An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning

Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. Methods. We retrospectively c...

Full description

Saved in:
Bibliographic Details
Published inComputational intelligence and neuroscience Vol. 2022; pp. 1 - 10
Main Authors Li, Wenle, Liu, Wencai, Hussain Memon, Fida, Wang, Bing, Xu, Chan, Dong, Shengtao, Wang, Haosheng, Hu, Zhaohui, Quan, Xubin, Deng, Yizhuo, Liu, Qiang, Su, Shibin, Yin, Chengliang
Format Journal Article
LanguageEnglish
Published United States Hindawi 06.05.2022
John Wiley & Sons, Inc
Subjects
Online AccessGet full text
ISSN1687-5265
1687-5273
1687-5273
DOI10.1155/2022/2220527

Cover

Abstract Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. Methods. We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient’s demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. Results. Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. Conclusions. The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.
AbstractList Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. Methods. We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient’s demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. Results. Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. Conclusions. The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.
Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms.BackgroundLung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms.We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator.MethodsWe retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator.Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient.ResultsOf all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient.The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.ConclusionsThe XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.
Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.
Audience Academic
Author Hu, Zhaohui
Wang, Haosheng
Liu, Wencai
Wang, Bing
Liu, Qiang
Yin, Chengliang
Dong, Shengtao
Su, Shibin
Hussain Memon, Fida
Deng, Yizhuo
Li, Wenle
Xu, Chan
Quan, Xubin
AuthorAffiliation 5 Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
6 Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, China
10 Study in School of Guilin Medical University, Guilin, Guangxi, China
8 Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
11 Department of Business Management, Xiamen Bank, Xiamen, China
12 Faculty of Medicine, Macau University of Science and Technology, Macau, China
3 Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
2 Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
9 Graduate School of Guangxi Medical University, Nanning, Guangxi, China
1 Department of Orthopedics, Xianyang Central Hospital, Xianyang, China
7 Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
4 Department of Electrical Engineering, Sukkur IBA University, Pakistan
AuthorAffiliation_xml – name: 7 Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China
– name: 10 Study in School of Guilin Medical University, Guilin, Guangxi, China
– name: 3 Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China
– name: 4 Department of Electrical Engineering, Sukkur IBA University, Pakistan
– name: 8 Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China
– name: 11 Department of Business Management, Xiamen Bank, Xiamen, China
– name: 1 Department of Orthopedics, Xianyang Central Hospital, Xianyang, China
– name: 6 Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, China
– name: 5 Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea
– name: 9 Graduate School of Guangxi Medical University, Nanning, Guangxi, China
– name: 2 Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China
– name: 12 Faculty of Medicine, Macau University of Science and Technology, Macau, China
Author_xml – sequence: 1
  givenname: Wenle
  surname: Li
  fullname: Li, Wenle
  organization: Department of OrthopedicsXianyang Central HospitalXianyangChinaxy120.net
– sequence: 2
  givenname: Wencai
  orcidid: 0000-0002-5350-3125
  surname: Liu
  fullname: Liu, Wencai
  organization: Department of Orthopaedic SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChinancu.edu.cn
– sequence: 3
  givenname: Fida
  surname: Hussain Memon
  fullname: Hussain Memon, Fida
  organization: Department of Electrical EngineeringSukkur IBA UniversityPakistaniba-suk.edu.pk
– sequence: 4
  givenname: Bing
  surname: Wang
  fullname: Wang, Bing
  organization: Clinical Medical Research CenterXianyang Central HospitalXianyangChinaxy120.net
– sequence: 5
  givenname: Chan
  surname: Xu
  fullname: Xu, Chan
  organization: Clinical Medical Research CenterXianyang Central HospitalXianyangChinaxy120.net
– sequence: 6
  givenname: Shengtao
  orcidid: 0000-0002-5761-026X
  surname: Dong
  fullname: Dong, Shengtao
  organization: Department of Spine SurgerySecond Affiliated Hospital of Dalian Medical UniversityChinadlmedu.edu.cn
– sequence: 7
  givenname: Haosheng
  surname: Wang
  fullname: Wang, Haosheng
  organization: Department of OrthopaedicsThe Second Hospital of Jilin UniversityChangchunChinajlu.edu.cn
– sequence: 8
  givenname: Zhaohui
  surname: Hu
  fullname: Hu, Zhaohui
  organization: Department of Spine SurgeryLiuzhou People’s HospitalLiuzhouChinalzry.com.cn
– sequence: 9
  givenname: Xubin
  surname: Quan
  fullname: Quan, Xubin
  organization: Department of Spine SurgeryLiuzhou People’s HospitalLiuzhouChinalzry.com.cn
– sequence: 10
  givenname: Yizhuo
  surname: Deng
  fullname: Deng, Yizhuo
  organization: Department of Spine SurgeryLiuzhou People’s HospitalLiuzhouChinalzry.com.cn
– sequence: 11
  givenname: Qiang
  orcidid: 0000-0003-4816-0962
  surname: Liu
  fullname: Liu, Qiang
  organization: Department of OrthopedicsXianyang Central HospitalXianyangChinaxy120.net
– sequence: 12
  givenname: Shibin
  orcidid: 0000-0001-8901-5863
  surname: Su
  fullname: Su, Shibin
  organization: 1Department of Business ManagementXiamen BankXiamenChina
– sequence: 13
  givenname: Chengliang
  orcidid: 0000-0001-8262-5749
  surname: Yin
  fullname: Yin, Chengliang
  organization: 2Faculty of MedicineMacau University of Science and TechnologyMacauChinamust.edu.mo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35571720$$D View this record in MEDLINE/PubMed
BookMark eNqFkk1v1DAQhi1URNuFG2dkiQsShNrO2kk4IIWqfEi7Kgfgas06k60rx17ihLJ_gN-Nw25bqARIlmY0fuad8YyPyYEPHgl5zNlLzqU8EUyIEyEEk6K4R464KossufnBja_kITmO8ZIxWUgmHpDDXMqCF4IdkR-1p2ffB-w9uOwLONvAgA392GNjzWCDp8vQoKNDuI7RxejXdIkDxHRspNCFFDiPA4YIvQkdvKI1XY5usAZ9kqZ1Et9O6BuISXwSBXNhPdIFQu-tXz8k91twER_t7Yx8fnv26fR9tjh_9-G0XmRmztSQ5VABx1yKvBKwWkluWiNK2QJrW2UaVkGJUOWqMAZz5KDaipmKzWFVYlGYMp-RbKc7-g1sr8A5veltB_1Wc6aneeppnno_z8S_3vGbcdVhM72nh9ucAFb_eePthV6Hb7riTM0LlQSe7QX68HXEOOjORoPOgccwRi2Ukpwzxqfent5BL8M47eUXNVepOa5uqTU41Na3IdU1k6iuC5aXad3JzMiT3_u-afh68Ql4sQNMH2Lssf3fHMQd3NgBpv-Rqlv3t6Tnu6S06gau7L9L_AT4dNrl
CitedBy_id crossref_primary_10_1002_cam4_5736
crossref_primary_10_3389_fimmu_2023_1103509
crossref_primary_10_70322_fibrosis_2024_10005
crossref_primary_10_62347_KREL8138
crossref_primary_10_1186_s12905_024_03264_z
crossref_primary_10_3389_fendo_2023_1135297
crossref_primary_10_3389_fsurg_2022_965401
crossref_primary_10_1007_s12672_024_01327_z
crossref_primary_10_3389_fgene_2022_973272
crossref_primary_10_3389_fsurg_2022_1031105
crossref_primary_10_3389_fpubh_2022_922510
crossref_primary_10_1186_s12880_023_01053_y
crossref_primary_10_1155_2022_5676570
crossref_primary_10_3389_fendo_2022_1047433
crossref_primary_10_1007_s42107_024_00985_2
crossref_primary_10_1038_s41598_024_69700_0
crossref_primary_10_1007_s11042_023_17634_6
Cites_doi 10.1093/annonc/mdy310
10.2106/jbjs.L.01189
10.2165/00148581-200810050-00005
10.4137/cmo.s531
10.1007/s00586-021-07064-z
10.1186/s13018-021-02476-5
10.1016/j.neucom.2018.12.049
10.15252/emmm.201911131
10.1016/j.ejso.2017.12.006
10.1016/j.thorsurg.2015.09.010
10.1038/s41598-020-69740-2
10.3389/fmed.2021.771608
10.1097/CCO.0b013e328122d73f
10.1097/00043426-200201000-00008
10.1007/s10552-015-0607-3
10.3389/fpubh.2021.812023
10.1161/circulationaha.115.001593
10.1097/md.0000000000015988
10.1136/thoraxjnl-2013-204528
10.1371/journal.pone.0127236
10.1109/tcyb.2020.2977267
10.1586/14737140.2016.1168697
10.1109/tcyb.2021.3068300
10.3389/fpubh.2021.813625
10.1186/s12891-021-04414-2
10.3238/arztebl.2012.0645
10.1186/s13018-021-02376-8
10.1053/stcs.2002.32881
10.1001/jamasurg.2018.0501
10.4149/neo_2020_200617N639
10.1177/1533033820947701
10.1016/j.neucom.2020.04.012
ContentType Journal Article
Copyright Copyright © 2022 Wenle Li et al.
COPYRIGHT 2022 John Wiley & Sons, Inc.
Copyright © 2022 Wenle Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Wenle Li et al. 2022
Copyright_xml – notice: Copyright © 2022 Wenle Li et al.
– notice: COPYRIGHT 2022 John Wiley & Sons, Inc.
– notice: Copyright © 2022 Wenle Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
– notice: Copyright © 2022 Wenle Li et al. 2022
DBID RHU
RHW
RHX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7X7
7XB
8AL
8BQ
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
CWDGH
DWQXO
F28
FR3
FYUFA
GHDGH
GNUQQ
H8D
H8G
HCIFZ
JG9
JQ2
K7-
K9.
KR7
L6V
L7M
LK8
L~C
L~D
M0N
M0S
M1P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
7X8
5PM
ADTOC
UNPAY
DOI 10.1155/2022/2220527
DatabaseName Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Aluminium Industry Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
ProQuest One Community College
Middle East & Africa Database
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Computer Science Database (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
ProQuest Biological Science Collection
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Scholarly Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
Materials Research Database
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Ceramic Abstracts
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Middle East & Africa Database
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
Corrosion Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic
Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1687-5273
Editor Mumtaz, Shahid
Editor_xml – sequence: 1
  givenname: Shahid
  surname: Mumtaz
  fullname: Mumtaz, Shahid
EndPage 10
ExternalDocumentID 10.1155/2022/2220527
PMC9106476
A703852670
35571720
10_1155_2022_2220527
Genre Multicenter Study
Journal Article
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID ---
188
29F
2WC
3V.
4.4
53G
5GY
5VS
6J9
7X7
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AAFWJ
AAJEY
AAKPC
ABDBF
ABIVO
ABJCF
ABUWG
ACGFO
ACIWK
ACM
ACPRK
ADBBV
ADRAZ
AENEX
AFKRA
AHMBA
AINHJ
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
CS3
CWDGH
DIK
DWQXO
E3Z
EBD
EBS
EMOBN
ESX
F5P
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HMCUK
HYE
I-F
IAO
ICD
INH
INR
IPY
ITC
K6V
K7-
KQ8
L6V
LK8
M0N
M1P
M48
M7P
M7S
MK~
O5R
O5S
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
Q2X
RHU
RHW
RHX
RNS
RPM
SV3
TR2
TUS
UKHRP
XH6
~8M
0R~
24P
AAMMB
AAYXX
ACCMX
ACUHS
AEFGJ
AGXDD
AIDQK
AIDYY
CITATION
H13
IHR
OVT
PGMZT
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PUEGO
2UF
C1A
CGR
CNMHZ
CUY
CVCKV
CVF
ECM
EIF
EJD
IL9
NPM
UZ4
7QF
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
7XB
8AL
8BQ
8FD
8FK
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-3a9a1e352392abb51cfc285fa0ff6cd09a8ea9367cce3e1a6f90c904ab8e77c83
IEDL.DBID UNPAY
ISSN 1687-5265
1687-5273
IngestDate Sun Oct 26 04:13:05 EDT 2025
Tue Sep 30 17:04:31 EDT 2025
Sat Sep 27 18:42:14 EDT 2025
Tue Oct 07 06:06:24 EDT 2025
Mon Oct 20 22:49:07 EDT 2025
Wed Feb 19 02:25:45 EST 2025
Wed Oct 01 02:22:20 EDT 2025
Thu Apr 24 23:13:01 EDT 2025
Sun Jun 02 18:52:16 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
Copyright © 2022 Wenle Li et al.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-3a9a1e352392abb51cfc285fa0ff6cd09a8ea9367cce3e1a6f90c904ab8e77c83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Shahid Mumtaz
ORCID 0000-0001-8901-5863
0000-0002-5761-026X
0000-0003-4816-0962
0000-0001-8262-5749
0000-0002-5350-3125
OpenAccessLink https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cin/2022/2220527.pdf
PMID 35571720
PQID 2664615516
PQPubID 237303
PageCount 10
ParticipantIDs unpaywall_primary_10_1155_2022_2220527
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106476
proquest_miscellaneous_2665110018
proquest_journals_2664615516
gale_infotracmisc_A703852670
pubmed_primary_35571720
crossref_primary_10_1155_2022_2220527
crossref_citationtrail_10_1155_2022_2220527
hindawi_primary_10_1155_2022_2220527
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-05-06
PublicationDateYYYYMMDD 2022-05-06
PublicationDate_xml – month: 05
  year: 2022
  text: 2022-05-06
  day: 06
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle Computational intelligence and neuroscience
PublicationTitleAlternate Comput Intell Neurosci
PublicationYear 2022
Publisher Hindawi
John Wiley & Sons, Inc
Publisher_xml – name: Hindawi
– name: John Wiley & Sons, Inc
References 22
23
24
25
28
29
E. Q. Wu (26) 2020
30
31
10
32
11
33
12
34
13
14
15
17
18
E. Q. Wu (35) 2020; 51
19
Z. Tang (16) 2020; 13
1
2
3
4
5
6
7
8
9
U. Pastorino (27) 2002
20
21
References_xml – ident: 1
  doi: 10.1093/annonc/mdy310
– ident: 24
  doi: 10.2106/jbjs.L.01189
– ident: 6
  doi: 10.2165/00148581-200810050-00005
– ident: 28
  doi: 10.4137/cmo.s531
– ident: 19
  doi: 10.1007/s00586-021-07064-z
– ident: 10
  doi: 10.1186/s13018-021-02476-5
– ident: 18
  doi: 10.1016/j.neucom.2018.12.049
– ident: 5
  doi: 10.15252/emmm.201911131
– ident: 21
  doi: 10.1016/j.ejso.2017.12.006
– volume-title: Detecting Fatigue Status of Pilots Based on Deep Learning Network Using EEG Signals
  year: 2020
  ident: 26
– ident: 8
  doi: 10.1016/j.thorsurg.2015.09.010
– volume: 51
  year: 2020
  ident: 35
  article-title: Nonparametric bayesian prior inducing deep network for automatic detection of cognitive status
  publication-title: IEEE Transactions on Cybernetics
– ident: 33
  doi: 10.1038/s41598-020-69740-2
– ident: 11
  doi: 10.3389/fmed.2021.771608
– ident: 4
  doi: 10.1097/CCO.0b013e328122d73f
– ident: 25
  doi: 10.1097/00043426-200201000-00008
– ident: 2
  doi: 10.1007/s10552-015-0607-3
– ident: 12
  doi: 10.3389/fpubh.2021.812023
– ident: 17
  doi: 10.1161/circulationaha.115.001593
– ident: 30
  doi: 10.1097/md.0000000000015988
– ident: 9
  doi: 10.1136/thoraxjnl-2013-204528
– ident: 7
  doi: 10.1371/journal.pone.0127236
– ident: 13
  doi: 10.1109/tcyb.2020.2977267
– ident: 3
  doi: 10.1586/14737140.2016.1168697
– ident: 14
  doi: 10.1109/tcyb.2021.3068300
– ident: 20
  doi: 10.3389/fpubh.2021.813625
– ident: 22
  doi: 10.1186/s12891-021-04414-2
– ident: 29
  doi: 10.3238/arztebl.2012.0645
– ident: 32
  doi: 10.1186/s13018-021-02376-8
– volume-title: Seminars in Thoracic and Cardiovascular Surgery
  year: 2002
  ident: 27
  article-title: History of the surgical management of pulmonary metastases and development of the International Registry
  doi: 10.1053/stcs.2002.32881
– ident: 23
  doi: 10.1001/jamasurg.2018.0501
– volume: 13
  year: 2020
  ident: 16
  article-title: A multilayer neural network merging image preprocessing and pattern recognition by integrating diffusion and drift memristors
  publication-title: IEEE Transactions on Cognitive and Developmental Systems
– ident: 31
  doi: 10.4149/neo_2020_200617N639
– ident: 34
  doi: 10.1177/1533033820947701
– ident: 15
  doi: 10.1016/j.neucom.2020.04.012
SSID ssj0057502
Score 2.4054825
Snippet Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction...
Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict...
SourceID unpaywall
pubmedcentral
proquest
gale
pubmed
crossref
hindawi
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Age
Algorithms
Analysis
Artificial intelligence
Biomedical materials
Bone cancer
Bone Neoplasms
Bone surgery
Chemotherapy
Clinical trials
Decision trees
Demographic variables
Epidemiology
Health aspects
Hospitals
Humans
Learning algorithms
Logistics
Lung cancer
Lung Neoplasms - diagnosis
Lungs
Lymphatic system
Machine Learning
Medical prognosis
Medical research
Medicine, Experimental
Metastases
Metastasis
Models, Statistical
Multilayer perceptrons
Osteosarcoma
Patients
Physicians
Prediction models
Prognosis
Radiation therapy
Regression analysis
Retrospective Studies
Risk analysis
Risk factors
Sarcoma
Software
Surgery
Tumors
SummonAdditionalLinks – databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwELVoJQQviFIuC201SKUvKCI3Ow5vAbVaIW5CFO1b5Dg2XWmbVJusqv4A382M14lYWi6PSRzb0cxkzsQnx4wdprlOQh2JQGNBG6Ra8kBFVgVJWCvMOMIktWP5fhTT0_TdjM-8SFJ3fQkfsx2V5_GrmH4IjbMttiUFMbe-TGfDCxcBx5paKHA0Unsf-O2_3buRefz79_YZVb6X85vw5XWa5J1Vc6GuLtVi8UsOOrnP7nnwCMXa2jvslmkesN2iwcL5_AqOwNE53XfyXfajaODYSzwH3xBtU2lfw-clrcyQNYC2QVtA3w7n4D0GPnwwvULE2M07cBsRwSf0g7bDeGjP1WsowP2yS5M1SxgkTeANJsMaqFNHzjTgdVu_P2SnJ8df304Dv-lCoDG390GichUZhGUInFRV8UhbHUtuVWit0HWYK2lUnohMa5OYSAmbhzoPU1VJk2VaJo_YdtM25gkDK5UitRlbVSK1aV1xaSOppTCa471ywl4OBim1VySnjTEWpatMOC_JfKU334S9GFtfrJU4_tBuj2xbUoBibxrDRZdFRiugscjCCTv0Nv9XL4NDlD6quxLBTCrc0uKEPR8v0wDEVGtMu3JtOMnwRfh4j9f-Mw6E2A6r5xjnkG141tiAtL43rzTzM6f5jahOpBmOezT64F_n__T_HvMZu0uHjsEp9th2v1yZfURZfXXgYuwnOHMeZw
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQvCBiMwoaMNPaCrOWXHQcJTdnUaUJQJsTQ3iLHsVmlLiltqmn_AH83d66TbQLGa3KxHd357rN9_o6QnSTTcaBDwTQsaFmiJWcqtIrFQaUg4ggTVy7LdyyOT5OPZ_xsjYy7uzCYVtn5ROeoq0bjHvkeBJJEuGOd_dlPhlWj8HS1K6GhfGmF6oOjGLtH1iNkxhqQ9YPR-ORr55sBm6yyEAUMDInhu1R4znEXINqL8N4pVpi5EaS8q75_jovky8nfoOifGZUPlvVMXV2q6fRGuDp6TB55nEnzlWE8IWumfko28hrW2BdXdJe6zE-3pb5BfuU1HXk2aPYdgDnuAlT0ZI6HOKg4ihXTprRtumf0E_gI-tm0CsDlYrKgrmYR_QIm0yxg6jQX6j3Nqbvdi4M1c9qxn9ADiJsVxUZdHqehnuL1xzNyejT6dnjMfH0GpgEGtCxWmQoNIDjAWKoseaitjiS3KrBW6CrIlDQqi0WqtYlNqITNAp0FiSqlSVMt4-dkUDe1eUGolUohMY0tS5HYpCq5tKHUUhjN4Vs5JO86hRTak5djDY1p4RYxnBeovsKrb0je9tKzFWnHP-S2ULcFzmVoTcPM0kWe4mFpJNJgSHa8zv_XSmcQhXcAi-LaXIfkTf8aO8Cktto0SyfDkbEvhN_bXNlP3xHAQFhoRzCG9JZl9QJIC377TT05d_TgAABFkkK_u70N3jn-l3eP_xV5iNIuyVNskUE7X5ptAGJt-drPrt8WrS9D
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKEYILAspjoSAjlb2g0Dxsx0FCKKBWFaLAgUW9RY5j05XSZLubVdk_wO9mxutELJTHNXFsJzOT-SYz-YaQPZbpJNSRCDQEtAHTkgcqsipIwkqBxxEmqVyV7wdxNGHvTvjJFunr5_0DXFwa2mE_qcm8fvHtfPUaDP6VM3jOMX6P92P8YzROx7PzAFtKYerV99e4Qq6C28qwr8MxG1IMAFPWBYkC9ogsZH1V_C8Tbvgr_9a-dorx8sX0MlT6e3Hl9WUzU6sLVdc_ea7DW-Smh5w0X-vIbbJlmjtkJ28g3D5b0TF1RaDu6_oO-Z439MATQwdfAKPjB4GKfppjPgdlSLF5Wk27tj9G38Prgh6bTgHOXEwX1LUvoh9Be9oFWFF7pl7SnLoffXGzZk57IhT6BlxoRXFSV9JpqGd7_XqXTA4PPr89CnyrhkADIuiCRGUqMgDmAG6psuSRtjqW3KrQWqGrMFPSqCwRqdYmMZESNgt1FjJVSpOmWib3yHbTNuYBoVYqhRw1tiwFs6wqubSR1FIYzeFaOSLPe4EU2vOYYzuNunDxDOcFiq_w4huRZ8Po2Zq_4w_jdlG2BSoazKbByHSRp5g3jUUajsiel_m_ZukVouhVuQAIxIRLSI7I0-E0LoD1bY1pl24MR_K-CG7v_lp_hoUAEULMHcMe0g3NGgYgQ_jmmWZ66pjCAQsKlsK640EH_7r_h_-xwUfkBl7iij7FLtnu5kvzGIBZVz5xBvYDkXUz9A
  priority: 102
  providerName: Scholars Portal
Title An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
URI https://dx.doi.org/10.1155/2022/2220527
https://www.ncbi.nlm.nih.gov/pubmed/35571720
https://www.proquest.com/docview/2664615516
https://www.proquest.com/docview/2665110018
https://pubmed.ncbi.nlm.nih.gov/PMC9106476
https://downloads.hindawi.com/journals/cin/2022/2220527.pdf
UnpaywallVersion publishedVersion
Volume 2022
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070625
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1687-5273
  dateEnd: 20230628
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: ABDBF
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: Health & Medical Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 7X7
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/healthcomplete
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Middle East & Africa Database
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: false
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: CWDGH
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/middleeastafrica
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1687-5273
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 20250430
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: M48
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1687-5273
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0057502
  issn: 1687-5273
  databaseCode: 24P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2VgheuA1YYVRGGntB6XLzJfCUoXYVYqWaKOokpMhxnK2iS6o21TR-AL-bY9cplLt4sZrk1Ce2j-3vxMefEdoPIxm40qOOBIfWCSUnjvBy4QRuJmDGoSrITJTvgPZH4ZsxGW-hV_VemExTxJciW3QutE96NTGjta3XxaEEbxHcdf_Q1xtEfdaZZfk2alICQLyBmqPBMD7TLhYFxZr4_dtvFtRh74RsZLExIdlh-YZV_ivY-XP05M1lMRPXV2I6_W5q6t1BH-tCrSJSPnWWVdqRn3_ge_zPUt9Fty1kxfHKxu6hLVXcRztxAe765TU-wCaI1Hyd30Ff4gJ3LbG08wEwvv6gkOHhXK8HaRvA-vC1Ka7K-h5-C8MNPlGVAJy6mCywOf4IvwPrKxfQC8tL8RLH2GwU1nWh5rgmUsFHMAVnWGdqQkIVtmyx5w_QqNd9_7rv2KMeHAmIonICEQlPARgEuCbSlHgylz4nuXDznMrMjQRXIgook1IFyhM0j1wZuaFIuWJM8uAhahRloXYRzrkQmuMmT1Ma5mGWEp57XHKqJIH_8hZ6Ubd3Ii0Puj6OY5oYf4iQRFd1Yqu6hZ6vpWcr_o_fyO1p00n0sAC5SeikMomZXnf1KXNbaN-27N9yqe0tqVs_AQgVUrOg2ULP1o-1Ah0fV6hyaWSIJv_zoHiPVua5VgSIEnx2H96BbRjuWkAzjG8-KSYXhmkcsCQNGeg9WJv4H9__8b8KPkG39KWJHKV7qFHNl-opoLsqbaNtNmaQ8t5xGzWPuoPhKVwdjz1IT0IO6Wl_3LZ9_SsZWFCm
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctMwGNaUdJhyYStLoICYaXNh3HqTbDPDIXQhpWnh0EJvRpZlmiG1Q-xMJjwAj8Or8Er8vyKblqWceuBqy9r8b5I-fT8hq34kPVs63JKwoLV8GTJLOJmwPDsV4HG48lKN8j3gvSP_9TE7XiDf6rswCKusbaI21GkhcY98AxyJz_WxjkFQ7qnZFNZn5YvdLfiZa667s3242bNMCgFLgqeqLE9EwlEQZEAYIJKEOTKTbsgyYWcZl6kdiVCJyOOBlMpTjuBZZMvI9kUSqiCQoQf1dkafLcxShae5JmXHFbIIcu64LbK4-X7rVa-2_RD7zFGOHAaOxPM11J4x3GVwN1y814oZbM44QeMKrp7gInw6-FOo-ztic2mSj8RsKobDM-5w5wb5Xk_kHAXzaX1SJevyyy8ck__PTN8k101kTrtzVbpFFlR-myx3c1EVpzPaoRorqw8hlsnXbk63DX-29Q6WMrhvktK3Yzz2QlGnmGNuSKuifkb7YFXpvqoEhOPloKQ6yxN9A0pWlDD84lQ8p12q70Pj9Ksxrfli6EuINFKKlWrkq6KGFPfjHXJ0KZN0l7TyIlf3Cc1CIZDKJ0sS7md-mrAwc0IZciUZfBu2ybNaxGJp6N4x68gw1ss-xmIUyNgIZJusNaVHc5qTv5RbQWmN0fpBbRJskYy7AR4vuzyw22TVSPG_aqklLzYms4x_il2bPG1eYwMIA8xVMdFlGHIcOjC8e3ONaBqCwDmAaBz6EJzTlaYAEqmff5MPTjShOoTM3A-g3U6jVRf2_8HF_X9ClnqH-_24v3uw95Bcwy81RJavkFY1nqhHEMZWyWNjOyj5cNl69QPC0axW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctMwGNaUdlgubGUJFBAzbS-MG6-yzQzDmKYhpaX0QKE3I8sSzZDaIXEmEx6Ah-JVeBn-X5ZDy1JOPXC1ZW3-N0mfvp-QVT8Wni0cZglY0Fq-iAKLO4pbnp1z8DhMerlG-e6x3oH_6jA4XCDfmrswCKtsbKI21HkpcI-8DY7EZ_pYp60MLGK_030-_GxhBik8aW3SadQisiNnU1i-jZ9td-Bfr7lud-vtZs8yGQYsAY6ssjwec0dCDAJRAs-ywBFKuFGguK0UE7kd80jy2GOhENKTDmcqtkVs-zyLZBiKyIN6L5CliIUMjMLS5vvOy17jByAOqhGPDCYBSegb2H0Q4I6D23bxjitmsznhEI1buHiEC_Jp_09h7-_ozcuTYshnUz4YnHCN3WvkezOpNSLm08akyjbEl1_4Jv_PWb9OrpqInSa1it0gC7K4SZaTglfl8YyuU42h1YcTy-RrUtAtw6ttvYMlDu6n5HR_hMdhqAIUc88NaFU2z-guWFv6WlYcwvRxf0x19if6BpSvHMNYy2P-lCZU35PGXyFHtOGRoS8gAskpVqoRsZIastyPt8jBuczIbbJYlIW8S6iKOEeKH5VlzFd-ngWRciIRMSkC-DZqkSeNuKXC0MBjNpJBqpeDQZCicKZGOFtkbV56WNOf_KXcCkpuilYRahNgo0SahHjs7LLQbpFVI9H_qqWRwtSY0nH6UwRb5PH8NTaA8MBClhNdJkDuQweGd6fWjnlDEFCHEKVDH8JTejMvgATrp98U_SNNtA6hNPNDaHd9rmFn9v_e2f1_RC6B8qS723s798kV_FAjZ9kKWaxGE_kAotsqe2jMCCUfzluHfgCpoLUe
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVoheeJXCQkFGKr2gbPOy48ApoFYVgtIDi4qEFDmOTVfdJqtNVlX5AfxuZrxOYHmLWx4TT2yP7W_s8WdCduJURb4KuKfAofViJZgnAyO9yC8ljDhcR6WN8j3ih-P41Qk7WSPPu70wJVLE17JsRqfok15MbG_tyrXZU-Atgrse7oW4QTRMRrPSXCHrnAEQH5D18dFx9gFdLA6Kkfj923USdWHvjK0ksTIguW75qlP-K9j5c_TktUU1k5cXcjr9bmg6uEE-dplaRqScjRZtMVKff-B7_M9c3yTXHWSl2dLGbpE1Xd0mm1kF7vr5Jd2lNojUzs5vki9ZRfcdsbT3HjA-TiiU9HiO60FoAxQPX5vStu6e0dfQ3dA3upWAU5tJQ-3xR_QtWF_dQCusz-UzmlG7URjLQs9pR6RCX8AQXFJM1IaEaurYYj_dIeOD_XcvDz131IOnAFG0XiRTGWgAgwDXZFGwQBkVCmakbwxXpZ9KoWUa8UQpHelAcpP6KvVjWQidJEpEW2RQ1ZW-R6gRUiLHjSkKHpu4LJgwgVCCa8XgWzEkT7v6zpXjQcfjOKa59YcYy7Goc1fUQ_Kkl54t-T9-I7eNppNjtwCpKWikKs8SXHcNeeIPyY6r2b-l0tlb3tV-DhAq5nZBc0ge969RAcbHVbpeWBmG5H8BZO_u0jx7RYAowWcP4R-SFcPtBZBhfPVNNTm1TOOAJXmcgN7d3sT_-P_3_1XwAdnAWxs5yrfJoJ0v9ENAd23xyLXir6mUSmE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+External-Validated+Prediction+Model+to+Predict+Lung+Metastasis+among+Osteosarcoma%3A+A+Multicenter+Analysis+Based+on+Machine+Learning&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Li%2C+Wenle&rft.au=Liu%2C+Wencai&rft.au=Hussain+Memon%2C+Fida&rft.au=Wang%2C+Bing&rft.date=2022-05-06&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2022&rft.spage=2220527&rft_id=info:doi/10.1155%2F2022%2F2220527&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon