Dependence of InGaN Quantum Well Thickness on the Nature of Optical Transitions in LEDs
The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thic...
Saved in:
Published in | Materials Vol. 15; no. 1; p. 237 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI AG
29.12.2021
MDPI |
Subjects | |
Online Access | Get full text |
ISSN | 1996-1944 1996-1944 |
DOI | 10.3390/ma15010237 |
Cover
Abstract | The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses—2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger–Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one. |
---|---|
AbstractList | The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses—2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger–Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one. The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses-2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger-Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one.The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses-2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger-Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one. |
Author | Nowakowski-Szkudlarek, Krzesimir Muziol, Grzegorz Hajdel, Mateusz Chlipała, Mikolaj Skierbiszewski, Czeslaw Turski, Henryk Feduniewicz-Żmuda, Anna Wolny, Paweł Siekacz, Marcin |
AuthorAffiliation | Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; mik@unipress.waw.pl (M.C.); msiekacz@unipress.waw.pl (M.S.); henryk@unipress.waw.pl (H.T.); wolny@unipress.waw.pl (P.W.); krzesimir.szkudlarek@unipress.waw.pl (K.N.-S.); ania_f@unipress.waw.pl (A.F.-Ż.); czeslaw@mail.unipress.waw.pl (C.S.); gmuziol@unipress.waw.pl (G.M.) |
AuthorAffiliation_xml | – name: Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; mik@unipress.waw.pl (M.C.); msiekacz@unipress.waw.pl (M.S.); henryk@unipress.waw.pl (H.T.); wolny@unipress.waw.pl (P.W.); krzesimir.szkudlarek@unipress.waw.pl (K.N.-S.); ania_f@unipress.waw.pl (A.F.-Ż.); czeslaw@mail.unipress.waw.pl (C.S.); gmuziol@unipress.waw.pl (G.M.) |
Author_xml | – sequence: 1 givenname: Mateusz orcidid: 0000-0001-9732-6119 surname: Hajdel fullname: Hajdel, Mateusz – sequence: 2 givenname: Mikolaj surname: Chlipała fullname: Chlipała, Mikolaj – sequence: 3 givenname: Marcin surname: Siekacz fullname: Siekacz, Marcin – sequence: 4 givenname: Henryk orcidid: 0000-0002-2686-9842 surname: Turski fullname: Turski, Henryk – sequence: 5 givenname: Paweł surname: Wolny fullname: Wolny, Paweł – sequence: 6 givenname: Krzesimir surname: Nowakowski-Szkudlarek fullname: Nowakowski-Szkudlarek, Krzesimir – sequence: 7 givenname: Anna surname: Feduniewicz-Żmuda fullname: Feduniewicz-Żmuda, Anna – sequence: 8 givenname: Czeslaw surname: Skierbiszewski fullname: Skierbiszewski, Czeslaw – sequence: 9 givenname: Grzegorz orcidid: 0000-0001-7430-3838 surname: Muziol fullname: Muziol, Grzegorz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35009382$$D View this record in MEDLINE/PubMed |
BookMark | eNptkV1rFTEQhoNU7Ie98QdIwBspHM3HJru5EaSttXBoESq9DHOys57U3eSYZAX_vTn90FqcmxmYZ17emdknOyEGJOQVZ--kNOz9BFwxzoRsn5E9boxecNM0O4_qXXKY8w2rISXvhHlBdqVizMhO7JHrE9xg6DE4pHGg5-EMLuiXGUKZJ3qN40iv1t59D5gzjYGWNdILKHO6pS83xTuoSIKQffExZOoDXZ6e5Jfk-QBjxsP7fEC-fjq9Ov68WF6enR9_XC5cw3RZNKgH02vHeu6YahWoVS9a4P0Ag3Zayd6JViveA0oj0CilB4GD61YrBMm4PCAf7nQ382rC3mEoCUa7SX6C9MtG8PbfTvBr-y3-tF3baN62VeDtvUCKP2bMxU4-u7o4BIxztkLzznBVvVX0zRP0Js4p1PVuKaG4kFvq9WNHf6w83LwC7A5wKeaccLDOF9herxr0o-XMbj9r_362jhw9GXlQ_Q_8G7kPoq0 |
CitedBy_id | crossref_primary_10_1002_pssa_202300042 crossref_primary_10_1103_PhysRevB_108_045304 crossref_primary_10_1364_OE_480074 crossref_primary_10_3390_cryst13121623 crossref_primary_10_1016_j_apsusc_2024_160144 crossref_primary_10_1103_PhysRevApplied_20_034040 crossref_primary_10_1016_j_optlastec_2024_112117 crossref_primary_10_1088_1361_6463_ad1146 crossref_primary_10_1080_15980316_2023_2282937 crossref_primary_10_1039_D4MH00428K crossref_primary_10_1002_lpor_202300113 crossref_primary_10_1021_acsami_4c02084 crossref_primary_10_1103_PhysRevB_105_195307 crossref_primary_10_1103_PhysRevApplied_21_054030 crossref_primary_10_1021_acsphotonics_4c02193 crossref_primary_10_1002_pssa_202400067 crossref_primary_10_1002_pssr_202300027 crossref_primary_10_1016_j_optmat_2025_116934 crossref_primary_10_1364_OE_454359 crossref_primary_10_1002_apxr_202200107 crossref_primary_10_1002_crat_202300347 crossref_primary_10_1088_1361_6528_ad8356 |
Cites_doi | 10.1103/PhysRevB.56.R10024 10.1063/1.4941815 10.1063/5.0043240 10.1103/PhysRevApplied.15.024046 10.1002/pssc.200880893 10.1021/acsphotonics.9b00327 10.1088/0022-3727/47/7/073001 10.1063/1.4905873 10.1117/12.2212011 10.1364/OE.405994 10.1002/pssa.201026349 10.1063/1.369664 10.1063/1.2775334 10.1063/1.1311831 10.7567/1882-0786/ab50e0 10.1002/pssc.200461470 10.1016/j.jcrysgro.2012.12.026 10.1364/OE.27.00A669 10.1364/OE.415258 10.1002/lpor.201300048 10.1063/1.4903297 10.1103/PhysRevLett.103.026801 10.7567/1882-0786/ab250e 10.1063/1.1618926 10.7567/1882-0786/ab0730 10.1063/1.1784039 10.1364/OE.403906 10.1063/1.5023521 10.1149/2.0412001JSS 10.1016/j.actamat.2012.10.042 10.1063/1.1289915 10.1063/1.123727 10.1063/1.2807272 10.1063/1.1418453 10.1109/JSTQE.2009.2015583 10.1364/OE.382646 10.1063/1.3581080 10.1063/1.3517481 10.1126/science.1183226 10.1063/1.4861655 |
ContentType | Journal Article |
Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION NPM 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM |
DOI | 10.3390/ma15010237 |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Research Database Materials Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC8746177 35009382 10_3390_ma15010237 |
Genre | Journal Article |
GrantInformation_xml | – fundername: National Science Center grantid: 2019/35/D/ST3/03008 – fundername: National Centre for Research and Development grantid: LIDER/35/0127/L-9/17/NCBR/2018 – fundername: National Centre for Research and Development grantid: LIDER/29/0185/L-7/15/NCBR/2016 – fundername: National Science Center grantid: 2019/35/N/ST7/02968 – fundername: Foundation for Polish Science grantid: TEAMTECH POIR.04.04.00-00-210C/16-00 – fundername: National Science Center grantid: 2018/31/B/ST5/03719 – fundername: National Science Center grantid: 2019/35/N/ST7/04182 |
GroupedDBID | 29M 2WC 2XV 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RPM TR2 TUS GROUPED_DOAJ NPM 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c406t-4e6f9d6c0d1c0575a5bd27a1dfaf6c653dc27651dae392e9556f2efc8bbea3013 |
IEDL.DBID | 8FG |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:15:16 EDT 2025 Thu Sep 04 23:03:45 EDT 2025 Fri Jul 25 12:02:40 EDT 2025 Wed Feb 19 02:28:28 EST 2025 Tue Jul 01 03:42:00 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | InGaN molecular beam epitaxy light-emitting diode nitrides quantum well |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c406t-4e6f9d6c0d1c0575a5bd27a1dfaf6c653dc27651dae392e9556f2efc8bbea3013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2686-9842 0000-0001-9732-6119 0000-0001-7430-3838 |
OpenAccessLink | https://www.proquest.com/docview/2618251235?pq-origsite=%requestingapplication% |
PMID | 35009382 |
PQID | 2618251235 |
PQPubID | 2032366 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746177 proquest_miscellaneous_2618915575 proquest_journals_2618251235 pubmed_primary_35009382 crossref_citationtrail_10_3390_ma15010237 crossref_primary_10_3390_ma15010237 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211229 |
PublicationDateYYYYMMDD | 2021-12-29 |
PublicationDate_xml | – month: 12 year: 2021 text: 20211229 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland – name: Basel |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2021 |
Publisher | MDPI AG MDPI |
Publisher_xml | – name: MDPI AG – name: MDPI |
References | Kafar (ref_19) 2019; 12 Yan (ref_17) 2018; 112 Zhao (ref_25) 2021; 118 Haitz (ref_1) 2011; 208 Chlipala (ref_14) 2020; 28 Young (ref_21) 2016; 108 Wierer (ref_3) 2013; 7 Muziol (ref_10) 2021; 15 Wu (ref_37) 2009; 15 Muziol (ref_40) 2020; 28 Aumer (ref_18) 2001; 79 Turski (ref_13) 2020; 9 Bai (ref_22) 2000; 88 Wu (ref_39) 2003; 94 Arif (ref_24) 2007; 91 David (ref_5) 2014; 105 Ambacher (ref_8) 1999; 85 Lugli (ref_20) 1999; 74 Muziol (ref_30) 2019; 6 Wu (ref_38) 2004; 85 Pieniak (ref_33) 2021; 29 Bernardini (ref_7) 1997; 56 Gardner (ref_26) 2007; 91 Turski (ref_34) 2014; 104 Damilano (ref_23) 2000; 77 Zhang (ref_29) 2019; 12 Bercha (ref_32) 2020; 28 Krishnamoorthy (ref_11) 2010; 97 Muziol (ref_31) 2019; 12 Hurni (ref_4) 2015; 106 Zhang (ref_15) 2011; 109 Zhou (ref_6) 2019; 27 Turski (ref_36) 2013; 367 Skierbiszewski (ref_35) 2014; 47 DenBaars (ref_2) 2013; 61 Cordier (ref_9) 2005; 2 Simon (ref_16) 2010; 327 Simon (ref_12) 2009; 103 ref_28 Laubsch (ref_27) 2009; 6 |
References_xml | – volume: 56 start-page: R10024 year: 1997 ident: ref_7 article-title: Spontaneous polarization and piezoelectric constants of III-V nitrides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.56.R10024 – volume: 108 start-page: 061105 year: 2016 ident: ref_21 article-title: Polarization field screening in thick (0001) InGaN/GaN single quantum well light-emitting diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.4941815 – volume: 118 start-page: 182102 year: 2021 ident: ref_25 article-title: Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes publication-title: Appl. Phys. Lett. doi: 10.1063/5.0043240 – volume: 15 start-page: 024046 year: 2021 ident: ref_10 article-title: Tunnel Junctions with a Doped (In, Ga)N Quantum Well for Vertical Integration of III-Nitride Optoelectronic Devices publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.15.024046 – volume: 6 start-page: S885 year: 2009 ident: ref_27 article-title: Luminescence properties of thick InGaN quantum-wells publication-title: Phys. Status Solidi C doi: 10.1002/pssc.200880893 – volume: 6 start-page: 1963 year: 2019 ident: ref_30 article-title: Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices publication-title: ACS Photonics doi: 10.1021/acsphotonics.9b00327 – volume: 47 start-page: 073001 year: 2014 ident: ref_35 article-title: Nitride-based laser diodes grown by plasma-assisted molecular beam epitaxy publication-title: J. Phys. D Appl. Phys. doi: 10.1088/0022-3727/47/7/073001 – volume: 106 start-page: 031101 year: 2015 ident: ref_4 article-title: Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation publication-title: Appl. Phys. Lett. doi: 10.1063/1.4905873 – ident: ref_28 doi: 10.1117/12.2212011 – volume: 28 start-page: 35321 year: 2020 ident: ref_40 article-title: Distributed-feedback blue laser diode utilizing a tunnel junction grown by plasma-assisted molecular beam epitaxy publication-title: Opt. Express doi: 10.1364/OE.405994 – volume: 208 start-page: 17 year: 2011 ident: ref_1 article-title: Solid-state lighting: ‘The case’ 10 years after and future prospects publication-title: Phys. Status Solidi A doi: 10.1002/pssa.201026349 – volume: 85 start-page: 3222 year: 1999 ident: ref_8 article-title: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures publication-title: J. Appl. Phys. doi: 10.1063/1.369664 – volume: 91 start-page: 091110 year: 2007 ident: ref_24 article-title: Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.2775334 – volume: 88 start-page: 4729 year: 2000 ident: ref_22 article-title: Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures publication-title: J. Appl. Phys. doi: 10.1063/1.1311831 – volume: 12 start-page: 124003 year: 2019 ident: ref_29 article-title: A 271.8 nm deep-ultraviolet laser diode for room temperature operation publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab50e0 – volume: 2 start-page: 2720 year: 2005 ident: ref_9 article-title: Electron mobility and transfer characteristics in AlGaN/GaN HEMTs publication-title: Phys. Status Solidi C doi: 10.1002/pssc.200461470 – volume: 367 start-page: 115 year: 2013 ident: ref_36 article-title: Nonequivalent atomic step edges—Role of gallium and nitrogen atoms in the growth of InGaN layers publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2012.12.026 – volume: 27 start-page: A669 year: 2019 ident: ref_6 article-title: Highly efficient GaN-based high-power flipchip light-emitting diodes publication-title: Opt. Express doi: 10.1364/OE.27.00A669 – volume: 29 start-page: 1824 year: 2021 ident: ref_33 article-title: Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction publication-title: Opt. Express doi: 10.1364/OE.415258 – volume: 7 start-page: 963 year: 2013 ident: ref_3 article-title: Comparison between blue lasers and light-emitting diodes for future solid-state lighting publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201300048 – volume: 105 start-page: 231111 year: 2014 ident: ref_5 article-title: High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.4903297 – volume: 103 start-page: 026801 year: 2009 ident: ref_12 article-title: Polarization-Induced Zener Tunnel Junctions in Wide-Band-Gap Heterostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.026801 – volume: 12 start-page: 072003 year: 2019 ident: ref_31 article-title: Optical properties of III-nitride laser diodes with wide InGaN quantum wells publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab250e – volume: 94 start-page: 5826 year: 2003 ident: ref_39 article-title: Gate leakage suppression and contact engineering in nitride heterostructures publication-title: J. Appl. Phys. doi: 10.1063/1.1618926 – volume: 12 start-page: 044001 year: 2019 ident: ref_19 article-title: Screening of quantum-confined Stark effect in nitride laser diodes and superluminescent diodes publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab0730 – volume: 85 start-page: 1223 year: 2004 ident: ref_38 article-title: Metal piezoelectric semiconductor field effect transistors for piezoelectric strain sensors publication-title: Appl. Phys. Lett. doi: 10.1063/1.1784039 – volume: 28 start-page: 30299 year: 2020 ident: ref_14 article-title: Nitride light-emitting diodes for cryogenic temperatures publication-title: Opt. Express doi: 10.1364/OE.403906 – volume: 112 start-page: 182104 year: 2018 ident: ref_17 article-title: Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition publication-title: Appl. Phys. Lett. doi: 10.1063/1.5023521 – volume: 9 start-page: 015018 year: 2020 ident: ref_13 article-title: Nitride LEDs and lasers with buried tunnel junctions publication-title: ECS J. Solid State Sci. Technol. doi: 10.1149/2.0412001JSS – volume: 61 start-page: 945 year: 2013 ident: ref_2 article-title: Development of gallium-nitride-based light-emitting diodes (LEDs)and laser diodes for energy-efficient lighting and displays publication-title: Acta Mater. doi: 10.1016/j.actamat.2012.10.042 – volume: 77 start-page: 1268 year: 2000 ident: ref_23 article-title: InGaN/GaN quantum wells grown by molecular-beam epitaxy emitting from blue to red at 300 K publication-title: Appl. Phys. Lett. doi: 10.1063/1.1289915 – volume: 74 start-page: 2002 year: 1999 ident: ref_20 article-title: Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures publication-title: Appl. Phys. Lett. doi: 10.1063/1.123727 – volume: 91 start-page: 243506 year: 2007 ident: ref_26 article-title: Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A∕cm2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2807272 – volume: 79 start-page: 3803 year: 2001 ident: ref_18 article-title: Strain-induced piezoelectric field effects on light emission energy and intensity from AlInGaN/InGaN quantum wells publication-title: Appl. Phys. Lett. doi: 10.1063/1.1418453 – volume: 15 start-page: 1226 year: 2009 ident: ref_37 article-title: Size-Dependent Strain Relaxation and Optical Characteristics of InGaN/GaN Nanorod LEDs publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2009.2015583 – volume: 28 start-page: 4717 year: 2020 ident: ref_32 article-title: Anomalous photocurrent in wide InGaN quantum wells publication-title: Opt. Express doi: 10.1364/OE.382646 – volume: 109 start-page: 083115 year: 2011 ident: ref_15 article-title: Effects of a stepgraded AlxGa1−xN electron blocking layer in InGaN-based laser diodes publication-title: J. Appl. Phys. doi: 10.1063/1.3581080 – volume: 97 start-page: 203502 year: 2010 ident: ref_11 article-title: Polarization-engineered GaN/InGaN/GaN tunnel diodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.3517481 – volume: 327 start-page: 60 year: 2010 ident: ref_16 article-title: Polarization-Induced Hole Doping in Wide–Band- Gap Uniaxial Semiconductor Heterostructures publication-title: Science doi: 10.1126/science.1183226 – volume: 104 start-page: 023503 year: 2014 ident: ref_34 article-title: Cyan laser diode grown by plasma-assisted molecular beam epitaxy publication-title: Appl. Phys. Lett. doi: 10.1063/1.4861655 |
SSID | ssj0000331829 |
Score | 2.4193163 |
Snippet | The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 237 |
SubjectTerms | Blue shift Carrier density Carrier recombination Current density Efficiency Electric fields Electroluminescence Emission spectra Growth models Indium gallium nitrides Light emitting diodes Low currents Molecular beam epitaxy Quantum wells Screening Thickness |
Title | Dependence of InGaN Quantum Well Thickness on the Nature of Optical Transitions in LEDs |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35009382 https://www.proquest.com/docview/2618251235 https://www.proquest.com/docview/2618915575 https://pubmed.ncbi.nlm.nih.gov/PMC8746177 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8xeNkeEB_bKB-Vp_GyB4vGSezmCfHRFqapsAlE36LYsUVFSQpt_3_ukjS0A_ESyfFJie5s38_n8-8ADh1ijlRFkmtlNA-c9XhkXJtLCvoLqYktkLIt-vLiNvg9CAdVwG1SpVXO18RioU5zQzHyI0T6dMtS-OHx-IlT1Sg6Xa1KaHyCNU-gr6Wb4t1eHWNp-ThiRVSykvq4uz96TBAAEVuBWvZDb8Dl_zmSC06nuwHrFVpkJ6V5N2HFZlvwZYFDcBvuzqsytsay3LHLrJf02d8ZKmz2yO7saMRu7ofmgVY0lmcM8R7rF2SeJH01LkLZrPBYZfIWG2bsT-d88hVuu52bswteVUvgBp3ylAdWuiiVppV6hkBYEupUqMRLXeKkkaGfGqFk6KWJRUxkozCUTlhn2lrbBKe5_w1WszyzO8DwvfVV4JTWEp9BpB0CA4-wiHTWbzXg11x3samoxKmixSjGLQXpOX7VcwN-1rLjkkDjXan9uQniahJN4leTN-BH3Y3Dn840kszms1KGKO4VynwvLVZ_xg8pXtMWDVBLtqwFiFp7uScb3hcU220VILRTux__1h58FpTi4gkuon1YnT7P7AFilKluFgOxCWunnf71P2z1Bt4Lz-jpuw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeEO-mFFgEHDhYjXftXftQIUSaJjQEIaVqb8a73lWjpnYgiRB_qr-RGb_aAOLWiw_2yLbmsfvt7Ow3AG8cYo5MxdLTymgvcNb3YuMiT1LSn0tNbIFUbTGWg-Pg02l4ugGXzVkYKqtsxsRyoM4KQznyPUT6dMqSi_D9_LtHXaNod7VpoVG5xZH99ROXbIv9YQ_t-5bz_sHk48Cruwp4BievpRdY6eJMmm7mGwIraagzrlI_c6mTRoYiM1zJ0M9Si9jBxmEoHbfORFrbFMNB4Htvwe1ACEElhFH_sM3pdAVGCI8rFlQh4u7eRYqAi9gR1Pq89xeY_bMm89ok178P92p0yj5U7vQANmz-ELaucRY-gpNe3TbXWFY4NswP0zH7ukIDrS7YiZ3N2ORsas5pBGVFzhBfsnFJHkrSX-Zl6pyVM2RVLMamORsd9BaP4fhG9PgENvMit9vA8L4VKnBKa4nXINYOgYhP2Ec6K7odeNfoLjE1dTl10JgluIQhPSdXeu7A61Z2XhF2_FNqtzFBUgftIrlysQ68ah9juNEeSprbYlXJEKW-QpmnlcXaz4iQ8kMR74Bas2UrQFTe60_y6VlJ6R2pAKGk2vn_b72EO4PJ51EyGo6PnsFdTuU1Pvd4vAubyx8r-xzx0VK_KJ2SwbebjoLf2W8luQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLy7pYARcOBg7cZO7M2hQojttkurBaRW7S3Ejq2uuk0WdleIv9Zfx0xe7QLi1ksOySiJ5mF_Ho-_AXjjEXNkOlbcaGt46F3AY-v7XFHSXyhDbIFUbTFW-8fhp9PodA0um7MwVFbZjInlQJ0VlnLkXUT6dMpSyKjr67KIL4Ph-9l3Th2kaKe1aadRuciB-_UTl2_zndEAbf1WiOHu0cd9XncY4BYnsgUPnfJxpmwvCywBlzQymdBpkPnUK6simVmhVRRkqUMc4eIoUl44b_vGuBRDQ-J7b8FtLTFO6JT6cK_N7_QkRouIK0ZUKeNe9yJF8EVMCXp1DvwL2P5Zn3ltwhveh3s1UmUfKtd6AGsufwgb1_gLH8HJoG6hax0rPBvle-mYfV2isZYX7MRNp-zobGLPaTRlRc4Qa7JxSSRK0p9nZRqdlbNlVTjGJjk73B3MH8PxjejxCaznRe42geF9J3XotTEKr2FsPIKSgHCQ8k72OvCu0V1iaxpz6qYxTXA5Q3pOrvTcgdet7Kwi7_in1HZjgqQO4Hly5W4deNU-xtCj_ZQ0d8WykiF6fY0yTyuLtZ-REeWK-qIDesWWrQDReq8-ySdnJb13X4cIK_XW_3_rJdxB_08OR-ODZ3BXUKVNILiIt2F98WPpniNUWpgXpU8y-HbTQfAbKAIp7A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependence+of+InGaN+Quantum+Well+Thickness+on+the+Nature+of+Optical+Transitions+in+LEDs&rft.jtitle=Materials&rft.au=Hajdel%2C+Mateusz&rft.au=Chlipa%C5%82a%2C+Mikolaj&rft.au=Siekacz%2C+Marcin&rft.au=Turski%2C+Henryk&rft.date=2021-12-29&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=15&rft.issue=1&rft_id=info:doi/10.3390%2Fma15010237&rft_id=info%3Apmid%2F35009382&rft.externalDocID=PMC8746177 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |