Development of a surrogate model of an amine scrubbing digital twin using machine learning methods

Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To overcome the numerical limit of conventional process simulations a surrogate model is a viable strategy. In this work, a surrogate model of an indu...

Full description

Saved in:
Bibliographic Details
Published inComputers & chemical engineering Vol. 174; p. 108252
Main Authors Galeazzi, Andrea, Prifti, Kristiano, Cortellini, Carlo, Di Pretoro, Alessandro, Gallo, Francesco, Manenti, Flavio
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2023
Elsevier
Subjects
Online AccessGet full text
ISSN0098-1354
1873-4375
1873-4375
DOI10.1016/j.compchemeng.2023.108252

Cover

Abstract Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To overcome the numerical limit of conventional process simulations a surrogate model is a viable strategy. In this work, a surrogate model of an industrial amine scrubbing digital twin has been developed. The surrogate model has been built based on the process simulation created in Aspen HYSYS and validated as a digital twin against real process data collected during a steady-state operation. The surrogate relies on an accurate Design of Experiments procedure. In this case, the Latin-Hypercube method has been chosen and several nested domains have been defined in ranges around the nominal steady state operative condition. Several machine learning models have been trained using cross-validation, and the most accurate has been selected to predict each target. The resulting surrogate model showed a satisfactory performance, given the data available. •The method proposed can be applied to automatically surrogate any digital twin.•Data-driven machine learning algorithms can be applied to metamodel a digital twin.•Surrogate performance is greatly affected by the design of experiments training data.
AbstractList Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To overcome the numerical limit of conventional process simulations a surrogate model is a viable strategy. In this work, a surrogate model of an industrial amine scrubbing digital twin has been developed. The surrogate model has been built based on the process simulation created in Aspen HYSYS and validated as a digital twin against real process data collected during a steady-state operation. The surrogate relies on an accurate Design of Experiments procedure. In this case, the Latin-Hypercube method has been chosen and several nested domains have been defined in ranges around the nominal steady state operative condition. Several machine learning models have been trained using cross-validation, and the most accurate has been selected to predict each target. The resulting surrogate model showed a satisfactory performance, given the data available. •The method proposed can be applied to automatically surrogate any digital twin.•Data-driven machine learning algorithms can be applied to metamodel a digital twin.•Surrogate performance is greatly affected by the design of experiments training data.
Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To overcome the numerical limit of conventional process simulations a surrogate model is a viable strategy. In this work, a surrogate model of an industrial amine scrubbing digital twin has been developed. The surrogate model has been built based on the process simulation created in Aspen HYSYS and validated as a digital twin against real process data collected during a steady-state operation. The surrogate relies on an accurate Design of Experiments procedure. In this case, the Latin-Hypercube method has been chosen and several nested domains have been defined in ranges around the nominal steady state operative condition. Several machine learning models have been trained using cross-validation, and the most accurate has been selected to predict each target. The resulting surrogate model showed a satisfactory performance, given the data available.
ArticleNumber 108252
Author Gallo, Francesco
Galeazzi, Andrea
Di Pretoro, Alessandro
Manenti, Flavio
Cortellini, Carlo
Prifti, Kristiano
Author_xml – sequence: 1
  givenname: Andrea
  surname: Galeazzi
  fullname: Galeazzi, Andrea
  organization: Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy
– sequence: 2
  givenname: Kristiano
  surname: Prifti
  fullname: Prifti, Kristiano
  organization: Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy
– sequence: 3
  givenname: Carlo
  surname: Cortellini
  fullname: Cortellini, Carlo
  organization: Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy
– sequence: 4
  givenname: Alessandro
  surname: Di Pretoro
  fullname: Di Pretoro, Alessandro
  organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS/INP/UPS, Allée E. Monso, 4, Toulouse, 31431, France
– sequence: 5
  givenname: Francesco
  surname: Gallo
  fullname: Gallo, Francesco
  organization: Itelyum Regeneration S.p.A., Via Tavernelle, 19, Pieve Fissiraga, 26854, Italy
– sequence: 6
  givenname: Flavio
  orcidid: 0000-0002-3305-8044
  surname: Manenti
  fullname: Manenti, Flavio
  email: flavio.manenti@polimi.it
  organization: Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy
BackLink https://hal.science/hal-04490727$$DView record in HAL
BookMark eNqVkEtrGzEUhUVJoc7jP6jLLsbVY17qpgT3kYChm2Qt7kh3bJkZyUiyQ_59ZzKFhq7S1YXD-Y7Ed0kufPBIyEfO1pzx-vNhbcJ4NHsc0e_Wggk55a2oxDuy4m0ji1I21QVZMabagsuq_EAuUzowxkTZtivSfcMzDuE44ZmGngJNpxjDDjLSMVgcXkJPYXQeaTLx1HXO76h1O5dhoPnJeXpKczSC2c-lASH6lwDzPth0Td73MCS8-XOvyOOP7w-bu2L76-f95nZbmJLVuWhk24NUyiheg-DMorWqRsUVKNWXlbW1Esh6a0AA1li1tVWsazo5XSOkvCJflt2TP8LzEwyDPkY3QnzWnOnZlj7oV7b0bEsvtib40wLv4S8WwOm7262eM1aWijWiOfOp-3XpmhhSithrM7nILvgcwQ1vek39s_A_P90sLE4uzw6jTsahN2hdRJO1De4NK78BBoKzrw
CitedBy_id crossref_primary_10_1016_j_cma_2023_116444
crossref_primary_10_1016_j_knosys_2024_111853
crossref_primary_10_1016_j_molliq_2024_124498
crossref_primary_10_1016_j_jgsce_2023_205104
Cites_doi 10.1021/acs.iecr.0c00729
10.1007/s11222-011-9242-3
10.1016/S0167-9473(01)00065-2
10.1016/j.ifset.2022.103143
10.1016/j.dss.2021.113524
10.1016/j.fuel.2018.04.142
10.1016/j.cep.2018.07.014
10.1016/j.compchemeng.2013.08.008
10.1016/j.advengsoft.2020.102880
10.1007/s00158-017-1739-8
10.1016/j.ces.2022.117469
10.1016/S0009-2509(01)00439-0
10.1016/j.promfg.2018.07.155
10.1016/0378-3758(94)00035-T
10.1016/j.apm.2017.11.036
10.1016/j.compchemeng.2021.107473
10.1080/01621459.2011.644132
10.1167/iovs.61.8.11
10.3390/su12031088
10.1016/0041-5553(67)90144-9
10.1016/j.atmosenv.2008.10.005
10.1109/34.709601
10.1002/cite.201800086
10.1057/jos.2013.16
10.1504/IJHM.2018.094880
10.1016/j.compchemeng.2021.107365
10.1214/aos/1069362310
10.1007/s11831-017-9211-x
10.1016/j.spl.2017.10.022
10.1115/1.4054039
10.1016/j.compchemeng.2017.12.011
10.3102/1076998619832248
10.1007/s11081-011-9164-0
10.1016/j.beth.2020.05.002
10.1016/j.compind.2020.103316
10.1016/S0951-8320(03)00058-9
10.1016/j.envsoft.2017.03.010
10.1002/qre.1924
10.1016/j.compchemeng.2017.09.017
10.1080/00949655.2017.1340475
10.1002/aic.17715
10.1198/004017006000000453
10.1214/aos/1013203451
10.1016/j.ins.2021.11.036
10.1016/j.ifacol.2018.08.415
10.1016/j.jmsy.2020.06.017
10.1021/i160057a011
10.1016/j.ifacol.2018.08.474
10.1016/j.enbuild.2019.05.057
10.3354/cr030079
10.5194/gmd-7-1247-2014
10.1016/j.apenergy.2018.06.051
10.1021/ie900006g
10.1016/j.dss.2021.113496
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2023 Elsevier Ltd
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
ADTOC
UNPAY
DOI 10.1016/j.compchemeng.2023.108252
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID oai:re.public.polimi.it:11311/1249778
oai:HAL:hal-04490727v1
10_1016_j_compchemeng_2023_108252
S0098135423001229
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
1XC
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-738fa399c916a210dedd96e919a99f45dd692e0fdca2ae6e586d90b7b36d9c233
IEDL.DBID UNPAY
ISSN 0098-1354
1873-4375
IngestDate Sun Oct 26 04:02:28 EDT 2025
Sat Oct 25 07:08:18 EDT 2025
Wed Oct 01 04:02:03 EDT 2025
Thu Apr 24 22:52:38 EDT 2025
Sat Aug 03 15:33:03 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Amine scrubbing
Latin hypercube
Digital twin
Surrogate modeling
Machine-learning
Design of experiments
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
other-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-738fa399c916a210dedd96e919a99f45dd692e0fdca2ae6e586d90b7b36d9c233
ORCID 0000-0002-3305-8044
0000-0001-7394-5396
OpenAccessLink https://proxy.k.utb.cz/login?url=https://hdl.handle.net/11311/1249778
ParticipantIDs unpaywall_primary_10_1016_j_compchemeng_2023_108252
hal_primary_oai_HAL_hal_04490727v1
crossref_citationtrail_10_1016_j_compchemeng_2023_108252
crossref_primary_10_1016_j_compchemeng_2023_108252
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2023_108252
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2023
2023-06-00
2023-06
PublicationDateYYYYMMDD 2023-06-01
PublicationDate_xml – month: 06
  year: 2023
  text: June 2023
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2023
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Liu, Fang, Dong, Xu (b38) 2021; 58
Bhosekar, Ierapetritou (b8) 2018; 108
Guo, Sun, Vilsen, Meng, Stroe (b20) 2022; 56
Kohl, Nielsen (b32) 1997
Willmott, Matsuura (b71) 2005; 30
Manteufel (b43) 2000
Zendehboudi, Rezaei, Lohi (b75) 2018; 228
Jiang, Gradus, Rosellini (b27) 2020; 51
Minana, Schieppati, Dalla Giovanna (b46) 1994
Tian, Demirel, Hasan, Pistikopoulos (b63) 2018; 133
Barton (b5) 1992
Jeon, Schuesslbauer (b26) 2020
Sobol (b60) 1967; 7
McKay, Beckman, Conover (b44) 1979; 21
Morris, Mitchell (b47) 1995; 43
Chai, Draxler (b10) 2014; 7
Karunasingha (b29) 2022; 585
Errandonea, Beltrán, Arrizabalaga (b16) 2020; 123
Thebelt, Wiebe, Kronqvist, Tsay, Misener (b62) 2022; 252
Rajulapati, Chinta, Shyamala, Rengaswamy (b55) 2022; 68
Xu, Duan, Wang, Yan (b74) 2018; 134
Liu, Ong, Cai (b39) 2018; 57
Peng, Robinson (b52) 1976; 15
Viana (b66) 2013
Pronzato, Müller (b53) 2012; 22
Sanchez, Wan (b56) 2015
Miles (b45) 2014
Zipper, Auris, Strahilov, Paul (b78) 2018
Kannapinn, Pham, Schäfer (b28) 2022; 81
Freund, Schapire (b17) 1995
Loh (b41) 1996; 24
Xiong, Jutan (b73) 2002; 57
Zhao, Jiang, Vega, Todd, Hu (b76) 2022; 23
Song, Chen (b61) 2009; 48
Sansana, Joswiak, Castillo, Wang, Rendall, Chiang, Reis (b57) 2021; 151
Zhou, Xu, Miller-Hooks, Zhou, Chen, Lee, Chew, Li (b77) 2021; 143
Viana (b67) 2016; 32
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b50) 2011; 12
Bevilacqua, Bottani, Ciarapica, Costantino, Di Donato, Ferraro, Mazzuto, Monteriù, Nardini, Ortenzi, Paroncini, Pirozzi, Prist, Quatrini, Tronci, Vignali (b6) 2020; 12
Damblin, Couplet, Iooss (b12) 2013; 7
Damiani, L., Demartini, M., Giribone, P., Maggiani, M., Revetria, R., 2018. Simulation and Digital Twin Based Design of a Production Line: A Case Study. Hong Kong, p. 5.
Bhattacharyya (b7) 2018; 25
Qian (b54) 2012; 107
Shokry, Baraldi, Zio, Espuña (b59) 2020; 59
VanDerHorn, Mahadevan (b65) 2021; 145
Ho (b24) 1998; 20
Lassila, Manzoni, Quarteroni, Rozza (b35) 2014
Dyment, Watanasiri (b15) 2015
Panwar, Michael (b49) 2018
Cioppa, Lucas (b11) 2007; 49
Asprion, Boettcher, Pack, Stavrou, Hoeller, Schwientek, Bortz (b2) 2019; 91
Friedman (b19) 2002; 38
Ledolter, Kardon (b36) 2020; 61
Li, Lu, Xie, Yang (b37) 2017; 87
Sheikholeslami, Razavi (b58) 2017; 93
Kleijnen (b30) 2010
Willmott, Matsuura, Robeson (b72) 2009; 43
Bajaj, Iyer, Faruque Hasan (b4) 2018; 116
Westermann, Evins (b70) 2019; 198
Donovan, Burrage, Burrage, McCourt, Thompson, Yazici (b14) 2018; 57
Ho (b23) 1995
Kleijnen (b31) 2015
Vořechovský, Mašek (b69) 2020; 149
Agarwal, Biegler (b1) 2013; 14
von Stosch, Oliveira, Peres, de Azevedo (b68) 2014; 60
Bishop (b9) 2008
Hu, Nguyen, Tao, Leu, Liu, Shahriar, Al Sunny (b25) 2018; 26
Van Rossum, Drake (b64) 2009
Navid, Khalilarya, Abbasi (b48) 2018; 228
Awad, Khanna (b3) 2015
Pedrozo, Rodriguez Reartes, Bernal, Vecchietti, Diaz, Grossmann (b51) 2021; 154
Helton, Davis (b22) 2003; 81
Kvalseth (b34) 1985; 39
Kritzinger, Karner, Traar, Henjes, Sihn (b33) 2018; 51
Hao, Ho (b21) 2019; 44
Liu, Yang, Li (b40) 2016
Friedman (b18) 2001; 29
Macchi, Roda, Negri, Fumagalli (b42) 2018; 51
Rajulapati (10.1016/j.compchemeng.2023.108252_b55) 2022; 68
von Stosch (10.1016/j.compchemeng.2023.108252_b68) 2014; 60
Willmott (10.1016/j.compchemeng.2023.108252_b72) 2009; 43
Kannapinn (10.1016/j.compchemeng.2023.108252_b28) 2022; 81
Manteufel (10.1016/j.compchemeng.2023.108252_b43) 2000
Bajaj (10.1016/j.compchemeng.2023.108252_b4) 2018; 116
Pedregosa (10.1016/j.compchemeng.2023.108252_b50) 2011; 12
Qian (10.1016/j.compchemeng.2023.108252_b54) 2012; 107
10.1016/j.compchemeng.2023.108252_b13
Pedrozo (10.1016/j.compchemeng.2023.108252_b51) 2021; 154
Shokry (10.1016/j.compchemeng.2023.108252_b59) 2020; 59
Xu (10.1016/j.compchemeng.2023.108252_b74) 2018; 134
Asprion (10.1016/j.compchemeng.2023.108252_b2) 2019; 91
Kohl (10.1016/j.compchemeng.2023.108252_b32) 1997
Zhou (10.1016/j.compchemeng.2023.108252_b77) 2021; 143
Minana (10.1016/j.compchemeng.2023.108252_b46) 1994
Westermann (10.1016/j.compchemeng.2023.108252_b70) 2019; 198
Friedman (10.1016/j.compchemeng.2023.108252_b18) 2001; 29
Karunasingha (10.1016/j.compchemeng.2023.108252_b29) 2022; 585
Kleijnen (10.1016/j.compchemeng.2023.108252_b30) 2010
Chai (10.1016/j.compchemeng.2023.108252_b10) 2014; 7
Ho (10.1016/j.compchemeng.2023.108252_b23) 1995
Peng (10.1016/j.compchemeng.2023.108252_b52) 1976; 15
Song (10.1016/j.compchemeng.2023.108252_b61) 2009; 48
Vořechovský (10.1016/j.compchemeng.2023.108252_b69) 2020; 149
Hu (10.1016/j.compchemeng.2023.108252_b25) 2018; 26
Jeon (10.1016/j.compchemeng.2023.108252_b26) 2020
Liu (10.1016/j.compchemeng.2023.108252_b38) 2021; 58
Sanchez (10.1016/j.compchemeng.2023.108252_b56) 2015
VanDerHorn (10.1016/j.compchemeng.2023.108252_b65) 2021; 145
Zipper (10.1016/j.compchemeng.2023.108252_b78) 2018
Bishop (10.1016/j.compchemeng.2023.108252_b9) 2008
Loh (10.1016/j.compchemeng.2023.108252_b41) 1996; 24
Hao (10.1016/j.compchemeng.2023.108252_b21) 2019; 44
Freund (10.1016/j.compchemeng.2023.108252_b17) 1995
Ledolter (10.1016/j.compchemeng.2023.108252_b36) 2020; 61
Kritzinger (10.1016/j.compchemeng.2023.108252_b33) 2018; 51
Lassila (10.1016/j.compchemeng.2023.108252_b35) 2014
Pronzato (10.1016/j.compchemeng.2023.108252_b53) 2012; 22
Liu (10.1016/j.compchemeng.2023.108252_b39) 2018; 57
Liu (10.1016/j.compchemeng.2023.108252_b40) 2016
McKay (10.1016/j.compchemeng.2023.108252_b44) 1979; 21
Sheikholeslami (10.1016/j.compchemeng.2023.108252_b58) 2017; 93
Bhosekar (10.1016/j.compchemeng.2023.108252_b8) 2018; 108
Agarwal (10.1016/j.compchemeng.2023.108252_b1) 2013; 14
Morris (10.1016/j.compchemeng.2023.108252_b47) 1995; 43
Awad (10.1016/j.compchemeng.2023.108252_b3) 2015
Barton (10.1016/j.compchemeng.2023.108252_b5) 1992
Sansana (10.1016/j.compchemeng.2023.108252_b57) 2021; 151
Xiong (10.1016/j.compchemeng.2023.108252_b73) 2002; 57
Zhao (10.1016/j.compchemeng.2023.108252_b76) 2022; 23
Friedman (10.1016/j.compchemeng.2023.108252_b19) 2002; 38
Willmott (10.1016/j.compchemeng.2023.108252_b71) 2005; 30
Bevilacqua (10.1016/j.compchemeng.2023.108252_b6) 2020; 12
Kleijnen (10.1016/j.compchemeng.2023.108252_b31) 2015
Viana (10.1016/j.compchemeng.2023.108252_b67) 2016; 32
Damblin (10.1016/j.compchemeng.2023.108252_b12) 2013; 7
Ho (10.1016/j.compchemeng.2023.108252_b24) 1998; 20
Guo (10.1016/j.compchemeng.2023.108252_b20) 2022; 56
Donovan (10.1016/j.compchemeng.2023.108252_b14) 2018; 57
Zendehboudi (10.1016/j.compchemeng.2023.108252_b75) 2018; 228
Viana (10.1016/j.compchemeng.2023.108252_b66) 2013
Van Rossum (10.1016/j.compchemeng.2023.108252_b64) 2009
Tian (10.1016/j.compchemeng.2023.108252_b63) 2018; 133
Errandonea (10.1016/j.compchemeng.2023.108252_b16) 2020; 123
Navid (10.1016/j.compchemeng.2023.108252_b48) 2018; 228
Dyment (10.1016/j.compchemeng.2023.108252_b15) 2015
Helton (10.1016/j.compchemeng.2023.108252_b22) 2003; 81
Kvalseth (10.1016/j.compchemeng.2023.108252_b34) 1985; 39
Thebelt (10.1016/j.compchemeng.2023.108252_b62) 2022; 252
Cioppa (10.1016/j.compchemeng.2023.108252_b11) 2007; 49
Bhattacharyya (10.1016/j.compchemeng.2023.108252_b7) 2018; 25
Miles (10.1016/j.compchemeng.2023.108252_b45) 2014
Sobol (10.1016/j.compchemeng.2023.108252_b60) 1967; 7
Li (10.1016/j.compchemeng.2023.108252_b37) 2017; 87
Panwar (10.1016/j.compchemeng.2023.108252_b49) 2018
Macchi (10.1016/j.compchemeng.2023.108252_b42) 2018; 51
Jiang (10.1016/j.compchemeng.2023.108252_b27) 2020; 51
References_xml – start-page: 176
  year: 2016
  end-page: 185
  ident: b40
  article-title: A sequential latin hypercube sampling method for metamodeling
  publication-title: Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems
– volume: 44
  start-page: 348
  year: 2019
  end-page: 361
  ident: b21
  article-title: Machine learning made easy: A review of scikit-learn package in python programming language
  publication-title: J. Educ. Behav. Stat.
– year: 1994
  ident: b46
  article-title: Process to re-refine used oils
– volume: 23
  year: 2022
  ident: b76
  article-title: Surrogate modeling of nonlinear dynamic systems: A comparative study
  publication-title: J. Comput. Inf. Sci. Eng.
– start-page: 278
  year: 1995
  end-page: 282
  ident: b23
  article-title: Random decision forests
  publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition, Vol. 1
– volume: 15
  start-page: 59
  year: 1976
  end-page: 64
  ident: b52
  article-title: A new two-constant equation of state
  publication-title: Ind. Eng. Chem. Fundam.
– start-page: 1187
  year: 1997
  end-page: 1237
  ident: b32
  article-title: Chapter 14 - physical solvents for acid gas removal
  publication-title: Gas Purification
– volume: 21
  start-page: 239
  year: 1979
  end-page: 245
  ident: b44
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– volume: 24
  start-page: 2058
  year: 1996
  end-page: 2080
  ident: b41
  article-title: On Latin hypercube sampling
  publication-title: Ann. Statist.
– year: 2000
  ident: b43
  article-title: Evaluating the convergence of Latin hypercube sampling
  publication-title: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit
– volume: 116
  start-page: 306
  year: 2018
  end-page: 321
  ident: b4
  article-title: A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point
  publication-title: Comput. Chem. Eng.
– volume: 59
  start-page: 15634
  year: 2020
  end-page: 15655
  ident: b59
  article-title: Dynamic surrogate modeling for multistep-ahead prediction of multivariate nonlinear chemical processes
  publication-title: Ind. Eng. Chem. Res.
– year: 2008
  ident: b9
  article-title: Pattern Recognition and Machine Learning (Information Science and Statistics)
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: b18
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
– volume: 56
  year: 2022
  ident: b20
  article-title: Review of ”grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods
  publication-title: J. Energy Storage
– volume: 228
  start-page: 349
  year: 2018
  end-page: 367
  ident: b48
  article-title: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process
  publication-title: Fuel
– start-page: 235
  year: 2014
  end-page: 273
  ident: b35
  article-title: Model order reduction in fluid dynamics: Challenges and perspectives
  publication-title: Reduced Order Methods for Modeling and Computational Reduction
– volume: 68
  year: 2022
  ident: b55
  article-title: Integration of machine learning and first principles models
  publication-title: AIChE J.
– volume: 26
  start-page: 1193
  year: 2018
  end-page: 1203
  ident: b25
  article-title: Modeling of cloud-based digital twins for smart manufacturing with MT connect
  publication-title: Procedia Manuf.
– volume: 87
  start-page: 2549
  year: 2017
  end-page: 2559
  ident: b37
  article-title: A novel extension algorithm for optimized Latin hypercube sampling
  publication-title: J. Stat. Comput. Simul.
– volume: 43
  start-page: 749
  year: 2009
  end-page: 752
  ident: b72
  article-title: Ambiguities inherent in sums-of-squares-based error statistics
  publication-title: Atmos. Environ.
– start-page: 179
  year: 2015
  end-page: 239
  ident: b31
  article-title: Kriging metamodels and their designs
  publication-title: Design and Analysis of Simulation Experiments
– volume: 107
  start-page: 393
  year: 2012
  end-page: 399
  ident: b54
  article-title: Sliced Latin hypercube designs
  publication-title: J. Amer. Statist. Assoc.
– volume: 61
  start-page: 11
  year: 2020
  ident: b36
  article-title: Focus on data: Statistical design of experiments and sample size selection using power analysis
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 93
  start-page: 109
  year: 2017
  end-page: 126
  ident: b58
  article-title: Progressive Latin hypercube sampling: An efficient approach for Robust sampling-based analysis of environmental models
  publication-title: Environ. Model. Softw.
– year: 2009
  ident: b64
  article-title: Python 3 Reference Manual
– year: 2018
  ident: b49
  article-title: Empirical modelling of hydraulic pumps and motors based upon the Latin hypercube sampling method
  publication-title: Int. J. Hydromechatron.
– volume: 49
  start-page: 45
  year: 2007
  end-page: 55
  ident: b11
  article-title: Efficient nearly orthogonal and space-filling latin hypercubes
  publication-title: Technometrics
– volume: 57
  start-page: 393
  year: 2018
  end-page: 416
  ident: b39
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Struct. Multidiscip. Optim.
– volume: 7
  start-page: 1247
  year: 2014
  end-page: 1250
  ident: b10
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
– volume: 145
  year: 2021
  ident: b65
  article-title: Digital twin: Generalization, characterization and implementation
  publication-title: Decis. Support Syst.
– volume: 81
  start-page: 23
  year: 2003
  end-page: 69
  ident: b22
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 51
  start-page: 675
  year: 2020
  end-page: 687
  ident: b27
  article-title: Supervised machine learning: A brief primer
  publication-title: Behav. Ther.
– volume: 149
  year: 2020
  ident: b69
  article-title: Distance-based optimal sampling in a hypercube: Energy potentials for high-dimensional and low-saturation designs
  publication-title: Adv. Eng. Softw.
– volume: 51
  start-page: 790
  year: 2018
  end-page: 795
  ident: b42
  article-title: Exploring the role of digital twin for asset lifecycle management
  publication-title: IFAC-PapersOnLine
– start-page: 67
  year: 2015
  end-page: 80
  ident: b3
  article-title: Support vector regression
  publication-title: Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers
– start-page: 289
  year: 1992
  end-page: 299
  ident: b5
  article-title: Metamodels for simulation input-output relations
  publication-title: Proceedings of the 24th Conference on Winter Simulation - WSC ’92
– volume: 14
  start-page: 3
  year: 2013
  end-page: 35
  ident: b1
  article-title: A trust-region framework for constrained optimization using reduced order modeling
  publication-title: Opt. Eng.
– volume: 48
  start-page: 5522
  year: 2009
  end-page: 5529
  ident: b61
  article-title: Symmetric nonrandom two-liquid segment activity coefficient model for electrolytes
  publication-title: Ind. Eng. Chem. Res.
– volume: 252
  year: 2022
  ident: b62
  article-title: Maximizing information from chemical engineering data sets: Applications to machine learning
  publication-title: Chem. Eng. Sci.
– volume: 39
  start-page: 279
  year: 1985
  end-page: 285
  ident: b34
  article-title: Cautionary note about R2
  publication-title: Amer. Statist.
– start-page: 1795
  year: 2015
  end-page: 1809
  ident: b56
  article-title: Work smarter, not harder: A tutorial on designing and conducting simulation experiments
  publication-title: 2015 Winter Simulation Conference (WSC)
– volume: 108
  start-page: 250
  year: 2018
  end-page: 267
  ident: b8
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review
  publication-title: Comput. Chem. Eng.
– volume: 38
  start-page: 367
  year: 2002
  end-page: 378
  ident: b19
  article-title: Stochastic gradient boosting
  publication-title: Comput. Statist. Data Anal.
– volume: 154
  year: 2021
  ident: b51
  article-title: Hybrid model generation for superstructure optimization with generalized disjunctive programming
  publication-title: Comput. Chem. Eng.
– volume: 32
  start-page: 1975
  year: 2016
  end-page: 1985
  ident: b67
  article-title: A tutorial on Latin hypercube design of experiments
  publication-title: Qual. Reliab. Eng. Int.
– volume: 228
  start-page: 2539
  year: 2018
  end-page: 2566
  ident: b75
  article-title: Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review
  publication-title: Appl. Energy
– volume: 57
  start-page: 553
  year: 2018
  end-page: 564
  ident: b14
  article-title: Estimates of the coverage of parameter space by Latin hypercube and orthogonal array-based sampling
  publication-title: Appl. Math. Model.
– year: 2013
  ident: b66
  article-title: Things you wanted to know about the Latin hypercube design and were afraid to ask
  publication-title: 10th World Congress on Structural and Multidisciplinary Optimization, Vol. 19
– start-page: 1592
  year: 2018
  end-page: 1597
  ident: b78
  article-title: Keeping the digital twin up-to-date – Process monitoring to identify changes in a plant
  publication-title: 2018 IEEE International Conference on Industrial Technology (ICIT)
– volume: 134
  start-page: 134
  year: 2018
  end-page: 140
  ident: b74
  article-title: A general construction for nested Latin hypercube designs
  publication-title: Statist. Probab. Lett.
– volume: 58
  start-page: 346
  year: 2021
  end-page: 361
  ident: b38
  article-title: Review of digital twin about concepts, technologies, and industrial applications
  publication-title: J. Manuf. Syst.
– volume: 57
  start-page: 1027
  year: 2002
  end-page: 1039
  ident: b73
  article-title: Grey-box modelling and control of chemical processes
  publication-title: Chem. Eng. Sci.
– volume: 7
  start-page: 86
  year: 1967
  end-page: 112
  ident: b60
  article-title: On the distribution of points in a cube and the approximate evaluation of integrals
  publication-title: USSR Comput. Math. Math. Phys.
– volume: 585
  start-page: 609
  year: 2022
  end-page: 629
  ident: b29
  article-title: Root mean square error or mean absolute error? Use their ratio as well
  publication-title: Inform. Sci.
– year: 2014
  ident: b45
  publication-title: R Squared, Adjusted R Squared
– year: 2015
  ident: b15
  article-title: Acid Gas Cleaning Using DEPG Physical Solvents: Validation with Experimental and Plant Data
– volume: 151
  year: 2021
  ident: b57
  article-title: Recent trends on hybrid modeling for industry 4.0
  publication-title: Comput. Chem. Eng.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b50
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 60
  start-page: 86
  year: 2014
  end-page: 101
  ident: b68
  article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future
  publication-title: Comput. Chem. Eng.
– start-page: 51
  year: 2010
  end-page: 72
  ident: b30
  article-title: Design and analysis of computational experiments: Overview
  publication-title: Experimental Methods for the Analysis of Optimization Algorithms
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  ident: b71
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
– volume: 198
  start-page: 170
  year: 2019
  end-page: 186
  ident: b70
  article-title: Surrogate modelling for sustainable building design – A review
  publication-title: Energy Build.
– volume: 25
  start-page: 727
  year: 2018
  end-page: 751
  ident: b7
  article-title: A critical appraisal of design of experiments for uncertainty quantification
  publication-title: Arch. Comput. Methods Eng.
– volume: 133
  start-page: 160
  year: 2018
  end-page: 210
  ident: b63
  article-title: An overview of process systems engineering approaches for process intensification: State of the art
  publication-title: Chem. Eng. Process. - Process Intensif.
– volume: 143
  year: 2021
  ident: b77
  article-title: Analytics with digital-twinning: A decision support system for maintaining a resilient port
  publication-title: Decis. Support Syst.
– volume: 12
  start-page: 1088
  year: 2020
  ident: b6
  article-title: Digital twin reference model development to prevent operators’ risk in process plants
  publication-title: Sustainability
– reference: Damiani, L., Demartini, M., Giribone, P., Maggiani, M., Revetria, R., 2018. Simulation and Digital Twin Based Design of a Production Line: A Case Study. Hong Kong, p. 5.
– start-page: 23
  year: 1995
  end-page: 37
  ident: b17
  article-title: A desicion-theoretic generalization of on-line learning and an application to boosting
  publication-title: Computational Learning Theory
– volume: 81
  year: 2022
  ident: b28
  article-title: Physics-based digital twins for autonomous thermal food processing: Efficient, non-intrusive reduced-order modeling
  publication-title: Innov. Food Sci. Emerg. Technol.
– volume: 7
  start-page: 276
  year: 2013
  end-page: 289
  ident: b12
  article-title: Numerical studies of space-filling designs: Optimization of Latin hypercube samples and subprojection properties
  publication-title: J. Simul.
– volume: 51
  start-page: 1016
  year: 2018
  end-page: 1022
  ident: b33
  article-title: Digital twin in manufacturing: A categorical literature review and classification
  publication-title: IFAC-PapersOnLine
– start-page: 542
  year: 2020
  end-page: 545
  ident: b26
  article-title: Digital twin application for production optimization
  publication-title: 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM)
– volume: 43
  start-page: 381
  year: 1995
  end-page: 402
  ident: b47
  article-title: Exploratory designs for computational experiments
  publication-title: J. Statist. Plann. Inference
– volume: 91
  start-page: 305
  year: 2019
  end-page: 313
  ident: b2
  article-title: Gray-box modeling for the optimization of chemical processes
  publication-title: Chem. Ing. Tech.
– volume: 22
  start-page: 681
  year: 2012
  end-page: 701
  ident: b53
  article-title: Design of computer experiments: Space filling and beyond
  publication-title: Stat. Comput.
– volume: 20
  start-page: 832
  year: 1998
  end-page: 844
  ident: b24
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 123
  year: 2020
  ident: b16
  article-title: Digital twin for maintenance: A literature review
  publication-title: Comput. Ind.
– start-page: 278
  year: 1995
  ident: 10.1016/j.compchemeng.2023.108252_b23
  article-title: Random decision forests
– volume: 59
  start-page: 15634
  issue: 35
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108252_b59
  article-title: Dynamic surrogate modeling for multistep-ahead prediction of multivariate nonlinear chemical processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.0c00729
– volume: 22
  start-page: 681
  issue: 3
  year: 2012
  ident: 10.1016/j.compchemeng.2023.108252_b53
  article-title: Design of computer experiments: Space filling and beyond
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-011-9242-3
– volume: 38
  start-page: 367
  issue: 4
  year: 2002
  ident: 10.1016/j.compchemeng.2023.108252_b19
  article-title: Stochastic gradient boosting
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/S0167-9473(01)00065-2
– ident: 10.1016/j.compchemeng.2023.108252_b13
– volume: 81
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108252_b28
  article-title: Physics-based digital twins for autonomous thermal food processing: Efficient, non-intrusive reduced-order modeling
  publication-title: Innov. Food Sci. Emerg. Technol.
  doi: 10.1016/j.ifset.2022.103143
– volume: 145
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108252_b65
  article-title: Digital twin: Generalization, characterization and implementation
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2021.113524
– start-page: 1795
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108252_b56
  article-title: Work smarter, not harder: A tutorial on designing and conducting simulation experiments
– year: 2013
  ident: 10.1016/j.compchemeng.2023.108252_b66
  article-title: Things you wanted to know about the Latin hypercube design and were afraid to ask
– volume: 228
  start-page: 349
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b48
  article-title: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process
  publication-title: Fuel
  doi: 10.1016/j.fuel.2018.04.142
– start-page: 51
  year: 2010
  ident: 10.1016/j.compchemeng.2023.108252_b30
  article-title: Design and analysis of computational experiments: Overview
– year: 1994
  ident: 10.1016/j.compchemeng.2023.108252_b46
– volume: 133
  start-page: 160
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b63
  article-title: An overview of process systems engineering approaches for process intensification: State of the art
  publication-title: Chem. Eng. Process. - Process Intensif.
  doi: 10.1016/j.cep.2018.07.014
– volume: 60
  start-page: 86
  year: 2014
  ident: 10.1016/j.compchemeng.2023.108252_b68
  article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2013.08.008
– volume: 149
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108252_b69
  article-title: Distance-based optimal sampling in a hypercube: Energy potentials for high-dimensional and low-saturation designs
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2020.102880
– volume: 57
  start-page: 393
  issue: 1
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b39
  article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-017-1739-8
– volume: 252
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108252_b62
  article-title: Maximizing information from chemical engineering data sets: Applications to machine learning
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2022.117469
– volume: 57
  start-page: 1027
  issue: 6
  year: 2002
  ident: 10.1016/j.compchemeng.2023.108252_b73
  article-title: Grey-box modelling and control of chemical processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/S0009-2509(01)00439-0
– volume: 26
  start-page: 1193
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b25
  article-title: Modeling of cloud-based digital twins for smart manufacturing with MT connect
  publication-title: Procedia Manuf.
  doi: 10.1016/j.promfg.2018.07.155
– volume: 43
  start-page: 381
  issue: 3
  year: 1995
  ident: 10.1016/j.compchemeng.2023.108252_b47
  article-title: Exploratory designs for computational experiments
  publication-title: J. Statist. Plann. Inference
  doi: 10.1016/0378-3758(94)00035-T
– start-page: 235
  year: 2014
  ident: 10.1016/j.compchemeng.2023.108252_b35
  article-title: Model order reduction in fluid dynamics: Challenges and perspectives
– start-page: 179
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108252_b31
  article-title: Kriging metamodels and their designs
– start-page: 67
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108252_b3
  article-title: Support vector regression
– volume: 57
  start-page: 553
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b14
  article-title: Estimates of the coverage of parameter space by Latin hypercube and orthogonal array-based sampling
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2017.11.036
– volume: 154
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108252_b51
  article-title: Hybrid model generation for superstructure optimization with generalized disjunctive programming
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107473
– volume: 107
  start-page: 393
  issue: 497
  year: 2012
  ident: 10.1016/j.compchemeng.2023.108252_b54
  article-title: Sliced Latin hypercube designs
  publication-title: J. Amer. Statist. Assoc.
  doi: 10.1080/01621459.2011.644132
– volume: 61
  start-page: 11
  issue: 8
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108252_b36
  article-title: Focus on data: Statistical design of experiments and sample size selection using power analysis
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.61.8.11
– volume: 12
  start-page: 1088
  issue: 3
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108252_b6
  article-title: Digital twin reference model development to prevent operators’ risk in process plants
  publication-title: Sustainability
  doi: 10.3390/su12031088
– volume: 21
  start-page: 239
  issue: 2
  year: 1979
  ident: 10.1016/j.compchemeng.2023.108252_b44
  article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code
  publication-title: Technometrics
– year: 2008
  ident: 10.1016/j.compchemeng.2023.108252_b9
– volume: 56
  issue: A
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108252_b20
  article-title: Review of ”grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods
  publication-title: J. Energy Storage
– volume: 7
  start-page: 86
  issue: 4
  year: 1967
  ident: 10.1016/j.compchemeng.2023.108252_b60
  article-title: On the distribution of points in a cube and the approximate evaluation of integrals
  publication-title: USSR Comput. Math. Math. Phys.
  doi: 10.1016/0041-5553(67)90144-9
– volume: 43
  start-page: 749
  issue: 3
  year: 2009
  ident: 10.1016/j.compchemeng.2023.108252_b72
  article-title: Ambiguities inherent in sums-of-squares-based error statistics
  publication-title: Atmos. Environ.
  doi: 10.1016/j.atmosenv.2008.10.005
– volume: 20
  start-page: 832
  issue: 8
  year: 1998
  ident: 10.1016/j.compchemeng.2023.108252_b24
  article-title: The random subspace method for constructing decision forests
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.709601
– volume: 91
  start-page: 305
  issue: 3
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108252_b2
  article-title: Gray-box modeling for the optimization of chemical processes
  publication-title: Chem. Ing. Tech.
  doi: 10.1002/cite.201800086
– start-page: 176
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108252_b40
  article-title: A sequential latin hypercube sampling method for metamodeling
– start-page: 289
  year: 1992
  ident: 10.1016/j.compchemeng.2023.108252_b5
  article-title: Metamodels for simulation input-output relations
– volume: 7
  start-page: 276
  issue: 4
  year: 2013
  ident: 10.1016/j.compchemeng.2023.108252_b12
  article-title: Numerical studies of space-filling designs: Optimization of Latin hypercube samples and subprojection properties
  publication-title: J. Simul.
  doi: 10.1057/jos.2013.16
– year: 2009
  ident: 10.1016/j.compchemeng.2023.108252_b64
– year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b49
  article-title: Empirical modelling of hydraulic pumps and motors based upon the Latin hypercube sampling method
  publication-title: Int. J. Hydromechatron.
  doi: 10.1504/IJHM.2018.094880
– year: 2015
  ident: 10.1016/j.compchemeng.2023.108252_b15
– volume: 151
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108252_b57
  article-title: Recent trends on hybrid modeling for industry 4.0
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107365
– start-page: 23
  year: 1995
  ident: 10.1016/j.compchemeng.2023.108252_b17
  article-title: A desicion-theoretic generalization of on-line learning and an application to boosting
– volume: 24
  start-page: 2058
  issue: 5
  year: 1996
  ident: 10.1016/j.compchemeng.2023.108252_b41
  article-title: On Latin hypercube sampling
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1069362310
– volume: 25
  start-page: 727
  issue: 3
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b7
  article-title: A critical appraisal of design of experiments for uncertainty quantification
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-017-9211-x
– volume: 134
  start-page: 134
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b74
  article-title: A general construction for nested Latin hypercube designs
  publication-title: Statist. Probab. Lett.
  doi: 10.1016/j.spl.2017.10.022
– volume: 23
  issue: 1
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108252_b76
  article-title: Surrogate modeling of nonlinear dynamic systems: A comparative study
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4054039
– year: 2000
  ident: 10.1016/j.compchemeng.2023.108252_b43
  article-title: Evaluating the convergence of Latin hypercube sampling
– volume: 116
  start-page: 306
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b4
  article-title: A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.12.011
– volume: 44
  start-page: 348
  issue: 3
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108252_b21
  article-title: Machine learning made easy: A review of scikit-learn package in python programming language
  publication-title: J. Educ. Behav. Stat.
  doi: 10.3102/1076998619832248
– volume: 14
  start-page: 3
  issue: 1
  year: 2013
  ident: 10.1016/j.compchemeng.2023.108252_b1
  article-title: A trust-region framework for constrained optimization using reduced order modeling
  publication-title: Opt. Eng.
  doi: 10.1007/s11081-011-9164-0
– volume: 51
  start-page: 675
  issue: 5
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108252_b27
  article-title: Supervised machine learning: A brief primer
  publication-title: Behav. Ther.
  doi: 10.1016/j.beth.2020.05.002
– volume: 123
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108252_b16
  article-title: Digital twin for maintenance: A literature review
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2020.103316
– volume: 81
  start-page: 23
  issue: 1
  year: 2003
  ident: 10.1016/j.compchemeng.2023.108252_b22
  article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/S0951-8320(03)00058-9
– volume: 93
  start-page: 109
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108252_b58
  article-title: Progressive Latin hypercube sampling: An efficient approach for Robust sampling-based analysis of environmental models
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2017.03.010
– volume: 32
  start-page: 1975
  issue: 5
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108252_b67
  article-title: A tutorial on Latin hypercube design of experiments
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/qre.1924
– start-page: 1592
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b78
  article-title: Keeping the digital twin up-to-date – Process monitoring to identify changes in a plant
– volume: 108
  start-page: 250
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b8
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.017
– volume: 87
  start-page: 2549
  issue: 13
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108252_b37
  article-title: A novel extension algorithm for optimized Latin hypercube sampling
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2017.1340475
– volume: 12
  start-page: 2825
  issue: 85
  year: 2011
  ident: 10.1016/j.compchemeng.2023.108252_b50
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 68
  issue: 6
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108252_b55
  article-title: Integration of machine learning and first principles models
  publication-title: AIChE J.
  doi: 10.1002/aic.17715
– volume: 49
  start-page: 45
  issue: 1
  year: 2007
  ident: 10.1016/j.compchemeng.2023.108252_b11
  article-title: Efficient nearly orthogonal and space-filling latin hypercubes
  publication-title: Technometrics
  doi: 10.1198/004017006000000453
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.compchemeng.2023.108252_b18
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
– volume: 585
  start-page: 609
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108252_b29
  article-title: Root mean square error or mean absolute error? Use their ratio as well
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.11.036
– volume: 51
  start-page: 790
  issue: 11
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b42
  article-title: Exploring the role of digital twin for asset lifecycle management
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.415
– year: 2014
  ident: 10.1016/j.compchemeng.2023.108252_b45
– volume: 58
  start-page: 346
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108252_b38
  article-title: Review of digital twin about concepts, technologies, and industrial applications
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2020.06.017
– volume: 15
  start-page: 59
  issue: 1
  year: 1976
  ident: 10.1016/j.compchemeng.2023.108252_b52
  article-title: A new two-constant equation of state
  publication-title: Ind. Eng. Chem. Fundam.
  doi: 10.1021/i160057a011
– volume: 51
  start-page: 1016
  issue: 11
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b33
  article-title: Digital twin in manufacturing: A categorical literature review and classification
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.08.474
– volume: 198
  start-page: 170
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108252_b70
  article-title: Surrogate modelling for sustainable building design – A review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2019.05.057
– volume: 39
  start-page: 279
  issue: 4
  year: 1985
  ident: 10.1016/j.compchemeng.2023.108252_b34
  article-title: Cautionary note about R2
  publication-title: Amer. Statist.
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 10.1016/j.compchemeng.2023.108252_b71
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– volume: 7
  start-page: 1247
  issue: 3
  year: 2014
  ident: 10.1016/j.compchemeng.2023.108252_b10
  article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature
  publication-title: Geosci. Model Dev.
  doi: 10.5194/gmd-7-1247-2014
– start-page: 1187
  year: 1997
  ident: 10.1016/j.compchemeng.2023.108252_b32
  article-title: Chapter 14 - physical solvents for acid gas removal
– volume: 228
  start-page: 2539
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108252_b75
  article-title: Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.06.051
– volume: 48
  start-page: 5522
  issue: 11
  year: 2009
  ident: 10.1016/j.compchemeng.2023.108252_b61
  article-title: Symmetric nonrandom two-liquid segment activity coefficient model for electrolytes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie900006g
– volume: 143
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108252_b77
  article-title: Analytics with digital-twinning: A decision support system for maintaining a resilient port
  publication-title: Decis. Support Syst.
  doi: 10.1016/j.dss.2021.113496
– start-page: 542
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108252_b26
  article-title: Digital twin application for production optimization
SSID ssj0002488
Score 2.4620707
Snippet Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To...
SourceID unpaywall
hal
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 108252
SubjectTerms Amine scrubbing
Chemical and Process Engineering
Design of experiments
Digital twin
Engineering Sciences
Latin hypercube
Machine-learning
Surrogate modeling
SummonAdditionalLinks – databaseName: Science Direct
  dbid: .~1
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF6shz4OpU9qX2xLr9E8NmsWehGpSCk9VfAWNrsba9EoGiu99Ld3Jg-1h4LQU8iQIcvMsjObfPt9hDxIJxI2t5XlM8kspqRriRhJPznjXCuokFGGtnjl3R577vv9CmmXZ2EQVlms_fmanq3WhaVRRLMxHQ7xjK8IHM-HfiD7P4SH-BhroopB_XsN83BZEJS8mfj0LrlbY7wQtg2xGZtkUEcdcUTcub77V43aeUew5N4imcqvpRyNNipR54gcFi0kbeWjPCYVk5yQgw1iwVMSbWCB6CSmks4Xs9kEP5nRTPsmMyZUjsGHzlGmBnbIA6qHAxQRoelymFCExA_oOENbGlrIS4Ah05yen5Fe5-mt3bUKNQVLQdFOraYXxBLaEQUNoYSNnjZaC26EI6QQMfO15sI1dqwhX9Jw4wdcCztqRh5clet556SaTBJzQSgU9SgWUhnkzm9C6JXyfOFopAO0pVY1EpTxC1VBNY6KF6OwxJR9hBuhDzH0YR76GnFXrtOcb2Mbp8cySeGvyRNCXdjG_R4Su3odEm53Wy8h2mzGhA0t3qdTI94q79uP7PJ_I7si-3iXQ9OuSTWdLcwNNEFpdJvN8h8o5AYt
  priority: 102
  providerName: Elsevier
Title Development of a surrogate model of an amine scrubbing digital twin using machine learning methods
URI https://dx.doi.org/10.1016/j.compchemeng.2023.108252
https://hal.science/hal-04490727
https://hdl.handle.net/11311/1249778
UnpaywallVersion submittedVersion
Volume 174
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AKRWK
  dateStart: 19770101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB1iG1pyaPpJXRqzLbnKlbSrlRZ6MSHB_cD0UEN6EqvdlZPWloMtJ7SH_vbO6MMxgVLTk2Bg0C4zy7wVT-8BnOggU770jRcJLTxhdOipnEQ_pZDSGpyQWcW2mMjxVHy8iC4O4KT9F-aevkBAajDvyCA5jpMO9GSEiLsLvenky-hbK4cZ8MrsLEhi7gkeRw_gzR2Ni5jZuP2FK2ZDsgonUl0YhX8bQ51L4kM-3BTX-uetns93hs35EZy1y6w5Jj-GmzIbml_3FBz_tY_H8KhBm2xUt8cTOHDFUzjc0SB8BtkObYgtc6bZerNaLenrGqtscqpgwfQCc9iaHG3wMj1j9mpGfiOsvL0qGLHnZ2xRETMda5woMFDZU6-fw_T87Ovp2GuMFzyD8730Yp7kGpGLQeyo8U5onbVKOhUorVQuImulCp2fWyytdtJFibTKz-KM49OEnL-AbrEs3EtgOP-zXGnjSGY_DkNlDI9UYEk50NfW9CFp65CaRpWczDHmaUs_-57ulDClEqZ1CfsQblOva2mOfZLet8VOG4xRY4cUR8g-6W-xQbavI23u8ehzSjFfCOUjGrwJ-sC3_bP_yl79V9Zr6JarjTtGZFRmA-gMfwcD6I0-fBpPBs0x-QNGhA_B
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4BK_E4oF0eorCAF3EN5OG4sbQXhEAFupxA4mY5ttPtqk2rPkBc-O3M5FG6B6RKnCJNMoo1Y3nGyefvAzjVQSp94Rsv5pp73OjQkxmRfgouhDVYIdMCbXEvWo_89il-WoLL-iwMwSqrtb9c04vVurKcV9E8H3a7dMZXJkEUYz9Q_B-Sy_CNx2GTdmBnbx84j5AnSU2cSY-vwq8PkBfhtjE4fZd3zkhInCB3YRx-VqSW_xJacm2aD_Xri-715krR9XfYrHpIdlEO8wcsuXwLNuaYBbchnQMDsUHGNBtPR6MBfTNjhfhNYcyZ7qMPG5NODW6RO8x2O6QiwiYv3ZwRJr7D-gXc0rFKXwINhej0eAcer68eLlteJafgGazaE68ZJZnGfsRgR6hxp2edtVI4GUgtZcZja4UMnZ9ZTJh2wsWJsNJPm2mEVxNG0S6s5IPc7QHDqp5mUhtH5PlNjL0xUSwDS3yAvramAUkdP2UqrnGSvOipGlT2T82FXlHoVRn6BoQz12FJuLGI0-86Seq_2aOwMCzifoKJnb2OGLdbF21FNp9z6WOP9xw0IJrlffGR7X9tZMew1nr401btm_u7A1inOyVO7SesTEZTd4gd0SQ9Kmb8O2DzCVA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB70hBYfWm0rXmllLb7mmmQ3myz05RDlKCI-9ECfwmZ3c1XvcnKXU_SvdyY_zkMoHn0KDAzZZWaZb8OX7wM40kGmfOkbLxJaeMLo0FM5iX5KIaU1OCGzim1xLgdD8fsyutyAo_ZfmFf6AgGpwfwkg-Q4TjZhS0aIuDuwNTy_6F-1cpgBr8zOgiTmnuBx9A4OX2hcxMzG7U9cMeqRVTiR6sIo_NcY2vxLfMj3i-JOPz7o8Xhl2Jx-hJN2mTXH5La3KLOeeXql4PjWPnbgQ4M2Wb9uj13YcMUn2F7RIPwM2QptiE1zptl8MZtN6esaq2xyqmDB9ARz2JwcbfAyPWL2ekR-I6x8uC4YsedHbFIRMx1rnCgwUNlTz7_A8PTkz_HAa4wXPIPzvfRinuQakYtB7KjxTmidtUo6FSitVC4ia6UKnZ9bLK120kWJtMrP4ozj04Sc70GnmBZuHxjO_yxX2jiS2Y_DUBnDIxVYUg70tTVdSNo6pKZRJSdzjHHa0s9u0pUSplTCtC5hF8Jl6l0tzbFO0q-22GmDMWrskOIIWSf9BzbI8nWkzT3on6UU84VQPqLB-6ALfNk_66_s639lfYNOOVu474iMyuygORjPgTINNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+surrogate+model+of+an+amine+scrubbing+digital+twin+using+machine+learning+methods&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Galeazzi%2C+Andrea&rft.au=Prifti%2C+Kristiano&rft.au=Cortellini%2C+Carlo&rft.au=Di+Pretoro%2C+Alessandro&rft.date=2023-06-01&rft.issn=0098-1354&rft.volume=174&rft.spage=108252&rft_id=info:doi/10.1016%2Fj.compchemeng.2023.108252&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2023_108252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon