3D-EddyNet: A Novel Approach for Identifying Three-Dimensional Morphological Features of Mesoscale Eddies in the Ocean
Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models cap...
Saved in:
Published in | Journal of marine science and engineering Vol. 11; no. 9; p. 1779 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2077-1312 2077-1312 |
DOI | 10.3390/jmse11091779 |
Cover
Abstract | Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models capable of adeptly harnessing the scarcity of high-quality annotated marine data, to efficiently discern the three-dimensional morphological attributes of mesoscale eddies, is evident. To address this limitation, this paper constructs an innovative deep-learning-based model termed 3D-EddyNet, tailored for the precise identification and visualization of mesoscale eddies. In contrast to the prevailing 2D models that remain confined to surface-level data, 3D-EddyNet takes full advantage of three-dimensional convolutions to capture the essential characteristics of eddies. It is specifically tailored for recognizing spatial features within mesoscale eddies, including parameters like position, radius, and depth. The combination of dynamic convolutions and residual networks effectively enhances the model’s performance in a synergistic manner. The model employs the PReLU activation function to tackle gradient vanishing issues and improve convergence rates. It also addresses the challenge of foreground–background imbalance through cross-entropy functions. Additionally, to fine-tune the model’s effectiveness during the training phase, techniques such as random dropblock and batch normalization are skillfully incorporated. Furthermore, we created a training dataset using HYCOM data specifically from the South China Sea region. This dataset allowed for a comprehensive analysis of the spatial-temporal distribution and three-dimensional morphology of the eddies, serving as an assessment of the model’s practical effectiveness. The culmination of this analysis reveals an impressive 20% enhancement over 3D-UNet in detection accuracy, coupled with expedited convergence speed. Notably, the results obtained through our detection using empirical data align closely with those obtained by other scholars. The mesoscale eddies within this specific region unveil a discernible northeast-to-southwest distribution pattern, categorized into three principal morphological classifications: bowl-shaped, olive-shaped, and nearly cylindrical, with the bowl-shaped eddies prominently dominating. |
---|---|
AbstractList | Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount significance in driving advancements in both oceanographic research and engineering applications. Nonetheless, a notable absence of models capable of adeptly harnessing the scarcity of high-quality annotated marine data, to efficiently discern the three-dimensional morphological attributes of mesoscale eddies, is evident. To address this limitation, this paper constructs an innovative deep-learning-based model termed 3D-EddyNet, tailored for the precise identification and visualization of mesoscale eddies. In contrast to the prevailing 2D models that remain confined to surface-level data, 3D-EddyNet takes full advantage of three-dimensional convolutions to capture the essential characteristics of eddies. It is specifically tailored for recognizing spatial features within mesoscale eddies, including parameters like position, radius, and depth. The combination of dynamic convolutions and residual networks effectively enhances the model’s performance in a synergistic manner. The model employs the PReLU activation function to tackle gradient vanishing issues and improve convergence rates. It also addresses the challenge of foreground–background imbalance through cross-entropy functions. Additionally, to fine-tune the model’s effectiveness during the training phase, techniques such as random dropblock and batch normalization are skillfully incorporated. Furthermore, we created a training dataset using HYCOM data specifically from the South China Sea region. This dataset allowed for a comprehensive analysis of the spatial-temporal distribution and three-dimensional morphology of the eddies, serving as an assessment of the model’s practical effectiveness. The culmination of this analysis reveals an impressive 20% enhancement over 3D-UNet in detection accuracy, coupled with expedited convergence speed. Notably, the results obtained through our detection using empirical data align closely with those obtained by other scholars. The mesoscale eddies within this specific region unveil a discernible northeast-to-southwest distribution pattern, categorized into three principal morphological classifications: bowl-shaped, olive-shaped, and nearly cylindrical, with the bowl-shaped eddies prominently dominating. |
Audience | Academic |
Author | Wang, Yuanyuan Fu, Zhiyi Hu, Linshu Wu, Sensen Feng, Pufei Zhang, Feng |
Author_xml | – sequence: 1 givenname: Pufei surname: Feng fullname: Feng, Pufei – sequence: 2 givenname: Zhiyi surname: Fu fullname: Fu, Zhiyi – sequence: 3 givenname: Linshu orcidid: 0000-0003-0015-0570 surname: Hu fullname: Hu, Linshu – sequence: 4 givenname: Sensen orcidid: 0000-0001-9322-0149 surname: Wu fullname: Wu, Sensen – sequence: 5 givenname: Yuanyuan surname: Wang fullname: Wang, Yuanyuan – sequence: 6 givenname: Feng orcidid: 0000-0003-1475-8480 surname: Zhang fullname: Zhang, Feng |
BookMark | eNptUctuWyEURFUqNU2z6wcgddub8jKY7qw8Gkt5bNI14sLBxroGF3Ak_31oHVVRVVjAGc0MhzMf0UnKCRD6TMkF55p822wrUEo0VUq_Q6eMKDVQTtnJm_sHdF7rhvQ1Z5ISeYqe-dVw7f3hAdp3vMAP-RkmvNjtSrZujUMueOkhtRgOMa3w07oADFdxC6nGnOyE73PZrfOUV9H16gZs2xeoOAd8DzXXDgLu_rFjMeG2BvzowKZP6H2wU4Xz1_MM_by5frq8He4efywvF3eDE0S2QQZJtNVeytGCnVNFRwYQpFVShBmMwVPHxei0lowTxgPzErSywlnmqJD8DC2Pvj7bjdmVuLXlYLKN5g-Qy8rY0qKbwAAVghEZgpuNgtLZSKhQSjnJ7DwQ4rvXl6NXH86vPdRmNnlf-hCqYXOpBdeU8M66OLJW_esmppBbsa5vD9voemQhdnzRQ1Jci5nqgq9HgSu51gLhb5uUmN_JmrfJdjr7h-5is62n0d-J0_9FL2umqAU |
CitedBy_id | crossref_primary_10_3389_fmars_2024_1482804 crossref_primary_10_3390_jmse12050723 |
Cites_doi | 10.1029/2007GL030812 10.1007/s13131-022-2006-4 10.1007/978-94-009-4502-9 10.3390/rs11111349 10.3390/w14172701 10.1007/978-3-319-46723-8_49 10.1016/j.dsr2.2007.05.008 10.11834/jig.200282 10.1038/srep24349 10.1029/2011JC007134 10.1109/ICCV.2015.123 10.1109/ICASSP40776.2020.9053909 10.2112/JCOASTRES-D-11-00197.1 10.3389/fmars.2021.672334 10.21236/ADA585251 10.3390/rs11161921 10.1016/j.dsr.2015.01.007 10.1111/j.2517-6161.1977.tb01600.x 10.1002/grl.50736 10.1175/JTECH-D-10-05028.1 10.1109/EMBC46164.2021.9629671 10.1109/IGARSS.2018.8518411 10.1134/S0001433821040216 10.1109/3DV.2016.79 10.1109/CVPR42600.2020.01104 10.1029/2018JC014054 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7ST 7TN 8FE 8FG ABJCF ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H96 HCIFZ L.G L6V M7S PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS PYCSY SOI DOA |
DOI | 10.3390/jmse11091779 |
DatabaseName | CrossRef Environment Abstracts Oceanic Abstracts ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) Natural Science Collection ProQuest Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Engineering Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection Environmental Science Collection Environment Abstracts DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Engineering Collection Oceanic Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Environmental Science Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Environmental Science Database ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Oceanography |
EISSN | 2077-1312 |
ExternalDocumentID | oai_doaj_org_article_e144206ffc5b4115b014777c62a8f00d A779739457 10_3390_jmse11091779 |
GeographicLocations | South China Sea |
GeographicLocations_xml | – name: South China Sea |
GroupedDBID | 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ADBBV AEUYN AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 PATMY PCBAR PHGZM PHGZT PIMPY PROAC PTHSS PYCSY PMFND 7ST 7TN ABUWG AZQEC C1K DWQXO F1W GNUQQ H96 L.G PKEHL PQEST PQGLB PQQKQ PQUKI SOI PUEGO |
ID | FETCH-LOGICAL-c406t-6f609a9d66baea8171b2eef6a764f5ebfd1c34bc99623023f2d6e97a4ca2c1463 |
IEDL.DBID | 8FG |
ISSN | 2077-1312 |
IngestDate | Wed Aug 27 01:15:33 EDT 2025 Fri Jul 25 11:59:53 EDT 2025 Tue Jun 10 21:13:14 EDT 2025 Thu Apr 24 22:56:43 EDT 2025 Tue Jul 01 03:47:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-6f609a9d66baea8171b2eef6a764f5ebfd1c34bc99623023f2d6e97a4ca2c1463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-1475-8480 0000-0003-0015-0570 0000-0001-9322-0149 |
OpenAccessLink | https://www.proquest.com/docview/2869439103?pq-origsite=%requestingapplication% |
PQID | 2869439103 |
PQPubID | 2032377 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e144206ffc5b4115b014777c62a8f00d proquest_journals_2869439103 gale_infotracacademiconefile_A779739457 crossref_primary_10_3390_jmse11091779 crossref_citationtrail_10_3390_jmse11091779 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Journal of marine science and engineering |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Prants (ref_19) 2021; 57 Yang (ref_15) 2022; 41 Wu (ref_31) 2007; 54 Zhang (ref_16) 2013; 40 Hao (ref_23) 2020; 25 ref_11 ref_10 ref_30 Li (ref_12) 2002; 21 ref_17 Klemas (ref_13) 2012; 28 Dempster (ref_33) 1977; 39 Xu (ref_9) 2021; 8 ref_25 ref_24 ref_22 Dong (ref_6) 2011; 28 ref_21 ref_20 ref_1 ref_2 ref_29 ref_27 Zhang (ref_32) 2016; 6 ref_26 Yang (ref_3) 2014; 30 ref_8 ref_5 ref_4 ref_7 Srivastava (ref_28) 2013; Volume 182 Lin (ref_14) 2015; 99 He (ref_18) 2018; 123 |
References_xml | – ident: ref_1 doi: 10.1029/2007GL030812 – ident: ref_5 – volume: 41 start-page: 74 year: 2022 ident: ref_15 article-title: Three-dimensional characteristics of mesoscale eddies simulated by a regional model in the northwestern Pacific Ocean during 2000–2008 publication-title: Acta Oceanol. Sin. doi: 10.1007/s13131-022-2006-4 – ident: ref_26 – ident: ref_2 doi: 10.1007/978-94-009-4502-9 – volume: 21 start-page: 265 year: 2002 ident: ref_12 article-title: A review on mesoscale oceanographical phenomena in the South China Sea publication-title: J. Oceanogr. Taiwan Strait – ident: ref_8 doi: 10.3390/rs11111349 – ident: ref_4 doi: 10.3390/w14172701 – ident: ref_21 doi: 10.1007/978-3-319-46723-8_49 – volume: 54 start-page: 1575 year: 2007 ident: ref_31 article-title: Mesoscale eddies in the northern South China Sea publication-title: Deep. Sea Res. Part II Top. Stud. Oceanogr. doi: 10.1016/j.dsr2.2007.05.008 – volume: 25 start-page: 2119 year: 2020 ident: ref_23 article-title: 3D U-Net with dual attention mechanism for lung tumor segmentation publication-title: J. Image Graph. doi: 10.11834/jig.200282 – volume: 6 start-page: 24349 year: 2016 ident: ref_32 article-title: Observed 3D structure, generation, and dissipation of oceanic mesoscale eddies in the South China Sea publication-title: Sci. Rep. doi: 10.1038/srep24349 – volume: 30 start-page: 192 year: 2014 ident: ref_3 article-title: The roles of Kuroshio intrusion and mesoscale eddy in upper mixing in the northern South China Sea publication-title: J. Coast. Res. – ident: ref_17 doi: 10.1029/2011JC007134 – ident: ref_27 doi: 10.1109/ICCV.2015.123 – ident: ref_10 doi: 10.1109/ICASSP40776.2020.9053909 – volume: 28 start-page: 576 year: 2012 ident: ref_13 article-title: Remote sensing of coastal and ocean currents: An overview publication-title: J. Coast. Res. doi: 10.2112/JCOASTRES-D-11-00197.1 – volume: 8 start-page: 672334 year: 2021 ident: ref_9 article-title: Application of three deep learning schemes into oceanic eddy detection publication-title: Front. Mar. Sci. doi: 10.3389/fmars.2021.672334 – ident: ref_30 doi: 10.21236/ADA585251 – ident: ref_11 doi: 10.3390/rs11161921 – volume: 99 start-page: 46 year: 2015 ident: ref_14 article-title: Three-dimensional properties of mesoscale eddies in the South China Sea based on eddy-resolving model output publication-title: Deep. Sea Res. Part I Oceanogr. Res. Pap. doi: 10.1016/j.dsr.2015.01.007 – ident: ref_29 – volume: 39 start-page: 1 year: 1977 ident: ref_33 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J. R. Stat. Soc. Ser. B (Methodol.) doi: 10.1111/j.2517-6161.1977.tb01600.x – volume: 40 start-page: 3677 year: 2013 ident: ref_16 article-title: Universal structure of mesoscale eddies in the ocean publication-title: Geophys. Res. Lett. doi: 10.1002/grl.50736 – volume: Volume 182 start-page: 7 year: 2013 ident: ref_28 article-title: Improving Neural Networks with Dropout publication-title: Master’s Thesis – volume: 28 start-page: 1167 year: 2011 ident: ref_6 article-title: A scheme to identify loops from trajectories of oceanic surface drifters: An application in the Kuroshio Extension region publication-title: J. Atmos. Ocean. Technol. doi: 10.1175/JTECH-D-10-05028.1 – ident: ref_24 doi: 10.1109/EMBC46164.2021.9629671 – ident: ref_7 doi: 10.1109/IGARSS.2018.8518411 – volume: 57 start-page: 341 year: 2021 ident: ref_19 article-title: Trench Eddies in the Northwest Pacific: An Overview publication-title: Izv. Atmos. Ocean. Phys. doi: 10.1134/S0001433821040216 – ident: ref_22 doi: 10.1109/3DV.2016.79 – ident: ref_25 doi: 10.1109/CVPR42600.2020.01104 – ident: ref_20 – volume: 123 start-page: 4906 year: 2018 ident: ref_18 article-title: A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports publication-title: J. Geophys. Res. Ocean. doi: 10.1029/2018JC014054 |
SSID | ssj0000826106 |
Score | 2.2483053 |
Snippet | Mesoscale eddies are characterized by swirling currents spanning from tens to hundreds of kilometers in diameter three-dimensional attributes holds paramount... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database Enrichment Source Index Database |
StartPage | 1779 |
SubjectTerms | 3D structure of mesoscale eddies 3D-UNet Algorithms Convergence Datasets Deep learning Detection Diameters Distribution patterns Driving ability Eddies Effectiveness Empirical analysis Entropy Feature recognition General circulation models Identification Mesoscale eddies mesoscale eddies identification Mesoscale phenomena Methods Morphology Neural networks Ocean circulation Ocean currents Oceanographic research Salinity Scientists Spatial analysis Swirling Temporal distribution Three dimensional models Training Two dimensional models Vortices |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iSQTxieuLHBQPEuwrSettfSHCrpdd8BaSdAKKtuKugv_emba77GXx4qWHkLTpzGTyDcx8w9hpHtkygUKK2LtUZBK8yDPphXMOZK6K4Jp2PoOhehhnj8_yeaHVF-WEtfTAreAuARF_EqkQvHQZwheHmF5r7VVi8xBFJXnfqIgWgqnGByNqxmCnzXRPMa6_fH2fALFrxpqythbuoIaqf5lDbm6Z-0220cFD3m-3tcVWoNpm608ebNVxS--w7_RW3JXlzxCmV7zPh_U34IqOG5wjCOVt9W1TwcRHqCwQt0Ti3xJw8EGNsp35PE4Y8Atjbl4HPoBJPcFB4Ph-DKH5S8URIPLm-7tsfH83unkQXfsE4fGWngoVVFTYolTKWbB5rGOXAARltcqCBBfK2KeZ8xjxJNQ6KCSlgkLbzNvEowNN99hqVVewz3juiIQCnzGudXFwWgbnrZVFireghx67mAnU-I5bnFpcvBmMMUj8ZlH8PXY2n_3RcmosmXdNupnPISbsZgDtw3T2Yf6yjx47J80aOq-4JW-7sgP8MWK-Mn38kE6LTOoeO5op33QHeWIStFcqTo7Sg__YzSFbo371bZLaEVudfn7BMaKaqTtpDPgX7p70ew priority: 102 providerName: Directory of Open Access Journals |
Title | 3D-EddyNet: A Novel Approach for Identifying Three-Dimensional Morphological Features of Mesoscale Eddies in the Ocean |
URI | https://www.proquest.com/docview/2869439103 https://doaj.org/article/e144206ffc5b4115b014777c62a8f00d |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagvSCkiqfYUlY-gDggq3nZTrigLd2lQtoFoVbqzbKdcQWCpDTbSvx7Zhzv0ku55ODYcTJjz8OZ-Yax13Vm2wIaKXLvSlFJ8KKupBfOOZC1aoKL5XyWK3VyVn0-l-fpwG1IYZUbmRgFddt7OiM_LHAgZYlm5YfL34KqRtHf1VRC4z7bzQvUtZQpvvi0PWNB9YbWgRrj3Uv07g9__BqAMDZzTbFbtzRRBOy_SyxHXbN4xPaSkchnI1cfs3vQPWEPv3iwXUKYfspuymMxb9s_K1i_5zO-6m8ARySEcI6mKB9zcGMeEz9FloE4Jij_EYaDL3uk8EbycbIEr9Hz5n3gSxj6ARuB4_PRkebfO45mIo_zP2Nni_npxxORiigIj7p6LVRQWWObVilnwda5zl0BEJTVqgoSXGhzX1bOo99TUAGhULQKGm0rbwuPYrR8zna6voMXjNeOoCjwmuNYlwenZXDeWtmUqAs9TNi7DUGNTwjjVOjip0FPg8hvbpN_wt5se1-OyBp39Dsi3mz7EB52bOivLkzaXgbQLywyFYKXrkIj16Hnp7X2qrB1yLJ2wt4SZw3tWnwlb1PyAX4Y4V-ZGU6ky6aSesIONsw3aTsP5t_i2___7ZfsAdWjH4PQDtjO-uoaXqHVsnbTuDSnbPdovvr6bRp9_7_qxe9Z |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKOYCQEE91oYAPVByQ1cSO7QQJoYXtsqXd5bKVejO2M0YgSEqzLeqf4jcyzmPppdx6ySGxnWRmPI9k5htCXuaJLTkUkqXeCZZJ8CzPpGfOOZC5KoJr2_nMF2p2lH06lscb5M9QCxPTKged2CrqsvbxG_kux4mxSjQR705-sdg1Kv5dHVpodGJxABe_MWRr3u5PkL87nE_3lh9mrO8qwDwarxVTQSWFLUqlnAWbpzp1HCAoq1UWJLhQpl5kzmMgwGNHncBLBYW2mbfco14RuO4NcjMTQsQUwnz6cf1NB80peiOqy68Xokh2v_9sIGJ6pjrmil2yfG2DgKvMQGvbpvfI3d4ppeNOiu6TDagekDufPdiqR7R-SM7FhO2V5cUCVm_omC7qc8AZPSI5RdeXdjW_bd0UXaKIAJvE1gEd7Aed18jRQdPS6HmeYaRP60Dn0NQNngSK62PgTr9VFN1S2t7_ETm6FvI-JptVXcEWobmL0Bd4THGuS4PTMjhvrSwE2l4PI_J6IKjxPaJ5bKzxw2BkE8lvLpN_RHbWo086JI8rxr2PvFmPifjb7Yn69Kvpt7MBjEN5okLw0mXoVDuMNLXWXnGbhyQpR-RV5KyJWgIfydu-2AFfLOJtmTHeSIsik3pEtgfmm159NOafsD_5_-UX5NZsOT80h_uLg6fkNkeCdglw22RzdXoGz9BjWrnnrZhS8uW698Vfo9Mqow |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKkRBCQjzFQgEfqDggaxM7thMkhBa2S0vZhUMr9ebazhhRlaQ026L-NX4d4zyWXsqtlxwSO4-Z8TycmW8IeZUntuRQSJZ6J1gmwbM8k54550DmqgiubeczX6jt_ezzgTxYI3-GWpiYVjnoxFZRl7WPe-RjjhNjlWgixqFPi_g2nb0_-cViB6n4p3Vop9GJyC5c_MbwrXm3M0Veb3I-29r7uM36DgPMoyFbMhVUUtiiVMpZsHmqU8cBgrJaZUGCC2XqReY8BgU8dtcJvFRQaJt5yz3qGIH3vUFuaoHrJFapzz6t9nfQtKJnorpceyGKZHz0s4GI75nqmDd2yQq2zQKuMgmtnZvdI3d7B5VOOom6T9agekDufPVgqx7d-iE5F1O2VZYXC1i-pRO6qM8BZ_To5BTdYNrV_7Y1VHQPxQXYNLYR6CBA6LxG7g5al0Yv9AyjfloHOoembvAkULw_BvH0R0XRRaXt8x-R_Wsh72OyXtUVPCE0dxEGA48pznVpcFoG562VhUA77GFE3gwENb5HN49NNo4NRjmR_OYy-UdkczX6pEP1uGLch8ib1ZiIxd2eqE-_m35pG8CYlCcqBC9dhg62w6hTa-0Vt3lIknJEXkfOmqgx8JW87Qsf8MMi9paZ4IO0KDKpR2RjYL7pVUlj_gn-0_9ffklu4YowX3YWu8_IbY707HLhNsj68vQMnqPztHQvWiml5PC6l8VfSEgu1g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D-EddyNet%3A+A+Novel+Approach+for+Identifying+Three-Dimensional+Morphological+Features+of+Mesoscale+Eddies+in+the+Ocean&rft.jtitle=Journal+of+marine+science+and+engineering&rft.au=Feng%2C+Pufei&rft.au=Fu%2C+Zhiyi&rft.au=Hu%2C+Linshu&rft.au=Wu%2C+Sensen&rft.date=2023-09-01&rft.pub=MDPI+AG&rft.eissn=2077-1312&rft.volume=11&rft.issue=9&rft.spage=1779&rft_id=info:doi/10.3390%2Fjmse11091779&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2077-1312&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2077-1312&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2077-1312&client=summon |