3D-EddyNet: A Novel Approach for Identifying Three-Dimensional Morphological Features of Mesoscale Eddies in the Ocean

Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models cap...

Full description

Saved in:
Bibliographic Details
Published inJournal of marine science and engineering Vol. 11; no. 9; p. 1779
Main Authors Feng, Pufei, Fu, Zhiyi, Hu, Linshu, Wu, Sensen, Wang, Yuanyuan, Zhang, Feng
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2023
Subjects
Online AccessGet full text
ISSN2077-1312
2077-1312
DOI10.3390/jmse11091779

Cover

Abstract Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models capable of adeptly harnessing the scarcity of high-quality annotated marine data, to efficiently discern the three-dimensional morphological attributes of mesoscale eddies, is evident. To address this limitation, this paper constructs an innovative deep-learning-based model termed 3D-EddyNet, tailored for the precise identification and visualization of mesoscale eddies. In contrast to the prevailing 2D models that remain confined to surface-level data, 3D-EddyNet takes full advantage of three-dimensional convolutions to capture the essential characteristics of eddies. It is specifically tailored for recognizing spatial features within mesoscale eddies, including parameters like position, radius, and depth. The combination of dynamic convolutions and residual networks effectively enhances the model’s performance in a synergistic manner. The model employs the PReLU activation function to tackle gradient vanishing issues and improve convergence rates. It also addresses the challenge of foreground–background imbalance through cross-entropy functions. Additionally, to fine-tune the model’s effectiveness during the training phase, techniques such as random dropblock and batch normalization are skillfully incorporated. Furthermore, we created a training dataset using HYCOM data specifically from the South China Sea region. This dataset allowed for a comprehensive analysis of the spatial-temporal distribution and three-dimensional morphology of the eddies, serving as an assessment of the model’s practical effectiveness. The culmination of this analysis reveals an impressive 20% enhancement over 3D-UNet in detection accuracy, coupled with expedited convergence speed. Notably, the results obtained through our detection using empirical data align closely with those obtained by other scholars. The mesoscale eddies within this specific region unveil a discernible northeast-to-southwest distribution pattern, categorized into three principal morphological classifications: bowl-shaped, olive-shaped, and nearly cylindrical, with the bowl-shaped eddies prominently dominating.
AbstractList Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models capable of adeptly harnessing the scarcity of high-quality annotated marine data, to efficiently discern the three-dimensional morphological attributes of mesoscale eddies, is evident. To address this limitation, this paper constructs an innovative deep-learning-based model termed 3D-EddyNet, tailored for the precise identification and visualization of mesoscale eddies. In contrast to the prevailing 2D models that remain confined to surface-level data, 3D-EddyNet takes full advantage of three-dimensional convolutions to capture the essential characteristics of eddies. It is specifically tailored for recognizing spatial features within mesoscale eddies, including parameters like position, radius, and depth. The combination of dynamic convolutions and residual networks effectively enhances the model’s performance in a synergistic manner. The model employs the PReLU activation function to tackle gradient vanishing issues and improve convergence rates. It also addresses the challenge of foreground–background imbalance through cross-entropy functions. Additionally, to fine-tune the model’s effectiveness during the training phase, techniques such as random dropblock and batch normalization are skillfully incorporated. Furthermore, we created a training dataset using HYCOM data specifically from the South China Sea region. This dataset allowed for a comprehensive analysis of the spatial-temporal distribution and three-dimensional morphology of the eddies, serving as an assessment of the model’s practical effectiveness. The culmination of this analysis reveals an impressive 20% enhancement over 3D-UNet in detection accuracy, coupled with expedited convergence speed. Notably, the results obtained through our detection using empirical data align closely with those obtained by other scholars. The mesoscale eddies within this specific region unveil a discernible northeast-to-southwest distribution pattern, categorized into three principal morphological classifications: bowl-shaped, olive-shaped, and nearly cylindrical, with the bowl-shaped eddies prominently dominating.
Audience Academic
Author Wang, Yuanyuan
Fu, Zhiyi
Hu, Linshu
Wu, Sensen
Feng, Pufei
Zhang, Feng
Author_xml – sequence: 1
  givenname: Pufei
  surname: Feng
  fullname: Feng, Pufei
– sequence: 2
  givenname: Zhiyi
  surname: Fu
  fullname: Fu, Zhiyi
– sequence: 3
  givenname: Linshu
  orcidid: 0000-0003-0015-0570
  surname: Hu
  fullname: Hu, Linshu
– sequence: 4
  givenname: Sensen
  orcidid: 0000-0001-9322-0149
  surname: Wu
  fullname: Wu, Sensen
– sequence: 5
  givenname: Yuanyuan
  surname: Wang
  fullname: Wang, Yuanyuan
– sequence: 6
  givenname: Feng
  orcidid: 0000-0003-1475-8480
  surname: Zhang
  fullname: Zhang, Feng
BookMark eNptUctuWyEURFUqNU2z6wcgddub8jKY7qw8Gkt5bNI14sLBxroGF3Ak_31oHVVRVVjAGc0MhzMf0UnKCRD6TMkF55p822wrUEo0VUq_Q6eMKDVQTtnJm_sHdF7rhvQ1Z5ISeYqe-dVw7f3hAdp3vMAP-RkmvNjtSrZujUMueOkhtRgOMa3w07oADFdxC6nGnOyE73PZrfOUV9H16gZs2xeoOAd8DzXXDgLu_rFjMeG2BvzowKZP6H2wU4Xz1_MM_by5frq8He4efywvF3eDE0S2QQZJtNVeytGCnVNFRwYQpFVShBmMwVPHxei0lowTxgPzErSywlnmqJD8DC2Pvj7bjdmVuLXlYLKN5g-Qy8rY0qKbwAAVghEZgpuNgtLZSKhQSjnJ7DwQ4rvXl6NXH86vPdRmNnlf-hCqYXOpBdeU8M66OLJW_esmppBbsa5vD9voemQhdnzRQ1Jci5nqgq9HgSu51gLhb5uUmN_JmrfJdjr7h-5is62n0d-J0_9FL2umqAU
CitedBy_id crossref_primary_10_3389_fmars_2024_1482804
crossref_primary_10_3390_jmse12050723
Cites_doi 10.1029/2007GL030812
10.1007/s13131-022-2006-4
10.1007/978-94-009-4502-9
10.3390/rs11111349
10.3390/w14172701
10.1007/978-3-319-46723-8_49
10.1016/j.dsr2.2007.05.008
10.11834/jig.200282
10.1038/srep24349
10.1029/2011JC007134
10.1109/ICCV.2015.123
10.1109/ICASSP40776.2020.9053909
10.2112/JCOASTRES-D-11-00197.1
10.3389/fmars.2021.672334
10.21236/ADA585251
10.3390/rs11161921
10.1016/j.dsr.2015.01.007
10.1111/j.2517-6161.1977.tb01600.x
10.1002/grl.50736
10.1175/JTECH-D-10-05028.1
10.1109/EMBC46164.2021.9629671
10.1109/IGARSS.2018.8518411
10.1134/S0001433821040216
10.1109/3DV.2016.79
10.1109/CVPR42600.2020.01104
10.1029/2018JC014054
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7ST
7TN
8FE
8FG
ABJCF
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H96
HCIFZ
L.G
L6V
M7S
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
PYCSY
SOI
DOA
DOI 10.3390/jmse11091779
DatabaseName CrossRef
Environment Abstracts
Oceanic Abstracts
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
ProQuest Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Engineering Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
Environmental Science Collection
Environment Abstracts
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Engineering Collection
Oceanic Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Environmental Science Collection
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Environmental Science Database
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Oceanography
EISSN 2077-1312
ExternalDocumentID oai_doaj_org_article_e144206ffc5b4115b014777c62a8f00d
A779739457
10_3390_jmse11091779
GeographicLocations South China Sea
GeographicLocations_xml – name: South China Sea
GroupedDBID 5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ADBBV
AEUYN
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PTHSS
PYCSY
PMFND
7ST
7TN
ABUWG
AZQEC
C1K
DWQXO
F1W
GNUQQ
H96
L.G
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
SOI
PUEGO
ID FETCH-LOGICAL-c406t-6f609a9d66baea8171b2eef6a764f5ebfd1c34bc99623023f2d6e97a4ca2c1463
IEDL.DBID 8FG
ISSN 2077-1312
IngestDate Wed Aug 27 01:15:33 EDT 2025
Fri Jul 25 11:59:53 EDT 2025
Tue Jun 10 21:13:14 EDT 2025
Thu Apr 24 22:56:43 EDT 2025
Tue Jul 01 03:47:33 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-6f609a9d66baea8171b2eef6a764f5ebfd1c34bc99623023f2d6e97a4ca2c1463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-1475-8480
0000-0003-0015-0570
0000-0001-9322-0149
OpenAccessLink https://www.proquest.com/docview/2869439103?pq-origsite=%requestingapplication%
PQID 2869439103
PQPubID 2032377
ParticipantIDs doaj_primary_oai_doaj_org_article_e144206ffc5b4115b014777c62a8f00d
proquest_journals_2869439103
gale_infotracacademiconefile_A779739457
crossref_primary_10_3390_jmse11091779
crossref_citationtrail_10_3390_jmse11091779
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Journal of marine science and engineering
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Prants (ref_19) 2021; 57
Yang (ref_15) 2022; 41
Wu (ref_31) 2007; 54
Zhang (ref_16) 2013; 40
Hao (ref_23) 2020; 25
ref_11
ref_10
ref_30
Li (ref_12) 2002; 21
ref_17
Klemas (ref_13) 2012; 28
Dempster (ref_33) 1977; 39
Xu (ref_9) 2021; 8
ref_25
ref_24
ref_22
Dong (ref_6) 2011; 28
ref_21
ref_20
ref_1
ref_2
ref_29
ref_27
Zhang (ref_32) 2016; 6
ref_26
Yang (ref_3) 2014; 30
ref_8
ref_5
ref_4
ref_7
Srivastava (ref_28) 2013; Volume 182
Lin (ref_14) 2015; 99
He (ref_18) 2018; 123
References_xml – ident: ref_1
  doi: 10.1029/2007GL030812
– ident: ref_5
– volume: 41
  start-page: 74
  year: 2022
  ident: ref_15
  article-title: Three-dimensional characteristics of mesoscale eddies simulated by a regional model in the northwestern Pacific Ocean during 2000–2008
  publication-title: Acta Oceanol. Sin.
  doi: 10.1007/s13131-022-2006-4
– ident: ref_26
– ident: ref_2
  doi: 10.1007/978-94-009-4502-9
– volume: 21
  start-page: 265
  year: 2002
  ident: ref_12
  article-title: A review on mesoscale oceanographical phenomena in the South China Sea
  publication-title: J. Oceanogr. Taiwan Strait
– ident: ref_8
  doi: 10.3390/rs11111349
– ident: ref_4
  doi: 10.3390/w14172701
– ident: ref_21
  doi: 10.1007/978-3-319-46723-8_49
– volume: 54
  start-page: 1575
  year: 2007
  ident: ref_31
  article-title: Mesoscale eddies in the northern South China Sea
  publication-title: Deep. Sea Res. Part II Top. Stud. Oceanogr.
  doi: 10.1016/j.dsr2.2007.05.008
– volume: 25
  start-page: 2119
  year: 2020
  ident: ref_23
  article-title: 3D U-Net with dual attention mechanism for lung tumor segmentation
  publication-title: J. Image Graph.
  doi: 10.11834/jig.200282
– volume: 6
  start-page: 24349
  year: 2016
  ident: ref_32
  article-title: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea
  publication-title: Sci. Rep.
  doi: 10.1038/srep24349
– volume: 30
  start-page: 192
  year: 2014
  ident: ref_3
  article-title: The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea
  publication-title: J. Coast. Res.
– ident: ref_17
  doi: 10.1029/2011JC007134
– ident: ref_27
  doi: 10.1109/ICCV.2015.123
– ident: ref_10
  doi: 10.1109/ICASSP40776.2020.9053909
– volume: 28
  start-page: 576
  year: 2012
  ident: ref_13
  article-title: Remote sensing of coastal and ocean currents: An overview
  publication-title: J. Coast. Res.
  doi: 10.2112/JCOASTRES-D-11-00197.1
– volume: 8
  start-page: 672334
  year: 2021
  ident: ref_9
  article-title: Application of three deep learning schemes into oceanic eddy detection
  publication-title: Front. Mar. Sci.
  doi: 10.3389/fmars.2021.672334
– ident: ref_30
  doi: 10.21236/ADA585251
– ident: ref_11
  doi: 10.3390/rs11161921
– volume: 99
  start-page: 46
  year: 2015
  ident: ref_14
  article-title: Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output
  publication-title: Deep. Sea Res. Part I Oceanogr. Res. Pap.
  doi: 10.1016/j.dsr.2015.01.007
– ident: ref_29
– volume: 39
  start-page: 1
  year: 1977
  ident: ref_33
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B (Methodol.)
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– volume: 40
  start-page: 3677
  year: 2013
  ident: ref_16
  article-title: Universal structure of mesoscale eddies in the ocean
  publication-title: Geophys. Res. Lett.
  doi: 10.1002/grl.50736
– volume: Volume 182
  start-page: 7
  year: 2013
  ident: ref_28
  article-title: Improving Neural Networks with Dropout
  publication-title: Master’s Thesis
– volume: 28
  start-page: 1167
  year: 2011
  ident: ref_6
  article-title: A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio Extension region
  publication-title: J. Atmos. Ocean. Technol.
  doi: 10.1175/JTECH-D-10-05028.1
– ident: ref_24
  doi: 10.1109/EMBC46164.2021.9629671
– ident: ref_7
  doi: 10.1109/IGARSS.2018.8518411
– volume: 57
  start-page: 341
  year: 2021
  ident: ref_19
  article-title: Trench Eddies in the Northwest Pacific: An Overview
  publication-title: Izv. Atmos. Ocean. Phys.
  doi: 10.1134/S0001433821040216
– ident: ref_22
  doi: 10.1109/3DV.2016.79
– ident: ref_25
  doi: 10.1109/CVPR42600.2020.01104
– ident: ref_20
– volume: 123
  start-page: 4906
  year: 2018
  ident: ref_18
  article-title: A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/2018JC014054
SSID ssj0000826106
Score 2.2483053
Snippet Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 1779
SubjectTerms 3D structure of mesoscale eddies
3D-UNet
Algorithms
Convergence
Datasets
Deep learning
Detection
Diameters
Distribution patterns
Driving ability
Eddies
Effectiveness
Empirical analysis
Entropy
Feature recognition
General circulation models
Identification
Mesoscale eddies
mesoscale eddies identification
Mesoscale phenomena
Methods
Morphology
Neural networks
Ocean circulation
Ocean currents
Oceanographic research
Salinity
Scientists
Spatial analysis
Swirling
Temporal distribution
Three dimensional models
Training
Two dimensional models
Vortices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQTxieuLHBQPEuwrSettfSHCrpdd8BaSdAKKtuKugv_emba77GXx4qWHkLTpzGTyDcx8w9hpHtkygUKK2LtUZBK8yDPphXMOZK6K4Jp2PoOhehhnj8_yeaHVF-WEtfTAreAuARF_EqkQvHQZwheHmF5r7VVi8xBFJXnfqIgWgqnGByNqxmCnzXRPMa6_fH2fALFrxpqythbuoIaqf5lDbm6Z-0220cFD3m-3tcVWoNpm608ebNVxS--w7_RW3JXlzxCmV7zPh_U34IqOG5wjCOVt9W1TwcRHqCwQt0Ti3xJw8EGNsp35PE4Y8Atjbl4HPoBJPcFB4Ph-DKH5S8URIPLm-7tsfH83unkQXfsE4fGWngoVVFTYolTKWbB5rGOXAARltcqCBBfK2KeZ8xjxJNQ6KCSlgkLbzNvEowNN99hqVVewz3juiIQCnzGudXFwWgbnrZVFireghx67mAnU-I5bnFpcvBmMMUj8ZlH8PXY2n_3RcmosmXdNupnPISbsZgDtw3T2Yf6yjx47J80aOq-4JW-7sgP8MWK-Mn38kE6LTOoeO5op33QHeWIStFcqTo7Sg__YzSFbo371bZLaEVudfn7BMaKaqTtpDPgX7p70ew
  priority: 102
  providerName: Directory of Open Access Journals
Title 3D-EddyNet: A Novel Approach for Identifying Three-Dimensional Morphological Features of Mesoscale Eddies in the Ocean
URI https://www.proquest.com/docview/2869439103
https://doaj.org/article/e144206ffc5b4115b014777c62a8f00d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvSCkiqfYUlY-gDggq3nZTrigLd2lQtoFoVbqzbKdcQWCpDTbSvx7Zhzv0ku55ODYcTJjz8OZ-Yax13Vm2wIaKXLvSlFJ8KKupBfOOZC1aoKL5XyWK3VyVn0-l-fpwG1IYZUbmRgFddt7OiM_LHAgZYlm5YfL34KqRtHf1VRC4z7bzQvUtZQpvvi0PWNB9YbWgRrj3Uv07g9__BqAMDZzTbFbtzRRBOy_SyxHXbN4xPaSkchnI1cfs3vQPWEPv3iwXUKYfspuymMxb9s_K1i_5zO-6m8ARySEcI6mKB9zcGMeEz9FloE4Jij_EYaDL3uk8EbycbIEr9Hz5n3gSxj6ARuB4_PRkebfO45mIo_zP2Nni_npxxORiigIj7p6LVRQWWObVilnwda5zl0BEJTVqgoSXGhzX1bOo99TUAGhULQKGm0rbwuPYrR8zna6voMXjNeOoCjwmuNYlwenZXDeWtmUqAs9TNi7DUGNTwjjVOjip0FPg8hvbpN_wt5se1-OyBp39Dsi3mz7EB52bOivLkzaXgbQLywyFYKXrkIj16Hnp7X2qrB1yLJ2wt4SZw3tWnwlb1PyAX4Y4V-ZGU6ky6aSesIONsw3aTsP5t_i2___7ZfsAdWjH4PQDtjO-uoaXqHVsnbTuDSnbPdovvr6bRp9_7_qxe9Z
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCQEE91oYAPVByQ1cSO7QQJoYXtsqXd5bKVejO2M0YgSEqzLeqf4jcyzmPppdx6ySGxnWRmPI9k5htCXuaJLTkUkqXeCZZJ8CzPpGfOOZC5KoJr2_nMF2p2lH06lscb5M9QCxPTKged2CrqsvbxG_kux4mxSjQR705-sdg1Kv5dHVpodGJxABe_MWRr3u5PkL87nE_3lh9mrO8qwDwarxVTQSWFLUqlnAWbpzp1HCAoq1UWJLhQpl5kzmMgwGNHncBLBYW2mbfco14RuO4NcjMTQsQUwnz6cf1NB80peiOqy68Xokh2v_9sIGJ6pjrmil2yfG2DgKvMQGvbpvfI3d4ppeNOiu6TDagekDufPdiqR7R-SM7FhO2V5cUCVm_omC7qc8AZPSI5RdeXdjW_bd0UXaKIAJvE1gEd7Aed18jRQdPS6HmeYaRP60Dn0NQNngSK62PgTr9VFN1S2t7_ETm6FvI-JptVXcEWobmL0Bd4THGuS4PTMjhvrSwE2l4PI_J6IKjxPaJ5bKzxw2BkE8lvLpN_RHbWo086JI8rxr2PvFmPifjb7Yn69Kvpt7MBjEN5okLw0mXoVDuMNLXWXnGbhyQpR-RV5KyJWgIfydu-2AFfLOJtmTHeSIsik3pEtgfmm159NOafsD_5_-UX5NZsOT80h_uLg6fkNkeCdglw22RzdXoGz9BjWrnnrZhS8uW698Vfo9Mqow
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRBCQjzFQgEfqDggaxM7thMkhBa2S0vZhUMr9ebazhhRlaQ026L-NX4d4zyWXsqtlxwSO4-Z8TycmW8IeZUntuRQSJZ6J1gmwbM8k54550DmqgiubeczX6jt_ezzgTxYI3-GWpiYVjnoxFZRl7WPe-RjjhNjlWgixqFPi_g2nb0_-cViB6n4p3Vop9GJyC5c_MbwrXm3M0Veb3I-29r7uM36DgPMoyFbMhVUUtiiVMpZsHmqU8cBgrJaZUGCC2XqReY8BgU8dtcJvFRQaJt5yz3qGIH3vUFuaoHrJFapzz6t9nfQtKJnorpceyGKZHz0s4GI75nqmDd2yQq2zQKuMgmtnZvdI3d7B5VOOom6T9agekDufPVgqx7d-iE5F1O2VZYXC1i-pRO6qM8BZ_To5BTdYNrV_7Y1VHQPxQXYNLYR6CBA6LxG7g5al0Yv9AyjfloHOoembvAkULw_BvH0R0XRRaXt8x-R_Wsh72OyXtUVPCE0dxEGA48pznVpcFoG562VhUA77GFE3gwENb5HN49NNo4NRjmR_OYy-UdkczX6pEP1uGLch8ib1ZiIxd2eqE-_m35pG8CYlCcqBC9dhg62w6hTa-0Vt3lIknJEXkfOmqgx8JW87Qsf8MMi9paZ4IO0KDKpR2RjYL7pVUlj_gn-0_9ffklu4YowX3YWu8_IbY707HLhNsj68vQMnqPztHQvWiml5PC6l8VfSEgu1g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-EddyNet%3A+A+Novel+Approach+for+Identifying+Three-Dimensional+Morphological+Features+of+Mesoscale+Eddies+in+the+Ocean&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Feng%2C+Pufei&rft.au=Fu%2C+Zhiyi&rft.au=Hu%2C+Linshu&rft.au=Wu%2C+Sensen&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=11&rft.issue=9&rft.spage=1779&rft_id=info:doi/10.3390%2Fjmse11091779&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon