Development of a surrogate model of an amine scrubbing digital twin using machine learning methods
Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To overcome the numerical limit of conventional process simulations a surrogate model is a viable strategy. In this work, a surrogate model of an indu...
Saved in:
| Published in | Computers & chemical engineering Vol. 174; p. 108252 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.06.2023
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0098-1354 1873-4375 1873-4375 |
| DOI | 10.1016/j.compchemeng.2023.108252 |
Cover
| Abstract | Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To overcome the numerical limit of conventional process simulations a surrogate model is a viable strategy. In this work, a surrogate model of an industrial amine scrubbing digital twin has been developed. The surrogate model has been built based on the process simulation created in Aspen HYSYS and validated as a digital twin against real process data collected during a steady-state operation. The surrogate relies on an accurate Design of Experiments procedure. In this case, the Latin-Hypercube method has been chosen and several nested domains have been defined in ranges around the nominal steady state operative condition. Several machine learning models have been trained using cross-validation, and the most accurate has been selected to predict each target. The resulting surrogate model showed a satisfactory performance, given the data available.
•The method proposed can be applied to automatically surrogate any digital twin.•Data-driven machine learning algorithms can be applied to metamodel a digital twin.•Surrogate performance is greatly affected by the design of experiments training data. |
|---|---|
| AbstractList | Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To overcome the numerical limit of conventional process simulations a surrogate model is a viable strategy. In this work, a surrogate model of an industrial amine scrubbing digital twin has been developed. The surrogate model has been built based on the process simulation created in Aspen HYSYS and validated as a digital twin against real process data collected during a steady-state operation. The surrogate relies on an accurate Design of Experiments procedure. In this case, the Latin-Hypercube method has been chosen and several nested domains have been defined in ranges around the nominal steady state operative condition. Several machine learning models have been trained using cross-validation, and the most accurate has been selected to predict each target. The resulting surrogate model showed a satisfactory performance, given the data available.
•The method proposed can be applied to automatically surrogate any digital twin.•Data-driven machine learning algorithms can be applied to metamodel a digital twin.•Surrogate performance is greatly affected by the design of experiments training data. Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To overcome the numerical limit of conventional process simulations a surrogate model is a viable strategy. In this work, a surrogate model of an industrial amine scrubbing digital twin has been developed. The surrogate model has been built based on the process simulation created in Aspen HYSYS and validated as a digital twin against real process data collected during a steady-state operation. The surrogate relies on an accurate Design of Experiments procedure. In this case, the Latin-Hypercube method has been chosen and several nested domains have been defined in ranges around the nominal steady state operative condition. Several machine learning models have been trained using cross-validation, and the most accurate has been selected to predict each target. The resulting surrogate model showed a satisfactory performance, given the data available. |
| ArticleNumber | 108252 |
| Author | Gallo, Francesco Galeazzi, Andrea Di Pretoro, Alessandro Manenti, Flavio Cortellini, Carlo Prifti, Kristiano |
| Author_xml | – sequence: 1 givenname: Andrea surname: Galeazzi fullname: Galeazzi, Andrea organization: Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy – sequence: 2 givenname: Kristiano surname: Prifti fullname: Prifti, Kristiano organization: Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy – sequence: 3 givenname: Carlo surname: Cortellini fullname: Cortellini, Carlo organization: Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy – sequence: 4 givenname: Alessandro surname: Di Pretoro fullname: Di Pretoro, Alessandro organization: Laboratoire de Génie Chimique, Université de Toulouse, CNRS/INP/UPS, Allée E. Monso, 4, Toulouse, 31431, France – sequence: 5 givenname: Francesco surname: Gallo fullname: Gallo, Francesco organization: Itelyum Regeneration S.p.A., Via Tavernelle, 19, Pieve Fissiraga, 26854, Italy – sequence: 6 givenname: Flavio orcidid: 0000-0002-3305-8044 surname: Manenti fullname: Manenti, Flavio email: flavio.manenti@polimi.it organization: Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, Milan, 20133, Italy |
| BackLink | https://hal.science/hal-04490727$$DView record in HAL |
| BookMark | eNqVkEtrGzEUhUVJoc7jP6jLLsbVY17qpgT3kYChm2Qt7kh3bJkZyUiyQ_59ZzKFhq7S1YXD-Y7Ed0kufPBIyEfO1pzx-vNhbcJ4NHsc0e_Wggk55a2oxDuy4m0ji1I21QVZMabagsuq_EAuUzowxkTZtivSfcMzDuE44ZmGngJNpxjDDjLSMVgcXkJPYXQeaTLx1HXO76h1O5dhoPnJeXpKczSC2c-lASH6lwDzPth0Td73MCS8-XOvyOOP7w-bu2L76-f95nZbmJLVuWhk24NUyiheg-DMorWqRsUVKNWXlbW1Esh6a0AA1li1tVWsazo5XSOkvCJflt2TP8LzEwyDPkY3QnzWnOnZlj7oV7b0bEsvtib40wLv4S8WwOm7262eM1aWijWiOfOp-3XpmhhSithrM7nILvgcwQ1vek39s_A_P90sLE4uzw6jTsahN2hdRJO1De4NK78BBoKzrw |
| CitedBy_id | crossref_primary_10_1016_j_cma_2023_116444 crossref_primary_10_1016_j_knosys_2024_111853 crossref_primary_10_1016_j_molliq_2024_124498 crossref_primary_10_1016_j_jgsce_2023_205104 |
| Cites_doi | 10.1021/acs.iecr.0c00729 10.1007/s11222-011-9242-3 10.1016/S0167-9473(01)00065-2 10.1016/j.ifset.2022.103143 10.1016/j.dss.2021.113524 10.1016/j.fuel.2018.04.142 10.1016/j.cep.2018.07.014 10.1016/j.compchemeng.2013.08.008 10.1016/j.advengsoft.2020.102880 10.1007/s00158-017-1739-8 10.1016/j.ces.2022.117469 10.1016/S0009-2509(01)00439-0 10.1016/j.promfg.2018.07.155 10.1016/0378-3758(94)00035-T 10.1016/j.apm.2017.11.036 10.1016/j.compchemeng.2021.107473 10.1080/01621459.2011.644132 10.1167/iovs.61.8.11 10.3390/su12031088 10.1016/0041-5553(67)90144-9 10.1016/j.atmosenv.2008.10.005 10.1109/34.709601 10.1002/cite.201800086 10.1057/jos.2013.16 10.1504/IJHM.2018.094880 10.1016/j.compchemeng.2021.107365 10.1214/aos/1069362310 10.1007/s11831-017-9211-x 10.1016/j.spl.2017.10.022 10.1115/1.4054039 10.1016/j.compchemeng.2017.12.011 10.3102/1076998619832248 10.1007/s11081-011-9164-0 10.1016/j.beth.2020.05.002 10.1016/j.compind.2020.103316 10.1016/S0951-8320(03)00058-9 10.1016/j.envsoft.2017.03.010 10.1002/qre.1924 10.1016/j.compchemeng.2017.09.017 10.1080/00949655.2017.1340475 10.1002/aic.17715 10.1198/004017006000000453 10.1214/aos/1013203451 10.1016/j.ins.2021.11.036 10.1016/j.ifacol.2018.08.415 10.1016/j.jmsy.2020.06.017 10.1021/i160057a011 10.1016/j.ifacol.2018.08.474 10.1016/j.enbuild.2019.05.057 10.3354/cr030079 10.5194/gmd-7-1247-2014 10.1016/j.apenergy.2018.06.051 10.1021/ie900006g 10.1016/j.dss.2021.113496 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier Ltd Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2023 Elsevier Ltd – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC ADTOC UNPAY |
| DOI | 10.1016/j.compchemeng.2023.108252 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-4375 |
| ExternalDocumentID | oai:re.public.polimi.it:11311/1249778 oai:HAL:hal-04490727v1 10_1016_j_compchemeng_2023_108252 S0098135423001229 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPOS AI. AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LX7 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SST SSZ T5K VH1 WUQ ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD 1XC ADTOC UNPAY |
| ID | FETCH-LOGICAL-c406t-738fa399c916a210dedd96e919a99f45dd692e0fdca2ae6e586d90b7b36d9c233 |
| IEDL.DBID | UNPAY |
| ISSN | 0098-1354 1873-4375 |
| IngestDate | Sun Oct 26 04:02:28 EDT 2025 Sat Oct 25 07:08:18 EDT 2025 Wed Oct 01 04:02:03 EDT 2025 Thu Apr 24 22:52:38 EDT 2025 Sat Aug 03 15:33:03 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Amine scrubbing Latin hypercube Digital twin Surrogate modeling Machine-learning Design of experiments |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 other-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-738fa399c916a210dedd96e919a99f45dd692e0fdca2ae6e586d90b7b36d9c233 |
| ORCID | 0000-0002-3305-8044 0000-0001-7394-5396 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://hdl.handle.net/11311/1249778 |
| ParticipantIDs | unpaywall_primary_10_1016_j_compchemeng_2023_108252 hal_primary_oai_HAL_hal_04490727v1 crossref_citationtrail_10_1016_j_compchemeng_2023_108252 crossref_primary_10_1016_j_compchemeng_2023_108252 elsevier_sciencedirect_doi_10_1016_j_compchemeng_2023_108252 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | June 2023 2023-06-00 2023-06 |
| PublicationDateYYYYMMDD | 2023-06-01 |
| PublicationDate_xml | – month: 06 year: 2023 text: June 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & chemical engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Liu, Fang, Dong, Xu (b38) 2021; 58 Bhosekar, Ierapetritou (b8) 2018; 108 Guo, Sun, Vilsen, Meng, Stroe (b20) 2022; 56 Kohl, Nielsen (b32) 1997 Willmott, Matsuura (b71) 2005; 30 Manteufel (b43) 2000 Zendehboudi, Rezaei, Lohi (b75) 2018; 228 Jiang, Gradus, Rosellini (b27) 2020; 51 Minana, Schieppati, Dalla Giovanna (b46) 1994 Tian, Demirel, Hasan, Pistikopoulos (b63) 2018; 133 Barton (b5) 1992 Jeon, Schuesslbauer (b26) 2020 Sobol (b60) 1967; 7 McKay, Beckman, Conover (b44) 1979; 21 Morris, Mitchell (b47) 1995; 43 Chai, Draxler (b10) 2014; 7 Karunasingha (b29) 2022; 585 Errandonea, Beltrán, Arrizabalaga (b16) 2020; 123 Thebelt, Wiebe, Kronqvist, Tsay, Misener (b62) 2022; 252 Rajulapati, Chinta, Shyamala, Rengaswamy (b55) 2022; 68 Xu, Duan, Wang, Yan (b74) 2018; 134 Liu, Ong, Cai (b39) 2018; 57 Peng, Robinson (b52) 1976; 15 Viana (b66) 2013 Pronzato, Müller (b53) 2012; 22 Sanchez, Wan (b56) 2015 Miles (b45) 2014 Zipper, Auris, Strahilov, Paul (b78) 2018 Kannapinn, Pham, Schäfer (b28) 2022; 81 Freund, Schapire (b17) 1995 Loh (b41) 1996; 24 Xiong, Jutan (b73) 2002; 57 Zhao, Jiang, Vega, Todd, Hu (b76) 2022; 23 Song, Chen (b61) 2009; 48 Sansana, Joswiak, Castillo, Wang, Rendall, Chiang, Reis (b57) 2021; 151 Zhou, Xu, Miller-Hooks, Zhou, Chen, Lee, Chew, Li (b77) 2021; 143 Viana (b67) 2016; 32 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b50) 2011; 12 Bevilacqua, Bottani, Ciarapica, Costantino, Di Donato, Ferraro, Mazzuto, Monteriù, Nardini, Ortenzi, Paroncini, Pirozzi, Prist, Quatrini, Tronci, Vignali (b6) 2020; 12 Damblin, Couplet, Iooss (b12) 2013; 7 Damiani, L., Demartini, M., Giribone, P., Maggiani, M., Revetria, R., 2018. Simulation and Digital Twin Based Design of a Production Line: A Case Study. Hong Kong, p. 5. Bhattacharyya (b7) 2018; 25 Qian (b54) 2012; 107 Shokry, Baraldi, Zio, Espuña (b59) 2020; 59 VanDerHorn, Mahadevan (b65) 2021; 145 Ho (b24) 1998; 20 Lassila, Manzoni, Quarteroni, Rozza (b35) 2014 Dyment, Watanasiri (b15) 2015 Panwar, Michael (b49) 2018 Cioppa, Lucas (b11) 2007; 49 Asprion, Boettcher, Pack, Stavrou, Hoeller, Schwientek, Bortz (b2) 2019; 91 Friedman (b19) 2002; 38 Ledolter, Kardon (b36) 2020; 61 Li, Lu, Xie, Yang (b37) 2017; 87 Sheikholeslami, Razavi (b58) 2017; 93 Kleijnen (b30) 2010 Willmott, Matsuura, Robeson (b72) 2009; 43 Bajaj, Iyer, Faruque Hasan (b4) 2018; 116 Westermann, Evins (b70) 2019; 198 Donovan, Burrage, Burrage, McCourt, Thompson, Yazici (b14) 2018; 57 Ho (b23) 1995 Kleijnen (b31) 2015 Vořechovský, Mašek (b69) 2020; 149 Agarwal, Biegler (b1) 2013; 14 von Stosch, Oliveira, Peres, de Azevedo (b68) 2014; 60 Bishop (b9) 2008 Hu, Nguyen, Tao, Leu, Liu, Shahriar, Al Sunny (b25) 2018; 26 Van Rossum, Drake (b64) 2009 Navid, Khalilarya, Abbasi (b48) 2018; 228 Awad, Khanna (b3) 2015 Pedrozo, Rodriguez Reartes, Bernal, Vecchietti, Diaz, Grossmann (b51) 2021; 154 Helton, Davis (b22) 2003; 81 Kvalseth (b34) 1985; 39 Kritzinger, Karner, Traar, Henjes, Sihn (b33) 2018; 51 Hao, Ho (b21) 2019; 44 Liu, Yang, Li (b40) 2016 Friedman (b18) 2001; 29 Macchi, Roda, Negri, Fumagalli (b42) 2018; 51 Rajulapati (10.1016/j.compchemeng.2023.108252_b55) 2022; 68 von Stosch (10.1016/j.compchemeng.2023.108252_b68) 2014; 60 Willmott (10.1016/j.compchemeng.2023.108252_b72) 2009; 43 Kannapinn (10.1016/j.compchemeng.2023.108252_b28) 2022; 81 Manteufel (10.1016/j.compchemeng.2023.108252_b43) 2000 Bajaj (10.1016/j.compchemeng.2023.108252_b4) 2018; 116 Pedregosa (10.1016/j.compchemeng.2023.108252_b50) 2011; 12 Qian (10.1016/j.compchemeng.2023.108252_b54) 2012; 107 10.1016/j.compchemeng.2023.108252_b13 Pedrozo (10.1016/j.compchemeng.2023.108252_b51) 2021; 154 Shokry (10.1016/j.compchemeng.2023.108252_b59) 2020; 59 Xu (10.1016/j.compchemeng.2023.108252_b74) 2018; 134 Asprion (10.1016/j.compchemeng.2023.108252_b2) 2019; 91 Kohl (10.1016/j.compchemeng.2023.108252_b32) 1997 Zhou (10.1016/j.compchemeng.2023.108252_b77) 2021; 143 Minana (10.1016/j.compchemeng.2023.108252_b46) 1994 Westermann (10.1016/j.compchemeng.2023.108252_b70) 2019; 198 Friedman (10.1016/j.compchemeng.2023.108252_b18) 2001; 29 Karunasingha (10.1016/j.compchemeng.2023.108252_b29) 2022; 585 Kleijnen (10.1016/j.compchemeng.2023.108252_b30) 2010 Chai (10.1016/j.compchemeng.2023.108252_b10) 2014; 7 Ho (10.1016/j.compchemeng.2023.108252_b23) 1995 Peng (10.1016/j.compchemeng.2023.108252_b52) 1976; 15 Song (10.1016/j.compchemeng.2023.108252_b61) 2009; 48 Vořechovský (10.1016/j.compchemeng.2023.108252_b69) 2020; 149 Hu (10.1016/j.compchemeng.2023.108252_b25) 2018; 26 Jeon (10.1016/j.compchemeng.2023.108252_b26) 2020 Liu (10.1016/j.compchemeng.2023.108252_b38) 2021; 58 Sanchez (10.1016/j.compchemeng.2023.108252_b56) 2015 VanDerHorn (10.1016/j.compchemeng.2023.108252_b65) 2021; 145 Zipper (10.1016/j.compchemeng.2023.108252_b78) 2018 Bishop (10.1016/j.compchemeng.2023.108252_b9) 2008 Loh (10.1016/j.compchemeng.2023.108252_b41) 1996; 24 Hao (10.1016/j.compchemeng.2023.108252_b21) 2019; 44 Freund (10.1016/j.compchemeng.2023.108252_b17) 1995 Ledolter (10.1016/j.compchemeng.2023.108252_b36) 2020; 61 Kritzinger (10.1016/j.compchemeng.2023.108252_b33) 2018; 51 Lassila (10.1016/j.compchemeng.2023.108252_b35) 2014 Pronzato (10.1016/j.compchemeng.2023.108252_b53) 2012; 22 Liu (10.1016/j.compchemeng.2023.108252_b39) 2018; 57 Liu (10.1016/j.compchemeng.2023.108252_b40) 2016 McKay (10.1016/j.compchemeng.2023.108252_b44) 1979; 21 Sheikholeslami (10.1016/j.compchemeng.2023.108252_b58) 2017; 93 Bhosekar (10.1016/j.compchemeng.2023.108252_b8) 2018; 108 Agarwal (10.1016/j.compchemeng.2023.108252_b1) 2013; 14 Morris (10.1016/j.compchemeng.2023.108252_b47) 1995; 43 Awad (10.1016/j.compchemeng.2023.108252_b3) 2015 Barton (10.1016/j.compchemeng.2023.108252_b5) 1992 Sansana (10.1016/j.compchemeng.2023.108252_b57) 2021; 151 Xiong (10.1016/j.compchemeng.2023.108252_b73) 2002; 57 Zhao (10.1016/j.compchemeng.2023.108252_b76) 2022; 23 Friedman (10.1016/j.compchemeng.2023.108252_b19) 2002; 38 Willmott (10.1016/j.compchemeng.2023.108252_b71) 2005; 30 Bevilacqua (10.1016/j.compchemeng.2023.108252_b6) 2020; 12 Kleijnen (10.1016/j.compchemeng.2023.108252_b31) 2015 Viana (10.1016/j.compchemeng.2023.108252_b67) 2016; 32 Damblin (10.1016/j.compchemeng.2023.108252_b12) 2013; 7 Ho (10.1016/j.compchemeng.2023.108252_b24) 1998; 20 Guo (10.1016/j.compchemeng.2023.108252_b20) 2022; 56 Donovan (10.1016/j.compchemeng.2023.108252_b14) 2018; 57 Zendehboudi (10.1016/j.compchemeng.2023.108252_b75) 2018; 228 Viana (10.1016/j.compchemeng.2023.108252_b66) 2013 Van Rossum (10.1016/j.compchemeng.2023.108252_b64) 2009 Tian (10.1016/j.compchemeng.2023.108252_b63) 2018; 133 Errandonea (10.1016/j.compchemeng.2023.108252_b16) 2020; 123 Navid (10.1016/j.compchemeng.2023.108252_b48) 2018; 228 Dyment (10.1016/j.compchemeng.2023.108252_b15) 2015 Helton (10.1016/j.compchemeng.2023.108252_b22) 2003; 81 Kvalseth (10.1016/j.compchemeng.2023.108252_b34) 1985; 39 Thebelt (10.1016/j.compchemeng.2023.108252_b62) 2022; 252 Cioppa (10.1016/j.compchemeng.2023.108252_b11) 2007; 49 Bhattacharyya (10.1016/j.compchemeng.2023.108252_b7) 2018; 25 Miles (10.1016/j.compchemeng.2023.108252_b45) 2014 Sobol (10.1016/j.compchemeng.2023.108252_b60) 1967; 7 Li (10.1016/j.compchemeng.2023.108252_b37) 2017; 87 Panwar (10.1016/j.compchemeng.2023.108252_b49) 2018 Macchi (10.1016/j.compchemeng.2023.108252_b42) 2018; 51 Jiang (10.1016/j.compchemeng.2023.108252_b27) 2020; 51 |
| References_xml | – start-page: 176 year: 2016 end-page: 185 ident: b40 article-title: A sequential latin hypercube sampling method for metamodeling publication-title: Theory, Methodology, Tools and Applications for Modeling and Simulation of Complex Systems – volume: 44 start-page: 348 year: 2019 end-page: 361 ident: b21 article-title: Machine learning made easy: A review of scikit-learn package in python programming language publication-title: J. Educ. Behav. Stat. – year: 1994 ident: b46 article-title: Process to re-refine used oils – volume: 23 year: 2022 ident: b76 article-title: Surrogate modeling of nonlinear dynamic systems: A comparative study publication-title: J. Comput. Inf. Sci. Eng. – start-page: 278 year: 1995 end-page: 282 ident: b23 article-title: Random decision forests publication-title: Proceedings of 3rd International Conference on Document Analysis and Recognition, Vol. 1 – volume: 15 start-page: 59 year: 1976 end-page: 64 ident: b52 article-title: A new two-constant equation of state publication-title: Ind. Eng. Chem. Fundam. – start-page: 1187 year: 1997 end-page: 1237 ident: b32 article-title: Chapter 14 - physical solvents for acid gas removal publication-title: Gas Purification – volume: 21 start-page: 239 year: 1979 end-page: 245 ident: b44 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – volume: 24 start-page: 2058 year: 1996 end-page: 2080 ident: b41 article-title: On Latin hypercube sampling publication-title: Ann. Statist. – year: 2000 ident: b43 article-title: Evaluating the convergence of Latin hypercube sampling publication-title: 41st Structures, Structural Dynamics, and Materials Conference and Exhibit – volume: 116 start-page: 306 year: 2018 end-page: 321 ident: b4 article-title: A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point publication-title: Comput. Chem. Eng. – volume: 59 start-page: 15634 year: 2020 end-page: 15655 ident: b59 article-title: Dynamic surrogate modeling for multistep-ahead prediction of multivariate nonlinear chemical processes publication-title: Ind. Eng. Chem. Res. – year: 2008 ident: b9 article-title: Pattern Recognition and Machine Learning (Information Science and Statistics) – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: b18 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. – volume: 56 year: 2022 ident: b20 article-title: Review of ”grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods publication-title: J. Energy Storage – volume: 228 start-page: 349 year: 2018 end-page: 367 ident: b48 article-title: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process publication-title: Fuel – start-page: 235 year: 2014 end-page: 273 ident: b35 article-title: Model order reduction in fluid dynamics: Challenges and perspectives publication-title: Reduced Order Methods for Modeling and Computational Reduction – volume: 68 year: 2022 ident: b55 article-title: Integration of machine learning and first principles models publication-title: AIChE J. – volume: 26 start-page: 1193 year: 2018 end-page: 1203 ident: b25 article-title: Modeling of cloud-based digital twins for smart manufacturing with MT connect publication-title: Procedia Manuf. – volume: 87 start-page: 2549 year: 2017 end-page: 2559 ident: b37 article-title: A novel extension algorithm for optimized Latin hypercube sampling publication-title: J. Stat. Comput. Simul. – volume: 43 start-page: 749 year: 2009 end-page: 752 ident: b72 article-title: Ambiguities inherent in sums-of-squares-based error statistics publication-title: Atmos. Environ. – start-page: 179 year: 2015 end-page: 239 ident: b31 article-title: Kriging metamodels and their designs publication-title: Design and Analysis of Simulation Experiments – volume: 107 start-page: 393 year: 2012 end-page: 399 ident: b54 article-title: Sliced Latin hypercube designs publication-title: J. Amer. Statist. Assoc. – volume: 61 start-page: 11 year: 2020 ident: b36 article-title: Focus on data: Statistical design of experiments and sample size selection using power analysis publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 93 start-page: 109 year: 2017 end-page: 126 ident: b58 article-title: Progressive Latin hypercube sampling: An efficient approach for Robust sampling-based analysis of environmental models publication-title: Environ. Model. Softw. – year: 2009 ident: b64 article-title: Python 3 Reference Manual – year: 2018 ident: b49 article-title: Empirical modelling of hydraulic pumps and motors based upon the Latin hypercube sampling method publication-title: Int. J. Hydromechatron. – volume: 49 start-page: 45 year: 2007 end-page: 55 ident: b11 article-title: Efficient nearly orthogonal and space-filling latin hypercubes publication-title: Technometrics – volume: 57 start-page: 393 year: 2018 end-page: 416 ident: b39 article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design publication-title: Struct. Multidiscip. Optim. – volume: 7 start-page: 1247 year: 2014 end-page: 1250 ident: b10 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. – volume: 145 year: 2021 ident: b65 article-title: Digital twin: Generalization, characterization and implementation publication-title: Decis. Support Syst. – volume: 81 start-page: 23 year: 2003 end-page: 69 ident: b22 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliab. Eng. Syst. Saf. – volume: 51 start-page: 675 year: 2020 end-page: 687 ident: b27 article-title: Supervised machine learning: A brief primer publication-title: Behav. Ther. – volume: 149 year: 2020 ident: b69 article-title: Distance-based optimal sampling in a hypercube: Energy potentials for high-dimensional and low-saturation designs publication-title: Adv. Eng. Softw. – volume: 51 start-page: 790 year: 2018 end-page: 795 ident: b42 article-title: Exploring the role of digital twin for asset lifecycle management publication-title: IFAC-PapersOnLine – start-page: 67 year: 2015 end-page: 80 ident: b3 article-title: Support vector regression publication-title: Efficient Learning Machines: Theories, Concepts, and Applications for Engineers and System Designers – start-page: 289 year: 1992 end-page: 299 ident: b5 article-title: Metamodels for simulation input-output relations publication-title: Proceedings of the 24th Conference on Winter Simulation - WSC ’92 – volume: 14 start-page: 3 year: 2013 end-page: 35 ident: b1 article-title: A trust-region framework for constrained optimization using reduced order modeling publication-title: Opt. Eng. – volume: 48 start-page: 5522 year: 2009 end-page: 5529 ident: b61 article-title: Symmetric nonrandom two-liquid segment activity coefficient model for electrolytes publication-title: Ind. Eng. Chem. Res. – volume: 252 year: 2022 ident: b62 article-title: Maximizing information from chemical engineering data sets: Applications to machine learning publication-title: Chem. Eng. Sci. – volume: 39 start-page: 279 year: 1985 end-page: 285 ident: b34 article-title: Cautionary note about R2 publication-title: Amer. Statist. – start-page: 1795 year: 2015 end-page: 1809 ident: b56 article-title: Work smarter, not harder: A tutorial on designing and conducting simulation experiments publication-title: 2015 Winter Simulation Conference (WSC) – volume: 108 start-page: 250 year: 2018 end-page: 267 ident: b8 article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review publication-title: Comput. Chem. Eng. – volume: 38 start-page: 367 year: 2002 end-page: 378 ident: b19 article-title: Stochastic gradient boosting publication-title: Comput. Statist. Data Anal. – volume: 154 year: 2021 ident: b51 article-title: Hybrid model generation for superstructure optimization with generalized disjunctive programming publication-title: Comput. Chem. Eng. – volume: 32 start-page: 1975 year: 2016 end-page: 1985 ident: b67 article-title: A tutorial on Latin hypercube design of experiments publication-title: Qual. Reliab. Eng. Int. – volume: 228 start-page: 2539 year: 2018 end-page: 2566 ident: b75 article-title: Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review publication-title: Appl. Energy – volume: 57 start-page: 553 year: 2018 end-page: 564 ident: b14 article-title: Estimates of the coverage of parameter space by Latin hypercube and orthogonal array-based sampling publication-title: Appl. Math. Model. – year: 2013 ident: b66 article-title: Things you wanted to know about the Latin hypercube design and were afraid to ask publication-title: 10th World Congress on Structural and Multidisciplinary Optimization, Vol. 19 – start-page: 1592 year: 2018 end-page: 1597 ident: b78 article-title: Keeping the digital twin up-to-date – Process monitoring to identify changes in a plant publication-title: 2018 IEEE International Conference on Industrial Technology (ICIT) – volume: 134 start-page: 134 year: 2018 end-page: 140 ident: b74 article-title: A general construction for nested Latin hypercube designs publication-title: Statist. Probab. Lett. – volume: 58 start-page: 346 year: 2021 end-page: 361 ident: b38 article-title: Review of digital twin about concepts, technologies, and industrial applications publication-title: J. Manuf. Syst. – volume: 57 start-page: 1027 year: 2002 end-page: 1039 ident: b73 article-title: Grey-box modelling and control of chemical processes publication-title: Chem. Eng. Sci. – volume: 7 start-page: 86 year: 1967 end-page: 112 ident: b60 article-title: On the distribution of points in a cube and the approximate evaluation of integrals publication-title: USSR Comput. Math. Math. Phys. – volume: 585 start-page: 609 year: 2022 end-page: 629 ident: b29 article-title: Root mean square error or mean absolute error? Use their ratio as well publication-title: Inform. Sci. – year: 2014 ident: b45 publication-title: R Squared, Adjusted R Squared – year: 2015 ident: b15 article-title: Acid Gas Cleaning Using DEPG Physical Solvents: Validation with Experimental and Plant Data – volume: 151 year: 2021 ident: b57 article-title: Recent trends on hybrid modeling for industry 4.0 publication-title: Comput. Chem. Eng. – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: b50 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 60 start-page: 86 year: 2014 end-page: 101 ident: b68 article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future publication-title: Comput. Chem. Eng. – start-page: 51 year: 2010 end-page: 72 ident: b30 article-title: Design and analysis of computational experiments: Overview publication-title: Experimental Methods for the Analysis of Optimization Algorithms – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: b71 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – volume: 198 start-page: 170 year: 2019 end-page: 186 ident: b70 article-title: Surrogate modelling for sustainable building design – A review publication-title: Energy Build. – volume: 25 start-page: 727 year: 2018 end-page: 751 ident: b7 article-title: A critical appraisal of design of experiments for uncertainty quantification publication-title: Arch. Comput. Methods Eng. – volume: 133 start-page: 160 year: 2018 end-page: 210 ident: b63 article-title: An overview of process systems engineering approaches for process intensification: State of the art publication-title: Chem. Eng. Process. - Process Intensif. – volume: 143 year: 2021 ident: b77 article-title: Analytics with digital-twinning: A decision support system for maintaining a resilient port publication-title: Decis. Support Syst. – volume: 12 start-page: 1088 year: 2020 ident: b6 article-title: Digital twin reference model development to prevent operators’ risk in process plants publication-title: Sustainability – reference: Damiani, L., Demartini, M., Giribone, P., Maggiani, M., Revetria, R., 2018. Simulation and Digital Twin Based Design of a Production Line: A Case Study. Hong Kong, p. 5. – start-page: 23 year: 1995 end-page: 37 ident: b17 article-title: A desicion-theoretic generalization of on-line learning and an application to boosting publication-title: Computational Learning Theory – volume: 81 year: 2022 ident: b28 article-title: Physics-based digital twins for autonomous thermal food processing: Efficient, non-intrusive reduced-order modeling publication-title: Innov. Food Sci. Emerg. Technol. – volume: 7 start-page: 276 year: 2013 end-page: 289 ident: b12 article-title: Numerical studies of space-filling designs: Optimization of Latin hypercube samples and subprojection properties publication-title: J. Simul. – volume: 51 start-page: 1016 year: 2018 end-page: 1022 ident: b33 article-title: Digital twin in manufacturing: A categorical literature review and classification publication-title: IFAC-PapersOnLine – start-page: 542 year: 2020 end-page: 545 ident: b26 article-title: Digital twin application for production optimization publication-title: 2020 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM) – volume: 43 start-page: 381 year: 1995 end-page: 402 ident: b47 article-title: Exploratory designs for computational experiments publication-title: J. Statist. Plann. Inference – volume: 91 start-page: 305 year: 2019 end-page: 313 ident: b2 article-title: Gray-box modeling for the optimization of chemical processes publication-title: Chem. Ing. Tech. – volume: 22 start-page: 681 year: 2012 end-page: 701 ident: b53 article-title: Design of computer experiments: Space filling and beyond publication-title: Stat. Comput. – volume: 20 start-page: 832 year: 1998 end-page: 844 ident: b24 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 123 year: 2020 ident: b16 article-title: Digital twin for maintenance: A literature review publication-title: Comput. Ind. – start-page: 278 year: 1995 ident: 10.1016/j.compchemeng.2023.108252_b23 article-title: Random decision forests – volume: 59 start-page: 15634 issue: 35 year: 2020 ident: 10.1016/j.compchemeng.2023.108252_b59 article-title: Dynamic surrogate modeling for multistep-ahead prediction of multivariate nonlinear chemical processes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.0c00729 – volume: 22 start-page: 681 issue: 3 year: 2012 ident: 10.1016/j.compchemeng.2023.108252_b53 article-title: Design of computer experiments: Space filling and beyond publication-title: Stat. Comput. doi: 10.1007/s11222-011-9242-3 – volume: 38 start-page: 367 issue: 4 year: 2002 ident: 10.1016/j.compchemeng.2023.108252_b19 article-title: Stochastic gradient boosting publication-title: Comput. Statist. Data Anal. doi: 10.1016/S0167-9473(01)00065-2 – ident: 10.1016/j.compchemeng.2023.108252_b13 – volume: 81 year: 2022 ident: 10.1016/j.compchemeng.2023.108252_b28 article-title: Physics-based digital twins for autonomous thermal food processing: Efficient, non-intrusive reduced-order modeling publication-title: Innov. Food Sci. Emerg. Technol. doi: 10.1016/j.ifset.2022.103143 – volume: 145 year: 2021 ident: 10.1016/j.compchemeng.2023.108252_b65 article-title: Digital twin: Generalization, characterization and implementation publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2021.113524 – start-page: 1795 year: 2015 ident: 10.1016/j.compchemeng.2023.108252_b56 article-title: Work smarter, not harder: A tutorial on designing and conducting simulation experiments – year: 2013 ident: 10.1016/j.compchemeng.2023.108252_b66 article-title: Things you wanted to know about the Latin hypercube design and were afraid to ask – volume: 228 start-page: 349 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b48 article-title: Diesel engine optimization with multi-objective performance characteristics by non-evolutionary Nelder-Mead algorithm: Sobol sequence and Latin hypercube sampling methods comparison in DoE process publication-title: Fuel doi: 10.1016/j.fuel.2018.04.142 – start-page: 51 year: 2010 ident: 10.1016/j.compchemeng.2023.108252_b30 article-title: Design and analysis of computational experiments: Overview – year: 1994 ident: 10.1016/j.compchemeng.2023.108252_b46 – volume: 133 start-page: 160 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b63 article-title: An overview of process systems engineering approaches for process intensification: State of the art publication-title: Chem. Eng. Process. - Process Intensif. doi: 10.1016/j.cep.2018.07.014 – volume: 60 start-page: 86 year: 2014 ident: 10.1016/j.compchemeng.2023.108252_b68 article-title: Hybrid semi-parametric modeling in process systems engineering: Past, present and future publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2013.08.008 – volume: 149 year: 2020 ident: 10.1016/j.compchemeng.2023.108252_b69 article-title: Distance-based optimal sampling in a hypercube: Energy potentials for high-dimensional and low-saturation designs publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2020.102880 – volume: 57 start-page: 393 issue: 1 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b39 article-title: A survey of adaptive sampling for global metamodeling in support of simulation-based complex engineering design publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-017-1739-8 – volume: 252 year: 2022 ident: 10.1016/j.compchemeng.2023.108252_b62 article-title: Maximizing information from chemical engineering data sets: Applications to machine learning publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2022.117469 – volume: 57 start-page: 1027 issue: 6 year: 2002 ident: 10.1016/j.compchemeng.2023.108252_b73 article-title: Grey-box modelling and control of chemical processes publication-title: Chem. Eng. Sci. doi: 10.1016/S0009-2509(01)00439-0 – volume: 26 start-page: 1193 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b25 article-title: Modeling of cloud-based digital twins for smart manufacturing with MT connect publication-title: Procedia Manuf. doi: 10.1016/j.promfg.2018.07.155 – volume: 43 start-page: 381 issue: 3 year: 1995 ident: 10.1016/j.compchemeng.2023.108252_b47 article-title: Exploratory designs for computational experiments publication-title: J. Statist. Plann. Inference doi: 10.1016/0378-3758(94)00035-T – start-page: 235 year: 2014 ident: 10.1016/j.compchemeng.2023.108252_b35 article-title: Model order reduction in fluid dynamics: Challenges and perspectives – start-page: 179 year: 2015 ident: 10.1016/j.compchemeng.2023.108252_b31 article-title: Kriging metamodels and their designs – start-page: 67 year: 2015 ident: 10.1016/j.compchemeng.2023.108252_b3 article-title: Support vector regression – volume: 57 start-page: 553 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b14 article-title: Estimates of the coverage of parameter space by Latin hypercube and orthogonal array-based sampling publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.11.036 – volume: 154 year: 2021 ident: 10.1016/j.compchemeng.2023.108252_b51 article-title: Hybrid model generation for superstructure optimization with generalized disjunctive programming publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107473 – volume: 107 start-page: 393 issue: 497 year: 2012 ident: 10.1016/j.compchemeng.2023.108252_b54 article-title: Sliced Latin hypercube designs publication-title: J. Amer. Statist. Assoc. doi: 10.1080/01621459.2011.644132 – volume: 61 start-page: 11 issue: 8 year: 2020 ident: 10.1016/j.compchemeng.2023.108252_b36 article-title: Focus on data: Statistical design of experiments and sample size selection using power analysis publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.61.8.11 – volume: 12 start-page: 1088 issue: 3 year: 2020 ident: 10.1016/j.compchemeng.2023.108252_b6 article-title: Digital twin reference model development to prevent operators’ risk in process plants publication-title: Sustainability doi: 10.3390/su12031088 – volume: 21 start-page: 239 issue: 2 year: 1979 ident: 10.1016/j.compchemeng.2023.108252_b44 article-title: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code publication-title: Technometrics – year: 2008 ident: 10.1016/j.compchemeng.2023.108252_b9 – volume: 56 issue: A year: 2022 ident: 10.1016/j.compchemeng.2023.108252_b20 article-title: Review of ”grey box” lifetime modeling for lithium-ion battery: Combining physics and data-driven methods publication-title: J. Energy Storage – volume: 7 start-page: 86 issue: 4 year: 1967 ident: 10.1016/j.compchemeng.2023.108252_b60 article-title: On the distribution of points in a cube and the approximate evaluation of integrals publication-title: USSR Comput. Math. Math. Phys. doi: 10.1016/0041-5553(67)90144-9 – volume: 43 start-page: 749 issue: 3 year: 2009 ident: 10.1016/j.compchemeng.2023.108252_b72 article-title: Ambiguities inherent in sums-of-squares-based error statistics publication-title: Atmos. Environ. doi: 10.1016/j.atmosenv.2008.10.005 – volume: 20 start-page: 832 issue: 8 year: 1998 ident: 10.1016/j.compchemeng.2023.108252_b24 article-title: The random subspace method for constructing decision forests publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.709601 – volume: 91 start-page: 305 issue: 3 year: 2019 ident: 10.1016/j.compchemeng.2023.108252_b2 article-title: Gray-box modeling for the optimization of chemical processes publication-title: Chem. Ing. Tech. doi: 10.1002/cite.201800086 – start-page: 176 year: 2016 ident: 10.1016/j.compchemeng.2023.108252_b40 article-title: A sequential latin hypercube sampling method for metamodeling – start-page: 289 year: 1992 ident: 10.1016/j.compchemeng.2023.108252_b5 article-title: Metamodels for simulation input-output relations – volume: 7 start-page: 276 issue: 4 year: 2013 ident: 10.1016/j.compchemeng.2023.108252_b12 article-title: Numerical studies of space-filling designs: Optimization of Latin hypercube samples and subprojection properties publication-title: J. Simul. doi: 10.1057/jos.2013.16 – year: 2009 ident: 10.1016/j.compchemeng.2023.108252_b64 – year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b49 article-title: Empirical modelling of hydraulic pumps and motors based upon the Latin hypercube sampling method publication-title: Int. J. Hydromechatron. doi: 10.1504/IJHM.2018.094880 – year: 2015 ident: 10.1016/j.compchemeng.2023.108252_b15 – volume: 151 year: 2021 ident: 10.1016/j.compchemeng.2023.108252_b57 article-title: Recent trends on hybrid modeling for industry 4.0 publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2021.107365 – start-page: 23 year: 1995 ident: 10.1016/j.compchemeng.2023.108252_b17 article-title: A desicion-theoretic generalization of on-line learning and an application to boosting – volume: 24 start-page: 2058 issue: 5 year: 1996 ident: 10.1016/j.compchemeng.2023.108252_b41 article-title: On Latin hypercube sampling publication-title: Ann. Statist. doi: 10.1214/aos/1069362310 – volume: 25 start-page: 727 issue: 3 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b7 article-title: A critical appraisal of design of experiments for uncertainty quantification publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-017-9211-x – volume: 134 start-page: 134 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b74 article-title: A general construction for nested Latin hypercube designs publication-title: Statist. Probab. Lett. doi: 10.1016/j.spl.2017.10.022 – volume: 23 issue: 1 year: 2022 ident: 10.1016/j.compchemeng.2023.108252_b76 article-title: Surrogate modeling of nonlinear dynamic systems: A comparative study publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4054039 – year: 2000 ident: 10.1016/j.compchemeng.2023.108252_b43 article-title: Evaluating the convergence of Latin hypercube sampling – volume: 116 start-page: 306 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b4 article-title: A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.12.011 – volume: 44 start-page: 348 issue: 3 year: 2019 ident: 10.1016/j.compchemeng.2023.108252_b21 article-title: Machine learning made easy: A review of scikit-learn package in python programming language publication-title: J. Educ. Behav. Stat. doi: 10.3102/1076998619832248 – volume: 14 start-page: 3 issue: 1 year: 2013 ident: 10.1016/j.compchemeng.2023.108252_b1 article-title: A trust-region framework for constrained optimization using reduced order modeling publication-title: Opt. Eng. doi: 10.1007/s11081-011-9164-0 – volume: 51 start-page: 675 issue: 5 year: 2020 ident: 10.1016/j.compchemeng.2023.108252_b27 article-title: Supervised machine learning: A brief primer publication-title: Behav. Ther. doi: 10.1016/j.beth.2020.05.002 – volume: 123 year: 2020 ident: 10.1016/j.compchemeng.2023.108252_b16 article-title: Digital twin for maintenance: A literature review publication-title: Comput. Ind. doi: 10.1016/j.compind.2020.103316 – volume: 81 start-page: 23 issue: 1 year: 2003 ident: 10.1016/j.compchemeng.2023.108252_b22 article-title: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/S0951-8320(03)00058-9 – volume: 93 start-page: 109 year: 2017 ident: 10.1016/j.compchemeng.2023.108252_b58 article-title: Progressive Latin hypercube sampling: An efficient approach for Robust sampling-based analysis of environmental models publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2017.03.010 – volume: 32 start-page: 1975 issue: 5 year: 2016 ident: 10.1016/j.compchemeng.2023.108252_b67 article-title: A tutorial on Latin hypercube design of experiments publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/qre.1924 – start-page: 1592 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b78 article-title: Keeping the digital twin up-to-date – Process monitoring to identify changes in a plant – volume: 108 start-page: 250 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b8 article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2017.09.017 – volume: 87 start-page: 2549 issue: 13 year: 2017 ident: 10.1016/j.compchemeng.2023.108252_b37 article-title: A novel extension algorithm for optimized Latin hypercube sampling publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2017.1340475 – volume: 12 start-page: 2825 issue: 85 year: 2011 ident: 10.1016/j.compchemeng.2023.108252_b50 article-title: Scikit-learn: Machine learning in Python publication-title: J. Mach. Learn. Res. – volume: 68 issue: 6 year: 2022 ident: 10.1016/j.compchemeng.2023.108252_b55 article-title: Integration of machine learning and first principles models publication-title: AIChE J. doi: 10.1002/aic.17715 – volume: 49 start-page: 45 issue: 1 year: 2007 ident: 10.1016/j.compchemeng.2023.108252_b11 article-title: Efficient nearly orthogonal and space-filling latin hypercubes publication-title: Technometrics doi: 10.1198/004017006000000453 – volume: 29 start-page: 1189 issue: 5 year: 2001 ident: 10.1016/j.compchemeng.2023.108252_b18 article-title: Greedy function approximation: A gradient boosting machine publication-title: Ann. Statist. doi: 10.1214/aos/1013203451 – volume: 585 start-page: 609 year: 2022 ident: 10.1016/j.compchemeng.2023.108252_b29 article-title: Root mean square error or mean absolute error? Use their ratio as well publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.11.036 – volume: 51 start-page: 790 issue: 11 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b42 article-title: Exploring the role of digital twin for asset lifecycle management publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.415 – year: 2014 ident: 10.1016/j.compchemeng.2023.108252_b45 – volume: 58 start-page: 346 year: 2021 ident: 10.1016/j.compchemeng.2023.108252_b38 article-title: Review of digital twin about concepts, technologies, and industrial applications publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2020.06.017 – volume: 15 start-page: 59 issue: 1 year: 1976 ident: 10.1016/j.compchemeng.2023.108252_b52 article-title: A new two-constant equation of state publication-title: Ind. Eng. Chem. Fundam. doi: 10.1021/i160057a011 – volume: 51 start-page: 1016 issue: 11 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b33 article-title: Digital twin in manufacturing: A categorical literature review and classification publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2018.08.474 – volume: 198 start-page: 170 year: 2019 ident: 10.1016/j.compchemeng.2023.108252_b70 article-title: Surrogate modelling for sustainable building design – A review publication-title: Energy Build. doi: 10.1016/j.enbuild.2019.05.057 – volume: 39 start-page: 279 issue: 4 year: 1985 ident: 10.1016/j.compchemeng.2023.108252_b34 article-title: Cautionary note about R2 publication-title: Amer. Statist. – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.compchemeng.2023.108252_b71 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – volume: 7 start-page: 1247 issue: 3 year: 2014 ident: 10.1016/j.compchemeng.2023.108252_b10 article-title: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature publication-title: Geosci. Model Dev. doi: 10.5194/gmd-7-1247-2014 – start-page: 1187 year: 1997 ident: 10.1016/j.compchemeng.2023.108252_b32 article-title: Chapter 14 - physical solvents for acid gas removal – volume: 228 start-page: 2539 year: 2018 ident: 10.1016/j.compchemeng.2023.108252_b75 article-title: Applications of hybrid models in chemical, petroleum, and energy systems: A systematic review publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.06.051 – volume: 48 start-page: 5522 issue: 11 year: 2009 ident: 10.1016/j.compchemeng.2023.108252_b61 article-title: Symmetric nonrandom two-liquid segment activity coefficient model for electrolytes publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie900006g – volume: 143 year: 2021 ident: 10.1016/j.compchemeng.2023.108252_b77 article-title: Analytics with digital-twinning: A decision support system for maintaining a resilient port publication-title: Decis. Support Syst. doi: 10.1016/j.dss.2021.113496 – start-page: 542 year: 2020 ident: 10.1016/j.compchemeng.2023.108252_b26 article-title: Digital twin application for production optimization |
| SSID | ssj0002488 |
| Score | 2.4620707 |
| Snippet | Advancements in the process industry require building more complex simulations and performing computationally intensive operations like optimization. To... |
| SourceID | unpaywall hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 108252 |
| SubjectTerms | Amine scrubbing Chemical and Process Engineering Design of experiments Digital twin Engineering Sciences Latin hypercube Machine-learning Surrogate modeling |
| SummonAdditionalLinks | – databaseName: Science Direct dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La8JAEF6shz4OpU9qX2xLr9E8NmsWehGpSCk9VfAWNrsba9EoGiu99Ld3Jg-1h4LQU8iQIcvMsjObfPt9hDxIJxI2t5XlM8kspqRriRhJPznjXCuokFGGtnjl3R577vv9CmmXZ2EQVlms_fmanq3WhaVRRLMxHQ7xjK8IHM-HfiD7P4SH-BhroopB_XsN83BZEJS8mfj0LrlbY7wQtg2xGZtkUEcdcUTcub77V43aeUew5N4imcqvpRyNNipR54gcFi0kbeWjPCYVk5yQgw1iwVMSbWCB6CSmks4Xs9kEP5nRTPsmMyZUjsGHzlGmBnbIA6qHAxQRoelymFCExA_oOENbGlrIS4Ah05yen5Fe5-mt3bUKNQVLQdFOraYXxBLaEQUNoYSNnjZaC26EI6QQMfO15sI1dqwhX9Jw4wdcCztqRh5clet556SaTBJzQSgU9SgWUhnkzm9C6JXyfOFopAO0pVY1EpTxC1VBNY6KF6OwxJR9hBuhDzH0YR76GnFXrtOcb2Mbp8cySeGvyRNCXdjG_R4Su3odEm53Wy8h2mzGhA0t3qdTI94q79uP7PJ_I7si-3iXQ9OuSTWdLcwNNEFpdJvN8h8o5AYt priority: 102 providerName: Elsevier |
| Title | Development of a surrogate model of an amine scrubbing digital twin using machine learning methods |
| URI | https://dx.doi.org/10.1016/j.compchemeng.2023.108252 https://hal.science/hal-04490727 https://hdl.handle.net/11311/1249778 |
| UnpaywallVersion | submittedVersion |
| Volume | 174 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-4375 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002488 issn: 0098-1354 databaseCode: AKRWK dateStart: 19770101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Na9tAEB1iG1pyaPpJXRqzLbnKlbSrlRZ6MSHB_cD0UEN6EqvdlZPWloMtJ7SH_vbO6MMxgVLTk2Bg0C4zy7wVT-8BnOggU770jRcJLTxhdOipnEQ_pZDSGpyQWcW2mMjxVHy8iC4O4KT9F-aevkBAajDvyCA5jpMO9GSEiLsLvenky-hbK4cZ8MrsLEhi7gkeRw_gzR2Ni5jZuP2FK2ZDsgonUl0YhX8bQ51L4kM-3BTX-uetns93hs35EZy1y6w5Jj-GmzIbml_3FBz_tY_H8KhBm2xUt8cTOHDFUzjc0SB8BtkObYgtc6bZerNaLenrGqtscqpgwfQCc9iaHG3wMj1j9mpGfiOsvL0qGLHnZ2xRETMda5woMFDZU6-fw_T87Ovp2GuMFzyD8730Yp7kGpGLQeyo8U5onbVKOhUorVQuImulCp2fWyytdtJFibTKz-KM49OEnL-AbrEs3EtgOP-zXGnjSGY_DkNlDI9UYEk50NfW9CFp65CaRpWczDHmaUs_-57ulDClEqZ1CfsQblOva2mOfZLet8VOG4xRY4cUR8g-6W-xQbavI23u8ehzSjFfCOUjGrwJ-sC3_bP_yl79V9Zr6JarjTtGZFRmA-gMfwcD6I0-fBpPBs0x-QNGhA_B |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB4BK_E4oF0eorCAF3EN5OG4sbQXhEAFupxA4mY5ttPtqk2rPkBc-O3M5FG6B6RKnCJNMoo1Y3nGyefvAzjVQSp94Rsv5pp73OjQkxmRfgouhDVYIdMCbXEvWo_89il-WoLL-iwMwSqrtb9c04vVurKcV9E8H3a7dMZXJkEUYz9Q_B-Sy_CNx2GTdmBnbx84j5AnSU2cSY-vwq8PkBfhtjE4fZd3zkhInCB3YRx-VqSW_xJacm2aD_Xri-715krR9XfYrHpIdlEO8wcsuXwLNuaYBbchnQMDsUHGNBtPR6MBfTNjhfhNYcyZ7qMPG5NODW6RO8x2O6QiwiYv3ZwRJr7D-gXc0rFKXwINhej0eAcer68eLlteJafgGazaE68ZJZnGfsRgR6hxp2edtVI4GUgtZcZja4UMnZ9ZTJh2wsWJsNJPm2mEVxNG0S6s5IPc7QHDqp5mUhtH5PlNjL0xUSwDS3yAvramAUkdP2UqrnGSvOipGlT2T82FXlHoVRn6BoQz12FJuLGI0-86Seq_2aOwMCzifoKJnb2OGLdbF21FNp9z6WOP9xw0IJrlffGR7X9tZMew1nr401btm_u7A1inOyVO7SesTEZTd4gd0SQ9Kmb8O2DzCVA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fS9xAEB70hBYfWm0rXmllLb7mmmQ3myz05RDlKCI-9ECfwmZ3c1XvcnKXU_SvdyY_zkMoHn0KDAzZZWaZb8OX7wM40kGmfOkbLxJaeMLo0FM5iX5KIaU1OCGzim1xLgdD8fsyutyAo_ZfmFf6AgGpwfwkg-Q4TjZhS0aIuDuwNTy_6F-1cpgBr8zOgiTmnuBx9A4OX2hcxMzG7U9cMeqRVTiR6sIo_NcY2vxLfMj3i-JOPz7o8Xhl2Jx-hJN2mTXH5La3KLOeeXql4PjWPnbgQ4M2Wb9uj13YcMUn2F7RIPwM2QptiE1zptl8MZtN6esaq2xyqmDB9ARz2JwcbfAyPWL2ekR-I6x8uC4YsedHbFIRMx1rnCgwUNlTz7_A8PTkz_HAa4wXPIPzvfRinuQakYtB7KjxTmidtUo6FSitVC4ia6UKnZ9bLK120kWJtMrP4ozj04Sc70GnmBZuHxjO_yxX2jiS2Y_DUBnDIxVYUg70tTVdSNo6pKZRJSdzjHHa0s9u0pUSplTCtC5hF8Jl6l0tzbFO0q-22GmDMWrskOIIWSf9BzbI8nWkzT3on6UU84VQPqLB-6ALfNk_66_s639lfYNOOVu474iMyuygORjPgTINNQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+surrogate+model+of+an+amine+scrubbing+digital+twin+using+machine+learning+methods&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Galeazzi%2C+Andrea&rft.au=Prifti%2C+Kristiano&rft.au=Cortellini%2C+Carlo&rft.au=Di+Pretoro%2C+Alessandro&rft.date=2023-06-01&rft.issn=0098-1354&rft.volume=174&rft.spage=108252&rft_id=info:doi/10.1016%2Fj.compchemeng.2023.108252&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2023_108252 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon |