Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms
This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classifi...
        Saved in:
      
    
          | Published in | Mathematics (Basel) Vol. 11; no. 19; p. 4104 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.10.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2227-7390 2227-7390  | 
| DOI | 10.3390/math11194104 | 
Cover
| Abstract | This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classification tasks, including regularization methods, support vector machines, trees, random forests, back-propagation neural networks, and Naïve Bayes; moreover, the ML algorithms are compared to the performance of domain experts. Using f-fold cross-validation and considering the root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches in a continuous item difficulty prediction. Within classifiers, random forests returned the highest extended predictive accuracy. We demonstrate that the ML algorithms implementing item text features can compete with predictions made by domain experts, and we suggest that they should be used to inform and improve these predictions, especially when item pre-testing is limited or unavailable. Future research is needed to study the performance of the ML algorithms using item text features on different item types and respondent populations. | 
    
|---|---|
| AbstractList | This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using text features extracted from item wordings. A wide range of ML algorithms are employed within both the supervised regression and the classification tasks, including regularization methods, support vector machines, trees, random forests, back-propagation neural networks, and Naïve Bayes; moreover, the ML algorithms are compared to the performance of domain experts. Using f-fold cross-validation and considering the root mean square error (RMSE) as the performance metric, elastic net outperformed other approaches in a continuous item difficulty prediction. Within classifiers, random forests returned the highest extended predictive accuracy. We demonstrate that the ML algorithms implementing item text features can compete with predictions made by domain experts, and we suggest that they should be used to inform and improve these predictions, especially when item pre-testing is limited or unavailable. Future research is needed to study the performance of the ML algorithms using item text features on different item types and respondent populations. | 
    
| Audience | Academic | 
    
| Author | Martinková, Patrícia Dlouhá, Jana Štěpánek, Lubomír  | 
    
| Author_xml | – sequence: 1 givenname: Lubomír orcidid: 0000-0002-8308-4304 surname: Štěpánek fullname: Štěpánek, Lubomír – sequence: 2 givenname: Jana orcidid: 0000-0001-8396-2069 surname: Dlouhá fullname: Dlouhá, Jana – sequence: 3 givenname: Patrícia orcidid: 0000-0003-4754-8543 surname: Martinková fullname: Martinková, Patrícia  | 
    
| BookMark | eNp9kUGP0zAQhSO0SCzL3vgBkbiSxbGdOOZWFRYqFbGH3bM1ccatq8QutgtU4sfjNmi1QgL7YGv8vafxvJfFhfMOi-J1TW4Yk-TdBGlb17XkNeHPiktKqahEfrh4cn9RXMe4I3nJmnVcXha_Vgmn8oM1xurDmI7lXcDB6mS9Kx-idZvyDNzjz1TeIqRDwPi-XPppD8HGDHnzKPmO5R0G48METmMJOvgYyy-gt9ZhtUYI7mS4GDc-2LSd4qviuYEx4vWf86p4uP14v_xcrb9-Wi0X60pz0qaKM9MOUBtJZCegJ6TTnRYd6ppJwYA3PYIBoMBRaAEdik6wgdEOgLCOcHZVrGbfwcNO7YOdIByVB6vOBR82CkKyekTVtgYYNND0lHMiCFBjpAFDeA_YU5m9qtnr4PZw_AHj-GhYE3VKQj1NIvNvZn4f_LcDxqR2_hBc_q6inWgbJnkrMnUzUxvITVhnfAqg8x5wsjoHbWyuL4SgeQYNOQnoLDgPOaBR2iY4xZaFdvxXL2__Ev239d-847sX | 
    
| CitedBy_id | crossref_primary_10_1016_j_rmal_2024_100143 crossref_primary_10_1177_00131644241299834 crossref_primary_10_3390_math12030497 crossref_primary_10_3758_s13428_025_02625_2 crossref_primary_10_1111_jedm_12426  | 
    
| Cites_doi | 10.1109/64.54672 10.1201/9781003054313 10.1111/rssa.12681 10.1109/ICAETR.2014.7012785 10.3389/fgene.2022.992070 10.1007/s40593-021-00267-x 10.3389/feduc.2020.572367 10.1007/978-3-319-78890-6_3 10.1109/TIT.1956.1056813 10.1080/08957347.2022.2103135 10.1177/00131644221098021 10.1023/A:1007465528199 10.1007/BF00139259 10.1214/aoms/1177731716 10.1145/3292500.3330900 10.1016/j.ipm.2018.06.007 10.1111/j.1467-9868.2005.00503.x 10.32614/RJ-2020-014 10.1111/j.2517-6161.1996.tb02080.x 10.1080/00401706.2020.1801256 10.1007/978-3-030-74394-9 10.1371/journal.pone.0254340 10.1016/j.learninstruc.2019.101286 10.1007/978-3-030-74394-9_14 10.18653/v1/W19-4402 10.1111/j.1365-2923.2012.04289.x 10.1162/tacl_a_00310 10.1007/BF02478259 10.1007/s40593-019-00180-4 10.18653/v1/N18-1021 10.1007/s11192-018-2848-x 10.18653/v1/2020.bea-1.20 10.1187/cbe.16-10-0307 10.1201/9781003093459 10.21105/joss.00774 10.1017/S0269888997000015 10.2307/2110845 10.3389/frai.2022.903077 10.18637/jss.v033.i01 10.1109/IALP48816.2019.9037716 10.1007/978-1-0716-1418-1 10.1016/S0169-7161(06)26005-X 10.1201/9781315200620 10.15439/2017F380 10.1145/3357384.3358013 10.1093/bioinformatics/btq134 10.1007/978-3-642-61068-4 10.1007/978-0-387-84858-7 10.1016/j.envint.2019.104934 10.1016/j.ins.2013.12.060 10.1109/IGARSS.2015.7326942 10.7717/peerj-cs.986 10.1080/00401706.1970.10488634 10.1007/BF00994018  | 
    
| ContentType | Journal Article | 
    
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/math11194104 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Essentials ProQuest Central Technology Collection (via ProQuest SciTech Premium Collection) ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database (Proquest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | CrossRef Publicly Available Content Database  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Mathematics | 
    
| EISSN | 2227-7390 | 
    
| ExternalDocumentID | oai_doaj_org_article_66fa3a5a5b244070a2ff9faf04baeb29 10.3390/math11194104 A772098507 10_3390_math11194104  | 
    
| GeographicLocations | United Kingdom Czech Republic  | 
    
| GeographicLocations_xml | – name: United Kingdom – name: Czech Republic  | 
    
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c406t-43f6da1f90987ab008c8c78ec13973a45beafaa2a4e7c7a8e7873d328aa038043 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2227-7390 | 
    
| IngestDate | Tue Oct 14 18:38:24 EDT 2025 Sun Oct 26 04:14:13 EDT 2025 Fri Jul 25 10:46:47 EDT 2025 Mon Oct 20 17:14:13 EDT 2025 Thu Oct 16 04:35:50 EDT 2025 Thu Apr 24 22:57:10 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 19 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-43f6da1f90987ab008c8c78ec13973a45beafaa2a4e7c7a8e7873d328aa038043 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4754-8543 0000-0002-8308-4304 0000-0001-8396-2069  | 
    
| OpenAccessLink | https://www.proquest.com/docview/2876539467?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2876539467 | 
    
| PQPubID | 2032364 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_66fa3a5a5b244070a2ff9faf04baeb29 unpaywall_primary_10_3390_math11194104 proquest_journals_2876539467 gale_infotracacademiconefile_A772098507 crossref_citationtrail_10_3390_math11194104 crossref_primary_10_3390_math11194104  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2023-10-01 | 
    
| PublicationDateYYYYMMDD | 2023-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Mathematics (Basel) | 
    
| PublicationYear | 2023 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Zou (ref_33) 2005; 67 ref_50 Chen (ref_60) 2019; 130 ref_58 ref_13 Friedman (ref_54) 2010; 33 Erosheva (ref_78) 2021; 184 ref_56 ref_55 Rutkowski (ref_40) 2014; 266 ref_52 ref_51 Schiffbaenker (ref_79) 2018; 117 Dong (ref_61) 2022; 13 ref_19 ref_17 ref_16 ref_15 Friedman (ref_35) 1997; 29 (ref_82) 2020; 12 McCulloch (ref_42) 1943; 5 Settles (ref_9) 2020; 8 ref_25 ref_69 ref_24 ref_68 Craig (ref_59) 1941; 12 ref_22 ref_66 ref_21 ref_65 ref_20 ref_64 ref_63 ref_62 ref_29 ref_28 ref_27 ref_26 Hsu (ref_73) 2018; 54 McLaughlin (ref_86) 1969; 12 ref_72 ref_71 ref_70 Gierl (ref_7) 2012; 46 Attali (ref_6) 2022; 5 Gopalakrishnan (ref_11) 2022; 6 ref_77 ref_32 Breslow (ref_39) 1997; 12 Bailer (ref_87) 1984; 16 ref_74 Chomsky (ref_23) 1956; 2 Liaw (ref_57) 2002; 2 ref_37 Kochmar (ref_10) 2022; 32 Fan (ref_34) 2020; 62 Tyack (ref_14) 2023; 83 Tibshirani (ref_30) 1996; 58 Hoerl (ref_31) 1970; 12 Benoit (ref_53) 2018; 3 McTavish (ref_75) 1990; 24 (ref_83) 2020; 66 Kaddoura (ref_12) 2022; 8 ref_47 Ferrara (ref_18) 2022; 35 ref_45 ref_44 ref_88 ref_43 Altmann (ref_46) 2010; 26 ref_41 ref_85 ref_84 ref_1 ref_3 Stipak (ref_76) 1982; 26 Pandarova (ref_67) 2019; 29 Gray (ref_38) 1990; 5 ref_49 ref_48 ref_8 Kumar (ref_2) 2020; 5 ref_5 Cortes (ref_36) 1995; 20 Liaw (ref_81) 2017; 16 ref_4 Rao (ref_80) 2006; 26  | 
    
| References_xml | – volume: 5 start-page: 41 year: 1990 ident: ref_38 article-title: Capturing knowledge through top-down induction of decision trees publication-title: IEEE Expert doi: 10.1109/64.54672 – ident: ref_1 doi: 10.1201/9781003054313 – volume: 184 start-page: 904 year: 2021 ident: ref_78 article-title: When zero may not be zero: A cautionary note on the use of inter-rater reliability in evaluating grant peer review publication-title: J. R. Stat. Soc. Ser. (Stat. Soc.) doi: 10.1111/rssa.12681 – ident: ref_49 – ident: ref_44 doi: 10.1109/ICAETR.2014.7012785 – ident: ref_55 – volume: 2 start-page: 18 year: 2002 ident: ref_57 article-title: Classification and Regression by Random Forest publication-title: R News – ident: ref_26 – ident: ref_51 – volume: 13 start-page: 992070 year: 2022 ident: ref_61 article-title: Deep learning methods may not outperform other machine learning methods on analyzing genomic studies publication-title: Front. Genet. doi: 10.3389/fgene.2022.992070 – volume: 32 start-page: 323 year: 2022 ident: ref_10 article-title: Automated Data-Driven Generation of Personalized Pedagogical Interventions in Intelligent Tutoring Systems publication-title: Int. J. Artif. Intell. Educ. doi: 10.1007/s40593-021-00267-x – volume: 5 start-page: 572367 year: 2020 ident: ref_2 article-title: Explainable Automated Essay Scoring: Deep Learning Really Has Pedagogical Value publication-title: Front. Educ. doi: 10.3389/feduc.2020.572367 – ident: ref_62 doi: 10.1007/978-3-319-78890-6_3 – ident: ref_84 – volume: 2 start-page: 113 year: 1956 ident: ref_23 article-title: Three models for the description of language publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1956.1056813 – volume: 35 start-page: 237 year: 2022 ident: ref_18 article-title: Response demands of reading comprehension test items: A review of item difficulty modeling studies publication-title: Appl. Meas. Educ. doi: 10.1080/08957347.2022.2103135 – ident: ref_65 – ident: ref_88 – volume: 83 start-page: 556 year: 2023 ident: ref_14 article-title: Scoring Graphical Responses in TIMSS 2019 Using Artificial Neural Networks publication-title: Educ. Psychol. Meas. doi: 10.1177/00131644221098021 – volume: 29 start-page: 131 year: 1997 ident: ref_35 article-title: Bayesian Network Classifiers publication-title: Mach. Learn. doi: 10.1023/A:1007465528199 – ident: ref_58 – volume: 16 start-page: 231 year: 1984 ident: ref_87 article-title: Kreuzvalidierung und Neuberechnung von Lesbarkeitsformeln für die deutsche Sprache publication-title: Zeitschrift für Entwicklungspsychologie und Pädagogische Psychologie – volume: 24 start-page: 245 year: 1990 ident: ref_75 article-title: Contextual content analysis publication-title: Qual. Quant. doi: 10.1007/BF00139259 – volume: 12 start-page: 339 year: 1941 ident: ref_59 article-title: A Note on Sheppard’s Corrections publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177731716 – ident: ref_8 – ident: ref_72 doi: 10.1145/3292500.3330900 – ident: ref_4 – ident: ref_56 – volume: 54 start-page: 969 year: 2018 ident: ref_73 article-title: Automated estimation of item difficulty for multiple-choice tests: An application of word embedding techniques publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2018.06.007 – ident: ref_27 – ident: ref_52 – volume: 67 start-page: 301 year: 2005 ident: ref_33 article-title: Regularization and Variable Selection Via the Elastic Net publication-title: J. R. Stat. Soc. Ser. Stat. Methodol. doi: 10.1111/j.1467-9868.2005.00503.x – ident: ref_48 – volume: 12 start-page: 300 year: 2020 ident: ref_82 article-title: difNLR: Generalized Logistic Regression Models for DIF and DDF Detection publication-title: R J. doi: 10.32614/RJ-2020-014 – volume: 58 start-page: 267 year: 1996 ident: ref_30 article-title: Regression Shrinkage and Selection Via the Lasso publication-title: J. R. Stat. Soc. Ser. (Methodol.) doi: 10.1111/j.2517-6161.1996.tb02080.x – volume: 62 start-page: 434 year: 2020 ident: ref_34 article-title: Comment: Feature Screening and Variable Selection via Iterative Ridge Regression publication-title: Technometrics doi: 10.1080/00401706.2020.1801256 – ident: ref_41 – ident: ref_66 – ident: ref_16 doi: 10.1007/978-3-030-74394-9 – ident: ref_13 doi: 10.1371/journal.pone.0254340 – volume: 66 start-page: 101286 year: 2020 ident: ref_83 article-title: Is academic tracking related to gains in learning competence? Using propensity score matching and differential item change functioning analysis for better understanding of tracking implications publication-title: Learn. Instr. doi: 10.1016/j.learninstruc.2019.101286 – ident: ref_5 doi: 10.1007/978-3-030-74394-9_14 – ident: ref_69 doi: 10.18653/v1/W19-4402 – volume: 46 start-page: 757 year: 2012 ident: ref_7 article-title: Using automatic item generation to create multiple-choice test items publication-title: Med. Educ. doi: 10.1111/j.1365-2923.2012.04289.x – ident: ref_20 – volume: 8 start-page: 247 year: 2020 ident: ref_9 article-title: Machine learning–driven language assessment publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00310 – volume: 5 start-page: 115 year: 1943 ident: ref_42 article-title: A logical calculus of the ideas immanent in nervous activity publication-title: Bull. Math. Biophys. doi: 10.1007/BF02478259 – volume: 29 start-page: 342 year: 2019 ident: ref_67 article-title: Predicting the Difficulty of Exercise Items for Dynamic Difficulty Adaptation in Adaptive Language Tutoring publication-title: Int. J. Artif. Intell. Educ. doi: 10.1007/s40593-019-00180-4 – volume: 6 start-page: 891 year: 2022 ident: ref_11 article-title: Online proctoring system using image processing and machine learning publication-title: Int. J. Health Sci. – ident: ref_24 – ident: ref_3 doi: 10.18653/v1/N18-1021 – ident: ref_47 – volume: 117 start-page: 313 year: 2018 ident: ref_79 article-title: Studying grant decision-making: A linguistic analysis of review reports publication-title: Scientometrics doi: 10.1007/s11192-018-2848-x – ident: ref_70 doi: 10.18653/v1/2020.bea-1.20 – volume: 16 start-page: rm2 year: 2017 ident: ref_81 article-title: Checking equity: Why differential item functioning analysis should be a routine part of developing conceptual assessments publication-title: CBE-Life Sci. Educ. doi: 10.1187/cbe.16-10-0307 – ident: ref_15 doi: 10.1177/00131644221098021 – ident: ref_17 doi: 10.1201/9781003093459 – volume: 3 start-page: 774 year: 2018 ident: ref_53 article-title: Quanteda: An R Package for the Quantitative Analysis of Textual Data publication-title: J. Open Source Softw. doi: 10.21105/joss.00774 – volume: 12 start-page: 1 year: 1997 ident: ref_39 article-title: Simplifying decision trees: A survey publication-title: Knowl. Eng. Rev. doi: 10.1017/S0269888997000015 – ident: ref_37 – ident: ref_63 – volume: 26 start-page: 151 year: 1982 ident: ref_76 article-title: Statistical Inference in Contextual Analysis publication-title: Am. J. Political Sci. doi: 10.2307/2110845 – volume: 5 start-page: 903077 year: 2022 ident: ref_6 article-title: The interactive reading task: Transformer-based automatic item generation publication-title: Front. Artif. Intell. doi: 10.3389/frai.2022.903077 – volume: 33 start-page: 1 year: 2010 ident: ref_54 article-title: Regularization Paths for Generalized Linear Models via Coordinate Descent publication-title: J. Stat. Softw. doi: 10.18637/jss.v033.i01 – ident: ref_74 doi: 10.1109/IALP48816.2019.9037716 – ident: ref_21 doi: 10.1007/978-1-0716-1418-1 – volume: 26 start-page: 125 year: 2006 ident: ref_80 article-title: Differential item functioning and item bias publication-title: Psychometrics doi: 10.1016/S0169-7161(06)26005-X – ident: ref_28 doi: 10.1201/9781315200620 – ident: ref_77 doi: 10.15439/2017F380 – ident: ref_68 doi: 10.1145/3357384.3358013 – ident: ref_25 – ident: ref_50 – volume: 26 start-page: 1340 year: 2010 ident: ref_46 article-title: Permutation importance: A corrected feature importance measure publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq134 – ident: ref_29 – ident: ref_43 doi: 10.1007/978-3-642-61068-4 – ident: ref_45 doi: 10.1007/978-0-387-84858-7 – volume: 12 start-page: 639 year: 1969 ident: ref_86 article-title: SMOG Grading: A New Readability Formula publication-title: J. Read. – ident: ref_85 – volume: 130 start-page: 104934 year: 2019 ident: ref_60 article-title: A comparison of linear regression, regularization, and machine learning algorithms to develop Europe-wide spatial models of fine particles and nitrogen dioxide publication-title: Environ. Int. doi: 10.1016/j.envint.2019.104934 – ident: ref_64 – volume: 266 start-page: 1 year: 2014 ident: ref_40 article-title: The CART Decision Tree for Mining Data Streams publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.12.060 – ident: ref_32 doi: 10.1109/IGARSS.2015.7326942 – ident: ref_19 – volume: 8 start-page: e986 year: 2022 ident: ref_12 article-title: A systematic review on machine learning models for online learning and examination systems publication-title: PeerJ Comput. Sci. doi: 10.7717/peerj-cs.986 – ident: ref_22 – volume: 12 start-page: 55 year: 1970 ident: ref_31 article-title: Ridge Regression: Biased Estimation for Nonorthogonal Problems publication-title: Technometrics doi: 10.1080/00401706.1970.10488634 – volume: 20 start-page: 273 year: 1995 ident: ref_36 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1007/BF00994018 – ident: ref_71 doi: 10.18653/v1/W19-4402  | 
    
| SSID | ssj0000913849 | 
    
| Score | 2.289257 | 
    
| Snippet | This work presents a comparative analysis of various machine learning (ML) methods for predicting item difficulty in English reading comprehension tests using... | 
    
| SourceID | doaj unpaywall proquest gale crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 4104 | 
    
| SubjectTerms | Accuracy Algorithms Automation Back propagation networks Classification Comparative analysis Computational linguistics Data mining Datasets elastic net regression Language processing Machine learning Maximum likelihood method Natural language interfaces Neural networks Performance prediction Rasch model Readability Regularization regularization methods Root-mean-square errors Subject specialists Support vector machines text features and item wording text-based item difficulty prediction  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pa9VAEB5KL20PYlvFaJU9WD1IaF52k9319mwtRXjSQwu9LZPtbis83yvvR0vBP96ZTV58IOrFWwgTmOx8szOTzH4D8JZiUvQmqDzWscoV6jq3xha5trZBT4gOaX7K6Gt9dqm-XFVXa6O-uCespQduF-6oriNKrLBqKBARPrGM0UaMhWqQqsJ0dK8wdq2YSnuwHUijbNvpLqmuP6L875b82qpBN5NtFYMSVf_vG_IObC0nd_j4gOPxWsQ5fQpPulRRDFsVd2EjTPZgZ9TzrM734Qd_aRcn_N2FKTQexfmMf7zwYovUDCCSwAXtwIKTvSUV1x_FcT97UExj_8h9EOe_ThEITLqLUWq2DHnHw3ojhuOb6ezb4vb7_Blcnn6-OD7Lu3kKuaewvciVjPU1DqItrNFI_ma88doEz1mgRFU1ASNiiSpor9EEcmZ5LUuDWEhTKPkcNifTSXgBQoeSLIKUTuio6BJNibpUPhY1GtXoDD6sVtj5jmycZ16MHRUdbA-3bo8MDnvpu5Zk4w9yn9hYvQxTY6cbBBjXAcb9CzAZvGdTO3ZgUsljdw6BXoypsNyQ6g1aIMqTMzhYocF1nj13VGEymy_Flwze9Qj5q9ov_4far2CbJ923fYQHsLmYLcNryocWzZsE_Z_L_wqW priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wB74L0isCAfeBxQtnk4sc0FlYXVCqmrHrbScoomrt1dUdqqj0WL-PHMJGkoIBAStygaW449Hn_jzHwD8IzOJG-1k6HPfRZKVHlotIlCZUyJljTaVfVT-if58VB-OMvOtrL4OaySXPGLykhznmaoyCvvxnE3Nl1JvkN3PvJvLpu7pDg3mTZS6ew67OQZofEO7AxPBr2PXFNu07qOd0-5H0KB57S7Dff000lUEfb_bpZ34cZ6OserLziZbJ07R7cBNyOuw00-HaxX5YH9-guZ4_980h241YBS0au16C5cc9N7sNtvGV2X9-Eb3-mLd3zDw2QdV2Kw4F88vKyiCjsQlcAp2XrBsHJNbvxrcdhWORQz3za5dGLwI19BYDU_ol-FdbqwYXwdi95kPFtcrM4_Lx_A8Oj96eFx2FRuCC0BhFUoU5-PMPYmMloh7WxttVXaWcabKcqsdOgRE5ROWYXakdlIR2miEaNURzLdg850NnUPQSiXYFYiARflJT2iTlAl0vooRy1LFcCrzSoWtqE15-oak4LcG17zYnvNA3jeSs9rOo8_yL1lhWhlmIS7ejFbjItmTxd57jGlEWUlYSQynZh4bzz6SJboysQE8JLVqWBTQUOy2GQ80Icx6VbRI8-GJogQeQD7G40rGhuyLMiXZd5gOskCeNFq4V-H_ehfBR_DzYTQWh2VuA-d1WLtnhC6WpVPmw30HVFiH9c priority: 102 providerName: Unpaywall  | 
    
| Title | Item Difficulty Prediction Using Item Text Features: Comparison of Predictive Performance across Machine-Learning Algorithms | 
    
| URI | https://www.proquest.com/docview/2876539467 https://www.mdpi.com/2227-7390/11/19/4104/pdf?version=1695894785 https://doaj.org/article/66fa3a5a5b244070a2ff9faf04baeb29  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 11 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025 customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LaxsxEB4S59DmEPqkblKjQx-HsmSzq11JhVKcNG4o2JgSQ3paZmXJObi260dLoD--M_LuJlCam21kI2se-jQ7-j6A17QneaudjHzus0iiyiOjTRwpY0q05NEu6Kf0B_nFSH69yq52YFDfheG2yjonhkQ9nluukR8TsmcWVYrrT4ufEatG8dPVWkIDK2mF8cdAMbYLewkzY7Vg7_R8MPzWVF2YBVNLs-2AT-m8f0y48Jri3ciTSqut3psChf-_iXofHmxmC7z5jdPpnZ2o9wgOKggpulubP4YdN3sC-_2Gf3X1FP5wBV585noMU2vciOGSH8iwEURoEhBhwCVlZsEgcEOH7g_irNEkFHPffOWXE8Pb2wUCw9xFPzRhuqjiZ52I7nRCy7W-_rF6BqPe-eXZRVTpLESWtvN1JFOfj_HEm9hohRSH2mqrtLOMDlOUWenQIyYonbIKtaMgT8dpohHjVMcyfQ6t2XzmXoBQLsGsRIIZykt6iTpBlUjr4xy1LFUb3tcrXNiKhJy1MKYFHUbYHsVde7ThTTN6sSXf-M-4UzZWM4Yps8MH8-WkqCKwyHOPKc0oKwnRUKLDxHvj0ceyRFcmpg3v2NQFBzZNyWJ1P4H-GFNkFV06h9ACEX5uw1HtDUUV8avi1j_b8LbxkHun_fL-3zmEh6xtv-0cPILWerlxrwgBrcsO7Orel07l3J1QR6B3o8Gw-_0vIzYLJg | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6V9lB6QDxFoIAPFA5o1a3Xu2sjVSh9KaVNFKFU6s3MOnZ6CEnIgyoSv43fxnjj3VZC9NZbFDkrxzOe-cY7_j6A95STnJFWRC5zaSQwzyIlVRzlShVoyKNtqZ_S7mStC_H1Mr1cgz_VXRjfVlnFxDJQ98fGn5HvErL3LKq0r79MfkZeNcq_Xa0kNDBIK_T3S4qxcLHjzC6vqYSb7Z8ekb13OD857h22oqAyEBlKZvNIJC7r455TMZXfSF4ojTS5tMZjowRFWlh0iByFzU2O0pKLJ_2ES8Q4kbFI6LkPYEMkQlHxt3Fw3Ol-q095POumFGrVcZ8kKt4lHHpF8UWJvaANV-XCUjLg38SwBZuL0QSX1zgc3sp8J4_hUYCsrLnysSewZkdPYatd873OnsFvf-LPjvz5j6fyWLLu1L8A8kZnZVMCKwf0KBMwDzoXVOR_Zoe1BiIbu_onvyzr3txmYFjOnbXLpk8bBT7YAWsOB2Se-dWP2XO4uJcVfwHro_HIvgSWW45pgQRrcifoI0qOORfGxRlKUeQN-FStsDaB9Nxrbww1FT_eHvq2PRqwU4-erMg-_jPuwBurHuMpussvxtOBDjteZ5nDhGaUFoSgKLAid045dLEo0BZcNeCjN7X2gYSmZDDch6A_5im5dJPqHlogwusN2K68QYcIM9M3-6EBH2oPuXPar-5-zjvYbPXa5_r8tHP2Gh5yQnOrrsVtWJ9PF_YNoa958Ta4OIPv972r_gKXHkS5 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIgE9IJ7CUGAPFA7IimuvvbtICIWG0FJS5dBKvbnjzW56CEnIgyoSv4xfx4xju5UQvfVmWWtrvfP6Zj37DcAbikneaidDn_k0lKiy0GgThcqYAi1ptCv7p_SOsv0T-e00Pd2AP_VZGC6rrH1i6agHE8t75C1C9syiSnbd8lVZRL_T_TT9GXIHKf7TWrfTWKvIoVtdUPo2_3jQIVnvxHH3y_Heflh1GAgtBbJFKBOfDXDXm4hSbyQN1FZbpZ1lXJSgTAuHHjFG6ZRVqB2pdzJIYo0YJTqSCb33FtxWzOLOp9S7X5v9Hebb1NKsa-2TxEQtQqDn5FmM3K26wtVRsGwW8G9I2IK7y_EUVxc4Gl2Jed0HcL8Cq6K91q6HsOHGj2Cr1zC9zh_Db97rFx3e-WESj5Xoz_jXD4tblOUIohxwTAspGG4uKb3_IPaa7odi4ptHfjnRvzzHILCcu-iV5Z4urJhgh6I9GpIwFuc_5k_g5EbW-ylsjidj9wyEcjGmBRKgUV7SJeoYVSytjzLUslABvK9XOLcV3Tl33RjllPawPPKr8ghgpxk9XdN8_GfcZxZWM4bJucsbk9kwr2w9zzKPCc0oLQg7kUvF2Hvj0UeyQFfEJoB3LOqcXQhNyWJ1EoI-jMm48jZlPLRAhNQD2K61Ia98yzy_tIQA3jYacu20n1__ntdwh2wp_35wdPgC7sUE49blituwuZgt3UuCXYviVanfAs5u2qD-AsJPQlM | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB5B9wB74L0isCAfeBxQtnk4sc0FlYXVCqmrHrbScoomrt1dUdqqj0WL-PHMJGkoIBAStygaW449Hn_jzHwD8IzOJG-1k6HPfRZKVHlotIlCZUyJljTaVfVT-if58VB-OMvOtrL4OaySXPGLykhznmaoyCvvxnE3Nl1JvkN3PvJvLpu7pDg3mTZS6ew67OQZofEO7AxPBr2PXFNu07qOd0-5H0KB57S7Dff000lUEfb_bpZ34cZ6OserLziZbJ07R7cBNyOuw00-HaxX5YH9-guZ4_980h241YBS0au16C5cc9N7sNtvGV2X9-Eb3-mLd3zDw2QdV2Kw4F88vKyiCjsQlcAp2XrBsHJNbvxrcdhWORQz3za5dGLwI19BYDU_ol-FdbqwYXwdi95kPFtcrM4_Lx_A8Oj96eFx2FRuCC0BhFUoU5-PMPYmMloh7WxttVXaWcabKcqsdOgRE5ROWYXakdlIR2miEaNURzLdg850NnUPQSiXYFYiARflJT2iTlAl0vooRy1LFcCrzSoWtqE15-oak4LcG17zYnvNA3jeSs9rOo8_yL1lhWhlmIS7ejFbjItmTxd57jGlEWUlYSQynZh4bzz6SJboysQE8JLVqWBTQUOy2GQ80Icx6VbRI8-GJogQeQD7G40rGhuyLMiXZd5gOskCeNFq4V-H_ehfBR_DzYTQWh2VuA-d1WLtnhC6WpVPmw30HVFiH9c | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Item+Difficulty+Prediction+Using+Item+Text+Features%3A+Comparison+of+Predictive+Performance+across+Machine-Learning+Algorithms&rft.jtitle=Mathematics+%28Basel%29&rft.au=%C5%A0t%C4%9Bp%C3%A1nek%2C+Lubom%C3%ADr&rft.au=Dlouh%C3%A1%2C+Jana&rft.au=Martinkov%C3%A1%2C+Patr%C3%ADcia&rft.date=2023-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=11&rft.issue=19&rft.spage=4104&rft_id=info:doi/10.3390%2Fmath11194104&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |