 9
  year: 2014
  ident: br0310
  article-title: Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naive Bayes
  publication-title: PLoS ONE
– volume: 43
  start-page: 49
  year: 2022
  end-page: 61
  ident: br0130
  article-title: Automatic detection and classification of mammograms using improved extreme learning machine with deep learning
  publication-title: IRBM
– volume: 36
  start-page: 7675
  year: 2009
  end-page: 7680
  ident: br0430
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: Expert Syst Appl
– start-page: 2327
  year: 2016
  end-page: 2331
  ident: br0040
  article-title: Performance analysis and detection of micro calcification in digital mammograms using wavelet features
  publication-title: 2016 international conference on wireless communications, signal processing and networking (WiSPNET)
– volume: 7
  start-page: 61
  issue: 1
  year: 2014
  ident: 10.1016/j.irbm.2022.100749_br0150
  article-title: KNN based machine learning approach for text and document mining
  publication-title: Int J Database Theory Appl
  doi: 10.14257/ijdta.2014.7.1.06
– volume: 108
  start-page: 115
  year: 2019
  ident: 10.1016/j.irbm.2022.100749_br0240
  article-title: Deep neural networks with transfer learning in Millet crop images
  publication-title: Comput Ind
  doi: 10.1016/j.compind.2019.02.003
– volume: 30
  start-page: 126
  year: 2020
  ident: 10.1016/j.irbm.2022.100749_br0120
  article-title: Detection and classification of microcalcification from digital mammograms with firefly algorithm, extreme learning machine and non-linear regression models: a comparison
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22364
– volume: 122
  year: 2020
  ident: 10.1016/j.irbm.2022.100749_br0410
  article-title: Breast density classification in mammograms: an investigation of encoding techniques in binary-based local patterns
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2020.103842
– year: 2022
  ident: 10.1016/j.irbm.2022.100749_br0030
  article-title: Multi-deep CNN based experimentations for early diagnosis of breast cancer
  publication-title: IETE J Res
  doi: 10.1080/03772063.2022.2028584
– start-page: 1
  year: 2020
  ident: 10.1016/j.irbm.2022.100749_br0100
  article-title: A novel improved crow-search algorithm to classify the severity in digital mammograms
  publication-title: Int J Imaging Syst Technol
– volume: 11
  start-page: 1
  year: 2021
  ident: 10.1016/j.irbm.2022.100749_br0050
  article-title: Robust breast cancer detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learning approach
  publication-title: Nat Med
– volume: 34
  start-page: 133
  issue: 4
  year: 2017
  ident: 10.1016/j.irbm.2022.100749_br0370
  article-title: A knowledge-based system for breast cancer classification using fuzzy logic method
  publication-title: Telemat Inform
  doi: 10.1016/j.tele.2017.01.007
– volume: 20
  start-page: 3777
  issue: 12
  year: 2019
  ident: 10.1016/j.irbm.2022.100749_br0170
  article-title: Analysis of decision tree and k-nearest neighbor algorithm in the classification of breast cancer
  publication-title: Asian Pac J Cancer Prev
  doi: 10.31557/APJCP.2019.20.12.3777
– volume: 36
  start-page: 7675
  issue: 4
  year: 2009
  ident: 10.1016/j.irbm.2022.100749_br0430
  article-title: Effective diagnosis of heart disease through neural networks ensembles
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2008.09.013
– volume: 20
  start-page: 2159
  issue: 7
  year: 2019
  ident: 10.1016/j.irbm.2022.100749_br0110
  article-title: Lung cancer detection using probabilistic neural network with modified crow-search algorithm. Asian Pacific journal of cancer prevention
  publication-title: APJCP
– volume: 37
  start-page: 83
  issue: 1
  year: 2021
  ident: 10.1016/j.irbm.2022.100749_br0260
  article-title: A comparison of detrend fluctuation analysis, Gaussian mixture model and artificial neural network performance in the detection o f microcalcification from digital mammograms
– volume: 2
  start-page: 48
  issue: 2
  year: 2018
  ident: 10.1016/j.irbm.2022.100749_br0390
  article-title: Classification and diagnostic prediction of breast cancers via different classifiers
  publication-title: Int Sci Vocat Stud J
– year: 2021
  ident: 10.1016/j.irbm.2022.100749_br0010
  article-title: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J Clin
  doi: 10.3322/caac.21660
– volume: 3
  start-page: 605
  issue: 5
  year: 2013
  ident: 10.1016/j.irbm.2022.100749_br0140
  article-title: Application of k-nearest neighbor (knn) approach for predicting economic events: theoretical background
  publication-title: Int J Eng Res Appl
– start-page: 2327
  year: 2016
  ident: 10.1016/j.irbm.2022.100749_br0040
  article-title: Performance analysis and detection of micro calcification in digital mammograms using wavelet features
– volume: 112
  year: 2019
  ident: 10.1016/j.irbm.2022.100749_br0160
  article-title: Microwave dielectric property based classification of renal calculi: application of a kNN algorithm
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2019.103366
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.irbm.2022.100749_br0230
  article-title: Transfer learning based histopathologic image classification for breast cancer detection
  publication-title: Health Inf Sci Syst
  doi: 10.1007/s13755-018-0057-x
– volume: 25
  start-page: 11782
  issue: 6
  year: 2018
  ident: 10.1016/j.irbm.2022.100749_br0220
  article-title: Automatic contrast-limited adaptive histogram equalization with dual gamma correction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2797872
– volume: vol. 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.irbm.2022.100749_br0270
  article-title: Particle swarm optimization
– volume: 19
  start-page: 236
  issue: 2
  year: 2012
  ident: 10.1016/j.irbm.2022.100749_br0200
  article-title: Inbreast: toward a full-field digital mammographic database
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2011.09.014
– volume: 8
  start-page: 30591
  year: 2020
  ident: 10.1016/j.irbm.2022.100749_br0250
  article-title: A novel weighted KNN algorithm based on RSS similarity and position distance for Wi-Fi fingerprint positioning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973212
– volume: 31
  start-page: 632
  year: 2014
  ident: 10.1016/j.irbm.2022.100749_br0340
  article-title: A novel feature selection method based on an integrated data envelopment analysis and entropy model
  publication-title: Proc Comput Sci
  doi: 10.1016/j.procs.2014.05.310
– volume: 294
  start-page: 265
  issue: 2
  year: 2020
  ident: 10.1016/j.irbm.2022.100749_br0070
  article-title: Comparison of a deep learning risk score and standard mammographic density score for breast cancer risk prediction
  publication-title: Radiology
  doi: 10.1148/radiol.2019190872
– volume: 161
  start-page: 185
  year: 2018
  ident: 10.1016/j.irbm.2022.100749_br0290
  article-title: Binary dragonfly optimization for feature selection using time-varying transfer functions
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2018.08.003
– start-page: 451
  year: 2022
  ident: 10.1016/j.irbm.2022.100749_br0440
  article-title: Ensemble-based weighted voting approach for the early diagnosis of diabetes mellitus
– start-page: 377
  year: 2020
  ident: 10.1016/j.irbm.2022.100749_br0450
  article-title: Visual data mining: a comparative analysis of selected datasets
– volume: 9
  issue: 1
  year: 2014
  ident: 10.1016/j.irbm.2022.100749_br0310
  article-title: Sequence based prediction of DNA-binding proteins based on hybrid feature selection using random forest and Gaussian naive Bayes
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0086703
– volume: 294
  start-page: 19
  issue: 1
  year: 2020
  ident: 10.1016/j.irbm.2022.100749_br0060
  article-title: Lymph node metastasis prediction from primary breast cancer US images using deep learning
  publication-title: Radiology
  doi: 10.1148/radiol.2019190372
– volume: 2
  start-page: 69
  year: 2004
  ident: 10.1016/j.irbm.2022.100749_br0090
  article-title: Survey on genetic algorithm
  publication-title: Comput Appl Softw
– volume: 6
  start-page: 370
  issue: 4
  year: 2011
  ident: 10.1016/j.irbm.2022.100749_br0330
  article-title: Directional features for automatic tumor classification of mammogram images
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2010.10.003
– start-page: 2421
  year: 2011
  ident: 10.1016/j.irbm.2022.100749_br0320
  article-title: Linear SVM classification using boosting HOG features for vehicle detection in low-altitude airborne videos
– start-page: 418
  year: 2017
  ident: 10.1016/j.irbm.2022.100749_br0360
  article-title: Using deep learning for mammography classification
– start-page: 1
  year: 2021
  ident: 10.1016/j.irbm.2022.100749_br0020
  article-title: A systematic review on screening, examining and classification of breast cancer
– volume: 27
  start-page: 1053
  issue: 4
  year: 2016
  ident: 10.1016/j.irbm.2022.100749_br0280
  article-title: Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1920-1
– volume: 18
  start-page: 261
  year: 2014
  ident: 10.1016/j.irbm.2022.100749_br0350
  article-title: Particle swarm optimisation for feature selection in classification: novel initialisation and updating mechanisms
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2013.09.018
– volume: 3
  start-page: 32
  issue: 3
  year: 2013
  ident: 10.1016/j.irbm.2022.100749_br0180
  article-title: Stock price prediction using k-nearest neighbor (kNN) algorithm
  publication-title: Int J Bus Commun Humanit Technol
– volume: 116
  start-page: 340
  year: 2019
  ident: 10.1016/j.irbm.2022.100749_br0400
  article-title: A dynamic gradient boosting machine using genetic optimizer for practical breast cancer prognosis
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.08.040
– volume: 43
  start-page: 49
  year: 2022
  ident: 10.1016/j.irbm.2022.100749_br0130
  article-title: Automatic detection and classification of mammograms using improved extreme learning machine with deep learning
  publication-title: IRBM
  doi: 10.1016/j.irbm.2020.12.004
– volume: 29
  start-page: 34
  year: 2018
  ident: 10.1016/j.irbm.2022.100749_br0380
  article-title: Fuzzy C-means and region growing based classification of tumor from mammograms using hybrid texture feature
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2018.09.015
– volume: 31
  start-page: 1861
  year: 2021
  ident: 10.1016/j.irbm.2022.100749_br0420
  article-title: Deep-features with Bayesian optimized classifiers for the breast cancer diagnosis
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22570
– year: 2019
  ident: 10.1016/j.irbm.2022.100749_br0210
– volume: 169
  start-page: 1
  year: 2016
  ident: 10.1016/j.irbm.2022.100749_br0300
  article-title: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm
  publication-title: Comput Struct
  doi: 10.1016/j.compstruc.2016.03.001
– volume: 137
  year: 2019
  ident: 10.1016/j.irbm.2022.100749_br0080
  article-title: A survey on new generation metaheuristic algorithms
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2019.106040
– ident: 10.1016/j.irbm.2022.100749_br0190
SSID ssj0063231
Score 2.448907
Snippet The most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women, next to lung...
AbstractObjectiveThe most widespread and intrusive cancer type among women is breast cancer. Globally, this type of cancer causes more mortality among women,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100749
SubjectTerms Breast cancer
Crow-search
Deep-learning
Dragonfly
Internal Medicine
KNN
Mammograms
Particle swarm optimization
Title Deep Learning-Based Metaheuristic Weighted K-Nearest Neighbor Algorithm for the Severity Classification of Breast Cancer
URI https://www.clinicalkey.com/#!/content/1-s2.0-S1959031822001257
https://www.clinicalkey.es/playcontent/1-s2.0-S1959031822001257
https://dx.doi.org/10.1016/j.irbm.2022.100749
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 1959-0318
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0063231
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1959-0318
  databaseCode: ACRLP
  dateStart: 20070301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0063231
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 1959-0318
  databaseCode: .~1
  dateStart: 20070301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0063231
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  issn: 1959-0318
  databaseCode: AIKHN
  dateStart: 20070301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0063231
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1959-0318
  databaseCode: AKRWK
  dateStart: 20071101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0063231
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QvXgxGjXig-zBm6m0Sx_bI6IEJXBBIrdNt7sLGAUCNfHkb3em3RKNBBPT22YnbWZnZ75pvpkh5MpNuGFxGoLxepCgMMkdGXPfSUwQ-bEBDGvwf0evH3aG_uMoGFVIq6yFQVql9f2FT8-9tV2pW23WF9NpfYBtUdAkGdKCwPKwgt2PcIrBzeea5hE2WD6TEDc7uNsWzhQcr-lSYjU6YzlZAPtpbgpO3wJO-4DsW6RIm8XHHJKKnh2RjzutF9Q2RR07txCDFO3pLJno96LnMn3Of3bCctfpY4PaVUb7uASHTZuv4_lymk3eKGBVCtiPDjTYMiBxmk_HRN5QflR0bugt8tUz2kK7WB6TYfv-qdVx7PAEJ4UYnTk89hIXHhP7qYKswAs5kylkB16spVFxkLhewlMewckARDIsVJD56MA1EDYNXPwTsjObz_QpoVxy7ckwgmAPeEMpmSRpoBQAC5U2IOGqEq_UmkhtZ3EccPEqSgrZi0BNC9S0KDRdJddrmUXRV2Pr7kZ5GKKsGAUfJ8Dtb5WKNknplb2mK-GJFROu-GVKVRKsJX9Y4x9vPPun3DnZwzH2BQXtguxky3d9CWAnk7Xcmmtkt_nQ7fS_AGNd_Ys
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI54HOCCQIAYzxy4obI26yM9jsE0GNsFENyipkm2obFNWydx4rdjt-kEYgIJ9RbFauU49ufqs03IuZtww-I0BOP1IEFhkjsy5r6TmCDyYwMY1uD_jk43bD35dy_BywpplLUwSKu0vr_w6bm3titVq83qZDCoPmBbFDRJhrQgsLxVsu4HLMIM7PJjwfMIaywfSoi7HdxuK2cKktdgKrEcnbGcLYANNZdFpy8Rp7lNtixUpPXia3bIih7tkvdrrSfUdkXtOVcQhBTt6Czp63nRdJk-5387YbntdLFD7SyjXVyC06b1YW88HWT9NwpglQL4ow8ajBmgOM3HYyJxKD8rOjb0CgnrGW2gYUz3yFPz5rHRcuz0BCeFIJ05PPYSFx4T-6mCtMALOZMppAderKVRcZC4XsJTHsHRAEYyLFSQ-ujANRA3Ddz8fbI2Go_0AaFccu3JMIJoD4BDKZkkaaAUIAuV1iDjqhCv1JpIbWtxnHAxFCWH7FWgpgVqWhSarpCLhcykaKzx6-5aeRiiLBkFJyfA7_8qFS2T0jN7T2fCEzMmXPHDliokWEh-M8c_3nj4T7kzstF67NyL-9tu-4hs4kz7go92TNay6VyfAPLJ5Glu2Z825P8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning-Based+Metaheuristic+Weighted+K-Nearest+Neighbor+Algorithm+for+the+Severity+Classification+of+Breast+Cancer&rft.jtitle=Ing%C3%A9nierie+et+recherche+biom%C3%A9dicale&rft.au=Sannasi+Chakravarthy%2C+S.R.&rft.au=Bharanidharan%2C+N.&rft.au=Rajaguru%2C+H.&rft.date=2023-06-01&rft.pub=Elsevier+Masson+SAS&rft.issn=1959-0318&rft.volume=44&rft.issue=3&rft_id=info:doi/10.1016%2Fj.irbm.2022.100749&rft.externalDocID=S1959031822001257
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1959-0318&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1959-0318&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1959-0318&client=summon