Path Planning Algorithm for Dual-Arm Robot Based on Depth Deterministic Gradient Strategy Algorithm
In recent years, the utilization of dual-arm robots has gained substantial prominence across various industries owing to their collaborative operational capabilities. In order to achieve collision avoidance and facilitate cooperative task completion, efficient path planning plays a pivotal role. The...
        Saved in:
      
    
          | Published in | Mathematics (Basel) Vol. 11; no. 20; p. 4392 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2227-7390 2227-7390  | 
| DOI | 10.3390/math11204392 | 
Cover
| Abstract | In recent years, the utilization of dual-arm robots has gained substantial prominence across various industries owing to their collaborative operational capabilities. In order to achieve collision avoidance and facilitate cooperative task completion, efficient path planning plays a pivotal role. The high dimensionality associated with collaborative task execution in dual-arm robots renders existing path planning methods ineffective for conducting efficient exploration. This paper introduces a multi-agent path planning reinforcement learning algorithm that integrates an experience replay strategy, a shortest-path constraint, and the policy gradient method. To foster collaboration and avoid competition between the robot arms, the proposed approach incorporates a mechanism known as “reward cooperation, punishment competition” during the training process. Our algorithm demonstrates strong performance in the control of dual-arm robots and exhibits the potential to mitigate the challenge of reward sparsity encountered during the training process. The effectiveness of the proposed algorithm is validated through simulations and experiments, comparing the results with existing methods and showcasing its superiority in dual-arm robot path planning. | 
    
|---|---|
| AbstractList | In recent years, the utilization of dual-arm robots has gained substantial prominence across various industries owing to their collaborative operational capabilities. In order to achieve collision avoidance and facilitate cooperative task completion, efficient path planning plays a pivotal role. The high dimensionality associated with collaborative task execution in dual-arm robots renders existing path planning methods ineffective for conducting efficient exploration. This paper introduces a multi-agent path planning reinforcement learning algorithm that integrates an experience replay strategy, a shortest-path constraint, and the policy gradient method. To foster collaboration and avoid competition between the robot arms, the proposed approach incorporates a mechanism known as “reward cooperation, punishment competition” during the training process. Our algorithm demonstrates strong performance in the control of dual-arm robots and exhibits the potential to mitigate the challenge of reward sparsity encountered during the training process. The effectiveness of the proposed algorithm is validated through simulations and experiments, comparing the results with existing methods and showcasing its superiority in dual-arm robot path planning. | 
    
| Audience | Academic | 
    
| Author | Hu, Jiwei Lou, Ping Zhang, Xiaomei Jin, Qiwen Yang, Fan  | 
    
| Author_xml | – sequence: 1 givenname: Xiaomei surname: Zhang fullname: Zhang, Xiaomei – sequence: 2 givenname: Fan surname: Yang fullname: Yang, Fan – sequence: 3 givenname: Qiwen surname: Jin fullname: Jin, Qiwen – sequence: 4 givenname: Ping orcidid: 0000-0003-4493-4668 surname: Lou fullname: Lou, Ping – sequence: 5 givenname: Jiwei orcidid: 0000-0001-6884-7935 surname: Hu fullname: Hu, Jiwei  | 
    
| BookMark | eNp9kUtv1DAUhSNUJErpjh9giS0pfsbOcuhAqVSJisfauvEj9SixB8cjNP8eD0FQIYG98NX1-Y6Or583ZzFF1zQvCb5irMdvZigPhFDMWU-fNOeUUtnKenH2qH7WXC7LDtfVE6Z4f96Y-4qh-wliDHFEm2lMOZSHGfmU0fYAU7vJM_qUhlTQW1icRSmirdtXaOuKy3OIYSnBoJsMNrhY0OeSobjx-MfrRfPUw7S4y1_nRfP1_bsv1x_au483t9ebu9Zw3JW2MzW6JDB4Dhgs873yIAjmHgZOqeWdF2CVso4NShDfg8SDkxIGZylxnF00t6uvTbDT-xxmyEedIOifjZRHDblmnZy2ghnLmKSkUxxAKCNV1zvHvCBSYFG92tXrEPdw_A7T9NuQYH0auH488Kp_ter3OX07uKXoXTrkWJ-rqVJUqA53J9XVqhqhhgjRpzosU7d1czD1P32o_Y2UFPdK4RNAV8DktCzZeW1CgRJSrGCY_pXl9V_Qf6P_ALJ4sLM | 
    
| CitedBy_id | crossref_primary_10_1007_s41315_024_00413_3 crossref_primary_10_1007_s10462_024_10940_x crossref_primary_10_3390_sym16010131 crossref_primary_10_1007_s42853_024_00238_9  | 
    
| Cites_doi | 10.1016/j.inffus.2022.03.003 10.1609/aaai.v32i1.11796 10.1109/ICRA.2018.8460887 10.1016/j.arcontrol.2020.02.002 10.1007/s10462-020-09938-y 10.1109/JAS.2021.1004252 10.1109/TSSC.1968.300136 10.1038/nature14236 10.1109/LRA.2022.3174257 10.1007/s10489-022-04105-y 10.1109/TNNLS.2023.3264540 10.1109/TCYB.2020.2990722 10.3390/s20205911 10.1016/j.ijpe.2019.08.011 10.3390/s23073625 10.15607/RSS.2017.XIII.058 10.1109/TPAMI.2023.3292075 10.1109/70.508439 10.1109/MSP.2017.2743240 10.1109/ICRA.2016.7487342 10.1016/j.eswa.2023.120254 10.1016/j.dt.2019.04.011  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/math11204392 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest SciTech Premium Collection Technology Collection Materials Science & Engineering Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals (DOAJ)  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2227-7390 | 
    
| ExternalDocumentID | oai_doaj_org_article_d53cd33721684aa58c7869ee3f517505 10.3390/math11204392 A772098802 10_3390_math11204392  | 
    
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c406t-6c43971abf4a0ad3f98fa5104fab422d46f5ad88de3b851f9a70be77abed21e43 | 
    
| IEDL.DBID | DOA | 
    
| ISSN | 2227-7390 | 
    
| IngestDate | Tue Oct 14 19:06:14 EDT 2025 Wed Oct 01 16:42:06 EDT 2025 Fri Jul 25 10:48:41 EDT 2025 Mon Oct 20 17:14:11 EDT 2025 Thu Oct 16 04:42:15 EDT 2025 Thu Apr 24 23:11:08 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 20 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-6c43971abf4a0ad3f98fa5104fab422d46f5ad88de3b851f9a70be77abed21e43 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-6884-7935 0000-0003-4493-4668  | 
    
| OpenAccessLink | https://doaj.org/article/d53cd33721684aa58c7869ee3f517505 | 
    
| PQID | 2882586062 | 
    
| PQPubID | 2032364 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d53cd33721684aa58c7869ee3f517505 unpaywall_primary_10_3390_math11204392 proquest_journals_2882586062 gale_infotracacademiconefile_A772098802 crossref_citationtrail_10_3390_math11204392 crossref_primary_10_3390_math11204392  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-01 | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Mathematics (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | ref_36 ref_13 ref_12 Andrychowicz (ref_35) 2017; 30 ref_11 ref_33 ref_32 Vecchietti (ref_30) 2020; 52 ref_19 ref_18 Oroojlooy (ref_26) 2023; 53 Feng (ref_7) 2020; 49 Kavraki (ref_6) 1996; 12 ref_16 ref_38 ref_15 ref_37 Zhu (ref_17) 2023; 45 Li (ref_5) 2021; 9 Ladosz (ref_31) 2022; 85 Hart (ref_3) 1968; 4 Du (ref_9) 2021; 54 Meng (ref_28) 2022; 7 ref_25 ref_24 ref_23 ref_22 ref_20 Liu (ref_10) 2023; 227 Li (ref_34) 2019; 32 Osterrieder (ref_1) 2020; 221 Lowe (ref_21) 2017; 30 ref_29 Patle (ref_2) 2019; 15 ref_27 Mnih (ref_14) 2015; 518 ref_8 ref_4  | 
    
| References_xml | – ident: ref_32 – volume: 85 start-page: 1 year: 2022 ident: ref_31 article-title: Exploration in deep reinforcement learning: A survey publication-title: Inf. Fusion doi: 10.1016/j.inffus.2022.03.003 – ident: ref_15 doi: 10.1609/aaai.v32i1.11796 – ident: ref_13 doi: 10.1109/ICRA.2018.8460887 – volume: 49 start-page: 113 year: 2020 ident: ref_7 article-title: An overview of collaborative robotic manipulation in multi-robot systems publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2020.02.002 – volume: 54 start-page: 3215 year: 2021 ident: ref_9 article-title: A survey on multi-agent deep reinforcement learning: From the perspective of challenges and applications publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09938-y – ident: ref_16 – volume: 30 start-page: 1 year: 2017 ident: ref_35 article-title: Hindsight experience replay publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_37 – ident: ref_18 – volume: 9 start-page: 283 year: 2021 ident: ref_5 article-title: An adaptive rapidly-exploring random tree publication-title: IEEE/CAA J. Autom. Sin. doi: 10.1109/JAS.2021.1004252 – volume: 4 start-page: 100 year: 1968 ident: ref_3 article-title: A formal basis for the heuristic determination of minimum cost paths publication-title: IEEE Trans. Syst. Sci. Cybern. doi: 10.1109/TSSC.1968.300136 – volume: 518 start-page: 529 year: 2015 ident: ref_14 article-title: Human-level control through deep reinforcement learning publication-title: Nature doi: 10.1038/nature14236 – ident: ref_8 – volume: 7 start-page: 6830 year: 2022 ident: ref_28 article-title: RRT*-based path planning for continuum arms publication-title: IEEE Robot. Autom. Lett. doi: 10.1109/LRA.2022.3174257 – volume: 30 start-page: 1 year: 2017 ident: ref_21 article-title: Multi-agent actor-critic for mixed cooperative-competitive environments publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_25 – ident: ref_4 – volume: 53 start-page: 13677 year: 2023 ident: ref_26 article-title: A review of cooperative multi-agent deep reinforcement learning publication-title: Appl. Intell. doi: 10.1007/s10489-022-04105-y – ident: ref_33 – ident: ref_24 doi: 10.1109/TNNLS.2023.3264540 – ident: ref_27 – volume: 52 start-page: 1515 year: 2020 ident: ref_30 article-title: Sampling rate decay in hindsight experience replay for robot control publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2990722 – volume: 32 start-page: 1 year: 2019 ident: ref_34 article-title: Hierarchical reinforcement learning with advantage-based auxiliary rewards publication-title: Adv. Neural Inf. Process. Syst. – ident: ref_29 doi: 10.3390/s20205911 – volume: 221 start-page: 107476 year: 2020 ident: ref_1 article-title: The smart factory as a key construct of industry 4.0: A systematic literature review publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2019.08.011 – ident: ref_23 doi: 10.3390/s23073625 – ident: ref_12 doi: 10.15607/RSS.2017.XIII.058 – ident: ref_38 – ident: ref_36 – volume: 45 start-page: 13344 year: 2023 ident: ref_17 article-title: Transfer learning in deep reinforcement learning: A survey publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2023.3292075 – ident: ref_19 – volume: 12 start-page: 566 year: 1996 ident: ref_6 article-title: Probabilistic roadmaps for path planning in high-dimensional configuration spaces publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/70.508439 – ident: ref_22 doi: 10.1109/MSP.2017.2743240 – ident: ref_11 doi: 10.1109/ICRA.2016.7487342 – ident: ref_20 – volume: 227 start-page: 120254 year: 2023 ident: ref_10 article-title: Path planning techniques for mobile robots: Review and prospect publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120254 – volume: 15 start-page: 582 year: 2019 ident: ref_2 article-title: A review: On path planning strategies for navigation of mobile robot publication-title: Def. Technol. doi: 10.1016/j.dt.2019.04.011  | 
    
| SSID | ssj0000913849 | 
    
| Score | 2.2766361 | 
    
| Snippet | In recent years, the utilization of dual-arm robots has gained substantial prominence across various industries owing to their collaborative operational... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 4392 | 
    
| SubjectTerms | Algorithms Collaboration Collision avoidance Data mining Decision making Decision theory Deep learning dual-arm robot Efficiency Factories Machine learning multi-agent reinforcement learning Multiagent systems Optimization path planning Robot arms Robot control Robot dynamics Robotics Robotics industry Robots Shortest-path problems Simulation methods Sparsity Strategy  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwEB7R5dByqOhLLKXIhz4OVcRuYifOoap2WSiqxAqhInGz_Aoc0mS7ZIX4953JOoEKFSmXRI5je8aeb5zxNwAfU02cMI5HEo13xAX6rAatVOSFs67IhOMtA9_pPD254D8vxeUGzLuzMBRW2a2J7ULtakt75AcxQkEhEW7H3xd_IsoaRX9XuxQaOqRWcN9airFnsBkTM9YANqdH87PzfteFWDAlz9cR8An6-weIC68Rc9AJ0fgf29RS-D9eqLfg-apa6LtbXZYPLNHxNrwMEJJN1jJ_BRu-eg1bpz3_6s0bsGd4x7qERGxSXmFXmuvfDCEqm610GaGA2Xlt6oZN0Y45Vlds5hf40izEx7QEzuzHsg0Ja1hgsb27r-stXBwf_To8iUI6hcii1W6i1BL4GGtTcD3SLilyWWickrzQhscor7QQ2knpfGIQhxW5zkbGZ5k23sVjz5N3MKjqyu8AI5CDyKDQsfeIwKQZ2wQrtXjl0js5hK_dQCobuMYp5UWp0OegYVcPh30In_rSizXHxn_KTUkmfRlixm4f1MsrFSaaciKxLkmIk0hyrYW0mUxz75NCoA6OxBC-kEQVzV9sktXhGAJ2jJiw1ATdjVGOqxp-bq8TugoT-0bdq-EQPveK8GSzd5-u5z28oBT26wDBPRg0y5X_gECnMftBe_8CiIf8zA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA98EZdKMgHHgeU7iaOE-eEtiylQmpVIVYqJ8vPtiJNVttsq_LrGSfOsoBASEi5JLEdWx7PfBPNfAPwIpOeE8akEUfjHaUMfVaFViqyzGjjcmbSloHv4DDbn6Ufj9nxWha_D6tEV_ysVdI-TzPK0SsfxTF66SM0nslobtzby_AvKc4KjiLIaHETNjKGaHwAG7PDo8kXX1Ou793Fu1M_DqLAU0QYPh80-ckStYT9v6vlTbi1rOby-kqW5Zrd2bsLsp9xF27ydWfZqB397Rcyx_9Z0j24E0ApmXRSdB9u2OoBbB6sGF0vHoI-wjvSlzgik_KkXpw1p-cEQS-ZLmUZociQT7WqG7KLltGQuiJTO8dO0xBx01JCkw-LNsisIYEX9_rHWI9gtvf-87v9KBRoiDTigCbKtIczsVQulWNpqCu4k3jIUydVmqAEZI5Jw7mxVCGyc4XMx8rmuVTWJLFN6WMYVHVlt4B42IRYw8nEWsR0XMWa4qAar4Jbw4fwpt8soQN7uS-iUQr0YvzWivWtHcLLVet5x9rxh3a7ft9XbTzXdvugXpyIcHSFYVQbSj3LEU-lZFznPCuspY6hVI_ZEF57qRFeI-CUtAyJDbgwz60lJujAjAvUk_i57V6wRFAVFyJBH4dx9CPx9auVsP112k_-teFTuJ0gKOuCD7dh0CyW9hmCqEY9D-fkO8maFRw priority: 102 providerName: Unpaywall  | 
    
| Title | Path Planning Algorithm for Dual-Arm Robot Based on Depth Deterministic Gradient Strategy Algorithm | 
    
| URI | https://www.proquest.com/docview/2882586062 https://www.mdpi.com/2227-7390/11/20/4392/pdf?version=1698048539 https://doaj.org/article/d53cd33721684aa58c7869ee3f517505  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCO - Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFH4acBgcprGBKIPKB7Ydpog2thPn2FIKmkRVoVViJ8s_4RCSClJN_Pd7TtLSaYJdJuXixHFe_J79vic9fw_gJFGBE8aySKDzjhjHmFWjl4oct8b6lFtWM_BdTZLLGft-w2_WSn2FnLCGHriZuFPLqbGUBo4ZwZTiwqQiyZyjnuOYDXtpT2RrwVS9B2d9KljWZLpTjOtPEf_dIbYIJ0HjP3xQTdX_94a8A28XxVw9_VJ5vuZxxu_hXQsVyaARcRfeuOID7FyteFYfP4KZYossCw-RQX5bYrB_d08QipLRQuURKpJcl7qsyBD9lSVlQUZuji-N2jyYmqiZXDzUqV8Vadlqn57H2oPZ-PzH2WXUlk2IDHrnKkpMABl9pT1TPWWpz4RXuPSYV5rFqJfEc2WFsI5qxFs-U2lPuzRV2tm47xjdh82iLNwBkABmEAF4FTuHSEvovqE4qMErE86KDnxbTqQ0Lad4KG2RS4wtwrTL9WnvwOdV73nDpfFCv2HQyapPYMCub6BdyNYu5L_sogNfg0ZlWKcoklHtcQP8scB4JQcYVvQy3L3wc0dLpct2AT_KGCMPLjC6w8dfVobwqtiH_0PsT7AdCto36YJHsFk9LNwxwp5Kd2FDjC-6sDU8n0yvu7W9Y2s2mQ5-_gZP_wIS | 
    
| linkProvider | Directory of Open Access Journals | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFH5icGAcpv3UurHNh7Edpog0tlPngKZ2hZVBK4RA4mYc24FDlnRtKtR_bn_bnlMnME3jhpRLIseJn5_f-17y_D2Aj7FynDCGBQKdd8A4xqwpeqnAcqNN1uOG1Qx840k8Omc_LvjFGvxu9sK4tMrGJtaG2pTafSPfjRAKcoFwO_o6_RW4qlHu72pTQkP50gpmr6YY8xs7juzyBkO4-d7hEOd7J4oO9s--jQJfZSDQ6MyqINbOJ3dVmjEVKkOzRGQKNZVlKmURDiPOuDJCGEtThCdZonphans9lVoTdS2j2O8j2GCUJRj8bQz2Jyen7Vcex7opWLLKuKc0CXcRh14jxnE7UqO_fGFdMuBfx7AFm4tiqpY3Ks_veL6Dp_DEQ1bSX-nYM1izxXPYGrd8r_MXoE_wjDQFkEg_v0LRVdc_CUJiMlyoPECFIqdlWlZkgH7TkLIgQzvFm4Y-H6cmjCbfZ3UKWkU8a-7ytq-XcP4ggn0F60VZ2NdAHKhCJJKpyFpEfCLtaoqdajwSYY3owJdGkFJ7bnNXYiOXGOM4scu7Yu_ATtt6uuL0-E-7gZuTto1j4q4vlLMr6Re2NJxqQ6njQBJMKS50T8SJtTTjqPMh78BnN6PS2Qt8Ja38tgccmGPekn0Mb8IErSg-bruZdOkNyVzeqn0HPrWKcO9rv7m_nw-wOTobH8vjw8nRW3gcIWhbJSduw3o1W9h3CLKq9L3XZAKXD714_gAlXztn | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgE9IJ5ioYAPFA4o2mxsJ84BoS3LtqW0qhCVejOOH-0hTba7WVX71_h1jPNqEaK3Srkkchx7PJ757Iy_AXgXK88JY1gg0HkHjOOaNUMvFVhutHEJN6xm4Ds4jHeP2bcTfrIGv7uzMD6ssrOJtaE2pfZ75MMIoSAXCLejoWvDIo4m08-zi8BnkPJ_Wrt0Go2K7NvVJS7fFp_2JjjWW1E0_frzy27QZhgINDqyKoi198cjlTmmQmWoS4VTqKXMqYxF2IXYcWWEMJZmCE1cqpIws0miMmuikWUU670DdxPP4u5PqU93-v0dz7cpWNrE2lOahkNEoGeIbvxZ1OgvL1gnC_jXJWzA_WUxU6tLlefXfN70ETxswSoZN9r1GNZs8QQ2Dnqm18VT0Ed4R7rUR2Scn6KgqrNzgmCYTJYqD1CVyI8yKyuyjR7TkLIgEzvDlyZtJE5NFU125nXwWUVavtzVVV3P4PhWxPoc1ouysC-AeDiFGMSpyFrEeiIbaYqVarxSYY0YwMdOkFK3rOY-uUYucXXjxS6vi30AW33pWcPm8Z9y235M-jKeg7t-UM5PZTulpeFUG0o9-5FgSnGhExGn1lLHUdtDPoAPfkSltxTYJK3aAw_YMc-5Jce4sAlTtJ_4uc1u0GVrQhbySuEH8L5XhBub_fLmet7CPZwy8vve4f4reBAhWmuiEjdhvZov7WtEV1X2plZjAr9ue978AZC5OQE | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gA98EZdKMgHHgeU7iaOE-eEtiylQmpVIVYqJ8vPtiJNVttsq_LrGSfOsoBASEi5JLEdWx7PfBPNfAPwIpOeE8akEUfjHaUMfVaFViqyzGjjcmbSloHv4DDbn6Ufj9nxWha_D6tEV_ysVdI-TzPK0SsfxTF66SM0nslobtzby_AvKc4KjiLIaHETNjKGaHwAG7PDo8kXX1Ou793Fu1M_DqLAU0QYPh80-ckStYT9v6vlTbi1rOby-kqW5Zrd2bsLsp9xF27ydWfZqB397Rcyx_9Z0j24E0ApmXRSdB9u2OoBbB6sGF0vHoI-wjvSlzgik_KkXpw1p-cEQS-ZLmUZociQT7WqG7KLltGQuiJTO8dO0xBx01JCkw-LNsisIYEX9_rHWI9gtvf-87v9KBRoiDTigCbKtIczsVQulWNpqCu4k3jIUydVmqAEZI5Jw7mxVCGyc4XMx8rmuVTWJLFN6WMYVHVlt4B42IRYw8nEWsR0XMWa4qAar4Jbw4fwpt8soQN7uS-iUQr0YvzWivWtHcLLVet5x9rxh3a7ft9XbTzXdvugXpyIcHSFYVQbSj3LEU-lZFznPCuspY6hVI_ZEF57qRFeI-CUtAyJDbgwz60lJujAjAvUk_i57V6wRFAVFyJBH4dx9CPx9auVsP112k_-teFTuJ0gKOuCD7dh0CyW9hmCqEY9D-fkO8maFRw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Path+Planning+Algorithm+for+Dual-Arm+Robot+Based+on+Depth+Deterministic+Gradient+Strategy+Algorithm&rft.jtitle=Mathematics+%28Basel%29&rft.au=Zhang%2C+Xiaomei&rft.au=Yang%2C+Fan&rft.au=Jin%2C+Qiwen&rft.au=Lou%2C+Ping&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=11&rft.issue=20&rft_id=info:doi/10.3390%2Fmath11204392&rft.externalDocID=A772098802 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |