Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process

Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve...

Full description

Saved in:
Bibliographic Details
Published inJournal of power sources Vol. 195; no. 10; pp. 3186 - 3200
Main Authors Ki, Jeongpill, Kim, Daejong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 15.05.2010
Elsevier
Subjects
Online AccessGet full text
ISSN0378-7753
1873-2755
DOI10.1016/j.jpowsour.2009.11.129

Cover

Abstract Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700 °C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack.
AbstractList Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700 °C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack.
Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700 degree C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack.
Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700 'C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack.
Author Ki, Jeongpill
Kim, Daejong
Author_xml – sequence: 1
  givenname: Jeongpill
  surname: Ki
  fullname: Ki, Jeongpill
– sequence: 2
  givenname: Daejong
  surname: Kim
  fullname: Kim, Daejong
  email: daejongkim@uta.edu
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22475036$$DView record in Pascal Francis
BookMark eNqNkU1vFSEUholpE29b_4JhY1zNCMMAM4kLzY2tJk3c6Jqc8qFcGRiBUfvv5ea2Gzd1RQjP-x5yngt0FlO0CL2kpKeEijeH_rCm3yVtuR8ImXtKezrMz9COTpJ1g-T8DO0Ik1MnJWfP0UUpB0IIpZLs0LJPy7pVqD5FCHhJxgZcE16zNV5XXL_bvLQHcx9h8brg5PAaIELGJQVvcPrjjcVuazFtQ8Clgv6BzZZ9_Ha85Npta6tL2pZyhc4dhGJfPJyX6Ov1hy_7j93t55tP-_e3nR6JqB1jjN-NnEqhx4HPQhDnHAigFOSdmchkhSGSaKdnY7mcgM8OGAc9wWT1KNklen3qbXN_brZUtfhy_B5Em7ai5CgGyRr4HySjTIycNPLVAwlFQ3AZovZFrdkvkO_VMIyyUaJxb0-czqmUbJ3S_rTfmsEHRYk6alMH9ahNHbUpSlXT1uLin_jjhCeD705B2xb7y9usivY26uYxW12VSf6pir9zlrrp
CODEN JPSODZ
CitedBy_id crossref_primary_10_1016_j_jpowsour_2010_03_099
crossref_primary_10_1021_acs_chemrev_4c00614
crossref_primary_10_1063_1_5047278
crossref_primary_10_1002_fuce_202200113
crossref_primary_10_1155_2023_5163448
crossref_primary_10_1115_1_4025524
crossref_primary_10_1016_j_rser_2021_110984
crossref_primary_10_3390_cryst11070732
crossref_primary_10_1016_j_ijhydene_2010_11_127
crossref_primary_10_1016_j_jpowsour_2023_232655
crossref_primary_10_1016_j_jpowsour_2015_03_030
crossref_primary_10_1016_j_ces_2021_116571
crossref_primary_10_1016_j_ijhydene_2013_10_043
crossref_primary_10_1002_ente_202201401
crossref_primary_10_1002_fuce_201300164
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125779
crossref_primary_10_1080_15567036_2023_2298284
crossref_primary_10_1016_j_jpowsour_2015_09_031
crossref_primary_10_1016_j_ijhydene_2016_05_260
crossref_primary_10_1016_j_ijhydene_2011_02_129
crossref_primary_10_1002_er_6252
crossref_primary_10_1016_j_jpowsour_2023_233656
crossref_primary_10_1007_s40684_019_00129_x
crossref_primary_10_1016_j_ijhydene_2019_04_029
crossref_primary_10_1016_j_apenergy_2014_08_052
crossref_primary_10_1016_j_ijhydene_2020_09_116
crossref_primary_10_1111_jace_16398
crossref_primary_10_1002_mdp2_177
crossref_primary_10_1016_j_jpowsour_2012_08_018
Cites_doi 10.1016/j.jpowsour.2007.10.081
10.1149/1.2086042
10.1016/j.jpowsour.2007.07.029
10.1243/09576509JPE438
10.1016/0378-7753(95)02269-4
10.1016/j.applthermaleng.2006.01.013
10.1016/S0378-7753(03)00067-3
10.1149/1.1838904
10.1016/0378-7753(93)01833-4
10.1016/S0167-2738(00)00645-7
10.1016/j.ijhydene.2008.11.034
10.1016/j.jpowsour.2005.10.052
10.1016/S0378-7753(00)00668-6
10.1016/j.jpowsour.2003.08.035
ContentType Journal Article
Copyright 2009 Elsevier B.V.
2015 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier B.V.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
7TB
8FD
FR3
H8D
KR7
L7M
7ST
C1K
SOI
DOI 10.1016/j.jpowsour.2009.11.129
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Environment Abstracts
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1873-2755
EndPage 3200
ExternalDocumentID 22475036
10_1016_j_jpowsour_2009_11_129
S0378775309021375
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29L
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARLI
AAXUO
ABFNM
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADECG
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BELTK
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FLBIZ
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLY
HVGLF
HZ~
IHE
J1W
JARJE
KOM
LX7
LY6
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SCB
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSK
SSM
SSR
SSZ
T5K
T9H
VH1
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SP
7TB
8FD
FR3
H8D
KR7
L7M
7ST
C1K
SOI
ID FETCH-LOGICAL-c406t-3335b45176c4259660fffa6a11a7bd808e6d070cfc9de578a59fa35ac8a8ec473
IEDL.DBID AIKHN
ISSN 0378-7753
IngestDate Mon Oct 06 17:48:42 EDT 2025
Thu Oct 02 04:05:41 EDT 2025
Mon Jul 21 09:11:40 EDT 2025
Thu Apr 24 23:01:30 EDT 2025
Wed Oct 01 05:00:06 EDT 2025
Fri Feb 23 02:26:00 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Start-up
Thermal dynamics
Transient performance
SOFC
Stacking
Starting
Unsteady state
Solid oxide fuel cell
Planar technology
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-3335b45176c4259660fffa6a11a7bd808e6d070cfc9de578a59fa35ac8a8ec473
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 743136450
PQPubID 23500
PageCount 15
ParticipantIDs proquest_miscellaneous_746273473
proquest_miscellaneous_743136450
pascalfrancis_primary_22475036
crossref_citationtrail_10_1016_j_jpowsour_2009_11_129
crossref_primary_10_1016_j_jpowsour_2009_11_129
elsevier_sciencedirect_doi_10_1016_j_jpowsour_2009_11_129
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-05-15
PublicationDateYYYYMMDD 2010-05-15
PublicationDate_xml – month: 05
  year: 2010
  text: 2010-05-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of power sources
PublicationYear 2010
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References DOE SECA Program, Available at
Costamagna, Honegger (bib25) 1998; 145
Tucker, Lawson, Vanosdol, Kislear, Akinbobuyi (bib17) 2006
Ferguson, Fiard, Herbin (bib29) 1996; 58
Ahmed, Mcpheeters, Kumar (bib26) 1991; 138
Rancruel, Spakovsky (bib13) 2005; 8
Barzi, Ghassemi, Hamedi (bib15) 2009; 34
Achenbach (bib9) 1994; 49
Fox, Mcdonald (bib22) 1999
Chapra (bib24) 2008
Developer of SOFC-MGT Hybrid: Siemens Westinghouse, Available at
Shelton, Celik, Liese, Tucker, Lawson (bib20) 2005
SOFC Developer: Acumetrics Corporation, Available at
Apfel, Rzepka, Tua, Stimming (bib12) 2006; 154
Costamagna, Honegger (bib10) 1998; 145
SOFC Developer: Delphi Automotive Systems LLC, Available at
Costamagna, Magistri, Massardo (bib19) 2001; 96
SOFC Developer: Fuel Cell Energy, Inc., Available at
Yi, Rao, Brouwer, Samuelsen (bib16) 2004; 132
Robert, Brouwer, Samuelson (bib18) 2006
.
Ferrari, Traverso, Pascenti, Massardo (bib14) 2007; 221
Li, Cao, Zhu, Tu (bib11) 2007; 171
Traverso, Massardo, Scarpellini (bib8) 2006; 26
Iwata, Hikosaka, Morita, Iwanari, Ito, Onda, Esaki, Sakaki, Nagata (bib28) 2000; 132
SOFC Developer: Siemens Power Generation, Available at
SOFC Developer: Cummins Power Generation, Available at
Mueller, Gaynor, Auld, Brouwer, Jabbari, Samuelsen (bib21) 2008; 176
Incropera, Dewitt (bib23) 2006
Petruzzi, Cocchi, Fineschi (bib27) 2003; 118
Costamagna (10.1016/j.jpowsour.2009.11.129_bib19) 2001; 96
Tucker (10.1016/j.jpowsour.2009.11.129_bib17) 2006
Achenbach (10.1016/j.jpowsour.2009.11.129_bib9) 1994; 49
Rancruel (10.1016/j.jpowsour.2009.11.129_bib13) 2005; 8
Barzi (10.1016/j.jpowsour.2009.11.129_bib15) 2009; 34
Ferguson (10.1016/j.jpowsour.2009.11.129_bib29) 1996; 58
Costamagna (10.1016/j.jpowsour.2009.11.129_bib10) 1998; 145
Costamagna (10.1016/j.jpowsour.2009.11.129_bib25) 1998; 145
Ahmed (10.1016/j.jpowsour.2009.11.129_bib26) 1991; 138
Iwata (10.1016/j.jpowsour.2009.11.129_bib28) 2000; 132
Petruzzi (10.1016/j.jpowsour.2009.11.129_bib27) 2003; 118
Fox (10.1016/j.jpowsour.2009.11.129_bib22) 1999
Ferrari (10.1016/j.jpowsour.2009.11.129_bib14) 2007; 221
10.1016/j.jpowsour.2009.11.129_bib1
Traverso (10.1016/j.jpowsour.2009.11.129_bib8) 2006; 26
Incropera (10.1016/j.jpowsour.2009.11.129_bib23) 2006
10.1016/j.jpowsour.2009.11.129_bib3
10.1016/j.jpowsour.2009.11.129_bib2
Apfel (10.1016/j.jpowsour.2009.11.129_bib12) 2006; 154
10.1016/j.jpowsour.2009.11.129_bib5
10.1016/j.jpowsour.2009.11.129_bib4
10.1016/j.jpowsour.2009.11.129_bib7
10.1016/j.jpowsour.2009.11.129_bib6
Shelton (10.1016/j.jpowsour.2009.11.129_bib20) 2005
Chapra (10.1016/j.jpowsour.2009.11.129_bib24) 2008
Li (10.1016/j.jpowsour.2009.11.129_bib11) 2007; 171
Robert (10.1016/j.jpowsour.2009.11.129_bib18) 2006
Mueller (10.1016/j.jpowsour.2009.11.129_bib21) 2008; 176
Yi (10.1016/j.jpowsour.2009.11.129_bib16) 2004; 132
References_xml – reference: DOE SECA Program, Available at
– volume: 221
  start-page: 627
  year: 2007
  end-page: 635
  ident: bib14
  publication-title: Journal of Power and Energy
– volume: 145
  start-page: 3995
  year: 1998
  end-page: 4007
  ident: bib10
  publication-title: Journal of Electochemical Society
– reference: Developer of SOFC-MGT Hybrid: Siemens Westinghouse, Available at
– volume: 154
  start-page: 370
  year: 2006
  end-page: 378
  ident: bib12
  publication-title: Journal of Power Sources
– year: 2006
  ident: bib17
  publication-title: Examination of Ambient Pressure Effects on Hybrid Solid Oxide Fuel Cell Turbine System Operation using Hardware Simulation, Turbo Expo 2006
– reference: SOFC Developer: Fuel Cell Energy, Inc., Available at
– reference: SOFC Developer: Acumetrics Corporation, Available at
– volume: 34
  start-page: 2015
  year: 2009
  end-page: 2025
  ident: bib15
  publication-title: International Journal of Hydrogen Energy
– year: 1999
  ident: bib22
  article-title: Introduction to Fluid Mechanics
– volume: 118
  start-page: 96
  year: 2003
  end-page: 107
  ident: bib27
  publication-title: Journal of Power Sources
– volume: 58
  start-page: 109
  year: 1996
  end-page: 122
  ident: bib29
  publication-title: Journal of Power Sources
– volume: 26
  start-page: 1935
  year: 2006
  end-page: 1941
  ident: bib8
  publication-title: Applied Thermal Engineering
– volume: 138
  start-page: 2712
  year: 1991
  end-page: 2718
  ident: bib26
  publication-title: Journal of the Electrochemical Society
– volume: 171
  start-page: 585
  year: 2007
  end-page: 600
  ident: bib11
  publication-title: Journal of Power Sources
– reference: SOFC Developer: Delphi Automotive Systems LLC, Available at
– volume: 49
  start-page: 333
  year: 1994
  end-page: 348
  ident: bib9
  publication-title: Journal of Power Sources
– reference: SOFC Developer: Siemens Power Generation, Available at
– volume: 176
  start-page: 229
  year: 2008
  end-page: 239
  ident: bib21
  publication-title: Journal of Power Sources
– year: 2008
  ident: bib24
  article-title: Applied Numerical Methods with Matlab
– year: 2006
  ident: bib23
  article-title: Introduction to Heat Transfer
– year: 2005
  ident: bib20
  publication-title: Proceedings of Turbo Expo 2005 Power for Land Sea and Air
– volume: 96
  start-page: 352
  year: 2001
  end-page: 368
  ident: bib19
  publication-title: Journal of Power Sources
– reference: ”.
– volume: 145
  start-page: 3995
  year: 1998
  end-page: 4007
  ident: bib25
  publication-title: Journal of the Electrochemical Society
– year: 2006
  ident: bib18
  publication-title: Fuel Cell/Gas Turbine Hybrid System Control for Daily Load Profile and Ambient Condition Variation, Turbo Expo 2006
– volume: 132
  start-page: 77
  year: 2004
  end-page: 85
  ident: bib16
  publication-title: Journal of Power Sources
– reference: SOFC Developer: Cummins Power Generation, Available at
– volume: 8
  start-page: 103
  year: 2005
  end-page: 113
  ident: bib13
  publication-title: International Journal of Thermodynamics
– reference: .
– volume: 132
  start-page: 297
  year: 2000
  end-page: 308
  ident: bib28
  publication-title: Solid State Ionics
– volume: 176
  start-page: 229
  issue: 1
  year: 2008
  ident: 10.1016/j.jpowsour.2009.11.129_bib21
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2007.10.081
– volume: 138
  start-page: 2712
  issue: 9
  year: 1991
  ident: 10.1016/j.jpowsour.2009.11.129_bib26
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.2086042
– volume: 171
  start-page: 585
  year: 2007
  ident: 10.1016/j.jpowsour.2009.11.129_bib11
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2007.07.029
– volume: 8
  start-page: 103
  year: 2005
  ident: 10.1016/j.jpowsour.2009.11.129_bib13
  publication-title: International Journal of Thermodynamics
– ident: 10.1016/j.jpowsour.2009.11.129_bib4
– ident: 10.1016/j.jpowsour.2009.11.129_bib6
– volume: 221
  start-page: 627
  year: 2007
  ident: 10.1016/j.jpowsour.2009.11.129_bib14
  publication-title: Journal of Power and Energy
  doi: 10.1243/09576509JPE438
– ident: 10.1016/j.jpowsour.2009.11.129_bib2
– volume: 58
  start-page: 109
  issue: 2
  year: 1996
  ident: 10.1016/j.jpowsour.2009.11.129_bib29
  publication-title: Journal of Power Sources
  doi: 10.1016/0378-7753(95)02269-4
– volume: 26
  start-page: 1935
  issue: 16
  year: 2006
  ident: 10.1016/j.jpowsour.2009.11.129_bib8
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2006.01.013
– year: 2005
  ident: 10.1016/j.jpowsour.2009.11.129_bib20
– year: 1999
  ident: 10.1016/j.jpowsour.2009.11.129_bib22
– volume: 118
  start-page: 96
  issue: 1–2
  year: 2003
  ident: 10.1016/j.jpowsour.2009.11.129_bib27
  publication-title: Journal of Power Sources
  doi: 10.1016/S0378-7753(03)00067-3
– volume: 145
  start-page: 3995
  issue: 11
  year: 1998
  ident: 10.1016/j.jpowsour.2009.11.129_bib10
  publication-title: Journal of Electochemical Society
  doi: 10.1149/1.1838904
– volume: 49
  start-page: 333
  year: 1994
  ident: 10.1016/j.jpowsour.2009.11.129_bib9
  publication-title: Journal of Power Sources
  doi: 10.1016/0378-7753(93)01833-4
– year: 2006
  ident: 10.1016/j.jpowsour.2009.11.129_bib18
– volume: 145
  start-page: 3995
  issue: 11
  year: 1998
  ident: 10.1016/j.jpowsour.2009.11.129_bib25
  publication-title: Journal of the Electrochemical Society
  doi: 10.1149/1.1838904
– year: 2008
  ident: 10.1016/j.jpowsour.2009.11.129_bib24
– volume: 132
  start-page: 297
  issue: 3–4
  year: 2000
  ident: 10.1016/j.jpowsour.2009.11.129_bib28
  publication-title: Solid State Ionics
  doi: 10.1016/S0167-2738(00)00645-7
– volume: 34
  start-page: 2015
  year: 2009
  ident: 10.1016/j.jpowsour.2009.11.129_bib15
  publication-title: International Journal of Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.11.034
– year: 2006
  ident: 10.1016/j.jpowsour.2009.11.129_bib17
– volume: 154
  start-page: 370
  year: 2006
  ident: 10.1016/j.jpowsour.2009.11.129_bib12
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2005.10.052
– ident: 10.1016/j.jpowsour.2009.11.129_bib5
– ident: 10.1016/j.jpowsour.2009.11.129_bib7
– year: 2006
  ident: 10.1016/j.jpowsour.2009.11.129_bib23
– ident: 10.1016/j.jpowsour.2009.11.129_bib3
– ident: 10.1016/j.jpowsour.2009.11.129_bib1
– volume: 96
  start-page: 352
  year: 2001
  ident: 10.1016/j.jpowsour.2009.11.129_bib19
  publication-title: Journal of Power Sources
  doi: 10.1016/S0378-7753(00)00668-6
– volume: 132
  start-page: 77
  year: 2004
  ident: 10.1016/j.jpowsour.2009.11.129_bib16
  publication-title: Journal of Power Sources
  doi: 10.1016/j.jpowsour.2003.08.035
SSID ssj0001170
Score 2.1510932
Snippet Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3186
SubjectTerms Applied sciences
Direct energy conversion and energy accumulation
Electrical engineering. Electrical power engineering
Electrical power engineering
Electrochemical conversion: primary and secondary batteries, fuel cells
Energy
Energy. Thermal use of fuels
Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc
Exact sciences and technology
Fuel cells
SOFC
Start-up
Thermal dynamics
Transient performance
Title Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process
URI https://dx.doi.org/10.1016/j.jpowsour.2009.11.129
https://www.proquest.com/docview/743136450
https://www.proquest.com/docview/746273473
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-2755
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001170
  issn: 0378-7753
  databaseCode: AKRWK
  dateStart: 19761201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BubBCCPah5VX5sNe0dR0nzhEhUAHBBZC4RY5jS-1CErWplhO_nZk4qUCL4MApymOUxGPPfPaM5wP4w4kQx8QuCLXQQRgaG2RO4XB3scolmj8f0b26jiZ34cW9vF-Dk24vDKVVtrbf2_TGWrdXhm1rDqvpdHgzEtjZEG1TZiEXsVyHDfQ_SvVg4_j8cnK9MshErtIEE3DCRAKvNgrPBrOq_Efr5L50JecD3qDNd33UVqUX2HLOU178Z70bl3S2A9stlmTH_nN3Yc0W3-HbqwqDP-DRsza0K36s4b1hdcmqOQVoakbw7xFv5J6YfsFKx6oHXeg5w045zVn5NM0tc0sUozV-hmDS_GV-cyOdzOtgWbHKbzf4CXdnp7cnk6BlWAgMOvI6EELILJQ8jgyOXSrU6ZzTkeZcx1muRspGOdoE40ySWxzbWiZOC6mN0sqaMBa_oFeUhf0NTI2FHaMVj6jgYDS2mUOsk2WIcEyi8LAHsmvT1LTlx4kF4yHt8sxmaacL4sZMcG6Soi72YLiSq3wBjk8lkk5l6ZuulKKX-FS2_0bHq1ci0qGIL_4G65Se4kCklteFLZeLlKAYxXRHHz0SUTWhWOx_4RMPYLPLYODyEHr1fGmPEBjVWR_WB8-833b_F7PfEXI
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDoAQYhU7PnBNW9dxliOqqMp6ASRuluPYUgskUZsKTnw7M3HCIhAcOEVJbMXxeMbPnvE8Qo4ZEuLo0Hq-4srzfW28xEag7jaMUgHmz3l0r66DwZ1_fi_uZ0ivOQuDYZW17Xc2vbLW9ZN23ZvtYjhs33Q4DDZA2xhZyHgoZsm8L7ohrsBarx9xHkitUrkSYLmExT8dEx61RkX-jLvkLnElYy1WYc0fZ6jlQk2g36wjvPhmu6sJqb9KVmokSU9cY9fIjMnWydKn_IIb5MlxNtT7fbRivaFlTosxumdKiuDvCV6kjpZ-QnNLi0eVqTGFITlMaf4yTA21U6iGO_wUoKR-oO5oI96MS29a0MIdNtgkd_3T297Aq_kVPA3TeOlxzkXiCxYGGjQX03Raa1WgGFNhkkadyAQpWARtdZwa0GwlYqu4UDpSkdF-yLfIXJZnZpvQqMtNF2x4gOkGg65JLCCdJAF8o-MILjtENH0qdZ18HDkwHmUTZTaSjSyQGTOGlYkEWeyQ9nu9wqXf-LNG3IhMfhlIEuaIP-sefpHx-ycB56C_F36DNkKXoIbY8yoz-XQiEYihR7fzW5EAcwmFfPcfTTwiC4Pbq0t5eXZ9sUcWm1gGJvbJXDmemgOASGVyWKnAGwYQEjo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+model+to+predict+thermal+dynamics+of+planar+solid+oxide+fuel+cell+stack+during+start-up+process&rft.jtitle=Journal+of+power+sources&rft.au=Ki%2C+Jeongpill&rft.au=Kim%2C+Daejong&rft.date=2010-05-15&rft.issn=0378-7753&rft.volume=195&rft.issue=10&rft.spage=3186&rft.epage=3200&rft_id=info:doi/10.1016%2Fj.jpowsour.2009.11.129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2009_11_129
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon