Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process
Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve...
        Saved in:
      
    
          | Published in | Journal of power sources Vol. 195; no. 10; pp. 3186 - 3200 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Amsterdam
          Elsevier B.V
    
        15.05.2010
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0378-7753 1873-2755  | 
| DOI | 10.1016/j.jpowsour.2009.11.129 | 
Cover
| Abstract | Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700
°C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack. | 
    
|---|---|
| AbstractList | Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700
°C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack. Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700 degree C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack. Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility with wide variety of hydrocarbon fuels, synthetic gas from coal, hydrogen, etc. However, SOFC requires high temperature operation to achieve high ion conductivity of ceramic electrolyte, and thus SOFC should be heated up first before fuel is supplied into the stack. This paper presents computational model for thermal dynamics of planar SOFC stack during start-up process. SOFC stack should be heated up as quickly as possible from ambient temperature to above 700 'C, while minimizing net energy consumption and thermal gradient during the heat up process. Both cathode and anode channels divided by current-collecting ribs were modeled as one-dimensional flow channels with multiple control volumes and all the solid structures were discretized into finite volumes. Two methods for stack-heating were investigated; one is with hot air through cathode channels and the other with electric heating inside a furnace. For the simulation of stack-heating with hot air, transient continuity, flow momentum, and energy equation were applied for discretized control volumes along the flow channels, and energy equations were applied to all the solid structures with appropriate heat transfer model with surrounding solid structures and/or gas channels. All transient governing equations were solved using a time-marching technique to simulate temporal evolution of temperatures of membrane-electrode-assembly (MEA), ribs, interconnects, flow channels, and solid housing structure located inside the insulating chamber. For electrical heating, uniform heat flux was applied to the stack surface with appropriate numerical control algorithm to maintain the surface temperature to certain prescribed value. The developed computational model provides very effective simulation tool to optimize stack-heating process minimizing net heating energy and thermal gradient within the stack.  | 
    
| Author | Ki, Jeongpill Kim, Daejong  | 
    
| Author_xml | – sequence: 1 givenname: Jeongpill surname: Ki fullname: Ki, Jeongpill – sequence: 2 givenname: Daejong surname: Kim fullname: Kim, Daejong email: daejongkim@uta.edu  | 
    
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22475036$$DView record in Pascal Francis | 
    
| BookMark | eNqNkU1vFSEUholpE29b_4JhY1zNCMMAM4kLzY2tJk3c6Jqc8qFcGRiBUfvv5ea2Gzd1RQjP-x5yngt0FlO0CL2kpKeEijeH_rCm3yVtuR8ImXtKezrMz9COTpJ1g-T8DO0Ik1MnJWfP0UUpB0IIpZLs0LJPy7pVqD5FCHhJxgZcE16zNV5XXL_bvLQHcx9h8brg5PAaIELGJQVvcPrjjcVuazFtQ8Clgv6BzZZ9_Ha85Npta6tL2pZyhc4dhGJfPJyX6Ov1hy_7j93t55tP-_e3nR6JqB1jjN-NnEqhx4HPQhDnHAigFOSdmchkhSGSaKdnY7mcgM8OGAc9wWT1KNklen3qbXN_brZUtfhy_B5Em7ai5CgGyRr4HySjTIycNPLVAwlFQ3AZovZFrdkvkO_VMIyyUaJxb0-czqmUbJ3S_rTfmsEHRYk6alMH9ahNHbUpSlXT1uLin_jjhCeD705B2xb7y9usivY26uYxW12VSf6pir9zlrrp | 
    
| CODEN | JPSODZ | 
    
| CitedBy_id | crossref_primary_10_1016_j_jpowsour_2010_03_099 crossref_primary_10_1021_acs_chemrev_4c00614 crossref_primary_10_1063_1_5047278 crossref_primary_10_1002_fuce_202200113 crossref_primary_10_1155_2023_5163448 crossref_primary_10_1115_1_4025524 crossref_primary_10_1016_j_rser_2021_110984 crossref_primary_10_3390_cryst11070732 crossref_primary_10_1016_j_ijhydene_2010_11_127 crossref_primary_10_1016_j_jpowsour_2023_232655 crossref_primary_10_1016_j_jpowsour_2015_03_030 crossref_primary_10_1016_j_ces_2021_116571 crossref_primary_10_1016_j_ijhydene_2013_10_043 crossref_primary_10_1002_ente_202201401 crossref_primary_10_1002_fuce_201300164 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125779 crossref_primary_10_1080_15567036_2023_2298284 crossref_primary_10_1016_j_jpowsour_2015_09_031 crossref_primary_10_1016_j_ijhydene_2016_05_260 crossref_primary_10_1016_j_ijhydene_2011_02_129 crossref_primary_10_1002_er_6252 crossref_primary_10_1016_j_jpowsour_2023_233656 crossref_primary_10_1007_s40684_019_00129_x crossref_primary_10_1016_j_ijhydene_2019_04_029 crossref_primary_10_1016_j_apenergy_2014_08_052 crossref_primary_10_1016_j_ijhydene_2020_09_116 crossref_primary_10_1111_jace_16398 crossref_primary_10_1002_mdp2_177 crossref_primary_10_1016_j_jpowsour_2012_08_018  | 
    
| Cites_doi | 10.1016/j.jpowsour.2007.10.081 10.1149/1.2086042 10.1016/j.jpowsour.2007.07.029 10.1243/09576509JPE438 10.1016/0378-7753(95)02269-4 10.1016/j.applthermaleng.2006.01.013 10.1016/S0378-7753(03)00067-3 10.1149/1.1838904 10.1016/0378-7753(93)01833-4 10.1016/S0167-2738(00)00645-7 10.1016/j.ijhydene.2008.11.034 10.1016/j.jpowsour.2005.10.052 10.1016/S0378-7753(00)00668-6 10.1016/j.jpowsour.2003.08.035  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2009 Elsevier B.V. 2015 INIST-CNRS  | 
    
| Copyright_xml | – notice: 2009 Elsevier B.V. – notice: 2015 INIST-CNRS  | 
    
| DBID | AAYXX CITATION IQODW 7SP 7TB 8FD FR3 H8D KR7 L7M 7ST C1K SOI  | 
    
| DOI | 10.1016/j.jpowsour.2009.11.129 | 
    
| DatabaseName | CrossRef Pascal-Francis Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts  | 
    
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts Environmental Sciences and Pollution Management  | 
    
| DatabaseTitleList | Environment Abstracts Aerospace Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering Applied Sciences  | 
    
| EISSN | 1873-2755 | 
    
| EndPage | 3200 | 
    
| ExternalDocumentID | 22475036 10_1016_j_jpowsour_2009_11_129 S0378775309021375  | 
    
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29L 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AARLI AAXUO ABFNM ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADECG ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AFZHZ AGHFR AGUBO AGYEJ AHHHB AHIDL AI. AIEXJ AIKHN AITUG AJBFU AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BELTK BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FLBIZ FNPLU FYGXN G-2 G-Q GBLVA HLY HVGLF HZ~ IHE J1W JARJE KOM LX7 LY6 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SCB SCE SDF SDG SDP SES SEW SPC SPCBC SSK SSM SSR SSZ T5K T9H VH1 VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SP 7TB 8FD FR3 H8D KR7 L7M 7ST C1K SOI  | 
    
| ID | FETCH-LOGICAL-c406t-3335b45176c4259660fffa6a11a7bd808e6d070cfc9de578a59fa35ac8a8ec473 | 
    
| IEDL.DBID | AIKHN | 
    
| ISSN | 0378-7753 | 
    
| IngestDate | Mon Oct 06 17:48:42 EDT 2025 Thu Oct 02 04:05:41 EDT 2025 Mon Jul 21 09:11:40 EDT 2025 Thu Apr 24 23:01:30 EDT 2025 Wed Oct 01 05:00:06 EDT 2025 Fri Feb 23 02:26:00 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 10 | 
    
| Keywords | Start-up Thermal dynamics Transient performance SOFC Stacking Starting Unsteady state Solid oxide fuel cell Planar technology  | 
    
| Language | English | 
    
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-3335b45176c4259660fffa6a11a7bd808e6d070cfc9de578a59fa35ac8a8ec473 | 
    
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23  | 
    
| PQID | 743136450 | 
    
| PQPubID | 23500 | 
    
| PageCount | 15 | 
    
| ParticipantIDs | proquest_miscellaneous_746273473 proquest_miscellaneous_743136450 pascalfrancis_primary_22475036 crossref_citationtrail_10_1016_j_jpowsour_2009_11_129 crossref_primary_10_1016_j_jpowsour_2009_11_129 elsevier_sciencedirect_doi_10_1016_j_jpowsour_2009_11_129  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2010-05-15 | 
    
| PublicationDateYYYYMMDD | 2010-05-15 | 
    
| PublicationDate_xml | – month: 05 year: 2010 text: 2010-05-15 day: 15  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Amsterdam | 
    
| PublicationPlace_xml | – name: Amsterdam | 
    
| PublicationTitle | Journal of power sources | 
    
| PublicationYear | 2010 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | DOE SECA Program, Available at Costamagna, Honegger (bib25) 1998; 145 Tucker, Lawson, Vanosdol, Kislear, Akinbobuyi (bib17) 2006 Ferguson, Fiard, Herbin (bib29) 1996; 58 Ahmed, Mcpheeters, Kumar (bib26) 1991; 138 Rancruel, Spakovsky (bib13) 2005; 8 Barzi, Ghassemi, Hamedi (bib15) 2009; 34 Achenbach (bib9) 1994; 49 Fox, Mcdonald (bib22) 1999 Chapra (bib24) 2008 Developer of SOFC-MGT Hybrid: Siemens Westinghouse, Available at Shelton, Celik, Liese, Tucker, Lawson (bib20) 2005 SOFC Developer: Acumetrics Corporation, Available at Apfel, Rzepka, Tua, Stimming (bib12) 2006; 154 Costamagna, Honegger (bib10) 1998; 145 SOFC Developer: Delphi Automotive Systems LLC, Available at Costamagna, Magistri, Massardo (bib19) 2001; 96 SOFC Developer: Fuel Cell Energy, Inc., Available at Yi, Rao, Brouwer, Samuelsen (bib16) 2004; 132 Robert, Brouwer, Samuelson (bib18) 2006 . Ferrari, Traverso, Pascenti, Massardo (bib14) 2007; 221 Li, Cao, Zhu, Tu (bib11) 2007; 171 Traverso, Massardo, Scarpellini (bib8) 2006; 26 Iwata, Hikosaka, Morita, Iwanari, Ito, Onda, Esaki, Sakaki, Nagata (bib28) 2000; 132 SOFC Developer: Siemens Power Generation, Available at SOFC Developer: Cummins Power Generation, Available at Mueller, Gaynor, Auld, Brouwer, Jabbari, Samuelsen (bib21) 2008; 176 Incropera, Dewitt (bib23) 2006 Petruzzi, Cocchi, Fineschi (bib27) 2003; 118 Costamagna (10.1016/j.jpowsour.2009.11.129_bib19) 2001; 96 Tucker (10.1016/j.jpowsour.2009.11.129_bib17) 2006 Achenbach (10.1016/j.jpowsour.2009.11.129_bib9) 1994; 49 Rancruel (10.1016/j.jpowsour.2009.11.129_bib13) 2005; 8 Barzi (10.1016/j.jpowsour.2009.11.129_bib15) 2009; 34 Ferguson (10.1016/j.jpowsour.2009.11.129_bib29) 1996; 58 Costamagna (10.1016/j.jpowsour.2009.11.129_bib10) 1998; 145 Costamagna (10.1016/j.jpowsour.2009.11.129_bib25) 1998; 145 Ahmed (10.1016/j.jpowsour.2009.11.129_bib26) 1991; 138 Iwata (10.1016/j.jpowsour.2009.11.129_bib28) 2000; 132 Petruzzi (10.1016/j.jpowsour.2009.11.129_bib27) 2003; 118 Fox (10.1016/j.jpowsour.2009.11.129_bib22) 1999 Ferrari (10.1016/j.jpowsour.2009.11.129_bib14) 2007; 221 10.1016/j.jpowsour.2009.11.129_bib1 Traverso (10.1016/j.jpowsour.2009.11.129_bib8) 2006; 26 Incropera (10.1016/j.jpowsour.2009.11.129_bib23) 2006 10.1016/j.jpowsour.2009.11.129_bib3 10.1016/j.jpowsour.2009.11.129_bib2 Apfel (10.1016/j.jpowsour.2009.11.129_bib12) 2006; 154 10.1016/j.jpowsour.2009.11.129_bib5 10.1016/j.jpowsour.2009.11.129_bib4 10.1016/j.jpowsour.2009.11.129_bib7 10.1016/j.jpowsour.2009.11.129_bib6 Shelton (10.1016/j.jpowsour.2009.11.129_bib20) 2005 Chapra (10.1016/j.jpowsour.2009.11.129_bib24) 2008 Li (10.1016/j.jpowsour.2009.11.129_bib11) 2007; 171 Robert (10.1016/j.jpowsour.2009.11.129_bib18) 2006 Mueller (10.1016/j.jpowsour.2009.11.129_bib21) 2008; 176 Yi (10.1016/j.jpowsour.2009.11.129_bib16) 2004; 132  | 
    
| References_xml | – reference: DOE SECA Program, Available at – volume: 221 start-page: 627 year: 2007 end-page: 635 ident: bib14 publication-title: Journal of Power and Energy – volume: 145 start-page: 3995 year: 1998 end-page: 4007 ident: bib10 publication-title: Journal of Electochemical Society – reference: Developer of SOFC-MGT Hybrid: Siemens Westinghouse, Available at – volume: 154 start-page: 370 year: 2006 end-page: 378 ident: bib12 publication-title: Journal of Power Sources – year: 2006 ident: bib17 publication-title: Examination of Ambient Pressure Effects on Hybrid Solid Oxide Fuel Cell Turbine System Operation using Hardware Simulation, Turbo Expo 2006 – reference: SOFC Developer: Fuel Cell Energy, Inc., Available at – reference: SOFC Developer: Acumetrics Corporation, Available at – volume: 34 start-page: 2015 year: 2009 end-page: 2025 ident: bib15 publication-title: International Journal of Hydrogen Energy – year: 1999 ident: bib22 article-title: Introduction to Fluid Mechanics – volume: 118 start-page: 96 year: 2003 end-page: 107 ident: bib27 publication-title: Journal of Power Sources – volume: 58 start-page: 109 year: 1996 end-page: 122 ident: bib29 publication-title: Journal of Power Sources – volume: 26 start-page: 1935 year: 2006 end-page: 1941 ident: bib8 publication-title: Applied Thermal Engineering – volume: 138 start-page: 2712 year: 1991 end-page: 2718 ident: bib26 publication-title: Journal of the Electrochemical Society – volume: 171 start-page: 585 year: 2007 end-page: 600 ident: bib11 publication-title: Journal of Power Sources – reference: SOFC Developer: Delphi Automotive Systems LLC, Available at – volume: 49 start-page: 333 year: 1994 end-page: 348 ident: bib9 publication-title: Journal of Power Sources – reference: SOFC Developer: Siemens Power Generation, Available at – volume: 176 start-page: 229 year: 2008 end-page: 239 ident: bib21 publication-title: Journal of Power Sources – year: 2008 ident: bib24 article-title: Applied Numerical Methods with Matlab – year: 2006 ident: bib23 article-title: Introduction to Heat Transfer – year: 2005 ident: bib20 publication-title: Proceedings of Turbo Expo 2005 Power for Land Sea and Air – volume: 96 start-page: 352 year: 2001 end-page: 368 ident: bib19 publication-title: Journal of Power Sources – reference: ”. – volume: 145 start-page: 3995 year: 1998 end-page: 4007 ident: bib25 publication-title: Journal of the Electrochemical Society – year: 2006 ident: bib18 publication-title: Fuel Cell/Gas Turbine Hybrid System Control for Daily Load Profile and Ambient Condition Variation, Turbo Expo 2006 – volume: 132 start-page: 77 year: 2004 end-page: 85 ident: bib16 publication-title: Journal of Power Sources – reference: SOFC Developer: Cummins Power Generation, Available at – volume: 8 start-page: 103 year: 2005 end-page: 113 ident: bib13 publication-title: International Journal of Thermodynamics – reference: . – volume: 132 start-page: 297 year: 2000 end-page: 308 ident: bib28 publication-title: Solid State Ionics – volume: 176 start-page: 229 issue: 1 year: 2008 ident: 10.1016/j.jpowsour.2009.11.129_bib21 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2007.10.081 – volume: 138 start-page: 2712 issue: 9 year: 1991 ident: 10.1016/j.jpowsour.2009.11.129_bib26 publication-title: Journal of the Electrochemical Society doi: 10.1149/1.2086042 – volume: 171 start-page: 585 year: 2007 ident: 10.1016/j.jpowsour.2009.11.129_bib11 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2007.07.029 – volume: 8 start-page: 103 year: 2005 ident: 10.1016/j.jpowsour.2009.11.129_bib13 publication-title: International Journal of Thermodynamics – ident: 10.1016/j.jpowsour.2009.11.129_bib4 – ident: 10.1016/j.jpowsour.2009.11.129_bib6 – volume: 221 start-page: 627 year: 2007 ident: 10.1016/j.jpowsour.2009.11.129_bib14 publication-title: Journal of Power and Energy doi: 10.1243/09576509JPE438 – ident: 10.1016/j.jpowsour.2009.11.129_bib2 – volume: 58 start-page: 109 issue: 2 year: 1996 ident: 10.1016/j.jpowsour.2009.11.129_bib29 publication-title: Journal of Power Sources doi: 10.1016/0378-7753(95)02269-4 – volume: 26 start-page: 1935 issue: 16 year: 2006 ident: 10.1016/j.jpowsour.2009.11.129_bib8 publication-title: Applied Thermal Engineering doi: 10.1016/j.applthermaleng.2006.01.013 – year: 2005 ident: 10.1016/j.jpowsour.2009.11.129_bib20 – year: 1999 ident: 10.1016/j.jpowsour.2009.11.129_bib22 – volume: 118 start-page: 96 issue: 1–2 year: 2003 ident: 10.1016/j.jpowsour.2009.11.129_bib27 publication-title: Journal of Power Sources doi: 10.1016/S0378-7753(03)00067-3 – volume: 145 start-page: 3995 issue: 11 year: 1998 ident: 10.1016/j.jpowsour.2009.11.129_bib10 publication-title: Journal of Electochemical Society doi: 10.1149/1.1838904 – volume: 49 start-page: 333 year: 1994 ident: 10.1016/j.jpowsour.2009.11.129_bib9 publication-title: Journal of Power Sources doi: 10.1016/0378-7753(93)01833-4 – year: 2006 ident: 10.1016/j.jpowsour.2009.11.129_bib18 – volume: 145 start-page: 3995 issue: 11 year: 1998 ident: 10.1016/j.jpowsour.2009.11.129_bib25 publication-title: Journal of the Electrochemical Society doi: 10.1149/1.1838904 – year: 2008 ident: 10.1016/j.jpowsour.2009.11.129_bib24 – volume: 132 start-page: 297 issue: 3–4 year: 2000 ident: 10.1016/j.jpowsour.2009.11.129_bib28 publication-title: Solid State Ionics doi: 10.1016/S0167-2738(00)00645-7 – volume: 34 start-page: 2015 year: 2009 ident: 10.1016/j.jpowsour.2009.11.129_bib15 publication-title: International Journal of Hydrogen Energy doi: 10.1016/j.ijhydene.2008.11.034 – year: 2006 ident: 10.1016/j.jpowsour.2009.11.129_bib17 – volume: 154 start-page: 370 year: 2006 ident: 10.1016/j.jpowsour.2009.11.129_bib12 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2005.10.052 – ident: 10.1016/j.jpowsour.2009.11.129_bib5 – ident: 10.1016/j.jpowsour.2009.11.129_bib7 – year: 2006 ident: 10.1016/j.jpowsour.2009.11.129_bib23 – ident: 10.1016/j.jpowsour.2009.11.129_bib3 – ident: 10.1016/j.jpowsour.2009.11.129_bib1 – volume: 96 start-page: 352 year: 2001 ident: 10.1016/j.jpowsour.2009.11.129_bib19 publication-title: Journal of Power Sources doi: 10.1016/S0378-7753(00)00668-6 – volume: 132 start-page: 77 year: 2004 ident: 10.1016/j.jpowsour.2009.11.129_bib16 publication-title: Journal of Power Sources doi: 10.1016/j.jpowsour.2003.08.035  | 
    
| SSID | ssj0001170 | 
    
| Score | 2.1510932 | 
    
| Snippet | Solid oxide fuel cell (SOFC) systems have been recognized as the most advanced power generation system with the highest thermal efficiency with a compatibility... | 
    
| SourceID | proquest pascalfrancis crossref elsevier  | 
    
| SourceType | Aggregation Database Index Database Enrichment Source Publisher  | 
    
| StartPage | 3186 | 
    
| SubjectTerms | Applied sciences Direct energy conversion and energy accumulation Electrical engineering. Electrical power engineering Electrical power engineering Electrochemical conversion: primary and secondary batteries, fuel cells Energy Energy. Thermal use of fuels Equipments for energy generation and conversion: thermal, electrical, mechanical energy, etc Exact sciences and technology Fuel cells SOFC Start-up Thermal dynamics Transient performance  | 
    
| Title | Computational model to predict thermal dynamics of planar solid oxide fuel cell stack during start-up process | 
    
| URI | https://dx.doi.org/10.1016/j.jpowsour.2009.11.129 https://www.proquest.com/docview/743136450 https://www.proquest.com/docview/746273473  | 
    
| Volume | 195 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-2755 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001170 issn: 0378-7753 databaseCode: AKRWK dateStart: 19761201 isFulltext: true providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BubBCCPah5VX5sNe0dR0nzhEhUAHBBZC4RY5jS-1CErWplhO_nZk4qUCL4MApymOUxGPPfPaM5wP4w4kQx8QuCLXQQRgaG2RO4XB3scolmj8f0b26jiZ34cW9vF-Dk24vDKVVtrbf2_TGWrdXhm1rDqvpdHgzEtjZEG1TZiEXsVyHDfQ_SvVg4_j8cnK9MshErtIEE3DCRAKvNgrPBrOq_Efr5L50JecD3qDNd33UVqUX2HLOU178Z70bl3S2A9stlmTH_nN3Yc0W3-HbqwqDP-DRsza0K36s4b1hdcmqOQVoakbw7xFv5J6YfsFKx6oHXeg5w045zVn5NM0tc0sUozV-hmDS_GV-cyOdzOtgWbHKbzf4CXdnp7cnk6BlWAgMOvI6EELILJQ8jgyOXSrU6ZzTkeZcx1muRspGOdoE40ySWxzbWiZOC6mN0sqaMBa_oFeUhf0NTI2FHaMVj6jgYDS2mUOsk2WIcEyi8LAHsmvT1LTlx4kF4yHt8sxmaacL4sZMcG6Soi72YLiSq3wBjk8lkk5l6ZuulKKX-FS2_0bHq1ci0qGIL_4G65Se4kCklteFLZeLlKAYxXRHHz0SUTWhWOx_4RMPYLPLYODyEHr1fGmPEBjVWR_WB8-833b_F7PfEXI | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELVYDoAQYhU7PnBNW9dxliOqqMp6ASRuluPYUgskUZsKTnw7M3HCIhAcOEVJbMXxeMbPnvE8Qo4ZEuLo0Hq-4srzfW28xEag7jaMUgHmz3l0r66DwZ1_fi_uZ0ivOQuDYZW17Xc2vbLW9ZN23ZvtYjhs33Q4DDZA2xhZyHgoZsm8L7ohrsBarx9xHkitUrkSYLmExT8dEx61RkX-jLvkLnElYy1WYc0fZ6jlQk2g36wjvPhmu6sJqb9KVmokSU9cY9fIjMnWydKn_IIb5MlxNtT7fbRivaFlTosxumdKiuDvCV6kjpZ-QnNLi0eVqTGFITlMaf4yTA21U6iGO_wUoKR-oO5oI96MS29a0MIdNtgkd_3T297Aq_kVPA3TeOlxzkXiCxYGGjQX03Raa1WgGFNhkkadyAQpWARtdZwa0GwlYqu4UDpSkdF-yLfIXJZnZpvQqMtNF2x4gOkGg65JLCCdJAF8o-MILjtENH0qdZ18HDkwHmUTZTaSjSyQGTOGlYkEWeyQ9nu9wqXf-LNG3IhMfhlIEuaIP-sefpHx-ycB56C_F36DNkKXoIbY8yoz-XQiEYihR7fzW5EAcwmFfPcfTTwiC4Pbq0t5eXZ9sUcWm1gGJvbJXDmemgOASGVyWKnAGwYQEjo | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+model+to+predict+thermal+dynamics+of+planar+solid+oxide+fuel+cell+stack+during+start-up+process&rft.jtitle=Journal+of+power+sources&rft.au=Ki%2C+Jeongpill&rft.au=Kim%2C+Daejong&rft.date=2010-05-15&rft.issn=0378-7753&rft.volume=195&rft.issue=10&rft.spage=3186&rft.epage=3200&rft_id=info:doi/10.1016%2Fj.jpowsour.2009.11.129&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jpowsour_2009_11_129 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0378-7753&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0378-7753&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0378-7753&client=summon |