A Quantum-Behaved Particle Swarm Optimization Algorithm on Riemannian Manifolds

The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of these algorithms are based on the geodesic or the retracement operator and use the classical methods (i.e., the steepest descent method, the co...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 10; no. 22; p. 4168
Main Authors Halimu, Yeerjiang, Zhou, Chao, You, Qi, Sun, Jun
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.11.2022
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math10224168

Cover

Abstract The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of these algorithms are based on the geodesic or the retracement operator and use the classical methods (i.e., the steepest descent method, the conjugate gradient method, the Newton method, etc.) to solve engineering optimization problems. However, they lack the ability to solve non-differentiable mathematical models and ensure global convergence for non-convex manifolds. Considering this issue, this paper proposes a quantum-behaved particle swarm optimization (QPSO) algorithm on Riemannian manifolds named RQPSO. In this algorithm, the quantum-behaved particles are randomly distributed on the manifold surface and iteratively updated during the whole search process. Then, the vector transfer operator is used to translate the guiding vectors, which are not in the same Euclidean space, to the tangent space of the particles. Through the searching of these guiding vectors, we can achieve the retracement and update of points and finally obtain the optimized result. The proposed RQPSO algorithm does not depend on the expression form of a problem and could deal with various engineering technical problems, including both differentiable and non-differentiable ones. To verify the performance of RQPSO experimentally, we compare it with some traditional algorithms on three common matrix manifold optimization problems. The experimental results show that RQPSO has better performance than its competitors in terms of calculation speed and optimization efficiency.
AbstractList The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of these algorithms are based on the geodesic or the retracement operator and use the classical methods (i.e., the steepest descent method, the conjugate gradient method, the Newton method, etc.) to solve engineering optimization problems. However, they lack the ability to solve non-differentiable mathematical models and ensure global convergence for non-convex manifolds. Considering this issue, this paper proposes a quantum-behaved particle swarm optimization (QPSO) algorithm on Riemannian manifolds named RQPSO. In this algorithm, the quantum-behaved particles are randomly distributed on the manifold surface and iteratively updated during the whole search process. Then, the vector transfer operator is used to translate the guiding vectors, which are not in the same Euclidean space, to the tangent space of the particles. Through the searching of these guiding vectors, we can achieve the retracement and update of points and finally obtain the optimized result. The proposed RQPSO algorithm does not depend on the expression form of a problem and could deal with various engineering technical problems, including both differentiable and non-differentiable ones. To verify the performance of RQPSO experimentally, we compare it with some traditional algorithms on three common matrix manifold optimization problems. The experimental results show that RQPSO has better performance than its competitors in terms of calculation speed and optimization efficiency.
Audience Academic
Author Sun, Jun
Halimu, Yeerjiang
Zhou, Chao
You, Qi
Author_xml – sequence: 1
  givenname: Yeerjiang
  surname: Halimu
  fullname: Halimu, Yeerjiang
– sequence: 2
  givenname: Chao
  surname: Zhou
  fullname: Zhou, Chao
– sequence: 3
  givenname: Qi
  surname: You
  fullname: You, Qi
– sequence: 4
  givenname: Jun
  surname: Sun
  fullname: Sun, Jun
BookMark eNp9UU1v3CAURFUqNU1zyw-w1GudAMYGjtuoaSOl2vQjZ_TMxy4rG7YYN0p_fUgcVVGlFA48HjOjN8NbdBBisAidEHzaNBKfjZC3BFPKSCdeoUNKKa95eTh4Vr9Bx9O0w2VJ0ggmD9F6VX2bIeR5rD_aLfy2prqGlL0ebPXjFtJYrffZj_4PZB9DtRo2Mfm8Haty-e7tCCF4CNVXCN7FwUzv0GsHw2SPn84jdHPx6ef5l_pq_fnyfHVVa4a7XLOeSm06YttWGkZ61ksubGtIayl0DXe0N1rSDphjllsticSONQJbwZ0BaI7Q5aJrIuzUPvkR0p2K4NVjI6aNerKhpAPeMdP24sGyoIKx1vUYnMa9NkYXrXrRmsMe7m5hGP4KEqwewlXPwy349wt-n-Kv2U5Z7eKcQrGraEmZMSxFW1CnC2oDZQgfXMwJdNnGjl6Xv3O-9FecMd4yJnAh0IWgU5ymZJ3SPj_GXoh-eGmWD_-Q_jv6PUo3qlw
CitedBy_id crossref_primary_10_3390_math12101527
crossref_primary_10_1016_j_inffus_2024_102596
crossref_primary_10_3390_sym15061265
crossref_primary_10_1007_s11071_023_09246_4
crossref_primary_10_3390_math11092217
Cites_doi 10.1515/9781400830244
10.1109/CVPR.2015.7299083
10.1162/EVCO_a_00049
10.1016/j.asoc.2020.106773
10.1080/00207160601170254
10.1016/j.enconman.2009.07.015
10.1007/978-3-642-15461-4_2
10.1016/j.swevo.2018.08.005
10.1109/TAP.2006.882165
10.1016/j.jmatprotec.2008.03.021
10.1007/BF00934767
10.1109/TEVC.2009.2029567
10.1007/s11071-005-2792-1
10.1007/978-3-319-10762-2_87
10.1137/1038003
10.1109/TGRS.2013.2284280
10.1109/TEVC.2010.2059031
10.1109/TEVC.2004.826069
10.1137/15M1017181
10.1109/TIP.2011.2177845
10.1109/ACCESS.2019.2932412
10.1007/s11263-015-0833-x
10.1016/j.eswa.2009.03.006
10.1109/4235.985692
10.1109/CEC.2016.7744280
10.1109/TPAMI.2005.92
10.1007/978-3-540-71441-5
10.1007/11744047_45
10.1137/140967994
10.1137/130934271
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math10224168
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Physics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_9fa764d5b83849828445fb0afc0bcddc
10.3390/math10224168
A744754480
10_3390_math10224168
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-4b29cd61e559d41b4b978e5d15e2a637f2bdc926a4f4e7ec9190f4380e87fdaa3
IEDL.DBID DOA
ISSN 2227-7390
IngestDate Fri Oct 03 12:50:28 EDT 2025
Sun Oct 26 04:05:12 EDT 2025
Fri Jul 25 11:57:50 EDT 2025
Mon Oct 20 16:58:01 EDT 2025
Thu Oct 16 04:27:09 EDT 2025
Thu Apr 24 23:08:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-4b29cd61e559d41b4b978e5d15e2a637f2bdc926a4f4e7ec9190f4380e87fdaa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doaj.org/article/9fa764d5b83849828445fb0afc0bcddc
PQID 2739440985
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_9fa764d5b83849828445fb0afc0bcddc
unpaywall_primary_10_3390_math10224168
proquest_journals_2739440985
gale_infotracacademiconefile_A744754480
crossref_citationtrail_10_3390_math10224168
crossref_primary_10_3390_math10224168
PublicationCentury 2000
PublicationDate 2022-11-01
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Clerc (ref_24) 2002; 6
Kressner (ref_3) 2016; 37
Harandi (ref_13) 2015; 114
ref_14
Sun (ref_30) 2009; 50
ref_33
Broomhead (ref_35) 2005; 41
ref_10
ref_32
Boumal (ref_43) 2014; 15
ref_19
ref_18
ref_39
Zhao (ref_17) 2015; 36
Zhang (ref_11) 2014; 52
ref_15
Sarkis (ref_5) 2012; 21
Engelbrecht (ref_45) 2004; 8
Colutto (ref_20) 2010; 14
He (ref_36) 2020; 97
Sun (ref_25) 2007; 84
Vandenberghe (ref_34) 1996; 38
Lee (ref_8) 2005; 27
ref_23
ref_22
Gabay (ref_16) 1982; 37
ref_21
Smith (ref_12) 2014; 158
Omkara (ref_26) 2009; 36
ref_42
Brest (ref_46) 2019; 50
ref_40
ref_1
ref_2
ref_29
ref_27
Liu (ref_7) 2019; 7
Mikki (ref_28) 2006; 54
Rosa (ref_41) 2009; 209
ref_9
Das (ref_44) 2011; 15
Jun (ref_38) 2012; 20
ref_4
Wang (ref_6) 2014; 37
Sun (ref_37) 2004; 1
Boumal (ref_31) 2016; 29
References_xml – ident: ref_10
  doi: 10.1515/9781400830244
– ident: ref_15
  doi: 10.1109/CVPR.2015.7299083
– volume: 20
  start-page: 349
  year: 2012
  ident: ref_38
  article-title: Quantum-Behaved Particle Swarm Optimization: Analysis of Individual Particle Behavior and Parameter Selection
  publication-title: Evol. Comput.
  doi: 10.1162/EVCO_a_00049
– volume: 97
  start-page: 106773
  year: 2020
  ident: ref_36
  article-title: An evolutionary approach to black-box optimization on matrix manifolds
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106773
– volume: 84
  start-page: 261
  year: 2007
  ident: ref_25
  article-title: Using quantum-behaved particle swarm optimization algorithm to solve non-linear programming problems
  publication-title: Int. J. Comput. Math.
  doi: 10.1080/00207160601170254
– volume: 50
  start-page: 2967
  year: 2009
  ident: ref_30
  article-title: Solving the economic dispatch problem with a modified quantum-behaved particle swarm optimization method
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2009.07.015
– ident: ref_32
– ident: ref_19
  doi: 10.1007/978-3-642-15461-4_2
– volume: 50
  start-page: 100428
  year: 2019
  ident: ref_46
  article-title: A review of the recent use of Differential Evolution for Large-Scale Global Optimization: An analysis of selected algorithms on the CEC 2013 LSGO benchmark suite
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.08.005
– volume: 54
  start-page: 2764
  year: 2006
  ident: ref_28
  article-title: Quantum particle swarm optimization for electromagnetics
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2006.882165
– volume: 209
  start-page: 1181
  year: 2009
  ident: ref_41
  article-title: Electrodeposition of copper on titanium wires: Taguchi experimental design approach
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2008.03.021
– ident: ref_39
– ident: ref_40
– volume: 37
  start-page: 177
  year: 1982
  ident: ref_16
  article-title: Minimizing a differentiable function over a differential manifold
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00934767
– volume: 14
  start-page: 227
  year: 2010
  ident: ref_20
  article-title: The CMA-ES on Riemannian Manifolds to Reconstruct Shapes in 3-D Voxel Images
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2029567
– volume: 41
  start-page: 47
  year: 2005
  ident: ref_35
  article-title: Dimensionality Reduction Using Secant-Based Projection Methods: The Induced Dynamics in Projected Systems
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-005-2792-1
– ident: ref_14
– ident: ref_21
  doi: 10.1007/978-3-319-10762-2_87
– ident: ref_42
– ident: ref_1
– ident: ref_18
– ident: ref_23
– volume: 38
  start-page: 49
  year: 1996
  ident: ref_34
  article-title: Semidefinite programming
  publication-title: SIAM Rev.
  doi: 10.1137/1038003
– volume: 52
  start-page: 4729
  year: 2014
  ident: ref_11
  article-title: Hyperspectral image restoration using low-rank matrix recovery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2013.2284280
– volume: 15
  start-page: 4
  year: 2011
  ident: ref_44
  article-title: Differential Evolution: A Survey of the State-of-the-Art
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2059031
– volume: 8
  start-page: 225
  year: 2004
  ident: ref_45
  article-title: A Cooperative Approach to Particle Swarm Optimization
  publication-title: Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826069
– ident: ref_4
– volume: 37
  start-page: 695
  year: 2016
  ident: ref_3
  article-title: Subspace acceleration for large-scale parameter-dependent Hermitian eigenproblems
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/15M1017181
– volume: 21
  start-page: 1729
  year: 2012
  ident: ref_5
  article-title: Camera-pose estimation via projective Newton optimization on the manifold
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2177845
– ident: ref_29
– ident: ref_33
– volume: 7
  start-page: 105531
  year: 2019
  ident: ref_7
  article-title: Visualization of the Image Geometric Transformation Group Based on Riemannian Manifold
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2932412
– ident: ref_2
– volume: 158
  start-page: 328
  year: 2014
  ident: ref_12
  article-title: Optimization Techniques on Riemannian Manifolds
  publication-title: Mathematics
– volume: 114
  start-page: 113
  year: 2015
  ident: ref_13
  article-title: Extrinsic methods for coding and dictionary learning on Grassmann manifolds
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0833-x
– volume: 36
  start-page: 11312
  year: 2009
  ident: ref_26
  article-title: Quantum behaved particle swarm optimization (QPSO) for multi-objective design optimization of composite structures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.03.006
– volume: 6
  start-page: 58
  year: 2002
  ident: ref_24
  article-title: The particle swarm-explosion, stability and convergence in a multidimensional complex space
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– ident: ref_22
  doi: 10.1109/CEC.2016.7744280
– volume: 27
  start-page: 684
  year: 2005
  ident: ref_8
  article-title: Acquiring Linear Subspaces for Face Recognition under Variable Lighting
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.92
– ident: ref_27
  doi: 10.1007/978-3-540-71441-5
– ident: ref_9
  doi: 10.1007/11744047_45
– volume: 1
  start-page: 111
  year: 2004
  ident: ref_37
  article-title: A global search strategy of quantum-behaved particle swarm optimization
  publication-title: IEEE Conf. Cybern. Intell. Syst.
– volume: 36
  start-page: 752
  year: 2015
  ident: ref_17
  article-title: A Riemannian Newton Algorithm for Nonlinear Eigenvalue Problems
  publication-title: Siam J. Matrix Anal. Appl.
  doi: 10.1137/140967994
– volume: 29
  start-page: 2765
  year: 2016
  ident: ref_31
  article-title: The non-convex Burer-Monteiro approach works on smooth semidefinite programs
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 37
  start-page: 488
  year: 2014
  ident: ref_6
  article-title: Orthogonal rank-one matrix pursuit for low rank matrix completion
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130934271
– volume: 15
  start-page: 1455
  year: 2014
  ident: ref_43
  article-title: Manopt, a matlab toolbox for optimization on manifolds
  publication-title: J. Mach. Learn. Res.
SSID ssj0000913849
Score 2.2369761
Snippet The Riemannian manifold optimization algorithms have been widely used in machine learning, computer vision, data mining, and other technical fields. Most of...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4168
SubjectTerms Adaptation
Algorithms
Approximation
Computer vision
Conjugate gradient method
Data mining
Euclidean geometry
Euclidean space
Lie groups
Machine learning
Manifolds (Mathematics)
Mathematical analysis
Mathematical functions
Mathematical optimization
matrix manifold optimization
Methods
Newton methods
Operators (mathematics)
Optimization algorithms
Particle swarm optimization
Physics
Quantum theory
quantum-behaved particle swarm optimization
retracement operator
Riemann manifold
Riemannian manifold
Search process
Semidefinite programming
Steepest descent method
Swarm intelligence
Vectors (mathematics)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEB7SzaHNoaQv4jYJPvRxKCJ-SH4cStmEhFDYTZo2kJvRMwl4vdt9EPrvO-OV3YXSHG2EkGZGM_PZmm8A3hcK02TtIqZFmTLMiFOmtFQsT41wslTCOqpGHo2z82v-7UbcbMG4q4Wha5WdT2wdtZlq-kZ-hGG25AhGCvF19otR1yj6u9q10JC-tYL50lKMPYHthJixBrB9fDq-vOq_uhALZsHL9Q34FPH-EeaFdy2tWkxsqxuxqaXw_9dR78DTVTOTvx9kXW9EorNdeO5TyHC41vkL2LLNS9gZ9fyri1dwMQy_r1BmqwlrCRCtCS-9jYQ_HuR8El6gq5j4GsxwWN_iVpd3kxAfru5xmqZBswlHsrl309osXsP12enPk3PmWycwjRF6ybhKSm2y2CJgMDxWXCFatMLEwiYyS3OXKKPLJJPccZtbXWJe4Ih83ha5M1Kmb2DQTBu7B6GMIyWoBNaWmucKp7GRymWUFi4prHIBfO6EVmnPK07tLeoK8QWJuNoUcQAf-tGzNZ_Gf8Ydk_z7McSC3b6Yzm8rL7CqdDLPuBGqIKUiduRcOBVJpyOljdEBfCLtVXRWcUla-pID3BixXlXDnOgOEaBGAex3Cq78IV5Uf00ugI-90h9d9tvH53kHzxIqn2hrGfdhsJyv7AEmNUt16C31D3dp980
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swGP0Y6cPWh3VX5rUdetjlYbj1RbKtp-KNlTJI210C3ZPRtQ1znJDYK-uv7ydHCWFjY7BHGUnI_j5J5xidI4CXhUSYrGwUKsbTEBFxGkolZJinmlnBJTPWqZGHp9nJiH68YBcbKn53rBKp-LhfpJ1OE1vxCOc2Fg4RPBSHM22Pfvh_SXGG5A4JhJOvb2UM0fgAtkan5-U3d6fcqvXyvHvq-kEUeNWbqMXOW3VjJ-oN-39flrfhbtfMxM9rUdcb-87xDojViJfHTb4fdK08UDe_mDn-zys9gPselJJymUUP4Y5pHsH2cO3oungMZyX51GEUuknYWyoaTc591pEv12I-IWe4-Ey8qpOU9eV0Pm6vJgQLn8fYTdNgIpKhaMZ2WuvFExgdf_j6_iT0lzGECvf8NqQy4UpnsUEKomksqUT-aZiOmUlEluY2kVrxJBPUUpMbxRFpWGdnb4rcaiHSpzBopo15BkTEkWROVGu4ornEbkwkcxGlhU0KI20Ab1eBqZR3KncXZtQVMhYXxmozjAG8WteeLR06_lDvnYvxuo7z1e4fTOeXlf9gFbciz6hmskgLypGNUsqsjIRVkVRaqwDeuAyp3OzHISnhRQz4Ys5HqypzZ6CIlDcKYG-VRJVfFhYVYkVOkVEXLIDX68T667Cf_2vFXbiXOGlGr5Pcg0E778w-AqZWvvBz4hYethAP
  priority: 102
  providerName: Unpaywall
Title A Quantum-Behaved Particle Swarm Optimization Algorithm on Riemannian Manifolds
URI https://www.proquest.com/docview/2739440985
https://www.mdpi.com/2227-7390/10/22/4168/pdf?version=1669024991
https://doaj.org/article/9fa764d5b83849828445fb0afc0bcddc
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central (ProQuest)
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEC50PegexCe2rkMOPg7SbD-S7uTYKzsuwsyOqwPrKeTpDvT0LPNg8d9b6e4dGkS9eEwoQqVSqaoPUl8A3nCNZbLxSWyYyGOsiPNYG6XjMrfMK6GZ86EbeTItzub08yW7HHz1Fd6EdfTAneGOhVdlQS3TPOdUID6glHmdKG8Sbaw1IfomXAzAVBuDRRrEu5fuOeL6Y6z_rlr6tDSwqg5yUEvV_3tAPoT7u-Za_bxRdT3IOONH8LAvFUnVqfgY7rjmCRxO9jyrm6dwXpEvO7TNbhm3RIfOklm_JfL1Rq2X5BxDwrLvtSRV_WO1XmyvlgQHFwtcpmnQPchENQu_qu3mGczHp98-nsX9FwmxwUy8janOhLFF6hAYWJpqqhEVOmZT5jJV5KXPtDUiKxT11JXOCMz_PpDMO156q1T-HA6aVeNeAFFpollodXXC0FLjMi7RpUpy7jPutI_gw63RpOn5w8M3FrVEHBFMLIcmjuDtXvq64834g9xJsP9eJrBdtxPoA7I3mPyXD0TwPpyeDHcSVTKqby3AjQV2K1mVgdYQgWgSwdHtAcv-sm4kVnCCIs7lLIJ3-0P_q9ov_4far-ABll-sfQfEj-Bgu96511jibPUI7vLxpxHcOzmdzi5GrW_jaD6dVd9_AcIl_uM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEB5ROFAOqE_VLW33UNpDZeHH-rEHVIUWFAoJlILEzd0nIDlOyEMRf66_rbPO2o1UlRtHW6vRemY8D3u_bwA-5ALLZGkCXyYs9rEijn0hufCzWCWGM5FoY9HIvX7avaDfL5PLFfjdYGHsscomJtaBWg2l_Ua-g2mWUWxG8uTL6Na3U6Ps39VmhAZ3oxXUbk0x5oAdR_puji3cZPfwG9p7O4oO9s-_dn03ZcCXmMymPhURkyoNNdbWioaCCmysdKLCREc8jTMTCSVZlHJqqM60ZJhCjeVp13lmFOcxyn0EazSmDJu_tb39_ulZ-5XHsm7mlC1O3McxC3awDr2uadxCy-66lAvrkQH_JoYNWJ9VI34352W5lPkOnsCmK1lJZ-FjT2FFV89go9fyvU6ew0mH_JihjWYDvyZc1IqcOp8kP-d8PCAnGJoGDvNJOuUVqnZ6PSB4cXaDYqoK3ZT0eHVjhqWavICLB1HiS1ithpV-BYSHgUgs5FYzSTOBYnQgMh7EuYlyLYwHnxulFdLxmNtxGmWB_YxVcbGsYg-229WjBX_Hf9btWf23ayzrdn1jOL4qnMIKZniWUpWI3BoVe1VKEyMCbmQgpFLSg0_WeoWNDbglyR3EAR_MsmwVnczSK2JDHHiw1Ri4cEFjUvx1cQ8-tka_d9uv75fzHta7573j4viwf_QGHkcWulHjKLdgdTqe6bdYUE3FO-e1BH499IvyB0FfNX4
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IJ7CpcAeKByQFT_Wjz0gFCihpaQt0Eq9mX22lRwnzUNR_xq_jhnHDpEQvfVoa7Vaz8zOY73fNwCvc4VpsnaBrxMR-5gRx77SUvlZbBInhUqsIzRy_yDdPeFfT5PTNfjdYmHoWmXrE2tHbYaazsg7GGYFx2IkTzquuRZxtNP7MLr0qYMU_Wlt22ksTGTfXs2xfJu839tBXW9HUe_z8addv-kw4GsMZFOfq0hok4YW82rDQ8UVFlU2MWFiI5nGmYuU0SJKJXfcZlYLDJ-OONptnjkjZYzz3oLbGbG4E0q992V5vkN8mzkXi7v2cSyCDmag5zWBW0i8ritRsG4W8G9I2IC7s2okr-ayLFdiXu8B3G-SVdZdWNdDWLPVI9joL5leJ4_hsMu-z1A7s4FfUy1aw44aa2Q_53I8YIfolAYN2pN1yzMU5PR8wPDhxwVOU1VooKwvqws3LM3kCZzciAifwno1rOwzYDIMVEJgWys0zxROYwOVySDOXZRb5Tx41wqt0A2DOTXSKAusZEjExaqIPdhejh4tmDv-M-4jyX85hvi26xfD8VnRCKwQTmYpN4nKSalYpXKeOBVIpwOljdEevCXtFeQVcElaNuAG_DDi1yq6GRErYikceLDVKrho3MWk-GvcHrxZKv3aZW9eP88ruIPbo_i2d7D_HO5FhNmoAZRbsD4dz-wLzKSm6mVtsgx-3fQe-QPRtTMY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swGP0Y6cPWh3VX5rUdetjlYbj1RbKtp-KNlTJI210C3ZPRtQ1znJDYK-uv7ydHCWFjY7BHGUnI_j5J5xidI4CXhUSYrGwUKsbTEBFxGkolZJinmlnBJTPWqZGHp9nJiH68YBcbKn53rBKp-LhfpJ1OE1vxCOc2Fg4RPBSHM22Pfvh_SXGG5A4JhJOvb2UM0fgAtkan5-U3d6fcqvXyvHvq-kEUeNWbqMXOW3VjJ-oN-39flrfhbtfMxM9rUdcb-87xDojViJfHTb4fdK08UDe_mDn-zys9gPselJJymUUP4Y5pHsH2cO3oungMZyX51GEUuknYWyoaTc591pEv12I-IWe4-Ey8qpOU9eV0Pm6vJgQLn8fYTdNgIpKhaMZ2WuvFExgdf_j6_iT0lzGECvf8NqQy4UpnsUEKomksqUT-aZiOmUlEluY2kVrxJBPUUpMbxRFpWGdnb4rcaiHSpzBopo15BkTEkWROVGu4ornEbkwkcxGlhU0KI20Ab1eBqZR3KncXZtQVMhYXxmozjAG8WteeLR06_lDvnYvxuo7z1e4fTOeXlf9gFbciz6hmskgLypGNUsqsjIRVkVRaqwDeuAyp3OzHISnhRQz4Ys5HqypzZ6CIlDcKYG-VRJVfFhYVYkVOkVEXLIDX68T667Cf_2vFXbiXOGlGr5Pcg0E778w-AqZWvvBz4hYethAP
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Quantum-Behaved+Particle+Swarm+Optimization+Algorithm+on+Riemannian+Manifolds&rft.jtitle=Mathematics+%28Basel%29&rft.au=Yeerjiang+Halimu&rft.au=Chao+Zhou&rft.au=Qi+You&rft.au=Jun+Sun&rft.date=2022-11-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=22&rft.spage=4168&rft_id=info:doi/10.3390%2Fmath10224168&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_9fa764d5b83849828445fb0afc0bcddc
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon