Direct neural method for harmonic currents estimation using adaptive linear element
•The developed algorithms are implemented in Dspace board.•The neural method can estimate the harmonic terms individually.•The direct neural method can be applied for three-phase and single-phase loads.•The extracted harmonic current by direct neural method is identical to the real harmonic current....
Saved in:
| Published in | Electric power systems research Vol. 152; pp. 61 - 70 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
01.11.2017
Elsevier Science Ltd Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0378-7796 1873-2046 1873-2046 |
| DOI | 10.1016/j.epsr.2017.06.018 |
Cover
| Abstract | •The developed algorithms are implemented in Dspace board.•The neural method can estimate the harmonic terms individually.•The direct neural method can be applied for three-phase and single-phase loads.•The extracted harmonic current by direct neural method is identical to the real harmonic current.
The use of nonlinear loads has increased in power systems consequently the harmonic currents have also increased causing detrimental effects to the supply system and user equipment. The aim of the present paper is to identify harmonics in order to obtain a perfect compensation by active power filter (APF). A study of harmonic currents identification by two different methods is conducted in this work. The instantaneous power (PQ) theory method requires two low-pass filters for the extraction of direct power components from total power components. However the direct neural method based on ADALINE neural network method estimates total harmonic current as well as harmonic components separately. Moreover, the identification of each component separately enables the selective compensation of harmonics by the active filter if the objective is to minimize the cost. The method is easy to implement in real time compared to PQ method.
In present paper two algorithms based on conventional PQ method and direct neural method were developed in order to identify the harmonic currents. These developed algorithms are confirmed by experimental tests by implementing these techniques in a dSPACE controller in order to show their effectiveness. The obtained results are compared, discussed and analyzed. |
|---|---|
| AbstractList | •The developed algorithms are implemented in Dspace board.•The neural method can estimate the harmonic terms individually.•The direct neural method can be applied for three-phase and single-phase loads.•The extracted harmonic current by direct neural method is identical to the real harmonic current.
The use of nonlinear loads has increased in power systems consequently the harmonic currents have also increased causing detrimental effects to the supply system and user equipment. The aim of the present paper is to identify harmonics in order to obtain a perfect compensation by active power filter (APF). A study of harmonic currents identification by two different methods is conducted in this work. The instantaneous power (PQ) theory method requires two low-pass filters for the extraction of direct power components from total power components. However the direct neural method based on ADALINE neural network method estimates total harmonic current as well as harmonic components separately. Moreover, the identification of each component separately enables the selective compensation of harmonics by the active filter if the objective is to minimize the cost. The method is easy to implement in real time compared to PQ method.
In present paper two algorithms based on conventional PQ method and direct neural method were developed in order to identify the harmonic currents. These developed algorithms are confirmed by experimental tests by implementing these techniques in a dSPACE controller in order to show their effectiveness. The obtained results are compared, discussed and analyzed. The use of nonlinear loads has increased in power systems consequently the harmonic currents have alsoincreased causing detrimental effects to the supply system and user equipment. The aim of the presentpaper is to identify harmonics in order to obtain a perfect compensation by active power filter (APF).A study of harmonic currents identification by two different methods is conducted in this work. Theinstantaneous power (PQ) theory method requires two low-pass filters for the extraction of direct powercomponents from total power components. However the direct neural method based on ADALINE neuralnetwork method estimates total harmonic current as well as harmonic components separately. Moreover,the identification of each component separately enables the selective compensation of harmonics by theactive filter if the objective is to minimize the cost. The method is easy to implement in real time comparedto PQ method.In present paper two algorithms based on conventional PQ method and direct neural method weredeveloped in order to identify the harmonic currents. These developed algorithms are confirmed byexperimental tests by implementing these techniques in a dSPACE controller in order to show theireffectiveness. The obtained results are compared, discussed and analyzed. The use of nonlinear loads has increased in power systems consequently the harmonic currents have also increased causing detrimental effects to the supply system and user equipment. The aim of the present paper is to identify harmonics in order to obtain a perfect compensation by active power filter (APF). A study of harmonic currents identification by two different methods is conducted in this work. The instantaneous power (PQ) theory method requires two low-pass filters for the extraction of direct power components from total power components. However the direct neural method based on ADALINE neural network method estimates total harmonic current as well as harmonic components separately. Moreover, the identification of each component separately enables the selective compensation of harmonics by the active filter if the objective is to minimize the cost. The method is easy to implement in real time compared to PQ method. In present paper two algorithms based on conventional PQ method and direct neural method were developed in order to identify the harmonic currents. These developed algorithms are confirmed by experimental tests by implementing these techniques in a dSPACE controller in order to show their effectiveness. The obtained results are compared, discussed and analyzed. |
| Author | Merckle, J. Saad, S. Abdeslam, D. Ould Merabet, L. |
| Author_xml | – sequence: 1 givenname: L. surname: Merabet fullname: Merabet, L. email: lei_elt@yahoo.fr organization: Laboratoire Systèmes Electromécaniques Badji-Mokhtar University, BP 12, Annaba 23000, Algeria – sequence: 2 givenname: S. surname: Saad fullname: Saad, S. email: saadsalah2006@yahoo.fr organization: Laboratoire Systèmes Electromécaniques Badji-Mokhtar University, BP 12, Annaba 23000, Algeria – sequence: 3 givenname: D. Ould surname: Abdeslam fullname: Abdeslam, D. Ould email: djaffar.ould-abdeslam@uha.fr organization: MIPS laboratory, Université de Haute Alsace, 4 rue des frères lumière, 68093 Mulhouse, France – sequence: 4 givenname: J. surname: Merckle fullname: Merckle, J. email: jean.merckle@uha.fr organization: MIPS laboratory, Université de Haute Alsace, 4 rue des frères lumière, 68093 Mulhouse, France |
| BackLink | https://hal.science/hal-03642278$$DView record in HAL |
| BookMark | eNqNkU2LFDEQhoOs4OzqH_AU8OShe_PRk6TBy7J-7MKAB_UcynS1k6EnaZP0yP57M9uC4GHxFCiet6j3ySW5CDEgIa85aznj6vrQ4pxTKxjXLVMt4-YZ2XCjZSNYpy7IhkltGq179YJc5nxgjKlebzfky3uf0BUacEkw0SOWfRzoGBPdQzrG4B11S0oYSqaYiz9C8THQJfvwg8IAc_EnpJMPCInihMdKviTPR5gyvvrzXpFvHz98vb1rdp8_3d_e7BrXMVUaY0ArrsfeoBoEiEGqrXG8F3LEblunckAYZedGg6OE72LYdtqAEop1uu-VvCJy3buEGR5-wTTZOdUL04PlzJ692IM9e7FnL5YpW73U1Ns1tYe_fARv72529jxjUnVCaHPilX2zsnOKP5fa3x7ikkItVVdK0Skppa6UWSmXYs4JR-t8efRUEvjp6WPEP9H_avBuDWGVe_KYbHYeg8Ph8S_tEP1T8d-lLaxS |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3477729 crossref_primary_10_1016_j_epsr_2020_106406 crossref_primary_10_3389_fenrg_2020_00023 crossref_primary_10_3390_app11167737 crossref_primary_10_3390_en12040692 crossref_primary_10_1016_j_rser_2021_111897 crossref_primary_10_1109_ACCESS_2023_3281488 |
| Cites_doi | 10.1016/j.ijepes.2015.04.018 10.1016/j.epsr.2006.04.007 10.1109/TIE.2006.888683 10.1016/j.ijepes.2014.07.035 10.1109/TIE.2006.888758 10.1016/j.ijepes.2015.02.040 10.1109/TPWRD.2003.823194 10.1016/j.ijepes.2013.05.003 10.1016/j.ijepes.2014.03.031 10.1016/j.ijepes.2012.06.045 10.1016/j.ijepes.2012.02.005 10.1016/j.epsr.2009.03.001 10.1016/j.epsr.2016.11.023 10.1016/j.ijepes.2011.10.017 10.1016/S0378-7796(96)01186-8 10.1109/5.58323 10.1109/28.556633 10.1109/28.585849 10.1016/j.epsr.2014.05.009 10.1016/j.epsr.2017.02.016 10.1016/j.ijepes.2014.11.006 10.1016/j.epsr.2009.02.008 10.1016/j.epsr.2009.04.003 10.1109/JPROC.2005.859603 10.1016/j.ijepes.2005.10.004 10.1016/j.ijepes.2015.12.028 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. Copyright Elsevier Science Ltd. Nov 2017 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2017 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Nov 2017 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SP 8FD FR3 KR7 L7M 1XC ADTOC UNPAY |
| DOI | 10.1016/j.epsr.2017.06.018 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-2046 |
| EndPage | 70 |
| ExternalDocumentID | oai:univoak.eu:islandora_70758 oai:HAL:hal-03642278v1 10_1016_j_epsr_2017_06_018 S0378779617302675 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADHUB ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 E.L EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SSR SST SSW SSZ T5K VH1 WUQ ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SP 8FD AGCQF FR3 KR7 L7M 1XC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c406t-88a7617f98e6d2a2d3658c1923fe4598e3deaf34cf8ef3ab2d5478a6260479963 |
| IEDL.DBID | UNPAY |
| ISSN | 0378-7796 1873-2046 |
| IngestDate | Sun Oct 26 04:15:16 EDT 2025 Tue Oct 14 20:11:44 EDT 2025 Sun Sep 07 03:46:00 EDT 2025 Thu Apr 24 22:54:15 EDT 2025 Wed Oct 01 05:08:57 EDT 2025 Fri Feb 23 02:33:08 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | ADALINE neural network Active power filter Harmonics currents LMS algorithm p–q theory Power systems Fourier series |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-88a7617f98e6d2a2d3658c1923fe4598e3deaf34cf8ef3ab2d5478a6260479963 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8900-4566 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://linkinghub.elsevier.com/retrieve/pii/S0378779617302675 |
| PQID | 2032463337 |
| PQPubID | 2047565 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1016_j_epsr_2017_06_018 hal_primary_oai_HAL_hal_03642278v1 proquest_journals_2032463337 crossref_citationtrail_10_1016_j_epsr_2017_06_018 crossref_primary_10_1016_j_epsr_2017_06_018 elsevier_sciencedirect_doi_10_1016_j_epsr_2017_06_018 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Electric power systems research |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V Elsevier Science Ltd Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd – name: Elsevier |
| References | Mendalek, Al-Haddad, Fnaiech, Dessaint (bib0015) 2001; 2 Widrow, Lehr (bib0130) 1990; 79 Singh, Goswami, Sinha (bib0110) 2015 Durgasukumar, Pathak (bib0035) 2012; 38 Saad, Zellouma (bib0020) 2009; 79 Li, Chen, Jia, Ke (bib0040) 2004; 19 Widrow, Walach (bib0085) 1996 Kumar, Das, Sharma (bib0065) 2006; 28 Mikkili, Panda (bib0025) 2012; 43 Ray, Subudhi (bib0090) 2015; 64 Senra, Boaventura, Mendes (bib0140) 2017; 147 Akagi (bib0005) 1996; 32 Bose (bib0080) 2007; 54 Nath, Sinha, Goswami (bib0045) 2012; 40 Singh, Sinha, Goswami, Sinha (bib0060) 2016; 78 Akagi (bib0010) 2005; 93 Dash, Swain, Routray, Liew (bib0115) 1997; 41 Jin, Li, Gao (bib0095) 2014; 61 Ould Abdeslam, Wira, Mercklé, Flieller, Chapuis (bib0030) 2007; 54 Merabet, Saad, Ould Abdeslam, Omeiri (bib0105) 2013; 53 Molina, José Mesas, Sainz (bib0155) 2014; 116 Haykin (bib0075) 1999 Koval, Carter (bib0150) 1997; 33 Latran, Teke (bib0050) 2015; 71 Flieller, Ould Abdeslam, Wira, Merclé (bib0145) 2009; 79 Akagi, Watanabe, Aredes (bib0070) 2007 Sadinezhad, Joorabian (bib0120) 2009; 79 Beltran-Carbajal, Silva-Navarro (bib0135) 2017; 144 Nath, Sinha, Goswami (bib0055) 2012; 40 Ai, Zhou, Xu (bib0125) 2007; 77 Singh, Sinha, Goswami, Sinha (bib0100) 2015; 73 Flieller (10.1016/j.epsr.2017.06.018_bib0145) 2009; 79 Widrow (10.1016/j.epsr.2017.06.018_bib0085) 1996 Jin (10.1016/j.epsr.2017.06.018_bib0095) 2014; 61 Ai (10.1016/j.epsr.2017.06.018_bib0125) 2007; 77 Singh (10.1016/j.epsr.2017.06.018_bib0100) 2015; 73 Widrow (10.1016/j.epsr.2017.06.018_bib0130) 1990; 79 Koval (10.1016/j.epsr.2017.06.018_bib0150) 1997; 33 Kumar (10.1016/j.epsr.2017.06.018_bib0065) 2006; 28 Ray (10.1016/j.epsr.2017.06.018_bib0090) 2015; 64 Sadinezhad (10.1016/j.epsr.2017.06.018_bib0120) 2009; 79 Beltran-Carbajal (10.1016/j.epsr.2017.06.018_bib0135) 2017; 144 Dash (10.1016/j.epsr.2017.06.018_bib0115) 1997; 41 Akagi (10.1016/j.epsr.2017.06.018_bib0070) 2007 Mendalek (10.1016/j.epsr.2017.06.018_bib0015) 2001; 2 Senra (10.1016/j.epsr.2017.06.018_bib0140) 2017; 147 Akagi (10.1016/j.epsr.2017.06.018_bib0005) 1996; 32 Akagi (10.1016/j.epsr.2017.06.018_bib0010) 2005; 93 Ould Abdeslam (10.1016/j.epsr.2017.06.018_bib0030) 2007; 54 Nath (10.1016/j.epsr.2017.06.018_bib0055) 2012; 40 Li (10.1016/j.epsr.2017.06.018_bib0040) 2004; 19 Nath (10.1016/j.epsr.2017.06.018_bib0045) 2012; 40 Molina (10.1016/j.epsr.2017.06.018_bib0155) 2014; 116 Singh (10.1016/j.epsr.2017.06.018_bib0060) 2016; 78 Bose (10.1016/j.epsr.2017.06.018_bib0080) 2007; 54 Mikkili (10.1016/j.epsr.2017.06.018_bib0025) 2012; 43 Saad (10.1016/j.epsr.2017.06.018_bib0020) 2009; 79 Latran (10.1016/j.epsr.2017.06.018_bib0050) 2015; 71 Merabet (10.1016/j.epsr.2017.06.018_bib0105) 2013; 53 Durgasukumar (10.1016/j.epsr.2017.06.018_bib0035) 2012; 38 Haykin (10.1016/j.epsr.2017.06.018_bib0075) 1999 Singh (10.1016/j.epsr.2017.06.018_bib0110) 2015 |
| References_xml | – volume: 2 start-page: 765 year: 2001 end-page: 769 ident: bib0015 article-title: Sliding mode control of 3-phase 3-wire shunt active filter in the dq frame publication-title: Proc. Electr. Comput. Eng. – volume: 61 start-page: 137 year: 2014 end-page: 144 ident: bib0095 article-title: Tianyun Li Real-time fundamental current extraction under interharmonics in power system based on high resolution harmonics tracking and fast sequential least square publication-title: Int. J. Electr. Power Energy Syst. – volume: 19 start-page: 799 year: 2004 end-page: 805 ident: bib0040 article-title: A novel active power filter with fundamental magnetic flux compensation publication-title: IEEE Trans. Power Deliv. – volume: 77 start-page: 462 year: 2007 end-page: 469 ident: bib0125 article-title: and its application in power quality disturbances detection and frequency tracking publication-title: Electr. Power Syst. Res. – volume: 93 start-page: 2128 year: 2005 end-page: 2141 ident: bib0010 article-title: Active harmonic filter publication-title: Proc. IEEE – volume: 79 start-page: 1216 year: 2009 end-page: 1225 ident: bib0120 article-title: A novel frequency tracking method based on complex adaptive linear neural network state vector in power systems publication-title: Electr. Power Syst. Res. – volume: 40 start-page: 54 year: 2012 end-page: 61 ident: bib0045 article-title: A wavelet based novel method for the detection of harmonic sources in power systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 147 start-page: 201 year: 2017 end-page: 212 ident: bib0140 article-title: Assessment of unbalance and distortion components in three-phase systems with harmonics and interharmonics publication-title: Electr. Power Syst. Res. – volume: 41 start-page: 203 year: 1997 end-page: 210 ident: bib0115 article-title: New Adaptive neural network approach for the estimation of power system frequency publication-title: Electr. Power Syst. Res. – volume: 79 start-page: 1145 year: 2009 end-page: 1154 ident: bib0145 article-title: Distortion identification and compensation based on artificial neural networks using symmetrical components of the voltages and the currents publication-title: Electr. Power Syst. Res. – volume: 54 start-page: 14 year: 2007 end-page: 33 ident: bib0080 article-title: Neural network applications in power electronics and motor drivers: an introduction and perspective publication-title: IEEE Trans. Ind. Electr. – volume: 71 start-page: 131 year: 2015 end-page: 139 ident: bib0050 article-title: A novel wavelet transform based voltage sag/swell detection algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 53 start-page: 507 year: 2013 end-page: 514 ident: bib0105 article-title: A comparative study of harmonic currents extraction by simulation and implementation publication-title: Int. J. Electr. Power Energy Syst. – year: 1999 ident: bib0075 article-title: Neural Networks: A Comprehension Foundation – volume: 40 start-page: 54 year: 2012 end-page: 61 ident: bib0055 article-title: A wavelet based novel method for the detection of harmonic sources in power systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 144 start-page: 157 year: 2017 end-page: 162 ident: bib0135 article-title: A fast parametric estimation approach of signals with multiple frequency harmonics publication-title: Electr. Power Syst. Res. – volume: 54 start-page: 61 year: 2007 end-page: 76 ident: bib0030 article-title: A unified artificial neural network architecture for active power filters publication-title: IEEE Trans. Ind. Electr. – year: 2007 ident: bib0070 article-title: Instantaneous Power Theory and Application to Power Conditioning – year: 1996 ident: bib0085 article-title: Adaptive Inverse Control – volume: 32 start-page: 1312 year: 1996 end-page: 1322 ident: bib0005 article-title: New trends in active filters for power conditioning publication-title: IEEE Trans. Ind. Appl. – volume: 79 start-page: 1337 year: 2009 end-page: 1341 ident: bib0020 article-title: Fuzzy logic controller for three-level shunt active filter compensating harmonics and reactive power publication-title: Electr. Power Syst. Res. – volume: 73 start-page: 218 year: 2015 end-page: 228 ident: bib0100 article-title: Variable Constraint based Least Mean Square algorithm for power system harmonic parameter estimation publication-title: Int. J. Electr. Power Energy Syst. – volume: 43 start-page: 1114 year: 2012 end-page: 1126 ident: bib0025 article-title: Real-time implementation of PI and fuzzy logic controllers based shunt active filter control strategies for power quality improvement publication-title: Int. J. Electr. Power Energy Syst. – start-page: 1 year: 2015 end-page: 10 ident: bib0110 article-title: Power system harmonic parameter estimation using Bilinear Recursive Least Square (BRLS) algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 28 start-page: 65 year: 2006 end-page: 74 ident: bib0065 article-title: Robust dynamic state estimation of power system harmonics publication-title: Int. J. Electr. Power Energy Syst. – volume: 78 start-page: 793 year: 2016 end-page: 800 ident: bib0060 article-title: Several variants of Kalman Filter algorithm for power system harmonic estimation publication-title: Int. J. Electr. Power Energy Syst. – volume: 64 start-page: 212 year: 2015 end-page: 220 ident: bib0090 article-title: Neuro-evolutionary approaches to power system harmonics estimation publication-title: Int. J. Electr. Power Energy Syst. – volume: 79 start-page: 1415 year: 1990 end-page: 1442 ident: bib0130 article-title: 30 years of adaptive neural networks: perceptron, adaline, and back propagation publication-title: Proc. IEEE – volume: 38 start-page: 9 year: 2012 end-page: 19 ident: bib0035 article-title: Comparison of adaptive Neuro-Fuzzy-based space-vector modulation for two-level inverter publication-title: Int. J. Electr. Power Energy Syst. – volume: 116 start-page: 128 year: 2014 end-page: 135 ident: bib0155 article-title: Parameter estimation procedure for the equivalent circuit model of compact fluorescent lamps publication-title: Electr. Power Syst. Res. – volume: 33 start-page: 613 year: 1997 end-page: 621 ident: bib0150 article-title: Power quality characteristics of computer loads publication-title: IEEE Trans. Ind. Appl. – volume: 73 start-page: 218 issue: December year: 2015 ident: 10.1016/j.epsr.2017.06.018_bib0100 article-title: Variable Constraint based Least Mean Square algorithm for power system harmonic parameter estimation publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.04.018 – volume: 77 start-page: 462 issue: 5–6 year: 2007 ident: 10.1016/j.epsr.2017.06.018_bib0125 article-title: Adaline and its application in power quality disturbances detection and frequency tracking publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2006.04.007 – volume: 54 start-page: 14 issue: 1 year: 2007 ident: 10.1016/j.epsr.2017.06.018_bib0080 article-title: Neural network applications in power electronics and motor drivers: an introduction and perspective publication-title: IEEE Trans. Ind. Electr. doi: 10.1109/TIE.2006.888683 – volume: 64 start-page: 212 issue: January year: 2015 ident: 10.1016/j.epsr.2017.06.018_bib0090 article-title: Neuro-evolutionary approaches to power system harmonics estimation publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.07.035 – volume: 54 start-page: 61 issue: 1 year: 2007 ident: 10.1016/j.epsr.2017.06.018_bib0030 article-title: A unified artificial neural network architecture for active power filters publication-title: IEEE Trans. Ind. Electr. doi: 10.1109/TIE.2006.888758 – year: 2007 ident: 10.1016/j.epsr.2017.06.018_bib0070 – volume: 71 start-page: 131 year: 2015 ident: 10.1016/j.epsr.2017.06.018_bib0050 article-title: A novel wavelet transform based voltage sag/swell detection algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.02.040 – volume: 19 start-page: 799 issue: 2 year: 2004 ident: 10.1016/j.epsr.2017.06.018_bib0040 article-title: A novel active power filter with fundamental magnetic flux compensation publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2003.823194 – year: 1999 ident: 10.1016/j.epsr.2017.06.018_bib0075 – volume: 53 start-page: 507 issue: December year: 2013 ident: 10.1016/j.epsr.2017.06.018_bib0105 article-title: A comparative study of harmonic currents extraction by simulation and implementation publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.05.003 – volume: 61 start-page: 137 issue: October year: 2014 ident: 10.1016/j.epsr.2017.06.018_bib0095 article-title: Tianyun Li Real-time fundamental current extraction under interharmonics in power system based on high resolution harmonics tracking and fast sequential least square publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.03.031 – volume: 2 start-page: 765 year: 2001 ident: 10.1016/j.epsr.2017.06.018_bib0015 article-title: Sliding mode control of 3-phase 3-wire shunt active filter in the dq frame publication-title: Proc. Electr. Comput. Eng. – volume: 43 start-page: 1114 issue: 1 year: 2012 ident: 10.1016/j.epsr.2017.06.018_bib0025 article-title: Real-time implementation of PI and fuzzy logic controllers based shunt active filter control strategies for power quality improvement publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.06.045 – volume: 40 start-page: 54 issue: 1 year: 2012 ident: 10.1016/j.epsr.2017.06.018_bib0045 article-title: A wavelet based novel method for the detection of harmonic sources in power systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.02.005 – year: 1996 ident: 10.1016/j.epsr.2017.06.018_bib0085 – volume: 79 start-page: 1216 issue: 8 year: 2009 ident: 10.1016/j.epsr.2017.06.018_bib0120 article-title: A novel frequency tracking method based on complex adaptive linear neural network state vector in power systems publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2009.03.001 – volume: 144 start-page: 157 year: 2017 ident: 10.1016/j.epsr.2017.06.018_bib0135 article-title: A fast parametric estimation approach of signals with multiple frequency harmonics publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.11.023 – volume: 38 start-page: 9 issue: 1 year: 2012 ident: 10.1016/j.epsr.2017.06.018_bib0035 article-title: Comparison of adaptive Neuro-Fuzzy-based space-vector modulation for two-level inverter publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2011.10.017 – volume: 41 start-page: 203 issue: 3 year: 1997 ident: 10.1016/j.epsr.2017.06.018_bib0115 article-title: New Adaptive neural network approach for the estimation of power system frequency publication-title: Electr. Power Syst. Res. doi: 10.1016/S0378-7796(96)01186-8 – volume: 79 start-page: 1415 issue: 9 year: 1990 ident: 10.1016/j.epsr.2017.06.018_bib0130 article-title: 30 years of adaptive neural networks: perceptron, adaline, and back propagation publication-title: Proc. IEEE doi: 10.1109/5.58323 – volume: 32 start-page: 1312 issue: 6 year: 1996 ident: 10.1016/j.epsr.2017.06.018_bib0005 article-title: New trends in active filters for power conditioning publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.556633 – volume: 33 start-page: 613 issue: May–June (3) year: 1997 ident: 10.1016/j.epsr.2017.06.018_bib0150 article-title: Power quality characteristics of computer loads publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/28.585849 – volume: 116 start-page: 128 year: 2014 ident: 10.1016/j.epsr.2017.06.018_bib0155 article-title: Parameter estimation procedure for the equivalent circuit model of compact fluorescent lamps publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2014.05.009 – volume: 147 start-page: 201 year: 2017 ident: 10.1016/j.epsr.2017.06.018_bib0140 article-title: Assessment of unbalance and distortion components in three-phase systems with harmonics and interharmonics publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2017.02.016 – start-page: 1 year: 2015 ident: 10.1016/j.epsr.2017.06.018_bib0110 article-title: Power system harmonic parameter estimation using Bilinear Recursive Least Square (BRLS) algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.11.006 – volume: 79 start-page: 1145 issue: 7 year: 2009 ident: 10.1016/j.epsr.2017.06.018_bib0145 article-title: Distortion identification and compensation based on artificial neural networks using symmetrical components of the voltages and the currents publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2009.02.008 – volume: 79 start-page: 1337 year: 2009 ident: 10.1016/j.epsr.2017.06.018_bib0020 article-title: Fuzzy logic controller for three-level shunt active filter compensating harmonics and reactive power publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2009.04.003 – volume: 93 start-page: 2128 issue: 12 year: 2005 ident: 10.1016/j.epsr.2017.06.018_bib0010 article-title: Active harmonic filter publication-title: Proc. IEEE doi: 10.1109/JPROC.2005.859603 – volume: 28 start-page: 65 issue: 1 year: 2006 ident: 10.1016/j.epsr.2017.06.018_bib0065 article-title: Robust dynamic state estimation of power system harmonics publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2005.10.004 – volume: 78 start-page: 793 year: 2016 ident: 10.1016/j.epsr.2017.06.018_bib0060 article-title: Several variants of Kalman Filter algorithm for power system harmonic estimation publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.12.028 – volume: 40 start-page: 54 issue: 1 year: 2012 ident: 10.1016/j.epsr.2017.06.018_bib0055 article-title: A wavelet based novel method for the detection of harmonic sources in power systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.02.005 |
| SSID | ssj0006975 |
| Score | 2.2953837 |
| Snippet | •The developed algorithms are implemented in Dspace board.•The neural method can estimate the harmonic terms individually.•The direct neural method can be... The use of nonlinear loads has increased in power systems consequently the harmonic currents have also increased causing detrimental effects to the supply... The use of nonlinear loads has increased in power systems consequently the harmonic currents have alsoincreased causing detrimental effects to the supply... |
| SourceID | unpaywall hal proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 61 |
| SubjectTerms | Active power filter ADALINE neural network Algorithms Compensation Electric power Engineering Sciences Fourier series Harmonics Harmonics currents Identification methods LMS algorithm Load Low pass filters Neural networks Power supply Power systems p–q theory |
| SummonAdditionalLinks | – databaseName: ScienceDirect (Elsevier) dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zL-qDeMXqlCC-aV3bJL08juEYor7Mwd5C2qReGLXsovjibzenSecEGeJjQ0LDOek5X-h3voPQOfF9omEGc70oUS5lnnDjhHkui6i-jwQszRgUJ9_dh_0hvRmxUQN161oYoFXa2G9iehWt7UjbWrNdPj-3Bx7Rhy1KdAom0EYJCs0pjaCLwdXnN80jTCqxXZjswmxbOGM4XqqcgiaoH1UantD44_fktPYELMklCLo-L0rx8S7G46Vs1NtGWxZG4o7Z6Q5qqGIXbS6JC-6hgYlmGBQr9VTTKhprjIpBrRoUcXFmxJmmGKQ2TA0jBiL8IxZSlBAIMaBQMcHKsMz30bB3_dDtu7aFgpvpTD1z41hE2kB5EqtQBiKQRCOODFBdrijTo0QqkROa5bHKiUgDCfpeAm45NNJXIXKAmsVroQ4RZtqUgUwpFRoSEJLGOSGhUEkmPUmDNHWQX9uOZ1ZfHNpcjHlNJHvhYG8O9ubApvNjB10s1pRGXWPlbFa7hP84I1yH_5XrzrT_Fi8AQe1-55bDGPyFhWLgN99Brdq93H7GUw7t5WlICIkcdLlw-R-2evTPrR6jDXgyxY4t1JxN5upEo55Zelod6y-1ZP0- priority: 102 providerName: Elsevier |
| Title | Direct neural method for harmonic currents estimation using adaptive linear element |
| URI | https://dx.doi.org/10.1016/j.epsr.2017.06.018 https://www.proquest.com/docview/2032463337 https://hal.science/hal-03642278 http://linkinghub.elsevier.com/retrieve/pii/S0378779617302675 |
| UnpaywallVersion | submittedVersion |
| Volume | 152 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2046 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006975 issn: 0378-7796 databaseCode: AKRWK dateStart: 19770901 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7R9gAceCMKS2UhbpBukrHzOFaIVXlVSEul5WTZibO7UJWoj0Vw4LczEyelEmgFHGPZiqOZeL6RZ74P4ClGERLMUEGY5i6QKjRBlqswUKmkfCRWtlDcnPxulkzn8vWJOvlVm9MKBpxt7bgLDc1xvWrkpS7cYX1-fngcIrlZmlPwRRZQUj0YJIqgeB8G89n7ycfm5oCyI57DCVeWInmDTNqmGV_f5eo184FGacPfyaIffw5MvTOukNyDn1e3y9p8-2oWi71IdHTTy62uGwJDLkD5PN5u7Lj4_ju94_995C240WJUMfFOdRuuuOUduL7HXHgXjv1RKZgOk6Z6HWpBAFgwFTbT7YrCMz-tBfN4-AZJwVX2p8KUpuZTVjDENSvhfAn7PZgfvfzwYhq0-gxBQTBgE2SZSWl7VZ65pIxNXCLBmYIhY-WkolEsnalQFlXmKjQ2Lpk8zHAKJVPKs_A-9Jdflu4BCBUmeVxaKQ3hDUSbVYiJcXlRhqWMrR1C1BlHFy15OWtoLHRXpfZJs0E1G1RzqV6UDeHZbk3tqTsuna06Y-gWfHhQoSm2XLruCTnI7gXM1j2dvNU8xle83Gl8EQ3hoPMf3Z4Ra83a9TJBxHQIz3c-9Rdbffhv0x_BNX7yDZQH0N-stu4xIamNHUFv_CMawWDy6s10Nmr_np-V7Rvj |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDLZ4HAYHxFOMZ4S4QVnbJH0cEWIqsHFhk7hFaZvC0DSqPUBc-O3ETTuGhCbENXXUyE7tz6r9GeCUOg7VMINbth8qi3FbWkHIbYv7TOcjLo8Tjs3J7Xsv6rLbR_64AFdVLwyWVZa-3_j0wluXK41Sm42812s82FRfNj_UIZjiGCW-CMuMuz5mYBef33UeXliw7aK0heJl54wp8lL5CElBHb8g8cTJH79Hp8VnLJOcwaC1ySCXH--y358JR811WCtxJLk0R92ABTXYhNUZdsEteDDujCBlpRY1s6KJBqkE6aqREpckhp1pRJBrwzQxEqyEfyIylTl6QoIwVA6JMmXm29BtXneuIqucoWAlOlSPrSCQvtZQFgbKS13pplRDjgRhXaYY16s0VTKjLMkClVEZuykSfElMc5ivcyG6A0uD14HaBcK1Kt00ZkxqTEBpHGSUelKFSWqnzI3jOjiV7kRSEozjnIu-qCrJXgTqW6C-BZbTOUEdzqZ7ckOvMVeaVyYRPy6J0P5_7r4Tbb_pC5BRO7psCVzD37DYDfzm1OGgMq8ov-ORwPnyzKOU-nU4n5r8D0fd--dRj6EWddot0bq5v9uHFXxiOh8PYGk8nKhDDYHG8VFxxb8AftYAcA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzaHtoU1fdNskiNJb643tkfw4LqVhCUkopAvpSUi2nKRdtmYfKc2vz4xlbxcSQtOjhYRlZqz5Bs18H8AHjCIkmKGCMM1dIFVogixXYaBSSflIrGyhuDn5-CQZjeXhmTr7W5vTCgZcLO2gCw3NcT1r5KWu3H59ebl_GiK5WZpT8EUWUFKbsJUoguI92BqffB1-b24OKDviOZxwZSmSN8ikbZrx9V2unjMfaJQ2_J0s-nF3YNq84ArJNfj5aDmtzZ_fZjJZi0QHz7zc6rwhMOQClJ-D5cIOiuvb9I7_95Hb8LTFqGLoneo5bLjpC3iyxlz4Ek79USmYDpOmeh1qQQBYMBU20-2KwjM_zQXzePgGScFV9ufClKbmU1YwxDUz4XwJ-ysYH3z59nkUtPoMQUEwYBFkmUlpe1WeuaSMTVwiwZmCIWPlpKJRLJ2pUBZV5io0Ni6ZPMxwCiVTyrPwNfSmv6buDQgVJnlcWikN4Q1Em1WIiXF5UYaljK3tQ9QZRxcteTlraEx0V6X2Q7NBNRtUc6lelPXh42pN7ak77p2tOmPoFnx4UKEptty77j05yOoFzNY9Gh5pHuMrXu40vor6sNP5j27PiLlm7XqZIGLah08rn_qHrb592PR38JiffAPlDvQWs6XbJSS1sHvt_3IDJr8ZVw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Direct+neural+method+for+harmonic+currents+estimation+using+adaptive+linear+element&rft.jtitle=Electric+power+systems+research&rft.au=Merabet%2C+L&rft.au=Saad%2C+S&rft.au=Abdeslam%2C+D+Ould&rft.au=Merckle%2C+J&rft.date=2017-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0378-7796&rft.eissn=1873-2046&rft.volume=152&rft.spage=61&rft_id=info:doi/10.1016%2Fj.epsr.2017.06.018&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7796&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7796&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7796&client=summon |