Methodology for Neural Network-Based Material Card Calibration Using LS-DYNA MAT_187_SAMP-1 Considering Failure with GISSMO

A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with inte...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 2; p. 643
Main Authors Meißner, Paul, Winter, Jens, Vietor, Thomas
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.01.2022
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma15020643

Cover

Abstract A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension–compression asymmetry, variable plastic Poisson’s ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1.
AbstractList A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension–compression asymmetry, variable plastic Poisson’s ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1.
A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension-compression asymmetry, variable plastic Poisson's ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1.A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card MAT_187_SAMP-1 and the failure model GISSMO were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension-compression asymmetry, variable plastic Poisson's ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used MAT_187_SAMP-1.
A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element simulations. Contrary to the conventionally used computationally intensive material parameter identification (MPI) by numerical optimization with internal or commercial software, a machine learning (ML)-based method is time saving when used repeatedly. Within this article, a self-developed ML-based Python framework is presented, which offers advantages, especially in the development of structural components in early development phases. In this procedure, different machine learning methods are used and adapted to the specific MPI problem considered herein. Using the developed NN-based and the common optimization-based method with LS-OPT, the material parameters of the LS-DYNA material card and the failure model were exemplarily calibrated for a virtually generated test dataset. Parameters for the description of elasticity, plasticity, tension-compression asymmetry, variable plastic Poisson's ratio (VPPR), strain rate dependency and failure were taken into account. The focus of this paper is on performing a comparative study of the two different MPI methods with varying settings (algorithms, hyperparameters, etc.). Furthermore, the applicability of the NN-based procedure for the specific usage of both material cards was investigated. The studies reveal the general applicability for the calibration of a complex material card by the example of the used .
Author Winter, Jens
Meißner, Paul
Vietor, Thomas
AuthorAffiliation Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Strasse 42, 38108 Brunswick, Germany; jens.winter@tu-braunschweig.com (J.W.); t.vietor@tu-braunschweig.de (T.V.)
AuthorAffiliation_xml – name: Institute for Engineering Design, Technische Universität Braunschweig, Hermann-Blenk-Strasse 42, 38108 Brunswick, Germany; jens.winter@tu-braunschweig.com (J.W.); t.vietor@tu-braunschweig.de (T.V.)
Author_xml – sequence: 1
  givenname: Paul
  orcidid: 0000-0003-4229-7634
  surname: Meißner
  fullname: Meißner, Paul
– sequence: 2
  givenname: Jens
  orcidid: 0000-0003-3774-5359
  surname: Winter
  fullname: Winter, Jens
– sequence: 3
  givenname: Thomas
  orcidid: 0000-0003-4687-681X
  surname: Vietor
  fullname: Vietor, Thomas
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35057362$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi1URD_ohR-AVuKCQAv-WHvtS6UQaKmUbZHSHjhZztqbuDh2sHcbRfx5HFJKqRA-eEb2M6N33jkEez54A8ALBN8RIuD7pUIUYsgq8gQcICFYiURV7T3I98FxSjcwH0IQx-IZ2CcU0powfAB-NKZfBB1cmG-KLsTiwgxRuRz6dYjfyg8qGV00qjfR5uexijpfzs6i6m3wxXWyfl5MpuXHrxejohldScRrOR01X0pUjINPVufKjJwq64ZoirXtF8XZ-XTaXD4HTzvlkjm-i0fg-vTT1fhzObk8Ox-PJmVbQdaXlCtBYYez5hZTplllcIu4MBXWVHe8FhxpxQRXFNGZhsrMNMnTcYNYJXRLjsDbXd_Br9RmrZyTq2iXKm4kgnLrovzjYqZPdvRqmC2Nbo3vsyH3FUFZ-fePtws5D7eS1zUXNcoNXt81iOH7YFIvlza1xjnlTRiSxAxjzFldwYy-eoTehCH6bMaWQqRitdgqevlQ0b2U31vMANwBbQwpRdPJ1va_9pMFWvfvKd88KvmPJT8BPCm67g
CitedBy_id crossref_primary_10_1016_j_mechmat_2024_105066
crossref_primary_10_3390_app122412793
crossref_primary_10_1080_15397734_2025_2473005
crossref_primary_10_1016_j_matdes_2025_113710
crossref_primary_10_22227_1997_0935_2024_12_1896_1919
crossref_primary_10_1016_j_engfracmech_2025_110841
crossref_primary_10_1016_j_commatsci_2024_113274
Cites_doi 10.1142/S0219876213430020
10.1115/1.3225775
10.1016/j.cma.2021.114008
10.1371/journal.pcbi.1000579
10.1007/s00158-004-0476-y
10.1080/0305215X.2020.1837791
10.1002/nme.1620040402
10.5545/sv-jme.2015.3266
10.1080/17415977.2011.551931
10.3390/met9111165
10.3390/polym12122949
10.1007/3-540-45034-3_55
10.2514/6.2012-5580
10.1007/BF02818935
10.1115/1.3078390
10.1016/j.engfracmech.2020.107424
10.1007/s10704-016-0081-2
10.1007/s12289-009-0392-1
10.1088/0965-0393/2/3A/013
10.3390/met10091141
10.4325/seikeikakou.25.476
10.1016/S0022-5096(98)00110-0
10.18637/jss.v031.i07
10.1007/s10462-020-09876-9
10.1007/978-3-030-05318-5
10.1016/j.asoc.2011.01.007
10.1080/13588265.2014.916835
10.1016/j.ijsolstr.2015.03.006
10.1007/s00158-021-02988-y
10.1016/S0022-5096(98)00109-4
10.1007/s12289-018-1421-8
10.1007/978-3-319-43162-8
10.1016/j.ymssp.2005.04.008
10.1016/0045-7825(96)00991-7
10.1007/978-3-319-99223-5
10.1162/neco.1992.4.3.448
10.1109/78.285655
10.1016/j.commatsci.2019.04.003
10.1007/978-3-642-18255-6
10.1115/1.4004590
10.1207/s15516709cog1603_1
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2022 by the authors. 2022
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
ADTOC
UNPAY
DOI 10.3390/ma15020643
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
CrossRef

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID 10.3390/ma15020643
PMC8778971
35057362
10_3390_ma15020643
Genre Journal Article
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-58a950f2505c256d64e2c189e42d5df87981da698a515bd0aebd37368e1649dc3
IEDL.DBID UNPAY
ISSN 1996-1944
IngestDate Sun Oct 26 04:02:17 EDT 2025
Tue Sep 30 16:33:55 EDT 2025
Fri Sep 05 08:09:46 EDT 2025
Fri Jul 25 11:54:22 EDT 2025
Wed Feb 19 02:27:15 EST 2025
Thu Oct 16 04:39:59 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords LS-DYNA
GISSMO failure model
hyperparameter optimization
machine learning
MAT_187_SAMP-1
parameter identification
Language English
License Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-58a950f2505c256d64e2c189e42d5df87981da698a515bd0aebd37368e1649dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-3774-5359
0000-0003-4687-681X
0000-0003-4229-7634
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/1996-1944/15/2/643/pdf?version=1642479412
PMID 35057362
PQID 2621346793
PQPubID 2032366
ParticipantIDs unpaywall_primary_10_3390_ma15020643
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8778971
proquest_miscellaneous_2622286740
proquest_journals_2621346793
pubmed_primary_35057362
crossref_citationtrail_10_3390_ma15020643
crossref_primary_10_3390_ma15020643
PublicationCentury 2000
PublicationDate 20220115
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 1
  year: 2022
  text: 20220115
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References ref_50
Maier (ref_59) 2014; 11
Klemenc (ref_51) 2016; 62
Jordan (ref_22) 1992; 16
Lemaitre (ref_47) 1985; 107
Fonseca (ref_1) 2021; 64
ref_14
ref_58
ref_13
ref_57
ref_55
Maier (ref_60) 1972; 4
Morand (ref_12) 2019; 167
Aguir (ref_26) 2009; 2
Stander (ref_56) 2005; 29
Werner (ref_3) 2020; 53
Mahnken (ref_10) 1994; 2
ref_18
ref_17
ref_15
Kohar (ref_5) 2021; 385
Mahnken (ref_11) 1996; 136
Jekel (ref_62) 2018; 12
Eggertsen (ref_8) 2011; 133
MacKay (ref_28) 1992; 4
ref_25
Andrade (ref_43) 2016; 200
ref_65
ref_64
Bolzon (ref_61) 2011; 19
ref_63
ref_29
Kerschen (ref_20) 2006; 20
Unger (ref_27) 2011; 11
Yao (ref_19) 1994; 42
ref_36
ref_35
ref_34
Huber (ref_23) 1999; 47
ref_33
ref_32
ref_31
ref_30
Giorgino (ref_66) 2009; 31
Goh (ref_16) 2020; 54
ref_39
Yagawa (ref_21) 1996; 3
ref_38
ref_37
Darlet (ref_52) 2015; 67–68
Srivastava (ref_40) 2014; 15
Hayashi (ref_54) 2013; 25
Huber (ref_24) 1999; 47
Morasch (ref_9) 2014; 19
ref_46
ref_45
Bai (ref_53) 2009; 131
ref_44
ref_42
ref_41
ref_2
ref_49
ref_48
Greve (ref_4) 2021; 241
ref_7
ref_6
References_xml – ident: ref_49
– ident: ref_32
– ident: ref_55
– volume: 11
  start-page: 1343002
  year: 2014
  ident: ref_59
  article-title: Mechanical characterization of materials and diagnosis of structures by inverse analysis: Some innovative procedures and applications
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S0219876213430020
– volume: 107
  start-page: 83
  year: 1985
  ident: ref_47
  article-title: A Continuous Damage Mechanics Model for Ductile Fracture
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3225775
– volume: 385
  start-page: 114008
  year: 2021
  ident: ref_5
  article-title: A machine learning framework for accelerating the design process using CAE simulations: An application to finite element analysis in structural crashworthiness
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.114008
– ident: ref_65
– ident: ref_33
  doi: 10.1371/journal.pcbi.1000579
– ident: ref_39
– volume: 29
  start-page: 93
  year: 2005
  ident: ref_56
  article-title: Material identification in structural optimization using response surfaces
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-004-0476-y
– volume: 53
  start-page: 1884
  year: 2020
  ident: ref_3
  article-title: Multidisciplinary design optimization of a generic b-pillar under package and design constraints
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2020.1837791
– volume: 4
  start-page: 455
  year: 1972
  ident: ref_60
  article-title: A finite element approach to optimal design of plastic structures in plane stress
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620040402
– ident: ref_42
– volume: 62
  start-page: 220
  year: 2016
  ident: ref_51
  article-title: Estimating the Strain-Rate-Dependent Parameters of the Cowper-Symonds and Johnson-Cook Material Models using Taguchi Arrays
  publication-title: J. Mech. Eng.
  doi: 10.5545/sv-jme.2015.3266
– ident: ref_35
– volume: 19
  start-page: 815
  year: 2011
  ident: ref_61
  article-title: Assessment of elastic–plastic material parameters comparatively by three procedures based on indentation test and inverse analysis
  publication-title: Inverse Probl. Sci. Eng.
  doi: 10.1080/17415977.2011.551931
– ident: ref_58
– ident: ref_7
  doi: 10.3390/met9111165
– ident: ref_15
  doi: 10.3390/polym12122949
– ident: ref_25
  doi: 10.1007/3-540-45034-3_55
– ident: ref_63
  doi: 10.2514/6.2012-5580
– volume: 3
  start-page: 435
  year: 1996
  ident: ref_21
  article-title: Neural networks in computational mechanics
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/BF02818935
– ident: ref_31
– volume: 131
  start-page: 021002
  year: 2009
  ident: ref_53
  article-title: On the Application of Stress Triaxiality Formula for Plane Strain Fracture Testing
  publication-title: J. Eng. Mater. Technol.
  doi: 10.1115/1.3078390
– volume: 241
  start-page: 107424
  year: 2021
  ident: ref_4
  article-title: Neural network-based surrogate model for a bifurcating structural fracture response
  publication-title: Eng. Fract. Mech.
  doi: 10.1016/j.engfracmech.2020.107424
– volume: 200
  start-page: 127
  year: 2016
  ident: ref_43
  article-title: An incremental stress state dependent damage model for ductile failure prediction
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-016-0081-2
– volume: 2
  start-page: 75
  year: 2009
  ident: ref_26
  article-title: Parameter identification of a non-associative elastoplastic constitutive model using ANN and multi-objective optimization
  publication-title: Int. J. Mater. Form.
  doi: 10.1007/s12289-009-0392-1
– volume: 2
  start-page: 597
  year: 1994
  ident: ref_10
  article-title: The identification of parameters for visco-plastic models via finite-element methods and gradient methods
  publication-title: Model. Simul. Mater. Sci. Eng.
  doi: 10.1088/0965-0393/2/3A/013
– ident: ref_29
  doi: 10.3390/met10091141
– ident: ref_41
– volume: 25
  start-page: 476
  year: 2013
  ident: ref_54
  article-title: Prediction of Failure Behavior in Polymers Under Multiaxial Stress State
  publication-title: Seikei-Kakou
  doi: 10.4325/seikeikakou.25.476
– ident: ref_13
– ident: ref_38
– ident: ref_17
– ident: ref_45
– volume: 47
  start-page: 1589
  year: 1999
  ident: ref_24
  article-title: Determination of constitutive properties fromspherical indentation data using neural networks. Part ii: Plasticity with nonlinear isotropic and kinematichardening
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00110-0
– volume: 31
  start-page: 1
  year: 2009
  ident: ref_66
  article-title: Computing and Visualizing Dynamic Time Warping Alignments inR: ThedtwPackage
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v031.i07
– volume: 15
  start-page: 1929
  year: 2014
  ident: ref_40
  article-title: Dropout: A Simple Way to Prevent Neural Networks from Overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 54
  start-page: 63
  year: 2020
  ident: ref_16
  article-title: A review on machine learning in 3D printing: Applications, potential, and challenges
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09876-9
– ident: ref_36
  doi: 10.1007/978-3-030-05318-5
– volume: 11
  start-page: 3357
  year: 2011
  ident: ref_27
  article-title: An inverse parameter identification procedure assessing the quality of the estimates using Bayesian neural networks
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2011.01.007
– volume: 19
  start-page: 500
  year: 2014
  ident: ref_9
  article-title: Material modelling for crash simulation of thin extruded aluminium sections
  publication-title: Int. J. Crashworthiness
  doi: 10.1080/13588265.2014.916835
– volume: 67–68
  start-page: 71
  year: 2015
  ident: ref_52
  article-title: Stress triaxiality and Lode angle along surfaces of elastoplastic structures
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2015.03.006
– volume: 64
  start-page: 2773
  year: 2021
  ident: ref_1
  article-title: Preliminary design of an injection-molded recycled-carbon fiber–reinforced plastic/metal hybrid automotive structure via combined optimization techniques
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-021-02988-y
– volume: 47
  start-page: 1569
  year: 1999
  ident: ref_23
  article-title: Determination of constitutive properties fromspherical indentation data using neural networks. Part i: The case of pure kinematic hardening in plasticity laws
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(98)00109-4
– ident: ref_37
– ident: ref_14
– volume: 12
  start-page: 355
  year: 2018
  ident: ref_62
  article-title: Similarity measures for identifying material parameters from hysteresis loops using inverse analysis
  publication-title: Int. J. Mater. Form.
  doi: 10.1007/s12289-018-1421-8
– ident: ref_18
– ident: ref_30
  doi: 10.1007/978-3-319-43162-8
– ident: ref_44
– volume: 20
  start-page: 505
  year: 2006
  ident: ref_20
  article-title: Past, present and future of nonlinear system identification in structural dynamics
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2005.04.008
– volume: 136
  start-page: 225
  year: 1996
  ident: ref_11
  article-title: A unified approach for parameter identification of inelastic material models in the frame of the finite element method
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(96)00991-7
– ident: ref_6
– ident: ref_34
  doi: 10.1007/978-3-319-99223-5
– ident: ref_50
– volume: 4
  start-page: 448
  year: 1992
  ident: ref_28
  article-title: A Practical Bayesian Framework for Backpropagation Networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.448
– ident: ref_2
– volume: 42
  start-page: 927
  year: 1994
  ident: ref_19
  article-title: Nonlinear parameter estimation via the genetic algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.285655
– ident: ref_46
– volume: 167
  start-page: 85
  year: 2019
  ident: ref_12
  article-title: A mixture of experts approach to handle ambiguities in parameter identification problems in material modeling
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2019.04.003
– ident: ref_64
– ident: ref_48
  doi: 10.1007/978-3-642-18255-6
– volume: 133
  start-page: 061021
  year: 2011
  ident: ref_8
  article-title: A Phenomenological Model for the Hysteresis Behavior of Metal Sheets Subjected to Unloading/Reloading Cycles
  publication-title: ASME J. Manuf. Sci. Eng.
  doi: 10.1115/1.4004590
– ident: ref_57
– volume: 16
  start-page: 307
  year: 1992
  ident: ref_22
  article-title: Forward Models: Supervised Learning with a Distal Teacher
  publication-title: Cogn. Sci.
  doi: 10.1207/s15516709cog1603_1
SSID ssj0000331829
Score 2.3402717
Snippet A neural network (NN)-based method is presented in this paper which allows the identification of parameters for material cards used in Finite Element...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 643
SubjectTerms Accuracy
Algorithms
Calibration
Cards
Comparative studies
Compression tests
Datasets
Failure
Kinematics
Machine learning
Methods
Neural networks
Optimization
Optimization techniques
Parameter identification
Poisson's ratio
Product development
Simulation
Software
Strain rate
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB6V7QE4IN4ECjKiFw5WE8eJnQNC29KlIBIqtpXKKXJir6i0ZBfYFUL8eWacR7sq6jnjxMqMPd_YM98A7Eor68pTX0aoBhnZjBtLSY7OqiTVFhE-FSfnRXp0Kj-eJWdbUPS1MJRW2e-JfqO2i5rOyPdEStxjKZrT2-UPTl2j6Ha1b6FhutYK9o2nGLsB24KYsUawvX9YHH8ZTl3CGG1YZC1PaYzx_t53g5BIkGPe9ExX4ObVrMmb62Zp_vw28_kllzS5C3c6LMnGrfLvwZZr7sPtSwyDD-Bv7jtE-7NzhviUERkHjina7G--j07MstysvCGyA7QXRuVaVWsYzGcUsE9T_u5rMWb5-KSMtCqn4_yYR6xv9kkiE3NOCe6MznXZ-w_Taf75IZxODk8OjnjXb4HX6NZXPNEmS8IZgaIakZBNpRN1pDMnhU3sTKsMwa1JM20QBFU2NK6ysYpT7TDmymwdP4JRs2jcE2AuFnUdSimUFXKmTTXDVxqElqgeHBgH8Lr_12XdkZFTT4x5iUEJ6aW80EsArwbZZUvB8V-pnV5lZbcMf5UXRhPAy-ExLiC6FTGNW6y9jBA6VTIM4HGr4eEzMYVv6OIDUBu6HwSInHvzSXP-zZN0a6V0pqIAdgcruWb2T6-f_TO4JajsIox4lOzAaPVz7Z4jGFpVLzoL_wf8Fwhj
  priority: 102
  providerName: ProQuest
Title Methodology for Neural Network-Based Material Card Calibration Using LS-DYNA MAT_187_SAMP-1 Considering Failure with GISSMO
URI https://www.ncbi.nlm.nih.gov/pubmed/35057362
https://www.proquest.com/docview/2621346793
https://www.proquest.com/docview/2622286740
https://pubmed.ncbi.nlm.nih.gov/PMC8778971
https://www.mdpi.com/1996-1944/15/2/643/pdf?version=1642479412
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: HH5
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED5B-wA88BsWGJURe-EhS-w4ifOEsrF2IFIqukrdU-TEjqhWsoqlIOCf55ykYWUIIR4jn5NYPvu-O5-_A9jjiudZTX1JcRo4VZEtlUly1Cr0A6EQ4ZvLyck4OJ7xt3N_3gbcLtq0SnTFF_UmXWfIopfNHeo7zEHj6axU8epLG0lCpM8MQbopMtwPfMTiPejPxpP4tD5Kbvs2nKQe-vbOJ4nwhxkjvG2FrkDLqxmSN9blSn77KpfLS-ZneAfSzY83WSdn--sq28-__8bp-P8juwu3W2RK4kaV7sE1Xd6HW5f4Ch_Aj6SuN11H4gmiXWKoPbDPuMkltw_QJCqSyKpWa3KI2kfM5a-sUTNS5yeQd1P79ek4Jkl8klIRptM4mdiUbEqHGpGhXJh0eWKixGT0ZjpN3j-E2fDo5PDYbqs32DmChMr2hYx8tzAQK0dcpQKuWU5FpDlTvipEGCFUlkEkJEKqTLlSZ8oLvUBoHH2kcu8R9MrzUu8A0R7Lc5dzFirGCyGzAl8pEagiGMKOngUvN7OZ5i21uamwsUzRxTEzn_6aeQtedLKrhtDjj1K7G6VI20V9kbLA0N8FuKNZ8LxrxuVozlhkqc_XtQxjIgi5a8HjRoe6z3jGGUTAYEG4pV2dgKH63m4pFx9rym8RhiIKqQV7nR7-5e-f_JvYU7jJzGUOl9rU34Ve9XmtnyHEqrIBXBfD0QD6B0fjyQd8Gs3poF1bPwFrHSKH
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9lB6QLwxFFhEOXCwau-u7d1DhdJHSGhsKpJK5WTW3o1aKTiBJqoq_hu_jVm_2qiot549fsjzreeb9cw3AFtc8zwrpS99dAP3tXSVtkWORkdBKDQyfNucHCdh75h_OQlOVuBv0wtjyyqbb2L5odbT3O6Rb9PQao-FCKdPs1-unRpl_642IzRUPVpB75QSY3Vjx6G5vMAU7nynv4_-_kBp92C013PrKQNujsFs7gZCycAbWyqQY_zXITc094U0nOpAj0UkkdKpUAqFoT_TnjKZZhELhcFMQ-qc4XXvwRpnXGLyt7Z7kBx9a3d5PIZrhspKF5Ux6W3_VEjBqCUCy5HwBr29WaW5vihm6vJCTSbXQmD3ITyouSvpVGB7BCumeAwb1xQNn8CfuJxIXe7VE-TDxIp_4DlJVW3u7mLQ1CRW8xL4ZA_xSWx7WFYBkZQVDGQwdPe_Jx0Sd0apL6J02ImPXJ80w0WtSVed2YJ6YveRyef-cBh_fQrHd_Lmn8FqMS3MCyCG0Tz3OKeRpnwsVDbGSyqksggHPJE58LF512lei5_bGRyTFJMg65f0yi8OvG9tZ5Xkx3-tNhuXpfWyP0-vQOrAu_YwLlj7F0YVZroobSgVYcQ9B55XHm5vw2y6iJTCgWjJ962BFQNfPlKcnZai4CKKhIx8B7ZalNzy9C9vf_q3sN4bxYN00E8OX8F9als-PN_1g01Ynf9emNdIxObZmxrtBH7c9QL7B-bARIs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IN4YCiyiHDhYsddr7_qAUGhwG1qHSmmlcjJr70ZUCk6giaqKf8avY8avNirqrVd7_JDnG8-3u7PfAGwKI4q8kr700Q3CN7GrDRU5WiPDSBlk-LQ5OR1FO4fiy1F4tAZ_270wVFbZ_hOrH7WZFTRH3uMRaY9FCKfepCmL2B8kH-e_XOogRSutbTuNGiK79uwUh28nH4YD9PU7zpPPB1s7btNhwC0wkS3cUOk49CZEAwrM_SYSlhe-iq3gJjQTJWOkczqKlca0nxtP29wEMoiUxVFGbIoA73sDbtIRKidUyXY3v-MFGC08rhVRgyD2ej81ki9OFGA1B14itpfrM28vy7k-O9XT6YXkl9yHew1rZf0aZg9gzZYP4e4FLcNH8CetelFXs_QMmTAj2Q-8ZlTXmbufMF0alupFBXm2hchktDEsryHIqtoFtjd2B99GfZb2DzJfyWzcT_ddn7VtRckk0cdUSs9oBpltD8fj9OtjOLyW7_4E1stZaZ8BswEvCk8ILg0XE6XzCd5SI4lFooQXBg68b791VjSy59R9Y5rh8If8kp37xYG3ne28Fvv4r9VG67KsCfiT7ByeDrzpTmOo0vqLLu1sWdlwriIpPAee1h7uHhPQQBHJhANyxfedAcmAr54pj39UcuBKShVL34HNDiVXvP3zq9_-NdzCsMr2hqPdF3CH014Pz3f9cAPWF7-X9iUysEX-qoI6g-_XHVv_AAQDQiU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6h7QE48H4ECjKiFw5pYseJnRMKhaUgslTartSeIid2xKrbdEWzIODPM3ayoUsRQpw9TmzN2PONPf4GYIdrXpWO-pKiGjjVqa-0TXI0WsSJ1Ijw7ePkfJLsz_j7o_ioP3A779MqMRSfu03aZchilM0DGgcsQOcZLHX98kt_koRIn1mCdFtkeCuJEYuPYGs2OciO3VVy37fjJI0wtg9OFcIfZp3wphe6BC0vZ0heXTVL9e2rWiwuuJ_xTSjWA--yTk52V225W33_jdPx_2d2C270yJRknSndhiumuQPXL_AV3oUfuas37U7iCaJdYqk9sM-kyyX3X6FL1CRXrTNrsofWR-zjr7IzM-LyE8iHqf_6eJKRPDssqBTFNMsPfErWpUOtyFjNbbo8safE5O276TT_eA9m4zeHe_t-X73BrxAktH4sVRqHtYVYFeIqnXDDKipTw5mOdS1FilBZJalUCKlKHSpT6khEiTQ4-1RX0X0YNWeNeQjERKyqQs6Z0IzXUpU1flIhUEUwhB0jD16stVlUPbW5rbCxKDDEsZovfmneg-eD7LIj9Pij1PbaKIp-UZ8XLLH0dwnuaB48G5pxOdo7FtWYs5WTYUwmgocePOhsaPhNZINBBAweiA3rGgQs1fdmSzP_5Ci_pRAyFdSDncEO_zL6R_8m9hiuMfuYI6Q-jbdh1H5emScIsdryab-OfgLjRx8W
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methodology+for+Neural+Network-Based+Material+Card+Calibration+Using+LS-DYNA+MAT_187_SAMP-1+Considering+Failure+with+GISSMO&rft.jtitle=Materials&rft.au=Mei%C3%9Fner%2C+Paul&rft.au=Winter%2C+Jens&rft.au=Vietor%2C+Thomas&rft.date=2022-01-15&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=15&rft.issue=2&rft_id=info:doi/10.3390%2Fma15020643&rft_id=info%3Apmid%2F35057362&rft.externalDocID=PMC8778971
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon