On the discrete logarithm problem for prime-field elliptic curves
•A new index calculus for the Elliptic Curve Discrete Logarithm Problem is proposed.•The algorithm works for any finite field and it exploits summation polynomials.•Just one relation among points of the factor base needs to be found.•The linear algebra step is avoided.•Its improvement is evident for...
Saved in:
| Published in | Finite fields and their applications Vol. 51; pp. 168 - 182 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Inc
01.05.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1071-5797 1090-2465 1090-2465 |
| DOI | 10.1016/j.ffa.2018.01.009 |
Cover
| Abstract | •A new index calculus for the Elliptic Curve Discrete Logarithm Problem is proposed.•The algorithm works for any finite field and it exploits summation polynomials.•Just one relation among points of the factor base needs to be found.•The linear algebra step is avoided.•Its improvement is evident for the prime-field case.
In recent years several papers have appeared that investigate the classical discrete logarithm problem for elliptic curves by means of the multivariate polynomial approach based on the celebrated summation polynomials, introduced by Semaev in 2004. With a notable exception by Petit et al. in 2016, all numerous papers on the subject have investigated only the composite-field case, leaving apart the laborious prime-field case. In this paper we propose a variation of Semaev's original approach that reduces to only one the relations to be found among points of the factor base, thus decreasing drastically the necessary Groebner basis computations. Our proposal holds for any finite field but it is particularly suitable for the prime-field case, where it outperforms both the original Semaev's method and the specialised algorithm by Petit et al.. |
|---|---|
| AbstractList | •A new index calculus for the Elliptic Curve Discrete Logarithm Problem is proposed.•The algorithm works for any finite field and it exploits summation polynomials.•Just one relation among points of the factor base needs to be found.•The linear algebra step is avoided.•Its improvement is evident for the prime-field case.
In recent years several papers have appeared that investigate the classical discrete logarithm problem for elliptic curves by means of the multivariate polynomial approach based on the celebrated summation polynomials, introduced by Semaev in 2004. With a notable exception by Petit et al. in 2016, all numerous papers on the subject have investigated only the composite-field case, leaving apart the laborious prime-field case. In this paper we propose a variation of Semaev's original approach that reduces to only one the relations to be found among points of the factor base, thus decreasing drastically the necessary Groebner basis computations. Our proposal holds for any finite field but it is particularly suitable for the prime-field case, where it outperforms both the original Semaev's method and the specialised algorithm by Petit et al.. |
| Author | Sala, Massimiliano Pintore, Federico Amadori, Alessandro |
| Author_xml | – sequence: 1 givenname: Alessandro surname: Amadori fullname: Amadori, Alessandro email: a.amadori@tue.nl organization: Department of Mathematics and Computer Science, Technische Universiteit Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands – sequence: 2 givenname: Federico orcidid: 0000-0002-7985-3131 surname: Pintore fullname: Pintore, Federico email: federico.pintore@unitn.it, federico.pintore@gmail.com organization: Department of Mathematics, University of Trento, 38123 Trento, Italy – sequence: 3 givenname: Massimiliano orcidid: 0000-0002-7266-5146 surname: Sala fullname: Sala, Massimiliano email: maxsalacodes@gmail.com organization: Department of Mathematics, University of Trento, 38123 Trento, Italy |
| BookMark | eNqN0L1qwzAQwHFRUmia9gG6-QXs3jmyZNMphH5BIEs7C1k6NwqKHWQlJW9fm3TqEDrpQPyO43_LJm3XEmMPCBkCisdt1jQ6ywHLDDADqK7YFKGCNOeimIyzxLSQlbxht32_BUAs5uWULdZtEjeUWNebQJES333p4OJml-xDV3vaJU0XhtntKG0ceZuQ924fnUnMIRypv2PXjfY93f--M_b58vyxfEtX69f35WKVGg4ippyLkpO1VS04lsIWsuYapdZkAcmgtmS5BEmFgNrYgkA081qWYvgzkJv5jOXnvYd2r0_f2ns1XqXDSSGoMYLaqiGCGiMoQDVEGBCekQld3wdq_mXkH2Nc1NF1bQza-Yvy6Sxp6HB0FFRvHLWGrAtkorKdu6B_AGgBibY |
| CitedBy_id | crossref_primary_10_52846_ami_v50i2_1689 crossref_primary_10_3390_sym13081314 crossref_primary_10_1515_jmc_2019_0029 crossref_primary_10_2478_tmmp_2024_0021 crossref_primary_10_1016_j_ffa_2024_102452 crossref_primary_10_3390_math8081344 |
| Cites_doi | 10.1016/j.jsc.2008.08.005 10.1109/18.259647 10.1007/s00145-013-9158-5 10.1112/S0010437X10005075 10.1007/s10623-015-0146-7 10.1090/S0025-5718-1987-0866109-5 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. |
| Copyright_xml | – notice: 2018 Elsevier Inc. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.ffa.2018.01.009 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1090-2465 |
| EndPage | 182 |
| ExternalDocumentID | oai:pure.tue.nl:publications/3fc32d51-a08d-4589-b923-a4619ca167d0 10_1016_j_ffa_2018_01_009 S1071579718300091 |
| GrantInformation_xml | – fundername: CARITRO Foundation grantid: 2014.0500 – fundername: Ministry of Education, Universities and Research grantid: 2015TW9LSR funderid: https://doi.org/10.13039/501100003407 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABFNM ABJNI ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE IXB J1W KOM LG5 M41 MCRUF MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSW SSZ T5K TN5 XPP ZMT ZU3 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c406t-44684edd9b64186d57b4a17aaed01ec1aded4707e560bcd5e06f3b786ec1c02c3 |
| IEDL.DBID | UNPAY |
| ISSN | 1071-5797 1090-2465 |
| IngestDate | Sun Oct 26 03:43:22 EDT 2025 Thu Apr 24 23:13:06 EDT 2025 Wed Oct 01 04:15:04 EDT 2025 Fri Feb 23 02:30:20 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Summation polynomials 14G15 11T71 11Y16 Prime field Groebner basis 13P10 14H52 Elliptic curve 11G20 Discrete logarithm problem (DLP) |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-44684edd9b64186d57b4a17aaed01ec1aded4707e560bcd5e06f3b786ec1c02c3 |
| ORCID | 0000-0002-7266-5146 0000-0002-7985-3131 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://eprint.iacr.org/2017/609 |
| PageCount | 15 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ffa_2018_01_009 crossref_primary_10_1016_j_ffa_2018_01_009 crossref_citationtrail_10_1016_j_ffa_2018_01_009 elsevier_sciencedirect_doi_10_1016_j_ffa_2018_01_009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | May 2018 2018-05-00 |
| PublicationDateYYYYMMDD | 2018-05-01 |
| PublicationDate_xml | – month: 05 year: 2018 text: May 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Finite fields and their applications |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc |
| Publisher_xml | – name: Elsevier Inc |
| References | Galbraith, Gaudry (br0060) 2016; 78 Joux, Vitse (br0110) 2013 Gaudry (br0080) 2009; 44 Faugère, Perret, Petit, Renault (br0050) 2012 I. Semaev, Summation polynomials and the discrete logarithm problem on elliptic curves, IACR Cryptology ePrint Archive, 2004/31. Diem (br0020) 2011; 147 Petit, Quisquater (br0180) 2012 Faugère, Gaudry, Huot, Renault (br0030) 2014; 27 Galbraith, Gebregiyorgis (br0070) 2014 Huang, Petit, Shinohara, Takagi (br0090) 2013 Menezes, Vanstone, Okamoto (br0140) 1993; 39 Miller (br0150) 1985 Y.J. Huang, C. Petit, N. Shinohara, T. Takagi, On generalized first fall degree assumptions, IACR Cryptology ePrint Archive, 2015/358. Karabina (br0120) 2015 Semaev (br0210) 2015 Petit, Kosters, Messeng (br0170) 2016 Shantz, Teske (br0220) 2013 Diem (br0010) May 2006 Nakamoto (br0160) 2008 Faugère, Huot, Joux, Renault, Vitse (br0040) 2014 Pollard (br0190) 1978; 32 Koblitz (br0130) 1987; 48 Galbraith (10.1016/j.ffa.2018.01.009_br0060) 2016; 78 Menezes (10.1016/j.ffa.2018.01.009_br0140) 1993; 39 Shantz (10.1016/j.ffa.2018.01.009_br0220) 2013 Faugère (10.1016/j.ffa.2018.01.009_br0050) 2012 Karabina (10.1016/j.ffa.2018.01.009_br0120) 2015 Miller (10.1016/j.ffa.2018.01.009_br0150) 1985 Gaudry (10.1016/j.ffa.2018.01.009_br0080) 2009; 44 Diem (10.1016/j.ffa.2018.01.009_br0010) 2006 10.1016/j.ffa.2018.01.009_br0100 10.1016/j.ffa.2018.01.009_br0200 Pollard (10.1016/j.ffa.2018.01.009_br0190) 1978; 32 Joux (10.1016/j.ffa.2018.01.009_br0110) 2013 Petit (10.1016/j.ffa.2018.01.009_br0180) 2012 Faugère (10.1016/j.ffa.2018.01.009_br0030) 2014; 27 Nakamoto (10.1016/j.ffa.2018.01.009_br0160) Petit (10.1016/j.ffa.2018.01.009_br0170) 2016 Faugère (10.1016/j.ffa.2018.01.009_br0040) 2014 Diem (10.1016/j.ffa.2018.01.009_br0020) 2011; 147 Semaev (10.1016/j.ffa.2018.01.009_br0210) Koblitz (10.1016/j.ffa.2018.01.009_br0130) 1987; 48 Huang (10.1016/j.ffa.2018.01.009_br0090) 2013 Galbraith (10.1016/j.ffa.2018.01.009_br0070) 2014 |
| References_xml | – year: 1985 ident: br0150 article-title: Use of elliptic curves in cryptography publication-title: Conference on the Theory and Application of Cryptographic Techniques – start-page: 115 year: 2013 end-page: 132 ident: br0090 article-title: Improvement of Faugère et al.'s, method to solve ECDLP publication-title: International Workshop on Security – start-page: 94 year: 2013 end-page: 107 ident: br0220 article-title: Solving the elliptic curve discrete logarithm problem using Semaev polynomials, Weil descent and Groebner basis methods. An experimental study publication-title: Number Theory and Cryptography – year: May 2006 ident: br0010 article-title: On the subexponentiality of the elliptic curve discrete logarithm problem over extension fields publication-title: Workshop “Grobner Bases in Cryptography, Coding Theory, and Algebraic Combinatorics” organised by Mikhail Klin, Ludovic Perret, Massimiliano Sala – year: 2012 ident: br0050 article-title: Improving the complexity of index calculus algorithms in elliptic curves over binary fields publication-title: Annual International Conference on the Theory and Applications of Cryptographic Techniques – start-page: 409 year: 2014 end-page: 427 ident: br0070 article-title: Summation polynomial algorithms for elliptic curves in characteristic two publication-title: International Conference in Cryptology in India – start-page: 40 year: 2014 end-page: 57 ident: br0040 article-title: Symmetrized summation polynomials: using small order torsion points to speed up elliptic curve index calculus publication-title: Annual International Conference on the Theory and Applications of Cryptographic Techniques – volume: 44 start-page: 1690 year: 2009 end-page: 1702 ident: br0080 article-title: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem publication-title: J. Symb. Comput. – volume: 48 start-page: 203 year: 1987 end-page: 209 ident: br0130 article-title: Elliptic curves cryptosystems publication-title: Math. Comput. – volume: 147 start-page: 75 year: 2011 end-page: 104 ident: br0020 article-title: On the discrete logarithm problem in elliptic curves publication-title: Compos. Math. – year: 2015 ident: br0210 article-title: New algorithm for the discrete logarithm problem on elliptic curves – year: 2015 ident: br0120 article-title: Point decomposition problem in binary elliptic curves publication-title: International Conference on Information Security and Cryptology – start-page: 451 year: 2012 end-page: 466 ident: br0180 article-title: On polynomial systems arising from a Weil descent publication-title: International Conference on the Theory and Application of Cryptology and Information Security – volume: 32 start-page: 918 year: 1978 end-page: 924 ident: br0190 article-title: Monte Carlo methods for index computation mod publication-title: Math. Comput. – start-page: 1 year: 2013 end-page: 25 ident: br0110 article-title: Elliptic curve discrete logarithm problem over small degree extension fields publication-title: J. Cryptol. – start-page: 3 year: 2016 end-page: 18 ident: br0170 article-title: Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields publication-title: IACR International Workshop on Public Key Cryptography – volume: 27 start-page: 595 year: 2014 end-page: 635 ident: br0030 article-title: Using symmetries in the index calculus for elliptic curves discrete logarithm publication-title: J. Cryptol. – volume: 39 start-page: 1639 year: 1993 end-page: 1646 ident: br0140 article-title: Reducing elliptic curve logarithms to logarithms in a finite field publication-title: IEEE Trans. Inf. Theory – year: 2008 ident: br0160 article-title: Bitcoin: a peer-to-peer electronic cash system – reference: Y.J. Huang, C. Petit, N. Shinohara, T. Takagi, On generalized first fall degree assumptions, IACR Cryptology ePrint Archive, 2015/358. – reference: I. Semaev, Summation polynomials and the discrete logarithm problem on elliptic curves, IACR Cryptology ePrint Archive, 2004/31. – volume: 78 start-page: 51 year: 2016 end-page: 72 ident: br0060 article-title: Recent progress on the elliptic curve discrete logarithm problem publication-title: Des. Codes Cryptogr. – volume: 44 start-page: 1690 issue: 12 year: 2009 ident: 10.1016/j.ffa.2018.01.009_br0080 article-title: Index calculus for abelian varieties of small dimension and the elliptic curve discrete logarithm problem publication-title: J. Symb. Comput. doi: 10.1016/j.jsc.2008.08.005 – year: 2015 ident: 10.1016/j.ffa.2018.01.009_br0120 article-title: Point decomposition problem in binary elliptic curves – ident: 10.1016/j.ffa.2018.01.009_br0200 – start-page: 451 year: 2012 ident: 10.1016/j.ffa.2018.01.009_br0180 article-title: On polynomial systems arising from a Weil descent – year: 2012 ident: 10.1016/j.ffa.2018.01.009_br0050 article-title: Improving the complexity of index calculus algorithms in elliptic curves over binary fields – volume: 39 start-page: 1639 issue: 5 year: 1993 ident: 10.1016/j.ffa.2018.01.009_br0140 article-title: Reducing elliptic curve logarithms to logarithms in a finite field publication-title: IEEE Trans. Inf. Theory doi: 10.1109/18.259647 – start-page: 1 year: 2013 ident: 10.1016/j.ffa.2018.01.009_br0110 article-title: Elliptic curve discrete logarithm problem over small degree extension fields publication-title: J. Cryptol. – start-page: 3 year: 2016 ident: 10.1016/j.ffa.2018.01.009_br0170 article-title: Algebraic approaches for the elliptic curve discrete logarithm problem over prime fields – year: 2006 ident: 10.1016/j.ffa.2018.01.009_br0010 article-title: On the subexponentiality of the elliptic curve discrete logarithm problem over extension fields – volume: 27 start-page: 595 issue: 4 year: 2014 ident: 10.1016/j.ffa.2018.01.009_br0030 article-title: Using symmetries in the index calculus for elliptic curves discrete logarithm publication-title: J. Cryptol. doi: 10.1007/s00145-013-9158-5 – volume: 147 start-page: 75 year: 2011 ident: 10.1016/j.ffa.2018.01.009_br0020 article-title: On the discrete logarithm problem in elliptic curves publication-title: Compos. Math. doi: 10.1112/S0010437X10005075 – ident: 10.1016/j.ffa.2018.01.009_br0210 – volume: 78 start-page: 51 issue: 1 year: 2016 ident: 10.1016/j.ffa.2018.01.009_br0060 article-title: Recent progress on the elliptic curve discrete logarithm problem publication-title: Des. Codes Cryptogr. doi: 10.1007/s10623-015-0146-7 – volume: 48 start-page: 203 issue: 177 year: 1987 ident: 10.1016/j.ffa.2018.01.009_br0130 article-title: Elliptic curves cryptosystems publication-title: Math. Comput. doi: 10.1090/S0025-5718-1987-0866109-5 – start-page: 40 year: 2014 ident: 10.1016/j.ffa.2018.01.009_br0040 article-title: Symmetrized summation polynomials: using small order torsion points to speed up elliptic curve index calculus – start-page: 115 year: 2013 ident: 10.1016/j.ffa.2018.01.009_br0090 article-title: Improvement of Faugère et al.'s, method to solve ECDLP – ident: 10.1016/j.ffa.2018.01.009_br0100 – volume: 32 start-page: 918 issue: 143 year: 1978 ident: 10.1016/j.ffa.2018.01.009_br0190 article-title: Monte Carlo methods for index computation mod p publication-title: Math. Comput. – start-page: 409 year: 2014 ident: 10.1016/j.ffa.2018.01.009_br0070 article-title: Summation polynomial algorithms for elliptic curves in characteristic two – ident: 10.1016/j.ffa.2018.01.009_br0160 – start-page: 94 year: 2013 ident: 10.1016/j.ffa.2018.01.009_br0220 article-title: Solving the elliptic curve discrete logarithm problem using Semaev polynomials, Weil descent and Groebner basis methods. An experimental study – year: 1985 ident: 10.1016/j.ffa.2018.01.009_br0150 article-title: Use of elliptic curves in cryptography |
| SSID | ssj0011538 |
| Score | 2.203835 |
| Snippet | •A new index calculus for the Elliptic Curve Discrete Logarithm Problem is proposed.•The algorithm works for any finite field and it exploits summation... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 168 |
| SubjectTerms | Discrete logarithm problem (DLP) Elliptic curve Groebner basis Prime field Summation polynomials |
| SummonAdditionalLinks | – databaseName: Elsevier ScienceDirect dbid: .~1 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA7Fi3oQn1hf5OBJid10s5vdYymWIlQPWugt5ImVdi19KF787U72hYJU8LbZTcgy2f3mC_lmBqFLGiopE6mIZGmbgIdwRFpniFMB48aG4DJ8NPLgPu4P2d0oGjVQt4qF8bLKEvsLTM_RurzTKq3Zmo3HrUfYuNCIpwCuoWcKeQQ7476Kwc1nLfOg_o8udIeU-N7VyWau8XLOpx6iSZ6502sSf_dNm6tsJj_e5WTyzff0dtFOSRpxp3ivPdSw2T7aHtQZVxcHqPOQYWhiH2U7ByKMAdNgG7x8nuKyZgwGegrX46kluWwN-1ScABga69X8zS4O0bB3-9Ttk7I8AtHghZcENnIJs8akKmY0iU3EFZOUS2lNQK2m0ljDeMAtkBqlTWSD2IWKJzE800Fbh0doI3vN7DHCiTZOScU5t5yloUva3DgXWG0sjTVjTRRUhhG6zB3uS1hMRCUSexFgS-FtKQIqwJZNdFUPmRWJM9Z1ZpW1xY_VFwDs64Zd1yvz9yQn_5vkFG35ViFyPEMby_nKngMRWaqL_Ev7AjWK25U priority: 102 providerName: Elsevier |
| Title | On the discrete logarithm problem for prime-field elliptic curves |
| URI | https://dx.doi.org/10.1016/j.ffa.2018.01.009 https://eprint.iacr.org/2017/609 |
| UnpaywallVersion | submittedVersion |
| Volume | 51 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1090-2465 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011538 issn: 1090-2465 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1090-2465 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0011538 issn: 1090-2465 databaseCode: IXB dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1090-2465 dateEnd: 20211031 omitProxy: true ssIdentifier: ssj0011538 issn: 1090-2465 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1090-2465 dateEnd: 20211031 omitProxy: true ssIdentifier: ssj0011538 issn: 1090-2465 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1090-2465 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011538 issn: 1090-2465 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1090-2465 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011538 issn: 1090-2465 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxELZKckAcWspDtILIh55Ajuxdr705BkSVUjVwIFI4rfwYC0q6rZJNq_bQ397xPiKEUFBva62tWXksz-f1N98QciRSa0xuLDNylDCMEIEZCJ4Fy6X2kGLIiNnIZ1M1mckv82y-Q2iXCwPxdxYaNW5Z3-MnUd9ZxQy9vsoQbfdIfzb9Nv7RUAkFy3RTP4WPOEukyrqLy5rCFUJUFhJ5LcwZKYf_Dj1P1-WVub0xi8UfoeV4r6E4rmpFwsgo-T1cV3bo7v7Sa9z21c_Jbosr6bhZCPtkB8oX5NnZRpR19ZKMv5YUmzQm4i4RK1O0gCfl6ucFbcvKUESw-PzrAljNbKNRrRP3FEfdenkNq1dkdvz5-6cJaysoMIeBumJ41ssleD-ySopc-UxbaYQ2BjwX4ITx4KXmGhD3WOcz4CqkVucK3zmeuPQ16ZWXJbwhNHc-WGO11qDlKA15on0IHJwHoZyUB4R3k1u4Vl48VrlYFB2P7LxAfxTRHwUXBfrjgLzfDLlqtDW2dZadx4oWHDRBv8C9f9uwDxvv_t_I4aN6vyW9armGd4hKKjsgT4b3YkD645PTyRRbJ_OPg3axPgA4JeUl |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELUQHIADYhVl9YETyDRunDg5IkRVlpYDVOrN8iqK2lB1AXHh2xlnqUBCIHFLYluOxsmbN_KbMUInNFRSJlIRydIGAQ_hiLTOEKcCxo0NwWX4bOR2J2512U0v6i2gyyoXxssqS-wvMD1H6_JJvbRmfdTv1x8gcKERTwFcQ88UIARaYlGD-wjs_GOu86D-ly6Eh5T47tXWZi7ycs7XHqJJXrrTixJ_dk7Ls2wk39_kYPDF-TTX0VrJGvFF8WIbaMFmm2i1PS-5OtlCF_cZhlvs02zHwIQxgBrEwdOnIS4PjcHAT-G6P7Qk161hX4sTEENjPRu_2sk26javHi9bpDwfgWhww1MCkVzCrDGpihlNYhNxxSTlUloTUKupNNYwHnALrEZpE9kgdqHiSQxtOmjocActZi-Z3UU40cYpqTjnlrM0dEmDG-cCq42lsWashoLKMEKXxcP9GRYDUanEngXYUnhbioAKsGUNnc6HjIrKGb91ZpW1xbflF4Dsvw07m6_M35Ps_W-SY7Tcemzfibvrzu0-WvEtheLxAC1OxzN7CKxkqo7yr-4TVGXeuA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1da9swFBUleSh76PpJM9qhhz1tqEi2LDmPobSUQbM9LNA9GX1csbaJGxKnpf31vfJHKGOk7M3GEjK-QufIOvdcQr6I1BqTG8uMHCYMESIwA8GzYLnUHlKEjJiNfD1WVxP5_Sa72SK0y4WB-DsLBzVuUZ_jJ9HfWcUMvb7KkG33SH8y_jn63UgJBct0Uz-FDzlLpMq6g8tawhVCdBYSeW3MGSWH_4ae7VU5N89PZjp9Ay2XHxuJ47J2JIyKkvuzVWXP3Mtffo2b3nqX7LS8ko6aibBHtqDcJx-u16asywMy-lFSvKUxEXeBXJniCLhTrv7MaFtWhiKDxevbGbBa2UajWyeuKY661eIRlodkcnnx6_yKtRUUmEOgrhju9XIJ3g-tkiJXPtNWGqGNAc8FOGE8eKm5BuQ91vkMuAqp1bnCZ44nLj0ivfKhhGNCc-eDNVZrDVoO05An2ofAwXkQykk5ILz7uIVr7cVjlYtp0enI7gqMRxHjUXBRYDwG5Ou6y7zx1tjUWHYRK1py0IB-gWv_pm7f1tF9f5BP_9X6hPSqxQpOkZVU9nM7MV8Be0HhlQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+discrete+logarithm+problem+for+prime-field+elliptic+curves&rft.jtitle=Finite+fields+and+their+applications&rft.au=Amadori%2C+Alessandro&rft.au=Pintore%2C+Federico&rft.au=Sala%2C+Massimiliano&rft.date=2018-05-01&rft.issn=1071-5797&rft.volume=51&rft.spage=168&rft.epage=182&rft_id=info:doi/10.1016%2Fj.ffa.2018.01.009&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ffa_2018_01_009 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1071-5797&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1071-5797&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1071-5797&client=summon |