Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms

This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classifi...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 11; no. 19; p. 4104
Main Authors Štěpánek, Lubomír, Dlouhá, Jana, Martinková, Patrícia
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2023
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math11194104

Cover

Abstract This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classification tasks, including regularization methods, support vector machines, trees, random forests, back-propagation neural networks, and Naïve Bayes; moreover, the ML algorithms are compared to the performance of domain experts. Using f-fold cross-validation and considering the root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches in a continuous item difficulty prediction. Within classifiers, random forests returned the highest extended predictive accuracy. We demonstrate that the ML algorithms implementing item text features can compete with predictions made by domain experts, and we suggest that they should be used to inform and improve these predictions, especially when item pre-testing is limited or unavailable. Future research is needed to study the performance of the ML algorithms using item text features on different item types and respondent populations.
AbstractList This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classification tasks, including regularization methods, support vector machines, trees, random forests, back-propagation neural networks, and Naïve Bayes; moreover, the ML algorithms are compared to the performance of domain experts. Using f-fold cross-validation and considering the root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches in a continuous item difficulty prediction. Within classifiers, random forests returned the highest extended predictive accuracy. We demonstrate that the ML algorithms implementing item text features can compete with predictions made by domain experts, and we suggest that they should be used to inform and improve these predictions, especially when item pre-testing is limited or unavailable. Future research is needed to study the performance of the ML algorithms using item text features on different item types and respondent populations.
Audience Academic
Author Martinková, Patrícia
Dlouhá, Jana
Štěpánek, Lubomír
Author_xml – sequence: 1
  givenname: Lubomír
  orcidid: 0000-0002-8308-4304
  surname: Štěpánek
  fullname: Štěpánek, Lubomír
– sequence: 2
  givenname: Jana
  orcidid: 0000-0001-8396-2069
  surname: Dlouhá
  fullname: Dlouhá, Jana
– sequence: 3
  givenname: Patrícia
  orcidid: 0000-0003-4754-8543
  surname: Martinková
  fullname: Martinková, Patrícia
BookMark eNp9kUGP0zAQhSO0SCzL3vgBkbiSxbGdOOZWFRYqFbGH3bM1ccatq8QutgtU4sfjNmi1QgL7YGv8vafxvJfFhfMOi-J1TW4Yk-TdBGlb17XkNeHPiktKqahEfrh4cn9RXMe4I3nJmnVcXha_Vgmn8oM1xurDmI7lXcDB6mS9Kx-idZvyDNzjz1TeIqRDwPi-XPppD8HGDHnzKPmO5R0G48METmMJOvgYyy-gt9ZhtUYI7mS4GDc-2LSd4qviuYEx4vWf86p4uP14v_xcrb9-Wi0X60pz0qaKM9MOUBtJZCegJ6TTnRYd6ppJwYA3PYIBoMBRaAEdik6wgdEOgLCOcHZVrGbfwcNO7YOdIByVB6vOBR82CkKyekTVtgYYNND0lHMiCFBjpAFDeA_YU5m9qtnr4PZw_AHj-GhYE3VKQj1NIvNvZn4f_LcDxqR2_hBc_q6inWgbJnkrMnUzUxvITVhnfAqg8x5wsjoHbWyuL4SgeQYNOQnoLDgPOaBR2iY4xZaFdvxXL2__Ev239d-847sX
CitedBy_id crossref_primary_10_1016_j_rmal_2024_100143
crossref_primary_10_1177_00131644241299834
crossref_primary_10_3390_math12030497
crossref_primary_10_3758_s13428_025_02625_2
crossref_primary_10_1111_jedm_12426
Cites_doi 10.1109/64.54672
10.1201/9781003054313
10.1111/rssa.12681
10.1109/ICAETR.2014.7012785
10.3389/fgene.2022.992070
10.1007/s40593-021-00267-x
10.3389/feduc.2020.572367
10.1007/978-3-319-78890-6_3
10.1109/TIT.1956.1056813
10.1080/08957347.2022.2103135
10.1177/00131644221098021
10.1023/A:1007465528199
10.1007/BF00139259
10.1214/aoms/1177731716
10.1145/3292500.3330900
10.1016/j.ipm.2018.06.007
10.1111/j.1467-9868.2005.00503.x
10.32614/RJ-2020-014
10.1111/j.2517-6161.1996.tb02080.x
10.1080/00401706.2020.1801256
10.1007/978-3-030-74394-9
10.1371/journal.pone.0254340
10.1016/j.learninstruc.2019.101286
10.1007/978-3-030-74394-9_14
10.18653/v1/W19-4402
10.1111/j.1365-2923.2012.04289.x
10.1162/tacl_a_00310
10.1007/BF02478259
10.1007/s40593-019-00180-4
10.18653/v1/N18-1021
10.1007/s11192-018-2848-x
10.18653/v1/2020.bea-1.20
10.1187/cbe.16-10-0307
10.1201/9781003093459
10.21105/joss.00774
10.1017/S0269888997000015
10.2307/2110845
10.3389/frai.2022.903077
10.18637/jss.v033.i01
10.1109/IALP48816.2019.9037716
10.1007/978-1-0716-1418-1
10.1016/S0169-7161(06)26005-X
10.1201/9781315200620
10.15439/2017F380
10.1145/3357384.3358013
10.1093/bioinformatics/btq134
10.1007/978-3-642-61068-4
10.1007/978-0-387-84858-7
10.1016/j.envint.2019.104934
10.1016/j.ins.2013.12.060
10.1109/IGARSS.2015.7326942
10.7717/peerj-cs.986
10.1080/00401706.1970.10488634
10.1007/BF00994018
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math11194104
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central Essentials
ProQuest Central
Technology Collection (via ProQuest SciTech Premium Collection)
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database (Proquest)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_66fa3a5a5b244070a2ff9faf04baeb29
10.3390/math11194104
A772098507
10_3390_math11194104
GeographicLocations United Kingdom
Czech Republic
GeographicLocations_xml – name: United Kingdom
– name: Czech Republic
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-43f6da1f90987ab008c8c78ec13973a45beafaa2a4e7c7a8e7873d328aa038043
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Tue Oct 14 18:38:24 EDT 2025
Sun Oct 26 04:14:13 EDT 2025
Fri Jul 25 10:46:47 EDT 2025
Mon Oct 20 17:14:13 EDT 2025
Thu Oct 16 04:35:50 EDT 2025
Thu Apr 24 22:57:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-43f6da1f90987ab008c8c78ec13973a45beafaa2a4e7c7a8e7873d328aa038043
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4754-8543
0000-0002-8308-4304
0000-0001-8396-2069
OpenAccessLink https://www.proquest.com/docview/2876539467?pq-origsite=%requestingapplication%&accountid=15518
PQID 2876539467
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_66fa3a5a5b244070a2ff9faf04baeb29
unpaywall_primary_10_3390_math11194104
proquest_journals_2876539467
gale_infotracacademiconefile_A772098507
crossref_citationtrail_10_3390_math11194104
crossref_primary_10_3390_math11194104
PublicationCentury 2000
PublicationDate 2023-10-01
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Zou (ref_33) 2005; 67
ref_50
Chen (ref_60) 2019; 130
ref_58
ref_13
Friedman (ref_54) 2010; 33
Erosheva (ref_78) 2021; 184
ref_56
ref_55
Rutkowski (ref_40) 2014; 266
ref_52
ref_51
Schiffbaenker (ref_79) 2018; 117
Dong (ref_61) 2022; 13
ref_19
ref_17
ref_16
ref_15
Friedman (ref_35) 1997; 29
(ref_82) 2020; 12
McCulloch (ref_42) 1943; 5
Settles (ref_9) 2020; 8
ref_25
ref_69
ref_24
ref_68
Craig (ref_59) 1941; 12
ref_22
ref_66
ref_21
ref_65
ref_20
ref_64
ref_63
ref_62
ref_29
ref_28
ref_27
ref_26
Hsu (ref_73) 2018; 54
McLaughlin (ref_86) 1969; 12
ref_72
ref_71
ref_70
Gierl (ref_7) 2012; 46
Attali (ref_6) 2022; 5
Gopalakrishnan (ref_11) 2022; 6
ref_77
ref_32
Breslow (ref_39) 1997; 12
Bailer (ref_87) 1984; 16
ref_74
Chomsky (ref_23) 1956; 2
Liaw (ref_57) 2002; 2
ref_37
Kochmar (ref_10) 2022; 32
Fan (ref_34) 2020; 62
Tyack (ref_14) 2023; 83
Tibshirani (ref_30) 1996; 58
Hoerl (ref_31) 1970; 12
Benoit (ref_53) 2018; 3
McTavish (ref_75) 1990; 24
(ref_83) 2020; 66
Kaddoura (ref_12) 2022; 8
ref_47
Ferrara (ref_18) 2022; 35
ref_45
ref_44
ref_88
ref_43
Altmann (ref_46) 2010; 26
ref_41
ref_85
ref_84
ref_1
ref_3
Stipak (ref_76) 1982; 26
Pandarova (ref_67) 2019; 29
Gray (ref_38) 1990; 5
ref_49
ref_48
ref_8
Kumar (ref_2) 2020; 5
ref_5
Cortes (ref_36) 1995; 20
Liaw (ref_81) 2017; 16
ref_4
Rao (ref_80) 2006; 26
References_xml – volume: 5
  start-page: 41
  year: 1990
  ident: ref_38
  article-title: Capturing knowledge through top-down induction of decision trees
  publication-title: IEEE Expert
  doi: 10.1109/64.54672
– ident: ref_1
  doi: 10.1201/9781003054313
– volume: 184
  start-page: 904
  year: 2021
  ident: ref_78
  article-title: When zero may not be zero: A cautionary note on the use of inter-rater reliability in evaluating grant peer review
  publication-title: J. R. Stat. Soc. Ser. (Stat. Soc.)
  doi: 10.1111/rssa.12681
– ident: ref_49
– ident: ref_44
  doi: 10.1109/ICAETR.2014.7012785
– ident: ref_55
– volume: 2
  start-page: 18
  year: 2002
  ident: ref_57
  article-title: Classification and Regression by Random Forest
  publication-title: R News
– ident: ref_26
– ident: ref_51
– volume: 13
  start-page: 992070
  year: 2022
  ident: ref_61
  article-title: Deep learning methods may not outperform other machine learning methods on analyzing genomic studies
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2022.992070
– volume: 32
  start-page: 323
  year: 2022
  ident: ref_10
  article-title: Automated Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent Tutoring Systems
  publication-title: Int. J. Artif. Intell. Educ.
  doi: 10.1007/s40593-021-00267-x
– volume: 5
  start-page: 572367
  year: 2020
  ident: ref_2
  article-title: Explainable Automated Essay Scoring: Deep Learning Really Has Pedagogical Value
  publication-title: Front. Educ.
  doi: 10.3389/feduc.2020.572367
– ident: ref_62
  doi: 10.1007/978-3-319-78890-6_3
– ident: ref_84
– volume: 2
  start-page: 113
  year: 1956
  ident: ref_23
  article-title: Three models for the description of language
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1956.1056813
– volume: 35
  start-page: 237
  year: 2022
  ident: ref_18
  article-title: Response demands of reading comprehension test items: A review of item difficulty modeling studies
  publication-title: Appl. Meas. Educ.
  doi: 10.1080/08957347.2022.2103135
– ident: ref_65
– ident: ref_88
– volume: 83
  start-page: 556
  year: 2023
  ident: ref_14
  article-title: Scoring Graphical Responses in TIMSS 2019 Using Artificial Neural Networks
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/00131644221098021
– volume: 29
  start-page: 131
  year: 1997
  ident: ref_35
  article-title: Bayesian Network Classifiers
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007465528199
– ident: ref_58
– volume: 16
  start-page: 231
  year: 1984
  ident: ref_87
  article-title: Kreuzvalidierung und Neuberechnung von Lesbarkeitsformeln für die deutsche Sprache
  publication-title: Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie
– volume: 24
  start-page: 245
  year: 1990
  ident: ref_75
  article-title: Contextual content analysis
  publication-title: Qual. Quant.
  doi: 10.1007/BF00139259
– volume: 12
  start-page: 339
  year: 1941
  ident: ref_59
  article-title: A Note on Sheppard’s Corrections
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177731716
– ident: ref_8
– ident: ref_72
  doi: 10.1145/3292500.3330900
– ident: ref_4
– ident: ref_56
– volume: 54
  start-page: 969
  year: 2018
  ident: ref_73
  article-title: Automated estimation of item difficulty for multiple-choice tests: An application of word embedding techniques
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2018.06.007
– ident: ref_27
– ident: ref_52
– volume: 67
  start-page: 301
  year: 2005
  ident: ref_33
  article-title: Regularization and Variable Selection Via the Elastic Net
  publication-title: J. R. Stat. Soc. Ser. Stat. Methodol.
  doi: 10.1111/j.1467-9868.2005.00503.x
– ident: ref_48
– volume: 12
  start-page: 300
  year: 2020
  ident: ref_82
  article-title: difNLR: Generalized Logistic Regression Models for DIF and DDF Detection
  publication-title: R J.
  doi: 10.32614/RJ-2020-014
– volume: 58
  start-page: 267
  year: 1996
  ident: ref_30
  article-title: Regression Shrinkage and Selection Via the Lasso
  publication-title: J. R. Stat. Soc. Ser. (Methodol.)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 62
  start-page: 434
  year: 2020
  ident: ref_34
  article-title: Comment: Feature Screening and Variable Selection via Iterative Ridge Regression
  publication-title: Technometrics
  doi: 10.1080/00401706.2020.1801256
– ident: ref_41
– ident: ref_66
– ident: ref_16
  doi: 10.1007/978-3-030-74394-9
– ident: ref_13
  doi: 10.1371/journal.pone.0254340
– volume: 66
  start-page: 101286
  year: 2020
  ident: ref_83
  article-title: Is academic tracking related to gains in learning competence? Using propensity score matching and differential item change functioning analysis for better understanding of tracking implications
  publication-title: Learn. Instr.
  doi: 10.1016/j.learninstruc.2019.101286
– ident: ref_5
  doi: 10.1007/978-3-030-74394-9_14
– ident: ref_69
  doi: 10.18653/v1/W19-4402
– volume: 46
  start-page: 757
  year: 2012
  ident: ref_7
  article-title: Using automatic item generation to create multiple-choice test items
  publication-title: Med. Educ.
  doi: 10.1111/j.1365-2923.2012.04289.x
– ident: ref_20
– volume: 8
  start-page: 247
  year: 2020
  ident: ref_9
  article-title: Machine learning–driven language assessment
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00310
– volume: 5
  start-page: 115
  year: 1943
  ident: ref_42
  article-title: A logical calculus of the ideas immanent in nervous activity
  publication-title: Bull. Math. Biophys.
  doi: 10.1007/BF02478259
– volume: 29
  start-page: 342
  year: 2019
  ident: ref_67
  article-title: Predicting the Difficulty of Exercise Items for Dynamic Difficulty Adaptation in Adaptive Language Tutoring
  publication-title: Int. J. Artif. Intell. Educ.
  doi: 10.1007/s40593-019-00180-4
– volume: 6
  start-page: 891
  year: 2022
  ident: ref_11
  article-title: Online proctoring system using image processing and machine learning
  publication-title: Int. J. Health Sci.
– ident: ref_24
– ident: ref_3
  doi: 10.18653/v1/N18-1021
– ident: ref_47
– volume: 117
  start-page: 313
  year: 2018
  ident: ref_79
  article-title: Studying grant decision-making: A linguistic analysis of review reports
  publication-title: Scientometrics
  doi: 10.1007/s11192-018-2848-x
– ident: ref_70
  doi: 10.18653/v1/2020.bea-1.20
– volume: 16
  start-page: rm2
  year: 2017
  ident: ref_81
  article-title: Checking equity: Why differential item functioning analysis should be a routine part of developing conceptual assessments
  publication-title: CBE-Life Sci. Educ.
  doi: 10.1187/cbe.16-10-0307
– ident: ref_15
  doi: 10.1177/00131644221098021
– ident: ref_17
  doi: 10.1201/9781003093459
– volume: 3
  start-page: 774
  year: 2018
  ident: ref_53
  article-title: Quanteda: An R Package for the Quantitative Analysis of Textual Data
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.00774
– volume: 12
  start-page: 1
  year: 1997
  ident: ref_39
  article-title: Simplifying decision trees: A survey
  publication-title: Knowl. Eng. Rev.
  doi: 10.1017/S0269888997000015
– ident: ref_37
– ident: ref_63
– volume: 26
  start-page: 151
  year: 1982
  ident: ref_76
  article-title: Statistical Inference in Contextual Analysis
  publication-title: Am. J. Political Sci.
  doi: 10.2307/2110845
– volume: 5
  start-page: 903077
  year: 2022
  ident: ref_6
  article-title: The interactive reading task: Transformer-based automatic item generation
  publication-title: Front. Artif. Intell.
  doi: 10.3389/frai.2022.903077
– volume: 33
  start-page: 1
  year: 2010
  ident: ref_54
  article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent
  publication-title: J. Stat. Softw.
  doi: 10.18637/jss.v033.i01
– ident: ref_74
  doi: 10.1109/IALP48816.2019.9037716
– ident: ref_21
  doi: 10.1007/978-1-0716-1418-1
– volume: 26
  start-page: 125
  year: 2006
  ident: ref_80
  article-title: Differential item functioning and item bias
  publication-title: Psychometrics
  doi: 10.1016/S0169-7161(06)26005-X
– ident: ref_28
  doi: 10.1201/9781315200620
– ident: ref_77
  doi: 10.15439/2017F380
– ident: ref_68
  doi: 10.1145/3357384.3358013
– ident: ref_25
– ident: ref_50
– volume: 26
  start-page: 1340
  year: 2010
  ident: ref_46
  article-title: Permutation importance: A corrected feature importance measure
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq134
– ident: ref_29
– ident: ref_43
  doi: 10.1007/978-3-642-61068-4
– ident: ref_45
  doi: 10.1007/978-0-387-84858-7
– volume: 12
  start-page: 639
  year: 1969
  ident: ref_86
  article-title: SMOG Grading: A New Readability Formula
  publication-title: J. Read.
– ident: ref_85
– volume: 130
  start-page: 104934
  year: 2019
  ident: ref_60
  article-title: A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2019.104934
– ident: ref_64
– volume: 266
  start-page: 1
  year: 2014
  ident: ref_40
  article-title: The CART Decision Tree for Mining Data Streams
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.12.060
– ident: ref_32
  doi: 10.1109/IGARSS.2015.7326942
– ident: ref_19
– volume: 8
  start-page: e986
  year: 2022
  ident: ref_12
  article-title: A systematic review on machine learning models for online learning and examination systems
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.986
– ident: ref_22
– volume: 12
  start-page: 55
  year: 1970
  ident: ref_31
  article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems
  publication-title: Technometrics
  doi: 10.1080/00401706.1970.10488634
– volume: 20
  start-page: 273
  year: 1995
  ident: ref_36
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
– ident: ref_71
  doi: 10.18653/v1/W19-4402
SSID ssj0000913849
Score 2.289257
Snippet This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 4104
SubjectTerms Accuracy
Algorithms
Automation
Back propagation networks
Classification
Comparative analysis
Computational linguistics
Data mining
Datasets
elastic net regression
Language processing
Machine learning
Maximum likelihood method
Natural language interfaces
Neural networks
Performance prediction
Rasch model
Readability
Regularization
regularization methods
Root-mean-square errors
Subject specialists
Support vector machines
text features and item wording
text-based item difficulty prediction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEB5KL20PYlvFaJU9WD1IaF52k9319mwtRXjSQwu9LZPtbis83yvvR0vBP96ZTV58IOrFWwgTmOx8szOTzH4D8JZiUvQmqDzWscoV6jq3xha5trZBT4gOaX7K6Gt9dqm-XFVXa6O-uCespQduF-6oriNKrLBqKBARPrGM0UaMhWqQqsJ0dK8wdq2YSnuwHUijbNvpLqmuP6L875b82qpBN5NtFYMSVf_vG_IObC0nd_j4gOPxWsQ5fQpPulRRDFsVd2EjTPZgZ9TzrM734Qd_aRcn_N2FKTQexfmMf7zwYovUDCCSwAXtwIKTvSUV1x_FcT97UExj_8h9EOe_ThEITLqLUWq2DHnHw3ojhuOb6ezb4vb7_Blcnn6-OD7Lu3kKuaewvciVjPU1DqItrNFI_ma88doEz1mgRFU1ASNiiSpor9EEcmZ5LUuDWEhTKPkcNifTSXgBQoeSLIKUTuio6BJNibpUPhY1GtXoDD6sVtj5jmycZ16MHRUdbA-3bo8MDnvpu5Zk4w9yn9hYvQxTY6cbBBjXAcb9CzAZvGdTO3ZgUsljdw6BXoypsNyQ6g1aIMqTMzhYocF1nj13VGEymy_Flwze9Qj5q9ov_4far2CbJ923fYQHsLmYLcNryocWzZsE_Z_L_wqW
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wB74L0isCAfeBxQtnk4sc0FlYXVCqmrHrbScoomrt1dUdqqj0WL-PHMJGkoIBAStygaW449Hn_jzHwD8IzOJG-1k6HPfRZKVHlotIlCZUyJljTaVfVT-if58VB-OMvOtrL4OaySXPGLykhznmaoyCvvxnE3Nl1JvkN3PvJvLpu7pDg3mTZS6ew67OQZofEO7AxPBr2PXFNu07qOd0-5H0KB57S7Dff000lUEfb_bpZ34cZ6OserLziZbJ07R7cBNyOuw00-HaxX5YH9-guZ4_980h241YBS0au16C5cc9N7sNtvGV2X9-Eb3-mLd3zDw2QdV2Kw4F88vKyiCjsQlcAp2XrBsHJNbvxrcdhWORQz3za5dGLwI19BYDU_ol-FdbqwYXwdi95kPFtcrM4_Lx_A8Oj96eFx2FRuCC0BhFUoU5-PMPYmMloh7WxttVXaWcabKcqsdOgRE5ROWYXakdlIR2miEaNURzLdg850NnUPQSiXYFYiARflJT2iTlAl0vooRy1LFcCrzSoWtqE15-oak4LcG17zYnvNA3jeSs9rOo8_yL1lhWhlmIS7ejFbjItmTxd57jGlEWUlYSQynZh4bzz6SJboysQE8JLVqWBTQUOy2GQ80Icx6VbRI8-GJogQeQD7G40rGhuyLMiXZd5gOskCeNFq4V-H_ehfBR_DzYTQWh2VuA-d1WLtnhC6WpVPmw30HVFiH9c
  priority: 102
  providerName: Unpaywall
Title Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms
URI https://www.proquest.com/docview/2876539467
https://www.mdpi.com/2227-7390/11/19/4104/pdf?version=1695894785
https://doaj.org/article/66fa3a5a5b244070a2ff9faf04baeb29
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4S59DmEPqkblKjQx-HsmSzq11JhVKcNG4o2JgSQ3paZmXJObi260dLoD--M_LuJlCam21kI2se-jQ7-j6A17QneaudjHzus0iiyiOjTRwpY0q05NEu6Kf0B_nFSH69yq52YFDfheG2yjonhkQ9nluukR8TsmcWVYrrT4ufEatG8dPVWkIDK2mF8cdAMbYLewkzY7Vg7_R8MPzWVF2YBVNLs-2AT-m8f0y48Jri3ciTSqut3psChf-_iXofHmxmC7z5jdPpnZ2o9wgOKggpulubP4YdN3sC-_2Gf3X1FP5wBV585noMU2vciOGSH8iwEURoEhBhwCVlZsEgcEOH7g_irNEkFHPffOWXE8Pb2wUCw9xFPzRhuqjiZ52I7nRCy7W-_rF6BqPe-eXZRVTpLESWtvN1JFOfj_HEm9hohRSH2mqrtLOMDlOUWenQIyYonbIKtaMgT8dpohHjVMcyfQ6t2XzmXoBQLsGsRIIZykt6iTpBlUjr4xy1LFUb3tcrXNiKhJy1MKYFHUbYHsVde7ThTTN6sSXf-M-4UzZWM4Yps8MH8-WkqCKwyHOPKc0oKwnRUKLDxHvj0ceyRFcmpg3v2NQFBzZNyWJ1P4H-GFNkFV06h9ACEX5uw1HtDUUV8avi1j_b8LbxkHun_fL-3zmEh6xtv-0cPILWerlxrwgBrcsO7Orel07l3J1QR6B3o8Gw-_0vIzYLJg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QDxFoIAPFA5o1a3Xu2sjVSh9KaVNFKFU6s3MOnZ6CEnIgyoSv43fxnjj3VZC9NZbFDkrxzOe-cY7_j6A95STnJFWRC5zaSQwzyIlVRzlShVoyKNtqZ_S7mStC_H1Mr1cgz_VXRjfVlnFxDJQ98fGn5HvErL3LKq0r79MfkZeNcq_Xa0kNDBIK_T3S4qxcLHjzC6vqYSb7Z8ekb13OD857h22oqAyEBlKZvNIJC7r455TMZXfSF4ojTS5tMZjowRFWlh0iByFzU2O0pKLJ_2ES8Q4kbFI6LkPYEMkQlHxt3Fw3Ol-q095POumFGrVcZ8kKt4lHHpF8UWJvaANV-XCUjLg38SwBZuL0QSX1zgc3sp8J4_hUYCsrLnysSewZkdPYatd873OnsFvf-LPjvz5j6fyWLLu1L8A8kZnZVMCKwf0KBMwDzoXVOR_Zoe1BiIbu_onvyzr3txmYFjOnbXLpk8bBT7YAWsOB2Se-dWP2XO4uJcVfwHro_HIvgSWW45pgQRrcifoI0qOORfGxRlKUeQN-FStsDaB9Nxrbww1FT_eHvq2PRqwU4-erMg-_jPuwBurHuMpussvxtOBDjteZ5nDhGaUFoSgKLAid045dLEo0BZcNeCjN7X2gYSmZDDch6A_5im5dJPqHlogwusN2K68QYcIM9M3-6EBH2oPuXPar-5-zjvYbPXa5_r8tHP2Gh5yQnOrrsVtWJ9PF_YNoa958Ta4OIPv972r_gKXHkS5
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IJ7CUGAPFA7IimuvvbtICIWG0FJS5dBKvbnjzW56CEnIgyoSv4xfx4xju5UQvfVmWWtrvfP6Zj37DcAbikneaidDn_k0lKiy0GgThcqYAi1ptCv7p_SOsv0T-e00Pd2AP_VZGC6rrH1i6agHE8t75C1C9syiSnbd8lVZRL_T_TT9GXIHKf7TWrfTWKvIoVtdUPo2_3jQIVnvxHH3y_Heflh1GAgtBbJFKBOfDXDXm4hSbyQN1FZbpZ1lXJSgTAuHHjFG6ZRVqB2pdzJIYo0YJTqSCb33FtxWzOLOp9S7X5v9Hebb1NKsa-2TxEQtQqDn5FmM3K26wtVRsGwW8G9I2IK7y_EUVxc4Gl2Jed0HcL8Cq6K91q6HsOHGj2Cr1zC9zh_Db97rFx3e-WESj5Xoz_jXD4tblOUIohxwTAspGG4uKb3_IPaa7odi4ptHfjnRvzzHILCcu-iV5Z4urJhgh6I9GpIwFuc_5k_g5EbW-ylsjidj9wyEcjGmBRKgUV7SJeoYVSytjzLUslABvK9XOLcV3Tl33RjllPawPPKr8ghgpxk9XdN8_GfcZxZWM4bJucsbk9kwr2w9zzKPCc0oLQg7kUvF2Hvj0UeyQFfEJoB3LOqcXQhNyWJ1EoI-jMm48jZlPLRAhNQD2K61Ia98yzy_tIQA3jYacu20n1__ntdwh2wp_35wdPgC7sUE49blituwuZgt3UuCXYviVanfAs5u2qD-AsJPQlM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wB74L0isCAfeBxQtnk4sc0FlYXVCqmrHrbScoomrt1dUdqqj0WL-PHMJGkoIBAStygaW449Hn_jzHwD8IzOJG-1k6HPfRZKVHlotIlCZUyJljTaVfVT-if58VB-OMvOtrL4OaySXPGLykhznmaoyCvvxnE3Nl1JvkN3PvJvLpu7pDg3mTZS6ew67OQZofEO7AxPBr2PXFNu07qOd0-5H0KB57S7Dff000lUEfb_bpZ34cZ6OserLziZbJ07R7cBNyOuw00-HaxX5YH9-guZ4_980h241YBS0au16C5cc9N7sNtvGV2X9-Eb3-mLd3zDw2QdV2Kw4F88vKyiCjsQlcAp2XrBsHJNbvxrcdhWORQz3za5dGLwI19BYDU_ol-FdbqwYXwdi95kPFtcrM4_Lx_A8Oj96eFx2FRuCC0BhFUoU5-PMPYmMloh7WxttVXaWcabKcqsdOgRE5ROWYXakdlIR2miEaNURzLdg850NnUPQSiXYFYiARflJT2iTlAl0vooRy1LFcCrzSoWtqE15-oak4LcG17zYnvNA3jeSs9rOo8_yL1lhWhlmIS7ejFbjItmTxd57jGlEWUlYSQynZh4bzz6SJboysQE8JLVqWBTQUOy2GQ80Icx6VbRI8-GJogQeQD7G40rGhuyLMiXZd5gOskCeNFq4V-H_ehfBR_DzYTQWh2VuA-d1WLtnhC6WpVPmw30HVFiH9c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Item+Difficulty+Prediction+Using+Item+Text+Features%3A+Comparison+of+Predictive+Performance+across+Machine-Learning+Algorithms&rft.jtitle=Mathematics+%28Basel%29&rft.au=%C5%A0t%C4%9Bp%C3%A1nek%2C+Lubom%C3%ADr&rft.au=Dlouh%C3%A1%2C+Jana&rft.au=Martinkov%C3%A1%2C+Patr%C3%ADcia&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=19&rft.spage=4104&rft_id=info:doi/10.3390%2Fmath11194104&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon