Methodology for Neural Network-Based Material Card Calibration Using LS-DYNA MAT_187_SAMP-1 Considering Failure with GISSMO
A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with inte...
        Saved in:
      
    
          | Published in | Materials Vol. 15; no. 2; p. 643 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Switzerland
          MDPI AG
    
        15.01.2022
     MDPI  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1996-1944 1996-1944  | 
| DOI | 10.3390/ma15020643 | 
Cover
| Abstract | A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension–compression asymmetry, variable plastic Poisson’s ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1. | 
    
|---|---|
| AbstractList | A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension–compression asymmetry, variable plastic Poisson’s ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1. A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension-compression asymmetry, variable plastic Poisson's ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1.A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension-compression asymmetry, variable plastic Poisson's ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1. A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card and the failure model were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension-compression asymmetry, variable plastic Poisson's ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used .  | 
    
| Author | Winter, Jens Meißner, Paul Vietor, Thomas  | 
    
| AuthorAffiliation | Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Strasse 42, 38108 Brunswick, Germany; jens.winter@tu-braunschweig.com (J.W.); t.vietor@tu-braunschweig.de (T.V.) | 
    
| AuthorAffiliation_xml | – name: Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Strasse 42, 38108 Brunswick, Germany; jens.winter@tu-braunschweig.com (J.W.); t.vietor@tu-braunschweig.de (T.V.) | 
    
| Author_xml | – sequence: 1 givenname: Paul orcidid: 0000-0003-4229-7634 surname: Meißner fullname: Meißner, Paul – sequence: 2 givenname: Jens orcidid: 0000-0003-3774-5359 surname: Winter fullname: Winter, Jens – sequence: 3 givenname: Thomas orcidid: 0000-0003-4687-681X surname: Vietor fullname: Vietor, Thomas  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35057362$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNp9kU1vEzEQhi1URD_ohR-AVuKCQAv-WHvtS6UQaKmUbZHSHjhZztqbuDh2sHcbRfx5HFJKqRA-eEb2M6N33jkEez54A8ALBN8RIuD7pUIUYsgq8gQcICFYiURV7T3I98FxSjcwH0IQx-IZ2CcU0powfAB-NKZfBB1cmG-KLsTiwgxRuRz6dYjfyg8qGV00qjfR5uexijpfzs6i6m3wxXWyfl5MpuXHrxejohldScRrOR01X0pUjINPVufKjJwq64ZoirXtF8XZ-XTaXD4HTzvlkjm-i0fg-vTT1fhzObk8Ox-PJmVbQdaXlCtBYYez5hZTplllcIu4MBXWVHe8FhxpxQRXFNGZhsrMNMnTcYNYJXRLjsDbXd_Br9RmrZyTq2iXKm4kgnLrovzjYqZPdvRqmC2Nbo3vsyH3FUFZ-fePtws5D7eS1zUXNcoNXt81iOH7YFIvlza1xjnlTRiSxAxjzFldwYy-eoTehCH6bMaWQqRitdgqevlQ0b2U31vMANwBbQwpRdPJ1va_9pMFWvfvKd88KvmPJT8BPCm67g | 
    
| CitedBy_id | crossref_primary_10_1016_j_mechmat_2024_105066 crossref_primary_10_3390_app122412793 crossref_primary_10_1080_15397734_2025_2473005 crossref_primary_10_1016_j_matdes_2025_113710 crossref_primary_10_22227_1997_0935_2024_12_1896_1919 crossref_primary_10_1016_j_engfracmech_2025_110841 crossref_primary_10_1016_j_commatsci_2024_113274  | 
    
| Cites_doi | 10.1142/S0219876213430020 10.1115/1.3225775 10.1016/j.cma.2021.114008 10.1371/journal.pcbi.1000579 10.1007/s00158-004-0476-y 10.1080/0305215X.2020.1837791 10.1002/nme.1620040402 10.5545/sv-jme.2015.3266 10.1080/17415977.2011.551931 10.3390/met9111165 10.3390/polym12122949 10.1007/3-540-45034-3_55 10.2514/6.2012-5580 10.1007/BF02818935 10.1115/1.3078390 10.1016/j.engfracmech.2020.107424 10.1007/s10704-016-0081-2 10.1007/s12289-009-0392-1 10.1088/0965-0393/2/3A/013 10.3390/met10091141 10.4325/seikeikakou.25.476 10.1016/S0022-5096(98)00110-0 10.18637/jss.v031.i07 10.1007/s10462-020-09876-9 10.1007/978-3-030-05318-5 10.1016/j.asoc.2011.01.007 10.1080/13588265.2014.916835 10.1016/j.ijsolstr.2015.03.006 10.1007/s00158-021-02988-y 10.1016/S0022-5096(98)00109-4 10.1007/s12289-018-1421-8 10.1007/978-3-319-43162-8 10.1016/j.ymssp.2005.04.008 10.1016/0045-7825(96)00991-7 10.1007/978-3-319-99223-5 10.1162/neco.1992.4.3.448 10.1109/78.285655 10.1016/j.commatsci.2019.04.003 10.1007/978-3-642-18255-6 10.1115/1.4004590 10.1207/s15516709cog1603_1  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2022 by the authors. 2022  | 
    
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2022 by the authors. 2022  | 
    
| DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM ADTOC UNPAY  | 
    
| DOI | 10.3390/ma15020643 | 
    
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic  | 
    
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed  | 
    
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1996-1944 | 
    
| ExternalDocumentID | 10.3390/ma15020643 PMC8778971 35057362 10_3390_ma15020643  | 
    
| Genre | Journal Article | 
    
| GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC C1A IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c406t-58a950f2505c256d64e2c189e42d5df87981da698a515bd0aebd37368e1649dc3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1996-1944 | 
    
| IngestDate | Sun Oct 26 04:02:17 EDT 2025 Tue Sep 30 16:33:55 EDT 2025 Fri Sep 05 08:09:46 EDT 2025 Fri Jul 25 11:54:22 EDT 2025 Wed Feb 19 02:27:15 EST 2025 Thu Oct 16 04:39:59 EDT 2025 Thu Apr 24 23:01:53 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 2 | 
    
| Keywords | LS-DYNA GISSMO failure model hyperparameter optimization machine learning MAT_187_SAMP-1 parameter identification  | 
    
| Language | English | 
    
| License | Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-58a950f2505c256d64e2c189e42d5df87981da698a515bd0aebd37368e1649dc3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-3774-5359 0000-0003-4687-681X 0000-0003-4229-7634  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1944/15/2/643/pdf?version=1642479412 | 
    
| PMID | 35057362 | 
    
| PQID | 2621346793 | 
    
| PQPubID | 2032366 | 
    
| ParticipantIDs | unpaywall_primary_10_3390_ma15020643 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778971 proquest_miscellaneous_2622286740 proquest_journals_2621346793 pubmed_primary_35057362 crossref_citationtrail_10_3390_ma15020643 crossref_primary_10_3390_ma15020643  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20220115 | 
    
| PublicationDateYYYYMMDD | 2022-01-15 | 
    
| PublicationDate_xml | – month: 1 year: 2022 text: 20220115 day: 15  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Switzerland | 
    
| PublicationPlace_xml | – name: Switzerland – name: Basel  | 
    
| PublicationTitle | Materials | 
    
| PublicationTitleAlternate | Materials (Basel) | 
    
| PublicationYear | 2022 | 
    
| Publisher | MDPI AG MDPI  | 
    
| Publisher_xml | – name: MDPI AG – name: MDPI  | 
    
| References | ref_50 Maier (ref_59) 2014; 11 Klemenc (ref_51) 2016; 62 Jordan (ref_22) 1992; 16 Lemaitre (ref_47) 1985; 107 Fonseca (ref_1) 2021; 64 ref_14 ref_58 ref_13 ref_57 ref_55 Maier (ref_60) 1972; 4 Morand (ref_12) 2019; 167 Aguir (ref_26) 2009; 2 Stander (ref_56) 2005; 29 Werner (ref_3) 2020; 53 Mahnken (ref_10) 1994; 2 ref_18 ref_17 ref_15 Kohar (ref_5) 2021; 385 Mahnken (ref_11) 1996; 136 Jekel (ref_62) 2018; 12 Eggertsen (ref_8) 2011; 133 MacKay (ref_28) 1992; 4 ref_25 Andrade (ref_43) 2016; 200 ref_65 ref_64 Bolzon (ref_61) 2011; 19 ref_63 ref_29 Kerschen (ref_20) 2006; 20 Unger (ref_27) 2011; 11 Yao (ref_19) 1994; 42 ref_36 ref_35 ref_34 Huber (ref_23) 1999; 47 ref_33 ref_32 ref_31 ref_30 Giorgino (ref_66) 2009; 31 Goh (ref_16) 2020; 54 ref_39 Yagawa (ref_21) 1996; 3 ref_38 ref_37 Darlet (ref_52) 2015; 67–68 Srivastava (ref_40) 2014; 15 Hayashi (ref_54) 2013; 25 Huber (ref_24) 1999; 47 Morasch (ref_9) 2014; 19 ref_46 ref_45 Bai (ref_53) 2009; 131 ref_44 ref_42 ref_41 ref_2 ref_49 ref_48 Greve (ref_4) 2021; 241 ref_7 ref_6  | 
    
| References_xml | – ident: ref_49 – ident: ref_32 – ident: ref_55 – volume: 11 start-page: 1343002 year: 2014 ident: ref_59 article-title: Mechanical characterization of materials and diagnosis of structures by inverse analysis: Some innovative procedures and applications publication-title: Int. J. Comput. Methods doi: 10.1142/S0219876213430020 – volume: 107 start-page: 83 year: 1985 ident: ref_47 article-title: A Continuous Damage Mechanics Model for Ductile Fracture publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3225775 – volume: 385 start-page: 114008 year: 2021 ident: ref_5 article-title: A machine learning framework for accelerating the design process using CAE simulations: An application to finite element analysis in structural crashworthiness publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2021.114008 – ident: ref_65 – ident: ref_33 doi: 10.1371/journal.pcbi.1000579 – ident: ref_39 – volume: 29 start-page: 93 year: 2005 ident: ref_56 article-title: Material identification in structural optimization using response surfaces publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-004-0476-y – volume: 53 start-page: 1884 year: 2020 ident: ref_3 article-title: Multidisciplinary design optimization of a generic b-pillar under package and design constraints publication-title: Eng. Optim. doi: 10.1080/0305215X.2020.1837791 – volume: 4 start-page: 455 year: 1972 ident: ref_60 article-title: A finite element approach to optimal design of plastic structures in plane stress publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620040402 – ident: ref_42 – volume: 62 start-page: 220 year: 2016 ident: ref_51 article-title: Estimating the Strain-Rate-Dependent Parameters of the Cowper-Symonds and Johnson-Cook Material Models using Taguchi Arrays publication-title: J. Mech. Eng. doi: 10.5545/sv-jme.2015.3266 – ident: ref_35 – volume: 19 start-page: 815 year: 2011 ident: ref_61 article-title: Assessment of elastic–plastic material parameters comparatively by three procedures based on indentation test and inverse analysis publication-title: Inverse Probl. Sci. Eng. doi: 10.1080/17415977.2011.551931 – ident: ref_58 – ident: ref_7 doi: 10.3390/met9111165 – ident: ref_15 doi: 10.3390/polym12122949 – ident: ref_25 doi: 10.1007/3-540-45034-3_55 – ident: ref_63 doi: 10.2514/6.2012-5580 – volume: 3 start-page: 435 year: 1996 ident: ref_21 article-title: Neural networks in computational mechanics publication-title: Arch. Comput. Methods Eng. doi: 10.1007/BF02818935 – ident: ref_31 – volume: 131 start-page: 021002 year: 2009 ident: ref_53 article-title: On the Application of Stress Triaxiality Formula for Plane Strain Fracture Testing publication-title: J. Eng. Mater. Technol. doi: 10.1115/1.3078390 – volume: 241 start-page: 107424 year: 2021 ident: ref_4 article-title: Neural network-based surrogate model for a bifurcating structural fracture response publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2020.107424 – volume: 200 start-page: 127 year: 2016 ident: ref_43 article-title: An incremental stress state dependent damage model for ductile failure prediction publication-title: Int. J. Fract. doi: 10.1007/s10704-016-0081-2 – volume: 2 start-page: 75 year: 2009 ident: ref_26 article-title: Parameter identification of a non-associative elastoplastic constitutive model using ANN and multi-objective optimization publication-title: Int. J. Mater. Form. doi: 10.1007/s12289-009-0392-1 – volume: 2 start-page: 597 year: 1994 ident: ref_10 article-title: The identification of parameters for visco-plastic models via finite-element methods and gradient methods publication-title: Model. Simul. Mater. Sci. Eng. doi: 10.1088/0965-0393/2/3A/013 – ident: ref_29 doi: 10.3390/met10091141 – ident: ref_41 – volume: 25 start-page: 476 year: 2013 ident: ref_54 article-title: Prediction of Failure Behavior in Polymers Under Multiaxial Stress State publication-title: Seikei-Kakou doi: 10.4325/seikeikakou.25.476 – ident: ref_13 – ident: ref_38 – ident: ref_17 – ident: ref_45 – volume: 47 start-page: 1589 year: 1999 ident: ref_24 article-title: Determination of constitutive properties fromspherical indentation data using neural networks. Part ii: Plasticity with nonlinear isotropic and kinematichardening publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00110-0 – volume: 31 start-page: 1 year: 2009 ident: ref_66 article-title: Computing and Visualizing Dynamic Time Warping Alignments inR: ThedtwPackage publication-title: J. Stat. Softw. doi: 10.18637/jss.v031.i07 – volume: 15 start-page: 1929 year: 2014 ident: ref_40 article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting publication-title: J. Mach. Learn. Res. – volume: 54 start-page: 63 year: 2020 ident: ref_16 article-title: A review on machine learning in 3D printing: Applications, potential, and challenges publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09876-9 – ident: ref_36 doi: 10.1007/978-3-030-05318-5 – volume: 11 start-page: 3357 year: 2011 ident: ref_27 article-title: An inverse parameter identification procedure assessing the quality of the estimates using Bayesian neural networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.01.007 – volume: 19 start-page: 500 year: 2014 ident: ref_9 article-title: Material modelling for crash simulation of thin extruded aluminium sections publication-title: Int. J. Crashworthiness doi: 10.1080/13588265.2014.916835 – volume: 67–68 start-page: 71 year: 2015 ident: ref_52 article-title: Stress triaxiality and Lode angle along surfaces of elastoplastic structures publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2015.03.006 – volume: 64 start-page: 2773 year: 2021 ident: ref_1 article-title: Preliminary design of an injection-molded recycled-carbon fiber–reinforced plastic/metal hybrid automotive structure via combined optimization techniques publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-021-02988-y – volume: 47 start-page: 1569 year: 1999 ident: ref_23 article-title: Determination of constitutive properties fromspherical indentation data using neural networks. Part i: The case of pure kinematic hardening in plasticity laws publication-title: J. Mech. Phys. Solids doi: 10.1016/S0022-5096(98)00109-4 – ident: ref_37 – ident: ref_14 – volume: 12 start-page: 355 year: 2018 ident: ref_62 article-title: Similarity measures for identifying material parameters from hysteresis loops using inverse analysis publication-title: Int. J. Mater. Form. doi: 10.1007/s12289-018-1421-8 – ident: ref_18 – ident: ref_30 doi: 10.1007/978-3-319-43162-8 – ident: ref_44 – volume: 20 start-page: 505 year: 2006 ident: ref_20 article-title: Past, present and future of nonlinear system identification in structural dynamics publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2005.04.008 – volume: 136 start-page: 225 year: 1996 ident: ref_11 article-title: A unified approach for parameter identification of inelastic material models in the frame of the finite element method publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(96)00991-7 – ident: ref_6 – ident: ref_34 doi: 10.1007/978-3-319-99223-5 – ident: ref_50 – volume: 4 start-page: 448 year: 1992 ident: ref_28 article-title: A Practical Bayesian Framework for Backpropagation Networks publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.448 – ident: ref_2 – volume: 42 start-page: 927 year: 1994 ident: ref_19 article-title: Nonlinear parameter estimation via the genetic algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.285655 – ident: ref_46 – volume: 167 start-page: 85 year: 2019 ident: ref_12 article-title: A mixture of experts approach to handle ambiguities in parameter identification problems in material modeling publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2019.04.003 – ident: ref_64 – ident: ref_48 doi: 10.1007/978-3-642-18255-6 – volume: 133 start-page: 061021 year: 2011 ident: ref_8 article-title: A Phenomenological Model for the Hysteresis Behavior of Metal Sheets Subjected to Unloading/Reloading Cycles publication-title: ASME J. Manuf. Sci. Eng. doi: 10.1115/1.4004590 – ident: ref_57 – volume: 16 start-page: 307 year: 1992 ident: ref_22 article-title: Forward Models: Supervised Learning with a Distal Teacher publication-title: Cogn. Sci. doi: 10.1207/s15516709cog1603_1  | 
    
| SSID | ssj0000331829 | 
    
| Score | 2.3402717 | 
    
| Snippet | A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element... | 
    
| SourceID | unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 643 | 
    
| SubjectTerms | Accuracy Algorithms Calibration Cards Comparative studies Compression tests Datasets Failure Kinematics Machine learning Methods Neural networks Optimization Optimization techniques Parameter identification Poisson's ratio Product development Simulation Software Strain rate  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN4ECjKiFw5WE8eJnQNC29KlIBIqtpXKKXJir6i0ZBfYFUL8eWacR7sq6jnjxMqMPd_YM98A7Eor68pTX0aoBhnZjBtLSY7OqiTVFhE-FSfnRXp0Kj-eJWdbUPS1MJRW2e-JfqO2i5rOyPdEStxjKZrT2-UPTl2j6Ha1b6FhutYK9o2nGLsB24KYsUawvX9YHH8ZTl3CGG1YZC1PaYzx_t53g5BIkGPe9ExX4ObVrMmb62Zp_vw28_kllzS5C3c6LMnGrfLvwZZr7sPtSwyDD-Bv7jtE-7NzhviUERkHjina7G--j07MstysvCGyA7QXRuVaVWsYzGcUsE9T_u5rMWb5-KSMtCqn4_yYR6xv9kkiE3NOCe6MznXZ-w_Taf75IZxODk8OjnjXb4HX6NZXPNEmS8IZgaIakZBNpRN1pDMnhU3sTKsMwa1JM20QBFU2NK6ysYpT7TDmymwdP4JRs2jcE2AuFnUdSimUFXKmTTXDVxqElqgeHBgH8Lr_12XdkZFTT4x5iUEJ6aW80EsArwbZZUvB8V-pnV5lZbcMf5UXRhPAy-ExLiC6FTGNW6y9jBA6VTIM4HGr4eEzMYVv6OIDUBu6HwSInHvzSXP-zZN0a6V0pqIAdgcruWb2T6-f_TO4JajsIox4lOzAaPVz7Z4jGFpVLzoL_wf8Fwhj priority: 102 providerName: ProQuest  | 
    
| Title | Methodology for Neural Network-Based Material Card Calibration Using LS-DYNA MAT_187_SAMP-1 Considering Failure with GISSMO | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/35057362 https://www.proquest.com/docview/2621346793 https://www.proquest.com/docview/2622286740 https://pubmed.ncbi.nlm.nih.gov/PMC8778971 https://www.mdpi.com/1996-1944/15/2/643/pdf?version=1642479412  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 15 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: HH5 dateStart: 20080101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B-wA88BsWGJURe-EhS-w4ifOEsrF2IFIqukrdU-TEjqhWsoqlIOCf55ykYWUIIR4jn5NYPvu-O5-_A9jjiudZTX1JcRo4VZEtlUly1Cr0A6EQ4ZvLyck4OJ7xt3N_3gbcLtq0SnTFF_UmXWfIopfNHeo7zEHj6axU8epLG0lCpM8MQbopMtwPfMTiPejPxpP4tD5Kbvs2nKQe-vbOJ4nwhxkjvG2FrkDLqxmSN9blSn77KpfLS-ZneAfSzY83WSdn--sq28-__8bp-P8juwu3W2RK4kaV7sE1Xd6HW5f4Ch_Aj6SuN11H4gmiXWKoPbDPuMkltw_QJCqSyKpWa3KI2kfM5a-sUTNS5yeQd1P79ek4Jkl8klIRptM4mdiUbEqHGpGhXJh0eWKixGT0ZjpN3j-E2fDo5PDYbqs32DmChMr2hYx8tzAQK0dcpQKuWU5FpDlTvipEGCFUlkEkJEKqTLlSZ8oLvUBoHH2kcu8R9MrzUu8A0R7Lc5dzFirGCyGzAl8pEagiGMKOngUvN7OZ5i21uamwsUzRxTEzn_6aeQtedLKrhtDjj1K7G6VI20V9kbLA0N8FuKNZ8LxrxuVozlhkqc_XtQxjIgi5a8HjRoe6z3jGGUTAYEG4pV2dgKH63m4pFx9rym8RhiIKqQV7nR7-5e-f_JvYU7jJzGUOl9rU34Ve9XmtnyHEqrIBXBfD0QD6B0fjyQd8Gs3poF1bPwFrHSKH | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLwxFFhEOXCwau-u7d1DhdJHSGhsKpJK5WTW3o1aKTiBJqoq_hu_jVm_2qiot549fsjzreeb9cw3AFtc8zwrpS99dAP3tXSVtkWORkdBKDQyfNucHCdh75h_OQlOVuBv0wtjyyqbb2L5odbT3O6Rb9PQao-FCKdPs1-unRpl_642IzRUPVpB75QSY3Vjx6G5vMAU7nynv4_-_kBp92C013PrKQNujsFs7gZCycAbWyqQY_zXITc094U0nOpAj0UkkdKpUAqFoT_TnjKZZhELhcFMQ-qc4XXvwRpnXGLyt7Z7kBx9a3d5PIZrhspKF5Ux6W3_VEjBqCUCy5HwBr29WaW5vihm6vJCTSbXQmD3ITyouSvpVGB7BCumeAwb1xQNn8CfuJxIXe7VE-TDxIp_4DlJVW3u7mLQ1CRW8xL4ZA_xSWx7WFYBkZQVDGQwdPe_Jx0Sd0apL6J02ImPXJ80w0WtSVed2YJ6YveRyef-cBh_fQrHd_Lmn8FqMS3MCyCG0Tz3OKeRpnwsVDbGSyqksggHPJE58LF512lei5_bGRyTFJMg65f0yi8OvG9tZ5Xkx3-tNhuXpfWyP0-vQOrAu_YwLlj7F0YVZroobSgVYcQ9B55XHm5vw2y6iJTCgWjJ962BFQNfPlKcnZai4CKKhIx8B7ZalNzy9C9vf_q3sN4bxYN00E8OX8F9als-PN_1g01Ynf9emNdIxObZmxrtBH7c9QL7B-bARIs | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCiyiHDhYsddr7_qAUGhwG1qHSmmlcjJr70ZUCk6giaqKf8avY8avNirqrVd7_JDnG8-3u7PfAGwKI4q8kr700Q3CN7GrDRU5WiPDSBlk-LQ5OR1FO4fiy1F4tAZ_270wVFbZ_hOrH7WZFTRH3uMRaY9FCKfepCmL2B8kH-e_XOogRSutbTuNGiK79uwUh28nH4YD9PU7zpPPB1s7btNhwC0wkS3cUOk49CZEAwrM_SYSlhe-iq3gJjQTJWOkczqKlca0nxtP29wEMoiUxVFGbIoA73sDbtIRKidUyXY3v-MFGC08rhVRgyD2ej81ki9OFGA1B14itpfrM28vy7k-O9XT6YXkl9yHew1rZf0aZg9gzZYP4e4FLcNH8CetelFXs_QMmTAj2Q-8ZlTXmbufMF0alupFBXm2hchktDEsryHIqtoFtjd2B99GfZb2DzJfyWzcT_ddn7VtRckk0cdUSs9oBpltD8fj9OtjOLyW7_4E1stZaZ8BswEvCk8ILg0XE6XzCd5SI4lFooQXBg68b791VjSy59R9Y5rh8If8kp37xYG3ne28Fvv4r9VG67KsCfiT7ByeDrzpTmOo0vqLLu1sWdlwriIpPAee1h7uHhPQQBHJhANyxfedAcmAr54pj39UcuBKShVL34HNDiVXvP3zq9_-NdzCsMr2hqPdF3CH014Pz3f9cAPWF7-X9iUysEX-qoI6g-_XHVv_AAQDQiU | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6h7QE48H4ECjKiFw5pYseJnRMKhaUgslTartSeIid2xKrbdEWzIODPM3ayoUsRQpw9TmzN2PONPf4GYIdrXpWO-pKiGjjVqa-0TXI0WsSJ1Ijw7ePkfJLsz_j7o_ioP3A779MqMRSfu03aZchilM0DGgcsQOcZLHX98kt_koRIn1mCdFtkeCuJEYuPYGs2OciO3VVy37fjJI0wtg9OFcIfZp3wphe6BC0vZ0heXTVL9e2rWiwuuJ_xTSjWA--yTk52V225W33_jdPx_2d2C270yJRknSndhiumuQPXL_AV3oUfuas37U7iCaJdYqk9sM-kyyX3X6FL1CRXrTNrsofWR-zjr7IzM-LyE8iHqf_6eJKRPDssqBTFNMsPfErWpUOtyFjNbbo8safE5O276TT_eA9m4zeHe_t-X73BrxAktH4sVRqHtYVYFeIqnXDDKipTw5mOdS1FilBZJalUCKlKHSpT6khEiTQ4-1RX0X0YNWeNeQjERKyqQs6Z0IzXUpU1flIhUEUwhB0jD16stVlUPbW5rbCxKDDEsZovfmneg-eD7LIj9Pij1PbaKIp-UZ8XLLH0dwnuaB48G5pxOdo7FtWYs5WTYUwmgocePOhsaPhNZINBBAweiA3rGgQs1fdmSzP_5Ci_pRAyFdSDncEO_zL6R_8m9hiuMfuYI6Q-jbdh1H5emScIsdryab-OfgLjRx8W | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+for+Neural+Network-Based+Material+Card+Calibration+Using+LS-DYNA+MAT_187_SAMP-1+Considering+Failure+with+GISSMO&rft.jtitle=Materials&rft.au=Mei%C3%9Fner%2C+Paul&rft.au=Winter%2C+Jens&rft.au=Vietor%2C+Thomas&rft.date=2022-01-15&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=15&rft.issue=2&rft_id=info:doi/10.3390%2Fma15020643&rft_id=info%3Apmid%2F35057362&rft.externalDocID=PMC8778971 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |