An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning
Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. Methods. We retrospectively c...
Saved in:
| Published in | Computational intelligence and neuroscience Vol. 2022; pp. 1 - 10 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Hindawi
06.05.2022
John Wiley & Sons, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1687-5265 1687-5273 1687-5273 |
| DOI | 10.1155/2022/2220527 |
Cover
| Abstract | Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. Methods. We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient’s demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. Results. Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. Conclusions. The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies. |
|---|---|
| AbstractList | Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. Methods. We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient’s demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. Results. Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. Conclusions. The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms.BackgroundLung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms.We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator.MethodsWe retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator.Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient.ResultsOf all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient.The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies.ConclusionsThe XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict the risk of lung metastasis among osteosarcoma patients based on machine learning (ML) algorithms. We retrospectively collected osteosarcoma patients from the Surveillance Epidemiology and End Results (SEER) database and from four hospitals in China. Six ML algorithms, including logistic regression (LR), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), random forest (RF), decision tree (DT), and multilayer perceptron (MLP), were applied to build predictive models for predicting lung metastasis using patient's demographics, clinical characteristics, and therapeutic variables from the SEER database. The model was internally validated using 10-fold cross-validation to calculate the mean area under the curve (AUC) and the model was externally validated using the Chinese multicenter osteosarcoma data. Relative importance ranking of predictors was plotted to understand the importance of each predictor in different ML algorithms. The correlation heat map of predictors was plotted to understand the correlation of each predictor, selecting the 10-fold cross-validation with the highest AUC value in the external validation ROC curve to build a web calculator. Of all enrolled patients from the SEER database, 17.73% (194/1094) developed lung metastasis. The multiple logistic regression analysis showed that sex, N stage, T stage, surgery, and bone metastasis were all independent risk factors for lung metastasis. In predicting lung metastasis, the mean AUCs of the six ML algorithms ranged from 0.711 to 0.738 in internal validation and 0.697 to 0.729 in external validation. Among the six ML algorithms, the extreme gradient boosting (XGBoost) model had the highest AUC value with an average internal AUC of 0.738 and an external AUC of 0.729. The best performing ML algorithm model was used to build a web calculator to facilitate clinicians to calculate the risk of lung metastasis for each patient. The XGBoost model may have the best prediction effect and the online calculator based on this model can help doctors to determine the lung metastasis risk of osteosarcoma patients and help to make individualized medical strategies. |
| Audience | Academic |
| Author | Hu, Zhaohui Wang, Haosheng Liu, Wencai Wang, Bing Liu, Qiang Yin, Chengliang Dong, Shengtao Su, Shibin Hussain Memon, Fida Deng, Yizhuo Li, Wenle Xu, Chan Quan, Xubin |
| AuthorAffiliation | 5 Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea 6 Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, China 10 Study in School of Guilin Medical University, Guilin, Guangxi, China 8 Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China 11 Department of Business Management, Xiamen Bank, Xiamen, China 12 Faculty of Medicine, Macau University of Science and Technology, Macau, China 3 Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China 2 Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China 9 Graduate School of Guangxi Medical University, Nanning, Guangxi, China 1 Department of Orthopedics, Xianyang Central Hospital, Xianyang, China 7 Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China 4 Department of Electrical Engineering, Sukkur IBA University, Pakistan |
| AuthorAffiliation_xml | – name: 7 Department of Orthopaedics, The Second Hospital of Jilin University, Changchun, China – name: 10 Study in School of Guilin Medical University, Guilin, Guangxi, China – name: 3 Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, China – name: 4 Department of Electrical Engineering, Sukkur IBA University, Pakistan – name: 8 Department of Spine Surgery, Liuzhou People's Hospital, Liuzhou, China – name: 11 Department of Business Management, Xiamen Bank, Xiamen, China – name: 1 Department of Orthopedics, Xianyang Central Hospital, Xianyang, China – name: 6 Department of Spine Surgery, Second Affiliated Hospital of Dalian Medical University, China – name: 5 Department of Mechatronics Engineering, Jeju National University, Jeju, Republic of Korea – name: 9 Graduate School of Guangxi Medical University, Nanning, Guangxi, China – name: 2 Clinical Medical Research Center, Xianyang Central Hospital, Xianyang, China – name: 12 Faculty of Medicine, Macau University of Science and Technology, Macau, China |
| Author_xml | – sequence: 1 givenname: Wenle surname: Li fullname: Li, Wenle organization: Department of OrthopedicsXianyang Central HospitalXianyangChinaxy120.net – sequence: 2 givenname: Wencai orcidid: 0000-0002-5350-3125 surname: Liu fullname: Liu, Wencai organization: Department of Orthopaedic SurgeryThe First Affiliated Hospital of Nanchang UniversityNanchangChinancu.edu.cn – sequence: 3 givenname: Fida surname: Hussain Memon fullname: Hussain Memon, Fida organization: Department of Electrical EngineeringSukkur IBA UniversityPakistaniba-suk.edu.pk – sequence: 4 givenname: Bing surname: Wang fullname: Wang, Bing organization: Clinical Medical Research CenterXianyang Central HospitalXianyangChinaxy120.net – sequence: 5 givenname: Chan surname: Xu fullname: Xu, Chan organization: Clinical Medical Research CenterXianyang Central HospitalXianyangChinaxy120.net – sequence: 6 givenname: Shengtao orcidid: 0000-0002-5761-026X surname: Dong fullname: Dong, Shengtao organization: Department of Spine SurgerySecond Affiliated Hospital of Dalian Medical UniversityChinadlmedu.edu.cn – sequence: 7 givenname: Haosheng surname: Wang fullname: Wang, Haosheng organization: Department of OrthopaedicsThe Second Hospital of Jilin UniversityChangchunChinajlu.edu.cn – sequence: 8 givenname: Zhaohui surname: Hu fullname: Hu, Zhaohui organization: Department of Spine SurgeryLiuzhou People’s HospitalLiuzhouChinalzry.com.cn – sequence: 9 givenname: Xubin surname: Quan fullname: Quan, Xubin organization: Department of Spine SurgeryLiuzhou People’s HospitalLiuzhouChinalzry.com.cn – sequence: 10 givenname: Yizhuo surname: Deng fullname: Deng, Yizhuo organization: Department of Spine SurgeryLiuzhou People’s HospitalLiuzhouChinalzry.com.cn – sequence: 11 givenname: Qiang orcidid: 0000-0003-4816-0962 surname: Liu fullname: Liu, Qiang organization: Department of OrthopedicsXianyang Central HospitalXianyangChinaxy120.net – sequence: 12 givenname: Shibin orcidid: 0000-0001-8901-5863 surname: Su fullname: Su, Shibin organization: 1Department of Business ManagementXiamen BankXiamenChina – sequence: 13 givenname: Chengliang orcidid: 0000-0001-8262-5749 surname: Yin fullname: Yin, Chengliang organization: 2Faculty of MedicineMacau University of Science and TechnologyMacauChinamust.edu.mo |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35571720$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkk1v1DAQhi1URNuFG2dkiQsShNrO2kk4IIWqfEi7Kgfgas06k60rx17ihLJ_gN-Nw25bqARIlmY0fuad8YyPyYEPHgl5zNlLzqU8EUyIEyEEk6K4R464KossufnBja_kITmO8ZIxWUgmHpDDXMqCF4IdkR-1p2ffB-w9uOwLONvAgA392GNjzWCDp8vQoKNDuI7RxejXdIkDxHRspNCFFDiPA4YIvQkdvKI1XY5usAZ9kqZ1Et9O6BuISXwSBXNhPdIFQu-tXz8k91twER_t7Yx8fnv26fR9tjh_9-G0XmRmztSQ5VABx1yKvBKwWkluWiNK2QJrW2UaVkGJUOWqMAZz5KDaipmKzWFVYlGYMp-RbKc7-g1sr8A5veltB_1Wc6aneeppnno_z8S_3vGbcdVhM72nh9ucAFb_eePthV6Hb7riTM0LlQSe7QX68HXEOOjORoPOgccwRi2Ukpwzxqfent5BL8M47eUXNVepOa5uqTU41Na3IdU1k6iuC5aXad3JzMiT3_u-afh68Ql4sQNMH2Lssf3fHMQd3NgBpv-Rqlv3t6Tnu6S06gau7L9L_AT4dNrl |
| CitedBy_id | crossref_primary_10_1002_cam4_5736 crossref_primary_10_3389_fimmu_2023_1103509 crossref_primary_10_70322_fibrosis_2024_10005 crossref_primary_10_62347_KREL8138 crossref_primary_10_1186_s12905_024_03264_z crossref_primary_10_3389_fendo_2023_1135297 crossref_primary_10_3389_fsurg_2022_965401 crossref_primary_10_1007_s12672_024_01327_z crossref_primary_10_3389_fgene_2022_973272 crossref_primary_10_3389_fsurg_2022_1031105 crossref_primary_10_3389_fpubh_2022_922510 crossref_primary_10_1186_s12880_023_01053_y crossref_primary_10_1155_2022_5676570 crossref_primary_10_3389_fendo_2022_1047433 crossref_primary_10_1007_s42107_024_00985_2 crossref_primary_10_1038_s41598_024_69700_0 crossref_primary_10_1007_s11042_023_17634_6 |
| Cites_doi | 10.1093/annonc/mdy310 10.2106/jbjs.L.01189 10.2165/00148581-200810050-00005 10.4137/cmo.s531 10.1007/s00586-021-07064-z 10.1186/s13018-021-02476-5 10.1016/j.neucom.2018.12.049 10.15252/emmm.201911131 10.1016/j.ejso.2017.12.006 10.1016/j.thorsurg.2015.09.010 10.1038/s41598-020-69740-2 10.3389/fmed.2021.771608 10.1097/CCO.0b013e328122d73f 10.1097/00043426-200201000-00008 10.1007/s10552-015-0607-3 10.3389/fpubh.2021.812023 10.1161/circulationaha.115.001593 10.1097/md.0000000000015988 10.1136/thoraxjnl-2013-204528 10.1371/journal.pone.0127236 10.1109/tcyb.2020.2977267 10.1586/14737140.2016.1168697 10.1109/tcyb.2021.3068300 10.3389/fpubh.2021.813625 10.1186/s12891-021-04414-2 10.3238/arztebl.2012.0645 10.1186/s13018-021-02376-8 10.1053/stcs.2002.32881 10.1001/jamasurg.2018.0501 10.4149/neo_2020_200617N639 10.1177/1533033820947701 10.1016/j.neucom.2020.04.012 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Wenle Li et al. COPYRIGHT 2022 John Wiley & Sons, Inc. Copyright © 2022 Wenle Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Wenle Li et al. 2022 |
| Copyright_xml | – notice: Copyright © 2022 Wenle Li et al. – notice: COPYRIGHT 2022 John Wiley & Sons, Inc. – notice: Copyright © 2022 Wenle Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 – notice: Copyright © 2022 Wenle Li et al. 2022 |
| DBID | RHU RHW RHX AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7X7 7XB 8AL 8BQ 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU CWDGH DWQXO F28 FR3 FYUFA GHDGH GNUQQ H8D H8G HCIFZ JG9 JQ2 K7- K9. KR7 L6V L7M LK8 L~C L~D M0N M0S M1P M7P M7S P5Z P62 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U 7X8 5PM ADTOC UNPAY |
| DOI | 10.1155/2022/2220527 |
| DatabaseName | Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Aluminium Industry Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Neurosciences Abstracts Solid State and Superconductivity Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection ProQuest Natural Science Collection ProQuest One Community College Middle East & Africa Database ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Computer Science Database (ProQuest) ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace ProQuest Biological Science Collection Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Scholarly Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database Materials Research Database ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File ProQuest One Applied & Life Sciences Engineered Materials Abstracts Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Ceramic Abstracts Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Health & Medical Research Collection ProQuest Engineering Collection Middle East & Africa Database Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection Corrosion Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1687-5273 |
| Editor | Mumtaz, Shahid |
| Editor_xml | – sequence: 1 givenname: Shahid surname: Mumtaz fullname: Mumtaz, Shahid |
| EndPage | 10 |
| ExternalDocumentID | 10.1155/2022/2220527 PMC9106476 A703852670 35571720 10_1155_2022_2220527 |
| Genre | Multicenter Study Journal Article |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | --- 188 29F 2WC 3V. 4.4 53G 5GY 5VS 6J9 7X7 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 AAFWJ AAJEY AAKPC ABDBF ABIVO ABJCF ABUWG ACGFO ACIWK ACM ACPRK ADBBV ADRAZ AENEX AFKRA AHMBA AINHJ ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AZQEC BAWUL BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CS3 CWDGH DIK DWQXO E3Z EBD EBS EMOBN ESX F5P FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HMCUK HYE I-F IAO ICD INH INR IPY ITC K6V K7- KQ8 L6V LK8 M0N M1P M48 M7P M7S MK~ O5R O5S OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO PSYQQ PTHSS Q2X RHU RHW RHX RNS RPM SV3 TR2 TUS UKHRP XH6 ~8M 0R~ 24P AAMMB AAYXX ACCMX ACUHS AEFGJ AGXDD AIDQK AIDYY CITATION H13 IHR OVT PGMZT PHGZM PHGZT PJZUB PPXIY PQGLB PUEGO 2UF C1A CGR CNMHZ CUY CVCKV CVF ECM EIF EJD IL9 NPM UZ4 7QF 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7TK 7U5 7XB 8AL 8BQ 8FD 8FK F28 FR3 H8D H8G JG9 JQ2 K9. KR7 L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c406t-3a9a1e352392abb51cfc285fa0ff6cd09a8ea9367cce3e1a6f90c904ab8e77c83 |
| IEDL.DBID | UNPAY |
| ISSN | 1687-5265 1687-5273 |
| IngestDate | Sun Oct 26 04:13:05 EDT 2025 Tue Sep 30 17:04:31 EDT 2025 Sat Sep 27 18:42:14 EDT 2025 Tue Oct 07 06:06:24 EDT 2025 Mon Oct 20 22:49:07 EDT 2025 Wed Feb 19 02:25:45 EST 2025 Wed Oct 01 02:22:20 EDT 2025 Thu Apr 24 23:13:01 EDT 2025 Sun Jun 02 18:52:16 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 Copyright © 2022 Wenle Li et al. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-3a9a1e352392abb51cfc285fa0ff6cd09a8ea9367cce3e1a6f90c904ab8e77c83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Academic Editor: Shahid Mumtaz |
| ORCID | 0000-0001-8901-5863 0000-0002-5761-026X 0000-0003-4816-0962 0000-0001-8262-5749 0000-0002-5350-3125 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://downloads.hindawi.com/journals/cin/2022/2220527.pdf |
| PMID | 35571720 |
| PQID | 2664615516 |
| PQPubID | 237303 |
| PageCount | 10 |
| ParticipantIDs | unpaywall_primary_10_1155_2022_2220527 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9106476 proquest_miscellaneous_2665110018 proquest_journals_2664615516 gale_infotracmisc_A703852670 pubmed_primary_35571720 crossref_primary_10_1155_2022_2220527 crossref_citationtrail_10_1155_2022_2220527 hindawi_primary_10_1155_2022_2220527 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-06 |
| PublicationDateYYYYMMDD | 2022-05-06 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-06 day: 06 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Computational intelligence and neuroscience |
| PublicationTitleAlternate | Comput Intell Neurosci |
| PublicationYear | 2022 |
| Publisher | Hindawi John Wiley & Sons, Inc |
| Publisher_xml | – name: Hindawi – name: John Wiley & Sons, Inc |
| References | 22 23 24 25 28 29 E. Q. Wu (26) 2020 30 31 10 32 11 33 12 34 13 14 15 17 18 E. Q. Wu (35) 2020; 51 19 Z. Tang (16) 2020; 13 1 2 3 4 5 6 7 8 9 U. Pastorino (27) 2002 20 21 |
| References_xml | – ident: 1 doi: 10.1093/annonc/mdy310 – ident: 24 doi: 10.2106/jbjs.L.01189 – ident: 6 doi: 10.2165/00148581-200810050-00005 – ident: 28 doi: 10.4137/cmo.s531 – ident: 19 doi: 10.1007/s00586-021-07064-z – ident: 10 doi: 10.1186/s13018-021-02476-5 – ident: 18 doi: 10.1016/j.neucom.2018.12.049 – ident: 5 doi: 10.15252/emmm.201911131 – ident: 21 doi: 10.1016/j.ejso.2017.12.006 – volume-title: Detecting Fatigue Status of Pilots Based on Deep Learning Network Using EEG Signals year: 2020 ident: 26 – ident: 8 doi: 10.1016/j.thorsurg.2015.09.010 – volume: 51 year: 2020 ident: 35 article-title: Nonparametric bayesian prior inducing deep network for automatic detection of cognitive status publication-title: IEEE Transactions on Cybernetics – ident: 33 doi: 10.1038/s41598-020-69740-2 – ident: 11 doi: 10.3389/fmed.2021.771608 – ident: 4 doi: 10.1097/CCO.0b013e328122d73f – ident: 25 doi: 10.1097/00043426-200201000-00008 – ident: 2 doi: 10.1007/s10552-015-0607-3 – ident: 12 doi: 10.3389/fpubh.2021.812023 – ident: 17 doi: 10.1161/circulationaha.115.001593 – ident: 30 doi: 10.1097/md.0000000000015988 – ident: 9 doi: 10.1136/thoraxjnl-2013-204528 – ident: 7 doi: 10.1371/journal.pone.0127236 – ident: 13 doi: 10.1109/tcyb.2020.2977267 – ident: 3 doi: 10.1586/14737140.2016.1168697 – ident: 14 doi: 10.1109/tcyb.2021.3068300 – ident: 20 doi: 10.3389/fpubh.2021.813625 – ident: 22 doi: 10.1186/s12891-021-04414-2 – ident: 29 doi: 10.3238/arztebl.2012.0645 – ident: 32 doi: 10.1186/s13018-021-02376-8 – volume-title: Seminars in Thoracic and Cardiovascular Surgery year: 2002 ident: 27 article-title: History of the surgical management of pulmonary metastases and development of the International Registry doi: 10.1053/stcs.2002.32881 – ident: 23 doi: 10.1001/jamasurg.2018.0501 – volume: 13 year: 2020 ident: 16 article-title: A multilayer neural network merging image preprocessing and pattern recognition by integrating diffusion and drift memristors publication-title: IEEE Transactions on Cognitive and Developmental Systems – ident: 31 doi: 10.4149/neo_2020_200617N639 – ident: 34 doi: 10.1177/1533033820947701 – ident: 15 doi: 10.1016/j.neucom.2020.04.012 |
| SSID | ssj0057502 |
| Score | 2.4054825 |
| Snippet | Background. Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction... Lung metastasis greatly affects medical therapeutic strategies in osteosarcoma. This study aimed to develop and validate a clinical prediction model to predict... |
| SourceID | unpaywall pubmedcentral proquest gale pubmed crossref hindawi |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1 |
| SubjectTerms | Age Algorithms Analysis Artificial intelligence Biomedical materials Bone cancer Bone Neoplasms Bone surgery Chemotherapy Clinical trials Decision trees Demographic variables Epidemiology Health aspects Hospitals Humans Learning algorithms Logistics Lung cancer Lung Neoplasms - diagnosis Lungs Lymphatic system Machine Learning Medical prognosis Medical research Medicine, Experimental Metastases Metastasis Models, Statistical Multilayer perceptrons Osteosarcoma Patients Physicians Prediction models Prognosis Radiation therapy Regression analysis Retrospective Studies Risk analysis Risk factors Sarcoma Software Surgery Tumors |
| SummonAdditionalLinks | – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3bbtQwELVoJQQviFIuC201SKUvKCI3Ow5vAbVaIW5CFO1b5Dg2XWmbVJusqv4A382M14lYWi6PSRzb0cxkzsQnx4wdprlOQh2JQGNBG6Ra8kBFVgVJWCvMOMIktWP5fhTT0_TdjM-8SFJ3fQkfsx2V5_GrmH4IjbMttiUFMbe-TGfDCxcBx5paKHA0Unsf-O2_3buRefz79_YZVb6X85vw5XWa5J1Vc6GuLtVi8UsOOrnP7nnwCMXa2jvslmkesN2iwcL5_AqOwNE53XfyXfajaODYSzwH3xBtU2lfw-clrcyQNYC2QVtA3w7n4D0GPnwwvULE2M07cBsRwSf0g7bDeGjP1WsowP2yS5M1SxgkTeANJsMaqFNHzjTgdVu_P2SnJ8df304Dv-lCoDG390GichUZhGUInFRV8UhbHUtuVWit0HWYK2lUnohMa5OYSAmbhzoPU1VJk2VaJo_YdtM25gkDK5UitRlbVSK1aV1xaSOppTCa471ywl4OBim1VySnjTEWpatMOC_JfKU334S9GFtfrJU4_tBuj2xbUoBibxrDRZdFRiugscjCCTv0Nv9XL4NDlD6quxLBTCrc0uKEPR8v0wDEVGtMu3JtOMnwRfh4j9f-Mw6E2A6r5xjnkG141tiAtL43rzTzM6f5jahOpBmOezT64F_n__T_HvMZu0uHjsEp9th2v1yZfURZfXXgYuwnOHMeZw priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3fb9MwELZGJwQvCBiMwoaMNPaCrOWXHQcJTdnUaUJQJsTQ3iLHsVmlLiltqmn_AH83d66TbQLGa3KxHd357rN9_o6QnSTTcaBDwTQsaFmiJWcqtIrFQaUg4ggTVy7LdyyOT5OPZ_xsjYy7uzCYVtn5ROeoq0bjHvkeBJJEuGOd_dlPhlWj8HS1K6GhfGmF6oOjGLtH1iNkxhqQ9YPR-ORr55sBm6yyEAUMDInhu1R4znEXINqL8N4pVpi5EaS8q75_jovky8nfoOifGZUPlvVMXV2q6fRGuDp6TB55nEnzlWE8IWumfko28hrW2BdXdJe6zE-3pb5BfuU1HXk2aPYdgDnuAlT0ZI6HOKg4ihXTprRtumf0E_gI-tm0CsDlYrKgrmYR_QIm0yxg6jQX6j3Nqbvdi4M1c9qxn9ADiJsVxUZdHqehnuL1xzNyejT6dnjMfH0GpgEGtCxWmQoNIDjAWKoseaitjiS3KrBW6CrIlDQqi0WqtYlNqITNAp0FiSqlSVMt4-dkUDe1eUGolUohMY0tS5HYpCq5tKHUUhjN4Vs5JO86hRTak5djDY1p4RYxnBeovsKrb0je9tKzFWnHP-S2ULcFzmVoTcPM0kWe4mFpJNJgSHa8zv_XSmcQhXcAi-LaXIfkTf8aO8Cktto0SyfDkbEvhN_bXNlP3xHAQFhoRzCG9JZl9QJIC377TT05d_TgAABFkkK_u70N3jn-l3eP_xV5iNIuyVNskUE7X5ptAGJt-drPrt8WrS9D priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZKEYILAspjoSAjlb2g0Dxsx0FCKKBWFaLAgUW9RY5j05XSZLubVdk_wO9mxutELJTHNXFsJzOT-SYz-YaQPZbpJNSRCDQEtAHTkgcqsipIwkqBxxEmqVyV7wdxNGHvTvjJFunr5_0DXFwa2mE_qcm8fvHtfPUaDP6VM3jOMX6P92P8YzROx7PzAFtKYerV99e4Qq6C28qwr8MxG1IMAFPWBYkC9ogsZH1V_C8Tbvgr_9a-dorx8sX0MlT6e3Hl9WUzU6sLVdc_ea7DW-Smh5w0X-vIbbJlmjtkJ28g3D5b0TF1RaDu6_oO-Z439MATQwdfAKPjB4GKfppjPgdlSLF5Wk27tj9G38Prgh6bTgHOXEwX1LUvoh9Be9oFWFF7pl7SnLoffXGzZk57IhT6BlxoRXFSV9JpqGd7_XqXTA4PPr89CnyrhkADIuiCRGUqMgDmAG6psuSRtjqW3KrQWqGrMFPSqCwRqdYmMZESNgt1FjJVSpOmWib3yHbTNuYBoVYqhRw1tiwFs6wqubSR1FIYzeFaOSLPe4EU2vOYYzuNunDxDOcFiq_w4huRZ8Po2Zq_4w_jdlG2BSoazKbByHSRp5g3jUUajsiel_m_ZukVouhVuQAIxIRLSI7I0-E0LoD1bY1pl24MR_K-CG7v_lp_hoUAEULMHcMe0g3NGgYgQ_jmmWZ66pjCAQsKlsK640EH_7r_h_-xwUfkBl7iij7FLtnu5kvzGIBZVz5xBvYDkXUz9A priority: 102 providerName: Scholars Portal |
| Title | An External-Validated Prediction Model to Predict Lung Metastasis among Osteosarcoma: A Multicenter Analysis Based on Machine Learning |
| URI | https://dx.doi.org/10.1155/2022/2220527 https://www.ncbi.nlm.nih.gov/pubmed/35571720 https://www.proquest.com/docview/2664615516 https://www.proquest.com/docview/2665110018 https://pubmed.ncbi.nlm.nih.gov/PMC9106476 https://downloads.hindawi.com/journals/cin/2022/2220527.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 2022 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070625 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: KQ8 dateStart: 20070101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1687-5273 dateEnd: 20230628 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: ABDBF dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: DIK dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: GX1 dateStart: 20070101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: RPM dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: Health & Medical Collection customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 7X7 dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/healthcomplete providerName: ProQuest – providerCode: PRVPQU databaseName: Middle East & Africa Database customDbUrl: eissn: 1687-5273 dateEnd: 20250131 omitProxy: false ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: CWDGH dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/middleeastafrica providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1687-5273 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1687-5273 dateEnd: 20250430 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: M48 dateStart: 20070101 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1687-5273 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0057502 issn: 1687-5273 databaseCode: 24P dateStart: 20070101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa2VgheuA1YYVRGGntB6XLzJfCUoXYVYqWaKOokpMhxnK2iS6o21TR-AL-bY9cplLt4sZrk1Ce2j-3vxMefEdoPIxm40qOOBIfWCSUnjvBy4QRuJmDGoSrITJTvgPZH4ZsxGW-hV_VemExTxJciW3QutE96NTGjta3XxaEEbxHcdf_Q1xtEfdaZZfk2alICQLyBmqPBMD7TLhYFxZr4_dtvFtRh74RsZLExIdlh-YZV_ivY-XP05M1lMRPXV2I6_W5q6t1BH-tCrSJSPnWWVdqRn3_ge_zPUt9Fty1kxfHKxu6hLVXcRztxAe765TU-wCaI1Hyd30Ff4gJ3LbG08wEwvv6gkOHhXK8HaRvA-vC1Ka7K-h5-C8MNPlGVAJy6mCywOf4IvwPrKxfQC8tL8RLH2GwU1nWh5rgmUsFHMAVnWGdqQkIVtmyx5w_QqNd9_7rv2KMeHAmIonICEQlPARgEuCbSlHgylz4nuXDznMrMjQRXIgook1IFyhM0j1wZuaFIuWJM8uAhahRloXYRzrkQmuMmT1Ma5mGWEp57XHKqJIH_8hZ6Ubd3Ii0Puj6OY5oYf4iQRFd1Yqu6hZ6vpWcr_o_fyO1p00n0sAC5SeikMomZXnf1KXNbaN-27N9yqe0tqVs_AQgVUrOg2ULP1o-1Ah0fV6hyaWSIJv_zoHiPVua5VgSIEnx2H96BbRjuWkAzjG8-KSYXhmkcsCQNGeg9WJv4H9__8b8KPkG39KWJHKV7qFHNl-opoLsqbaNtNmaQ8t5xGzWPuoPhKVwdjz1IT0IO6Wl_3LZ9_SsZWFCm |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctMwGNaUdJhyYStLoICYaXNh3HqTbDPDIXQhpWnh0EJvRpZlmiG1Q-xMJjwAj8Or8Er8vyKblqWceuBqy9r8b5I-fT8hq34kPVs63JKwoLV8GTJLOJmwPDsV4HG48lKN8j3gvSP_9TE7XiDf6rswCKusbaI21GkhcY98AxyJz_WxjkFQ7qnZFNZn5YvdLfiZa667s3242bNMCgFLgqeqLE9EwlEQZEAYIJKEOTKTbsgyYWcZl6kdiVCJyOOBlMpTjuBZZMvI9kUSqiCQoQf1dkafLcxShae5JmXHFbIIcu64LbK4-X7rVa-2_RD7zFGOHAaOxPM11J4x3GVwN1y814oZbM44QeMKrp7gInw6-FOo-ztic2mSj8RsKobDM-5w5wb5Xk_kHAXzaX1SJevyyy8ck__PTN8k101kTrtzVbpFFlR-myx3c1EVpzPaoRorqw8hlsnXbk63DX-29Q6WMrhvktK3Yzz2QlGnmGNuSKuifkb7YFXpvqoEhOPloKQ6yxN9A0pWlDD84lQ8p12q70Pj9Ksxrfli6EuINFKKlWrkq6KGFPfjHXJ0KZN0l7TyIlf3Cc1CIZDKJ0sS7md-mrAwc0IZciUZfBu2ybNaxGJp6N4x68gw1ss-xmIUyNgIZJusNaVHc5qTv5RbQWmN0fpBbRJskYy7AR4vuzyw22TVSPG_aqklLzYms4x_il2bPG1eYwMIA8xVMdFlGHIcOjC8e3ONaBqCwDmAaBz6EJzTlaYAEqmff5MPTjShOoTM3A-g3U6jVRf2_8HF_X9ClnqH-_24v3uw95Bcwy81RJavkFY1nqhHEMZWyWNjOyj5cNl69QPC0axW |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JctMwGNaUdlgubGUJFBAzbS-MG6-yzQzDmKYhpaX0QKE3I8sSzZDaIXEmEx6Ah-JVeBn-X5ZDy1JOPXC1ZW3-N0mfvp-QVT8Wni0cZglY0Fq-iAKLO4pbnp1z8DhMerlG-e6x3oH_6jA4XCDfmrswCKtsbKI21HkpcI-8DY7EZ_pYp60MLGK_030-_GxhBik8aW3SadQisiNnU1i-jZ9td-Bfr7lud-vtZs8yGQYsAY6ssjwec0dCDAJRAs-ywBFKuFGguK0UE7kd80jy2GOhENKTDmcqtkVs-zyLZBiKyIN6L5CliIUMjMLS5vvOy17jByAOqhGPDCYBSegb2H0Q4I6D23bxjitmsznhEI1buHiEC_Jp_09h7-_ozcuTYshnUz4YnHCN3WvkezOpNSLm08akyjbEl1_4Jv_PWb9OrpqInSa1it0gC7K4SZaTglfl8YyuU42h1YcTy-RrUtAtw6ttvYMlDu6n5HR_hMdhqAIUc88NaFU2z-guWFv6WlYcwvRxf0x19if6BpSvHMNYy2P-lCZU35PGXyFHtOGRoS8gAskpVqoRsZIastyPt8jBuczIbbJYlIW8S6iKOEeKH5VlzFd-ngWRciIRMSkC-DZqkSeNuKXC0MBjNpJBqpeDQZCicKZGOFtkbV56WNOf_KXcCkpuilYRahNgo0SahHjs7LLQbpFVI9H_qqWRwtSY0nH6UwRb5PH8NTaA8MBClhNdJkDuQweGd6fWjnlDEFCHEKVDH8JTejMvgATrp98U_SNNtA6hNPNDaHd9rmFn9v_e2f1_RC6B8qS723s798kV_FAjZ9kKWaxGE_kAotsqe2jMCCUfzluHfgCpoLUe |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbKVoheeJXCQkFGKr2gbPOy48ApoFYVgtIDi4qEFDmOTVfdJqtNVlX5AfxuZrxOYHmLWx4TT2yP7W_s8WdCduJURb4KuKfAofViJZgnAyO9yC8ljDhcR6WN8j3ih-P41Qk7WSPPu70wJVLE17JsRqfok15MbG_tyrXZU-Atgrse7oW4QTRMRrPSXCHrnAEQH5D18dFx9gFdLA6Kkfj923USdWHvjK0ksTIguW75qlP-K9j5c_TktUU1k5cXcjr9bmg6uEE-dplaRqScjRZtMVKff-B7_M9c3yTXHWSl2dLGbpE1Xd0mm1kF7vr5Jd2lNojUzs5vki9ZRfcdsbT3HjA-TiiU9HiO60FoAxQPX5vStu6e0dfQ3dA3upWAU5tJQ-3xR_QtWF_dQCusz-UzmlG7URjLQs9pR6RCX8AQXFJM1IaEaurYYj_dIeOD_XcvDz131IOnAFG0XiRTGWgAgwDXZFGwQBkVCmakbwxXpZ9KoWUa8UQpHelAcpP6KvVjWQidJEpEW2RQ1ZW-R6gRUiLHjSkKHpu4LJgwgVCCa8XgWzEkT7v6zpXjQcfjOKa59YcYy7Goc1fUQ_Kkl54t-T9-I7eNppNjtwCpKWikKs8SXHcNeeIPyY6r2b-l0tlb3tV-DhAq5nZBc0ge969RAcbHVbpeWBmG5H8BZO_u0jx7RYAowWcP4R-SFcPtBZBhfPVNNTm1TOOAJXmcgN7d3sT_-P_3_1XwAdnAWxs5yrfJoJ0v9ENAd23xyLXir6mUSmE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+External-Validated+Prediction+Model+to+Predict+Lung+Metastasis+among+Osteosarcoma%3A+A+Multicenter+Analysis+Based+on+Machine+Learning&rft.jtitle=Computational+intelligence+and+neuroscience&rft.au=Li%2C+Wenle&rft.au=Liu%2C+Wencai&rft.au=Hussain+Memon%2C+Fida&rft.au=Wang%2C+Bing&rft.date=2022-05-06&rft.issn=1687-5273&rft.eissn=1687-5273&rft.volume=2022&rft.spage=2220527&rft_id=info:doi/10.1155%2F2022%2F2220527&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-5265&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-5265&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-5265&client=summon |