Dependence of InGaN Quantum Well Thickness on the Nature of Optical Transitions in LEDs

The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thic...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 15; no. 1; p. 237
Main Authors Hajdel, Mateusz, Chlipała, Mikolaj, Siekacz, Marcin, Turski, Henryk, Wolny, Paweł, Nowakowski-Szkudlarek, Krzesimir, Feduniewicz-Żmuda, Anna, Skierbiszewski, Czeslaw, Muziol, Grzegorz
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 29.12.2021
MDPI
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma15010237

Cover

Abstract The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses—2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger–Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one.
AbstractList The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses—2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger–Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one.
The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses-2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger-Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one.The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial separation of carriers by the built-in polarization. Here, we studied radiative transitions in InGaN-based LEDs with various quantum well (QW) thicknesses-2.6, 6.5, 7.8, 12, and 15 nm. In the case of the thinnest QW, we observed a typical effect of screening of the built-in field manifested with a blue shift of the electroluminescence spectrum at high current densities, whereas the LEDs with 6.5 and 7.8 nm QWs exhibited extremely high blue shift at low current densities accompanied by complex spectrum with multiple optical transitions. On the other hand, LEDs with the thickest QWs showed a stable, single-peak emission throughout the whole current density range. In order to obtain insight into the physical mechanisms behind this complex behavior, we performed self-consistent Schrodinger-Poisson simulations. We show that variation in the emission spectra between the samples is related to changes in the carrier density and differences in the magnitude of screening of the built-in field inside QWs. Moreover, we show that the excited states play a major role in carrier recombination for all QWs, apart from the thinnest one.
Author Nowakowski-Szkudlarek, Krzesimir
Muziol, Grzegorz
Hajdel, Mateusz
Chlipała, Mikolaj
Skierbiszewski, Czeslaw
Turski, Henryk
Feduniewicz-Żmuda, Anna
Wolny, Paweł
Siekacz, Marcin
AuthorAffiliation Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; mik@unipress.waw.pl (M.C.); msiekacz@unipress.waw.pl (M.S.); henryk@unipress.waw.pl (H.T.); wolny@unipress.waw.pl (P.W.); krzesimir.szkudlarek@unipress.waw.pl (K.N.-S.); ania_f@unipress.waw.pl (A.F.-Ż.); czeslaw@mail.unipress.waw.pl (C.S.); gmuziol@unipress.waw.pl (G.M.)
AuthorAffiliation_xml – name: Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland; mik@unipress.waw.pl (M.C.); msiekacz@unipress.waw.pl (M.S.); henryk@unipress.waw.pl (H.T.); wolny@unipress.waw.pl (P.W.); krzesimir.szkudlarek@unipress.waw.pl (K.N.-S.); ania_f@unipress.waw.pl (A.F.-Ż.); czeslaw@mail.unipress.waw.pl (C.S.); gmuziol@unipress.waw.pl (G.M.)
Author_xml – sequence: 1
  givenname: Mateusz
  orcidid: 0000-0001-9732-6119
  surname: Hajdel
  fullname: Hajdel, Mateusz
– sequence: 2
  givenname: Mikolaj
  surname: Chlipała
  fullname: Chlipała, Mikolaj
– sequence: 3
  givenname: Marcin
  surname: Siekacz
  fullname: Siekacz, Marcin
– sequence: 4
  givenname: Henryk
  orcidid: 0000-0002-2686-9842
  surname: Turski
  fullname: Turski, Henryk
– sequence: 5
  givenname: Paweł
  surname: Wolny
  fullname: Wolny, Paweł
– sequence: 6
  givenname: Krzesimir
  surname: Nowakowski-Szkudlarek
  fullname: Nowakowski-Szkudlarek, Krzesimir
– sequence: 7
  givenname: Anna
  surname: Feduniewicz-Żmuda
  fullname: Feduniewicz-Żmuda, Anna
– sequence: 8
  givenname: Czeslaw
  surname: Skierbiszewski
  fullname: Skierbiszewski, Czeslaw
– sequence: 9
  givenname: Grzegorz
  orcidid: 0000-0001-7430-3838
  surname: Muziol
  fullname: Muziol, Grzegorz
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35009382$$D View this record in MEDLINE/PubMed
BookMark eNptkV1rFTEQhoNU7Ie98QdIwBspHM3HJru5EaSttXBoESq9DHOys57U3eSYZAX_vTn90FqcmxmYZ17emdknOyEGJOQVZ--kNOz9BFwxzoRsn5E9boxecNM0O4_qXXKY8w2rISXvhHlBdqVizMhO7JHrE9xg6DE4pHGg5-EMLuiXGUKZJ3qN40iv1t59D5gzjYGWNdILKHO6pS83xTuoSIKQffExZOoDXZ6e5Jfk-QBjxsP7fEC-fjq9Ov68WF6enR9_XC5cw3RZNKgH02vHeu6YahWoVS9a4P0Ag3Zayd6JViveA0oj0CilB4GD61YrBMm4PCAf7nQ382rC3mEoCUa7SX6C9MtG8PbfTvBr-y3-tF3baN62VeDtvUCKP2bMxU4-u7o4BIxztkLzznBVvVX0zRP0Js4p1PVuKaG4kFvq9WNHf6w83LwC7A5wKeaccLDOF9herxr0o-XMbj9r_362jhw9GXlQ_Q_8G7kPoq0
CitedBy_id crossref_primary_10_1002_pssa_202300042
crossref_primary_10_1103_PhysRevB_108_045304
crossref_primary_10_1364_OE_480074
crossref_primary_10_3390_cryst13121623
crossref_primary_10_1016_j_apsusc_2024_160144
crossref_primary_10_1103_PhysRevApplied_20_034040
crossref_primary_10_1016_j_optlastec_2024_112117
crossref_primary_10_1088_1361_6463_ad1146
crossref_primary_10_1080_15980316_2023_2282937
crossref_primary_10_1039_D4MH00428K
crossref_primary_10_1002_lpor_202300113
crossref_primary_10_1021_acsami_4c02084
crossref_primary_10_1103_PhysRevB_105_195307
crossref_primary_10_1103_PhysRevApplied_21_054030
crossref_primary_10_1021_acsphotonics_4c02193
crossref_primary_10_1002_pssa_202400067
crossref_primary_10_1002_pssr_202300027
crossref_primary_10_1016_j_optmat_2025_116934
crossref_primary_10_1364_OE_454359
crossref_primary_10_1002_apxr_202200107
crossref_primary_10_1002_crat_202300347
crossref_primary_10_1088_1361_6528_ad8356
Cites_doi 10.1103/PhysRevB.56.R10024
10.1063/1.4941815
10.1063/5.0043240
10.1103/PhysRevApplied.15.024046
10.1002/pssc.200880893
10.1021/acsphotonics.9b00327
10.1088/0022-3727/47/7/073001
10.1063/1.4905873
10.1117/12.2212011
10.1364/OE.405994
10.1002/pssa.201026349
10.1063/1.369664
10.1063/1.2775334
10.1063/1.1311831
10.7567/1882-0786/ab50e0
10.1002/pssc.200461470
10.1016/j.jcrysgro.2012.12.026
10.1364/OE.27.00A669
10.1364/OE.415258
10.1002/lpor.201300048
10.1063/1.4903297
10.1103/PhysRevLett.103.026801
10.7567/1882-0786/ab250e
10.1063/1.1618926
10.7567/1882-0786/ab0730
10.1063/1.1784039
10.1364/OE.403906
10.1063/1.5023521
10.1149/2.0412001JSS
10.1016/j.actamat.2012.10.042
10.1063/1.1289915
10.1063/1.123727
10.1063/1.2807272
10.1063/1.1418453
10.1109/JSTQE.2009.2015583
10.1364/OE.382646
10.1063/1.3581080
10.1063/1.3517481
10.1126/science.1183226
10.1063/1.4861655
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
NPM
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOI 10.3390/ma15010237
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Materials Science Collection
ProQuest Central Korea
SciTech Premium Collection
Materials Research Database
Materials Science Database
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC8746177
35009382
10_3390_ma15010237
Genre Journal Article
GrantInformation_xml – fundername: National Science Center
  grantid: 2019/35/D/ST3/03008
– fundername: National Centre for Research and Development
  grantid: LIDER/35/0127/L-9/17/NCBR/2018
– fundername: National Centre for Research and Development
  grantid: LIDER/29/0185/L-7/15/NCBR/2016
– fundername: National Science Center
  grantid: 2019/35/N/ST7/02968
– fundername: Foundation for Polish Science
  grantid: TEAMTECH POIR.04.04.00-00-210C/16-00
– fundername: National Science Center
  grantid: 2018/31/B/ST5/03719
– fundername: National Science Center
  grantid: 2019/35/N/ST7/04182
GroupedDBID 29M
2WC
2XV
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c406t-4e6f9d6c0d1c0575a5bd27a1dfaf6c653dc27651dae392e9556f2efc8bbea3013
IEDL.DBID 8FG
ISSN 1996-1944
IngestDate Thu Aug 21 18:15:16 EDT 2025
Thu Sep 04 23:03:45 EDT 2025
Fri Jul 25 12:02:40 EDT 2025
Wed Feb 19 02:28:28 EST 2025
Tue Jul 01 03:42:00 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords InGaN
molecular beam epitaxy
light-emitting diode
nitrides
quantum well
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-4e6f9d6c0d1c0575a5bd27a1dfaf6c653dc27651dae392e9556f2efc8bbea3013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2686-9842
0000-0001-9732-6119
0000-0001-7430-3838
OpenAccessLink https://www.proquest.com/docview/2618251235?pq-origsite=%requestingapplication%
PMID 35009382
PQID 2618251235
PQPubID 2032366
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8746177
proquest_miscellaneous_2618915575
proquest_journals_2618251235
pubmed_primary_35009382
crossref_citationtrail_10_3390_ma15010237
crossref_primary_10_3390_ma15010237
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211229
PublicationDateYYYYMMDD 2021-12-29
PublicationDate_xml – month: 12
  year: 2021
  text: 20211229
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2021
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Kafar (ref_19) 2019; 12
Yan (ref_17) 2018; 112
Zhao (ref_25) 2021; 118
Haitz (ref_1) 2011; 208
Chlipala (ref_14) 2020; 28
Young (ref_21) 2016; 108
Wierer (ref_3) 2013; 7
Muziol (ref_10) 2021; 15
Wu (ref_37) 2009; 15
Muziol (ref_40) 2020; 28
Aumer (ref_18) 2001; 79
Turski (ref_13) 2020; 9
Bai (ref_22) 2000; 88
Wu (ref_39) 2003; 94
Arif (ref_24) 2007; 91
David (ref_5) 2014; 105
Ambacher (ref_8) 1999; 85
Lugli (ref_20) 1999; 74
Muziol (ref_30) 2019; 6
Wu (ref_38) 2004; 85
Pieniak (ref_33) 2021; 29
Bernardini (ref_7) 1997; 56
Gardner (ref_26) 2007; 91
Turski (ref_34) 2014; 104
Damilano (ref_23) 2000; 77
Zhang (ref_29) 2019; 12
Bercha (ref_32) 2020; 28
Krishnamoorthy (ref_11) 2010; 97
Muziol (ref_31) 2019; 12
Hurni (ref_4) 2015; 106
Zhang (ref_15) 2011; 109
Zhou (ref_6) 2019; 27
Turski (ref_36) 2013; 367
Skierbiszewski (ref_35) 2014; 47
DenBaars (ref_2) 2013; 61
Cordier (ref_9) 2005; 2
Simon (ref_16) 2010; 327
Simon (ref_12) 2009; 103
ref_28
Laubsch (ref_27) 2009; 6
References_xml – volume: 56
  start-page: R10024
  year: 1997
  ident: ref_7
  article-title: Spontaneous polarization and piezoelectric constants of III-V nitrides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.56.R10024
– volume: 108
  start-page: 061105
  year: 2016
  ident: ref_21
  article-title: Polarization field screening in thick (0001) InGaN/GaN single quantum well light-emitting diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941815
– volume: 118
  start-page: 182102
  year: 2021
  ident: ref_25
  article-title: Rational construction of staggered InGaN quantum wells for efficient yellow light-emitting diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0043240
– volume: 15
  start-page: 024046
  year: 2021
  ident: ref_10
  article-title: Tunnel Junctions with a Doped (In, Ga)N Quantum Well for Vertical Integration of III-Nitride Optoelectronic Devices
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.15.024046
– volume: 6
  start-page: S885
  year: 2009
  ident: ref_27
  article-title: Luminescence properties of thick InGaN quantum-wells
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.200880893
– volume: 6
  start-page: 1963
  year: 2019
  ident: ref_30
  article-title: Beyond Quantum Efficiency Limitations Originating from the Piezoelectric Polarization in Light-Emitting Devices
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.9b00327
– volume: 47
  start-page: 073001
  year: 2014
  ident: ref_35
  article-title: Nitride-based laser diodes grown by plasma-assisted molecular beam epitaxy
  publication-title: J. Phys. D Appl. Phys.
  doi: 10.1088/0022-3727/47/7/073001
– volume: 106
  start-page: 031101
  year: 2015
  ident: ref_4
  article-title: Bulk GaN flip-chip violet light-emitting diodes with optimized efficiency for high-power operation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4905873
– ident: ref_28
  doi: 10.1117/12.2212011
– volume: 28
  start-page: 35321
  year: 2020
  ident: ref_40
  article-title: Distributed-feedback blue laser diode utilizing a tunnel junction grown by plasma-assisted molecular beam epitaxy
  publication-title: Opt. Express
  doi: 10.1364/OE.405994
– volume: 208
  start-page: 17
  year: 2011
  ident: ref_1
  article-title: Solid-state lighting: ‘The case’ 10 years after and future prospects
  publication-title: Phys. Status Solidi A
  doi: 10.1002/pssa.201026349
– volume: 85
  start-page: 3222
  year: 1999
  ident: ref_8
  article-title: Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.369664
– volume: 91
  start-page: 091110
  year: 2007
  ident: ref_24
  article-title: Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2775334
– volume: 88
  start-page: 4729
  year: 2000
  ident: ref_22
  article-title: Influence of the quantum-well thickness on the radiative recombination of InGaN/GaN quantum well structures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1311831
– volume: 12
  start-page: 124003
  year: 2019
  ident: ref_29
  article-title: A 271.8 nm deep-ultraviolet laser diode for room temperature operation
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab50e0
– volume: 2
  start-page: 2720
  year: 2005
  ident: ref_9
  article-title: Electron mobility and transfer characteristics in AlGaN/GaN HEMTs
  publication-title: Phys. Status Solidi C
  doi: 10.1002/pssc.200461470
– volume: 367
  start-page: 115
  year: 2013
  ident: ref_36
  article-title: Nonequivalent atomic step edges—Role of gallium and nitrogen atoms in the growth of InGaN layers
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2012.12.026
– volume: 27
  start-page: A669
  year: 2019
  ident: ref_6
  article-title: Highly efficient GaN-based high-power flipchip light-emitting diodes
  publication-title: Opt. Express
  doi: 10.1364/OE.27.00A669
– volume: 29
  start-page: 1824
  year: 2021
  ident: ref_33
  article-title: Quantum-confined Stark effect and mechanisms of its screening in InGaN/GaN light-emitting diodes with a tunnel junction
  publication-title: Opt. Express
  doi: 10.1364/OE.415258
– volume: 7
  start-page: 963
  year: 2013
  ident: ref_3
  article-title: Comparison between blue lasers and light-emitting diodes for future solid-state lighting
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201300048
– volume: 105
  start-page: 231111
  year: 2014
  ident: ref_5
  article-title: High light extraction efficiency in bulk-GaN based volumetric violet light-emitting diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4903297
– volume: 103
  start-page: 026801
  year: 2009
  ident: ref_12
  article-title: Polarization-Induced Zener Tunnel Junctions in Wide-Band-Gap Heterostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.103.026801
– volume: 12
  start-page: 072003
  year: 2019
  ident: ref_31
  article-title: Optical properties of III-nitride laser diodes with wide InGaN quantum wells
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab250e
– volume: 94
  start-page: 5826
  year: 2003
  ident: ref_39
  article-title: Gate leakage suppression and contact engineering in nitride heterostructures
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1618926
– volume: 12
  start-page: 044001
  year: 2019
  ident: ref_19
  article-title: Screening of quantum-confined Stark effect in nitride laser diodes and superluminescent diodes
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab0730
– volume: 85
  start-page: 1223
  year: 2004
  ident: ref_38
  article-title: Metal piezoelectric semiconductor field effect transistors for piezoelectric strain sensors
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1784039
– volume: 28
  start-page: 30299
  year: 2020
  ident: ref_14
  article-title: Nitride light-emitting diodes for cryogenic temperatures
  publication-title: Opt. Express
  doi: 10.1364/OE.403906
– volume: 112
  start-page: 182104
  year: 2018
  ident: ref_17
  article-title: Polarization-induced hole doping in N-polar III-nitride LED grown by metalorganic chemical vapor deposition
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5023521
– volume: 9
  start-page: 015018
  year: 2020
  ident: ref_13
  article-title: Nitride LEDs and lasers with buried tunnel junctions
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0412001JSS
– volume: 61
  start-page: 945
  year: 2013
  ident: ref_2
  article-title: Development of gallium-nitride-based light-emitting diodes (LEDs)and laser diodes for energy-efficient lighting and displays
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2012.10.042
– volume: 77
  start-page: 1268
  year: 2000
  ident: ref_23
  article-title: InGaN/GaN quantum wells grown by molecular-beam epitaxy emitting from blue to red at 300 K
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1289915
– volume: 74
  start-page: 2002
  year: 1999
  ident: ref_20
  article-title: Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123727
– volume: 91
  start-page: 243506
  year: 2007
  ident: ref_26
  article-title: Blue-emitting InGaN–GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200A∕cm2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2807272
– volume: 79
  start-page: 3803
  year: 2001
  ident: ref_18
  article-title: Strain-induced piezoelectric field effects on light emission energy and intensity from AlInGaN/InGaN quantum wells
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1418453
– volume: 15
  start-page: 1226
  year: 2009
  ident: ref_37
  article-title: Size-Dependent Strain Relaxation and Optical Characteristics of InGaN/GaN Nanorod LEDs
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2009.2015583
– volume: 28
  start-page: 4717
  year: 2020
  ident: ref_32
  article-title: Anomalous photocurrent in wide InGaN quantum wells
  publication-title: Opt. Express
  doi: 10.1364/OE.382646
– volume: 109
  start-page: 083115
  year: 2011
  ident: ref_15
  article-title: Effects of a stepgraded AlxGa1−xN electron blocking layer in InGaN-based laser diodes
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3581080
– volume: 97
  start-page: 203502
  year: 2010
  ident: ref_11
  article-title: Polarization-engineered GaN/InGaN/GaN tunnel diodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3517481
– volume: 327
  start-page: 60
  year: 2010
  ident: ref_16
  article-title: Polarization-Induced Hole Doping in Wide–Band- Gap Uniaxial Semiconductor Heterostructures
  publication-title: Science
  doi: 10.1126/science.1183226
– volume: 104
  start-page: 023503
  year: 2014
  ident: ref_34
  article-title: Cyan laser diode grown by plasma-assisted molecular beam epitaxy
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4861655
SSID ssj0000331829
Score 2.4193163
Snippet The design of the active region is one of the most crucial problems to address in light emitting devices (LEDs) based on III-nitride, due to the spatial...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 237
SubjectTerms Blue shift
Carrier density
Carrier recombination
Current density
Efficiency
Electric fields
Electroluminescence
Emission spectra
Growth models
Indium gallium nitrides
Light emitting diodes
Low currents
Molecular beam epitaxy
Quantum wells
Screening
Thickness
Title Dependence of InGaN Quantum Well Thickness on the Nature of Optical Transitions in LEDs
URI https://www.ncbi.nlm.nih.gov/pubmed/35009382
https://www.proquest.com/docview/2618251235
https://www.proquest.com/docview/2618915575
https://pubmed.ncbi.nlm.nih.gov/PMC8746177
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9swED8xeNkeEB_bKB-Vp_GyB4vGSezmCfHRFqapsAlE36LYsUVFSQpt_3_ukjS0A_ESyfFJie5s38_n8-8ADh1ijlRFkmtlNA-c9XhkXJtLCvoLqYktkLIt-vLiNvg9CAdVwG1SpVXO18RioU5zQzHyI0T6dMtS-OHx-IlT1Sg6Xa1KaHyCNU-gr6Wb4t1eHWNp-ThiRVSykvq4uz96TBAAEVuBWvZDb8Dl_zmSC06nuwHrFVpkJ6V5N2HFZlvwZYFDcBvuzqsytsay3LHLrJf02d8ZKmz2yO7saMRu7ofmgVY0lmcM8R7rF2SeJH01LkLZrPBYZfIWG2bsT-d88hVuu52bswteVUvgBp3ylAdWuiiVppV6hkBYEupUqMRLXeKkkaGfGqFk6KWJRUxkozCUTlhn2lrbBKe5_w1WszyzO8DwvfVV4JTWEp9BpB0CA4-wiHTWbzXg11x3samoxKmixSjGLQXpOX7VcwN-1rLjkkDjXan9uQniahJN4leTN-BH3Y3Dn840kszms1KGKO4VynwvLVZ_xg8pXtMWDVBLtqwFiFp7uScb3hcU220VILRTux__1h58FpTi4gkuon1YnT7P7AFilKluFgOxCWunnf71P2z1Bt4Lz-jpuw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VcoAeEO-mFFgEHDhYjXftXftQIUSaJjQEIaVqb8a73lWjpnYgiRB_qr-RGb_aAOLWiw_2yLbmsfvt7Ow3AG8cYo5MxdLTymgvcNb3YuMiT1LSn0tNbIFUbTGWg-Pg02l4ugGXzVkYKqtsxsRyoM4KQznyPUT6dMqSi_D9_LtHXaNod7VpoVG5xZH99ROXbIv9YQ_t-5bz_sHk48Cruwp4BievpRdY6eJMmm7mGwIraagzrlI_c6mTRoYiM1zJ0M9Si9jBxmEoHbfORFrbFMNB4Htvwe1ACEElhFH_sM3pdAVGCI8rFlQh4u7eRYqAi9gR1Pq89xeY_bMm89ok178P92p0yj5U7vQANmz-ELaucRY-gpNe3TbXWFY4NswP0zH7ukIDrS7YiZ3N2ORsas5pBGVFzhBfsnFJHkrSX-Zl6pyVM2RVLMamORsd9BaP4fhG9PgENvMit9vA8L4VKnBKa4nXINYOgYhP2Ec6K7odeNfoLjE1dTl10JgluIQhPSdXeu7A61Z2XhF2_FNqtzFBUgftIrlysQ68ah9juNEeSprbYlXJEKW-QpmnlcXaz4iQ8kMR74Bas2UrQFTe60_y6VlJ6R2pAKGk2vn_b72EO4PJ51EyGo6PnsFdTuU1Pvd4vAubyx8r-xzx0VK_KJ2SwbebjoLf2W8luQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIiF6QLy7pYARcOBg7cZO7M2hQojttkurBaRW7S3Ejq2uuk0WdleIv9Zfx0xe7QLi1ksOySiJ5mF_Ho-_AXjjEXNkOlbcaGt46F3AY-v7XFHSXyhDbIFUbTFW-8fhp9PodA0um7MwVFbZjInlQJ0VlnLkXUT6dMpSyKjr67KIL4Ph-9l3Th2kaKe1aadRuciB-_UTl2_zndEAbf1WiOHu0cd9XncY4BYnsgUPnfJxpmwvCywBlzQymdBpkPnUK6simVmhVRRkqUMc4eIoUl44b_vGuBRDQ-J7b8FtLTFO6JT6cK_N7_QkRouIK0ZUKeNe9yJF8EVMCXp1DvwL2P5Zn3ltwhveh3s1UmUfKtd6AGsufwgb1_gLH8HJoG6hax0rPBvle-mYfV2isZYX7MRNp-zobGLPaTRlRc4Qa7JxSSRK0p9nZRqdlbNlVTjGJjk73B3MH8PxjejxCaznRe42geF9J3XotTEKr2FsPIKSgHCQ8k72OvCu0V1iaxpz6qYxTXA5Q3pOrvTcgdet7Kwi7_in1HZjgqQO4Hly5W4deNU-xtCj_ZQ0d8WykiF6fY0yTyuLtZ-REeWK-qIDesWWrQDReq8-ySdnJb13X4cIK_XW_3_rJdxB_08OR-ODZ3BXUKVNILiIt2F98WPpniNUWpgXpU8y-HbTQfAbKAIp7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dependence+of+InGaN+Quantum+Well+Thickness+on+the+Nature+of+Optical+Transitions+in+LEDs&rft.jtitle=Materials&rft.au=Hajdel%2C+Mateusz&rft.au=Chlipa%C5%82a%2C+Mikolaj&rft.au=Siekacz%2C+Marcin&rft.au=Turski%2C+Henryk&rft.date=2021-12-29&rft.pub=MDPI&rft.eissn=1996-1944&rft.volume=15&rft.issue=1&rft_id=info:doi/10.3390%2Fma15010237&rft_id=info%3Apmid%2F35009382&rft.externalDocID=PMC8746177
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon