Multi kernel and dynamic fractional lion optimization algorithm for data clustering

Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the adaptive dynamic directive operative fractional lion algorithm is proposed using multi kernel function. Also, we intend to develop a new mathematic...

Full description

Saved in:
Bibliographic Details
Published inAlexandria engineering journal Vol. 57; no. 1; pp. 267 - 276
Main Authors Chander, Satish, Vijaya, P., Dhyani, Praveen
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.03.2018
Elsevier
Subjects
Online AccessGet full text
ISSN1110-0168
2090-2670
DOI10.1016/j.aej.2016.12.013

Cover

Abstract Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the adaptive dynamic directive operative fractional lion algorithm is proposed using multi kernel function. Also, we intend to develop a new mathematical function for fitness evaluation. We utilize multi kernels, such as Gaussian, tangential, rational quadratic and Inverse multiquadratic to design the new fitness function. Consequently, the WLI fuzzy clustering mechanism is employed in this paper to determine the distance measurement based on new fitness function, named Multi kernel WLI (MKWLI). Then, we design a novel algorithm with the aid of dynamic directive operative searching strategy and adaptive fractional lion algorithm, termed Adaptive Dynamic Directive Operative Fractional Lion (ADDOFL) algorithm. Initially in this proposed algorithm, the solutions are generated based on the fractional lion algorithm. It also exploits the new MKWLI fitness function to evaluate the optimal value. Finally, the updation of female lion is performed through dynamic directive operative searching algorithm. Thus, the proposed ADDOFL algorithm is used to find out the optimal cluster center iteratively. The simulation results are validated and performance is analyzed using metrics such as clustering accuracy, Jaccard coefficient and rand coefficient. The outcome of the proposed algorithm attains the clustering accuracy of 89.6% for both Iris and Wine databases which ensures the better clustering performance.
AbstractList Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the adaptive dynamic directive operative fractional lion algorithm is proposed using multi kernel function. Also, we intend to develop a new mathematical function for fitness evaluation. We utilize multi kernels, such as Gaussian, tangential, rational quadratic and Inverse multiquadratic to design the new fitness function. Consequently, the WLI fuzzy clustering mechanism is employed in this paper to determine the distance measurement based on new fitness function, named Multi kernel WLI (MKWLI). Then, we design a novel algorithm with the aid of dynamic directive operative searching strategy and adaptive fractional lion algorithm, termed Adaptive Dynamic Directive Operative Fractional Lion (ADDOFL) algorithm. Initially in this proposed algorithm, the solutions are generated based on the fractional lion algorithm. It also exploits the new MKWLI fitness function to evaluate the optimal value. Finally, the updation of female lion is performed through dynamic directive operative searching algorithm. Thus, the proposed ADDOFL algorithm is used to find out the optimal cluster center iteratively. The simulation results are validated and performance is analyzed using metrics such as clustering accuracy, Jaccard coefficient and rand coefficient. The outcome of the proposed algorithm attains the clustering accuracy of 89.6% for both Iris and Wine databases which ensures the better clustering performance.
Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the adaptive dynamic directive operative fractional lion algorithm is proposed using multi kernel function. Also, we intend to develop a new mathematical function for fitness evaluation. We utilize multi kernels, such as Gaussian, tangential, rational quadratic and Inverse multiquadratic to design the new fitness function. Consequently, the WLI fuzzy clustering mechanism is employed in this paper to determine the distance measurement based on new fitness function, named Multi kernel WLI (MKWLI). Then, we design a novel algorithm with the aid of dynamic directive operative searching strategy and adaptive fractional lion algorithm, termed Adaptive Dynamic Directive Operative Fractional Lion (ADDOFL) algorithm. Initially in this proposed algorithm, the solutions are generated based on the fractional lion algorithm. It also exploits the new MKWLI fitness function to evaluate the optimal value. Finally, the updation of female lion is performed through dynamic directive operative searching algorithm. Thus, the proposed ADDOFL algorithm is used to find out the optimal cluster center iteratively. The simulation results are validated and performance is analyzed using metrics such as clustering accuracy, Jaccard coefficient and rand coefficient. The outcome of the proposed algorithm attains the clustering accuracy of 89.6% for both Iris and Wine databases which ensures the better clustering performance. Keywords: Data clustering, Multi kernel function, Fractional lion optimization, Directive operative searching strategy, Clustering accuracy
Author Vijaya, P.
Dhyani, Praveen
Chander, Satish
Author_xml – sequence: 1
  givenname: Satish
  surname: Chander
  fullname: Chander, Satish
  email: dimrisatish@gmail.com
  organization: Waljat College of Applied Sciences, P.O. Box 197, P.C. 124, Rusayl, Muscat, Oman
– sequence: 2
  givenname: P.
  surname: Vijaya
  fullname: Vijaya, P.
  organization: Waljat College of Applied Sciences, P.O. Box 197, P.C. 124, Rusayl, Muscat, Oman
– sequence: 3
  givenname: Praveen
  surname: Dhyani
  fullname: Dhyani, Praveen
  organization: Banasthali University, Jaipur Campus, India
BookMark eNqNkMtu1DAUhr0oEqXtA7DzC0zwJXESsUIVl0pFXQBr6-T4eHDwOCPHAxqevp4OYsGiwptj_9L32_5esYu0JGLstRSNFNK8mRuguVF120jVCKkv2KWUUmxqMrxkN-s6i7q6fmxHc8m-fD7EEvgPyokih-S4OybYBeQ-A5awJIg81sGXfQm78BtOGYe4XXIo33fcL5k7KMAxHtZCOaTtNXvhIa5082desW8f3n-9_bS5f_h4d_vufoOtMGWjJfQKu3Yce8TBK2onPXqBQ6s1tX5oZU-q0yjrYTK-Pt8YMaGcxsHg4Ly-YnfnXrfAbPc57CAf7QLBPgVL3lrIJWAka6bJ-Q5RI7hWKjNoGl0_CUUwdN3U1S517jqkPRx_QYx_C6WwJ7N2ttWsPZm1UtlqtkL9GcK8rGsmbzGUJ0ElQ4jPkvIf8n9ue3tmqDr9GSjbFQMlJBcyYamfDs_Qj2QcqDw
CitedBy_id crossref_primary_10_1007_s12065_018_0168_y
crossref_primary_10_1093_bib_bbac095
crossref_primary_10_1109_ACCESS_2019_2923979
crossref_primary_10_1002_jnm_2858
crossref_primary_10_1007_s42979_024_03048_0
crossref_primary_10_1080_19479832_2019_1683625
crossref_primary_10_1007_s11042_020_09718_4
crossref_primary_10_1007_s10479_022_04530_9
crossref_primary_10_3390_sym14030458
crossref_primary_10_1007_s12046_018_0865_3
crossref_primary_10_1016_j_aej_2017_04_013
crossref_primary_10_1007_s11042_022_14045_x
crossref_primary_10_1108_DTA_03_2020_0071
crossref_primary_10_3390_computation11010013
crossref_primary_10_1016_j_jfranklin_2024_107286
crossref_primary_10_1007_s12065_019_00265_y
crossref_primary_10_1007_s11277_019_06972_0
crossref_primary_10_1049_iet_com_2019_0079
Cites_doi 10.1145/331499.331504
10.1007/s10844-011-0158-3
10.5539/cis.v1n4p139
10.1016/j.eswa.2015.03.031
10.1109/TNN.2005.845141
10.1016/S0031-3203(99)00137-5
10.1016/j.eswa.2012.10.061
10.1016/j.swevo.2011.06.003
10.1016/j.pnsc.2008.06.007
10.1016/j.eswa.2015.04.032
10.3844/jcssp.2016.323.340
10.1109/TEVC.2013.2281545
10.1109/TPWRD.2009.2038385
10.1109/TSMCB.2010.2050684
10.1016/j.eswa.2005.11.017
10.1109/TFUZZ.2013.2286993
10.1007/s007780050005
10.1109/TSMCC.2010.2088390
10.1109/TFUZZ.2014.2322495
10.1016/j.patcog.2009.11.005
10.1016/j.neucom.2013.05.046
10.1016/j.eswa.2009.11.003
10.15866/irecos.v11i8.9654
10.1016/j.knosys.2012.01.006
10.1109/TNNLS.2013.2293795
ContentType Journal Article
Copyright 2016 Faculty of Engineering, Alexandria University
Copyright_xml – notice: 2016 Faculty of Engineering, Alexandria University
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1016/j.aej.2016.12.013
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 276
ExternalDocumentID oai_doaj_org_article_6bbdf5cc3cad412683e9d7b02ea855b5
10.1016/j.aej.2016.12.013
10_1016_j_aej_2016_12_013
S1110016816303453
GroupedDBID --K
0R~
0SF
4.4
457
5VS
6I.
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
BCNDV
EBS
EJD
FDB
GROUPED_DOAJ
HZ~
IPNFZ
IXB
KQ8
M41
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
XH2
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFJKZ
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c406t-31a72c54997cc8f2e4b39f0c8433e4f8417e253c1e4fb6f168660bc1b986c8df3
IEDL.DBID UNPAY
ISSN 1110-0168
2090-2670
IngestDate Fri Oct 03 12:43:54 EDT 2025
Tue Aug 19 16:44:03 EDT 2025
Tue Jul 01 04:24:41 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Wed May 17 00:06:44 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Fractional lion optimization
Data clustering
Multi kernel function
Directive operative searching strategy
Clustering accuracy
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-31a72c54997cc8f2e4b39f0c8433e4f8417e253c1e4fb6f168660bc1b986c8df3
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.aej.2016.12.013
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6bbdf5cc3cad412683e9d7b02ea855b5
unpaywall_primary_10_1016_j_aej_2016_12_013
crossref_citationtrail_10_1016_j_aej_2016_12_013
crossref_primary_10_1016_j_aej_2016_12_013
elsevier_sciencedirect_doi_10_1016_j_aej_2016_12_013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2018
2018-03-00
2018-03-01
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: March 2018
PublicationDecade 2010
PublicationTitle Alexandria engineering journal
PublicationYear 2018
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Silva Filho, Pimentel, Souza, Oliveira (b0055) 2015; 42
Duan, Hu, Zhang (b0030) 2016; 9
Mitchell, Su, Moulton, Nguyen (b0180) 2014; 18
Anderberg (b0025) 1973
Binu (b0140) 2013; 4
Venkateswara Reddy, Viswanadha Raju (b0040) 2013
Fadel, Ghoniemy, Abdallah, Sorra, Ashour, Ansary (b0165) 2016; 7
Ji, Pang, Zhou, Han, Wang (b0035) 2012; 30
Wan, Li, Xiao, Wang, Yang (b0185) 2012; 38
Binu (b0105) 2015; 42
Huang, Ye, Zhang (b0115) 2014; 25
Premalatha, Natarajan (b0085) 2008; 1
Zhang, Ouyang, Ning (b0090) 2010; 37
Maji (b0125) 2011; 41
Senthilnath, Omkar, Mani (b0100) 2011; 1
Chander, Vijaya, Dhyani (b0190) 2016; 11
Han, Kamber (b0015) 2001
Castellanos-Garzon, Diaz (b0095) 2013; 40
Lichman (b0175) 2013
Xu, Wunsch (b0050) 2005; 16
Hsu, Chen (b0005) 2007; 32
Omran, Kazerani, Salama (b0065) 2010; 25
Mualik, Bandyopadhyay (b0080) 2002; 33
Motamedi (b0135) 2014; 4
Bandyopadhyay (b0130) 2011; 41
Wu (b0160) 2015; 23
J. McQueen, Some methods for classification and analysis of multivariate observations, in: Proc. of Fifth Berkeley Symposium on Math. Vol: Statistics and Probability, 1967, pp. 281–297.
D. Gibson, J.M. Kleinberg, P. Raghavan, Clustering Categorical Data an Approach Based on Dynamical Systems, Very Large Database 8 (2000) 222–236.
Ester, Kriegel, Sander, Xu (b0060) 1996
Dhote, Thakare, Chaudhari (b0150) 2013
Shen, Zhu, Niu, Wu (b0170) 2009; 19
Chander, Vijaya, Dhyani (b0155) 2016; 12
Naldi, Campello (b0145) 2014; 127
Yin, Chen, Hu, Zhang (b0070) 2010; 43
Jain, Murthy, Flyn (b0045) 1999
Parker, Hall (b0120) 2014; 22
George, Parthiban (b0020) 2015
Rajakumar (b0110) 2012; 6
Mitchell (10.1016/j.aej.2016.12.013_b0180) 2014; 18
Parker (10.1016/j.aej.2016.12.013_b0120) 2014; 22
Shen (10.1016/j.aej.2016.12.013_b0170) 2009; 19
Castellanos-Garzon (10.1016/j.aej.2016.12.013_b0095) 2013; 40
Binu (10.1016/j.aej.2016.12.013_b0105) 2015; 42
Fadel (10.1016/j.aej.2016.12.013_b0165) 2016; 7
Dhote (10.1016/j.aej.2016.12.013_b0150) 2013
George (10.1016/j.aej.2016.12.013_b0020) 2015
Huang (10.1016/j.aej.2016.12.013_b0115) 2014; 25
Binu (10.1016/j.aej.2016.12.013_b0140) 2013; 4
Premalatha (10.1016/j.aej.2016.12.013_b0085) 2008; 1
Maji (10.1016/j.aej.2016.12.013_b0125) 2011; 41
Ester (10.1016/j.aej.2016.12.013_b0060) 1996
Venkateswara Reddy (10.1016/j.aej.2016.12.013_b0040) 2013
Duan (10.1016/j.aej.2016.12.013_b0030) 2016; 9
Hsu (10.1016/j.aej.2016.12.013_b0005) 2007; 32
Omran (10.1016/j.aej.2016.12.013_b0065) 2010; 25
Naldi (10.1016/j.aej.2016.12.013_b0145) 2014; 127
Mualik (10.1016/j.aej.2016.12.013_b0080) 2002; 33
Zhang (10.1016/j.aej.2016.12.013_b0090) 2010; 37
Wan (10.1016/j.aej.2016.12.013_b0185) 2012; 38
Senthilnath (10.1016/j.aej.2016.12.013_b0100) 2011; 1
Jain (10.1016/j.aej.2016.12.013_b0045) 1999
Wu (10.1016/j.aej.2016.12.013_b0160) 2015; 23
Silva Filho (10.1016/j.aej.2016.12.013_b0055) 2015; 42
Bandyopadhyay (10.1016/j.aej.2016.12.013_b0130) 2011; 41
Xu (10.1016/j.aej.2016.12.013_b0050) 2005; 16
Anderberg (10.1016/j.aej.2016.12.013_b0025) 1973
Yin (10.1016/j.aej.2016.12.013_b0070) 2010; 43
Rajakumar (10.1016/j.aej.2016.12.013_b0110) 2012; 6
Chander (10.1016/j.aej.2016.12.013_b0155) 2016; 12
Ji (10.1016/j.aej.2016.12.013_b0035) 2012; 30
Motamedi (10.1016/j.aej.2016.12.013_b0135) 2014; 4
Han (10.1016/j.aej.2016.12.013_b0015) 2001
Chander (10.1016/j.aej.2016.12.013_b0190) 2016; 11
10.1016/j.aej.2016.12.013_b0075
10.1016/j.aej.2016.12.013_b0010
Lichman (10.1016/j.aej.2016.12.013_b0175) 2013
References_xml – volume: 16
  start-page: 645
  year: 2005
  end-page: 677
  ident: b0050
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Networks
– year: 2013
  ident: b0175
  article-title: UCI Machine Learning Repository
– volume: 30
  start-page: 129
  year: 2012
  end-page: 135
  ident: b0035
  article-title: A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data
  publication-title: Knowl.-Based Syst.
– volume: 1
  year: 2008
  ident: b0085
  article-title: A new approach for data clustering based on PSO with local search
  publication-title: Comput. Inform. Sci.
– volume: 41
  start-page: 682
  year: 2011
  end-page: 691
  ident: b0130
  article-title: Multiobjective simulated annealing for fuzzy clustering with stability and validity
  publication-title: IEEE Trans. Syst. Man Cybern.—Part c: Appl. Rev.
– volume: 42
  start-page: 6315
  year: 2015
  end-page: 6328
  ident: b0055
  article-title: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization
  publication-title: Exp. Syst. Appl.
– volume: 42
  start-page: 5848
  year: 2015
  end-page: 5859
  ident: b0105
  article-title: Cluster analysis using optimization algorithms with newly designed objective functions
  publication-title: Exp. Syst. Appl.
– volume: 32
  start-page: 12
  year: 2007
  end-page: 27
  ident: b0005
  article-title: Mining of mixed data with application to catalog marketing
  publication-title: Exp. Syst. Appl.
– reference: J. McQueen, Some methods for classification and analysis of multivariate observations, in: Proc. of Fifth Berkeley Symposium on Math. Vol: Statistics and Probability, 1967, pp. 281–297.
– start-page: 226
  year: 1996
  end-page: 231
  ident: b0060
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD)
– volume: 41
  start-page: 222
  year: 2011
  end-page: 253
  ident: b0125
  article-title: Fuzzy–rough supervised attribute clustering algorithm and classification of microarray data
  publication-title: IEEE Trans. Syst. Man Cybern.—Part b: Cybern.
– volume: 40
  start-page: 2575
  year: 2013
  end-page: 2591
  ident: b0095
  article-title: An evolutionary computational model applied to cluster analysis of DNA microarray data
  publication-title: Exp. Syst. Appl.
– volume: 33
  start-page: 1455
  year: 2002
  end-page: 1465
  ident: b0080
  article-title: Genetic algorithm based clustering technique
  publication-title: Pattern Recogn.
– volume: 22
  start-page: 1229
  year: 2014
  end-page: 1244
  ident: b0120
  article-title: Accelerating fuzzy-C means using an estimated subsample size
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 4
  year: 2014
  ident: b0135
  article-title: Data clustering using kernel based algorithm
  publication-title: Inform. Technol. Control Autom.
– volume: 9
  start-page: 179
  year: 2016
  end-page: 188
  ident: b0030
  article-title: A novel data clustering algorithm based on modified adaptive particle swarm optimization
  publication-title: Int. J. Signal Process. Image Process. Pattern Recogn.
– volume: 23
  start-page: 701
  year: 2015
  end-page: 718
  ident: b0160
  article-title: A new fuzzy clustering validity index with a median factor for centroid-based clustering
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 125
  year: 2015
  end-page: 130
  ident: b0020
  article-title: Multi objective hybridized firefly algorithm with group search optimization for data clustering
  publication-title: Proceedings of IEEE International Conference on Research in Computational Intelligence and Communication Networks
– volume: 18
  start-page: 366
  year: 2014
  end-page: 377
  ident: b0180
  article-title: Data clustering using variants of rapid centroid estimation
  publication-title: IEEE Trans. Evol. Comput.
– volume: 37
  start-page: 4761
  year: 2010
  end-page: 4767
  ident: b0090
  article-title: An artificial bee colony approach for clustering
  publication-title: Exp. Syst. Appl.
– volume: 43
  start-page: 1320
  year: 2010
  end-page: 1333
  ident: b0070
  article-title: Semi-supervised clustering with metric learning: an adaptive kernel method
  publication-title: Pattern Recogn.
– start-page: 500
  year: 2013
  end-page: 506
  ident: b0040
  article-title: Data labeling method based on cluster purity using relative rough entropy for categorical data clustering
  publication-title: Proceedings of International Conference on Advances in Computing, Communications and Informatics
– volume: 6
  start-page: 126
  year: 2012
  end-page: 135
  ident: b0110
  article-title: The lion's algorithm: a new nature-inspired search algorithm
  publication-title: Proc. Int. Conf. Commun. Comput. Secur.
– start-page: 1
  year: 2013
  end-page: 5
  ident: b0150
  article-title: Data clustering using particle swarm optimization and bee algorithm
  publication-title: Proceedings of IEEE International Conference on Computing, Communications and Networking Technologies
– volume: 127
  start-page: 30
  year: 2014
  end-page: 42
  ident: b0145
  article-title: Evolutionary k-means for distributed datasets
  publication-title: Neurocomputing
– volume: 7
  start-page: 446
  year: 2016
  end-page: 450
  ident: b0165
  article-title: Investigating the effect of different kernel functions on the performance of SVM for recognizing Arabic characters
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 19
  start-page: 91
  year: 2009
  end-page: 97
  ident: b0170
  article-title: An improved group search optimizer for mechanical design optimization problems
  publication-title: Prog. Natl. Sci.
– reference: D. Gibson, J.M. Kleinberg, P. Raghavan, Clustering Categorical Data an Approach Based on Dynamical Systems, Very Large Database 8 (2000) 222–236.
– volume: 25
  start-page: 2617
  year: 2010
  end-page: 2625
  ident: b0065
  article-title: A clustering-based method for quantifying the effects of large on-grid PV systems
  publication-title: IEEE Trans. Power Deliv.
– year: 1999
  ident: b0045
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
– volume: 1
  start-page: 164
  year: 2011
  end-page: 171
  ident: b0100
  article-title: Clustering using firefly algorithm: performance study
  publication-title: Swarm Evol. Comput.
– volume: 4
  start-page: 243
  year: 2013
  end-page: 249
  ident: b0140
  article-title: MKF-cuckoo: hybridization of cuckoo search and multiple kernel-based fuzzy C-means algorithm
  publication-title: Proc. AASRI Conf. Intell. Syst. Control
– volume: 11
  year: 2016
  ident: b0190
  article-title: DOFL: kernel based directive operative fractional lion optimisation algorithm for data clustering
  publication-title: Int. Rev. Comput. Software (IRECOS)
– year: 1973
  ident: b0025
  article-title: Cluster Analysis for Applications
– volume: 38
  start-page: 321
  year: 2012
  end-page: 341
  ident: b0185
  article-title: Data clustering using bacterial foraging optimization
  publication-title: J. Intell. Inf. Syst.
– year: 2001
  ident: b0015
  article-title: Data Mining Concepts and Techniques
– volume: 25
  start-page: 1433
  year: 2014
  end-page: 1446
  ident: b0115
  article-title: Extensions of kmeans-type algorithms: a new clustering framework by integrating intracluster compactness and intercluster separation
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 12
  start-page: 323
  year: 2016
  end-page: 340
  ident: b0155
  article-title: Fractional Lion algorithm- an optimization algorithm for data clustering
  publication-title: J. Comput. Sci.
– year: 1999
  ident: 10.1016/j.aej.2016.12.013_b0045
  article-title: Data clustering: a review
  publication-title: ACM Comput. Surv.
  doi: 10.1145/331499.331504
– volume: 38
  start-page: 321
  year: 2012
  ident: 10.1016/j.aej.2016.12.013_b0185
  article-title: Data clustering using bacterial foraging optimization
  publication-title: J. Intell. Inf. Syst.
  doi: 10.1007/s10844-011-0158-3
– volume: 1
  issue: 4
  year: 2008
  ident: 10.1016/j.aej.2016.12.013_b0085
  article-title: A new approach for data clustering based on PSO with local search
  publication-title: Comput. Inform. Sci.
  doi: 10.5539/cis.v1n4p139
– volume: 42
  start-page: 5848
  issue: 14
  year: 2015
  ident: 10.1016/j.aej.2016.12.013_b0105
  article-title: Cluster analysis using optimization algorithms with newly designed objective functions
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2015.03.031
– volume: 16
  start-page: 645
  issue: 3
  year: 2005
  ident: 10.1016/j.aej.2016.12.013_b0050
  article-title: Survey of clustering algorithms
  publication-title: IEEE Trans. Neural Networks
  doi: 10.1109/TNN.2005.845141
– volume: 33
  start-page: 1455
  year: 2002
  ident: 10.1016/j.aej.2016.12.013_b0080
  article-title: Genetic algorithm based clustering technique
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(99)00137-5
– volume: 40
  start-page: 2575
  issue: 7
  year: 2013
  ident: 10.1016/j.aej.2016.12.013_b0095
  article-title: An evolutionary computational model applied to cluster analysis of DNA microarray data
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2012.10.061
– volume: 7
  start-page: 446
  issue: 1
  year: 2016
  ident: 10.1016/j.aej.2016.12.013_b0165
  article-title: Investigating the effect of different kernel functions on the performance of SVM for recognizing Arabic characters
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– volume: 1
  start-page: 164
  year: 2011
  ident: 10.1016/j.aej.2016.12.013_b0100
  article-title: Clustering using firefly algorithm: performance study
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.06.003
– volume: 19
  start-page: 91
  year: 2009
  ident: 10.1016/j.aej.2016.12.013_b0170
  article-title: An improved group search optimizer for mechanical design optimization problems
  publication-title: Prog. Natl. Sci.
  doi: 10.1016/j.pnsc.2008.06.007
– volume: 42
  start-page: 6315
  issue: 17–18
  year: 2015
  ident: 10.1016/j.aej.2016.12.013_b0055
  article-title: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.032
– year: 2013
  ident: 10.1016/j.aej.2016.12.013_b0175
– year: 1973
  ident: 10.1016/j.aej.2016.12.013_b0025
– start-page: 226
  year: 1996
  ident: 10.1016/j.aej.2016.12.013_b0060
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
– volume: 12
  start-page: 323
  issue: 7
  year: 2016
  ident: 10.1016/j.aej.2016.12.013_b0155
  article-title: Fractional Lion algorithm- an optimization algorithm for data clustering
  publication-title: J. Comput. Sci.
  doi: 10.3844/jcssp.2016.323.340
– volume: 18
  start-page: 366
  issue: 3
  year: 2014
  ident: 10.1016/j.aej.2016.12.013_b0180
  article-title: Data clustering using variants of rapid centroid estimation
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281545
– year: 2001
  ident: 10.1016/j.aej.2016.12.013_b0015
– volume: 25
  start-page: 2617
  issue: 4
  year: 2010
  ident: 10.1016/j.aej.2016.12.013_b0065
  article-title: A clustering-based method for quantifying the effects of large on-grid PV systems
  publication-title: IEEE Trans. Power Deliv.
  doi: 10.1109/TPWRD.2009.2038385
– volume: 41
  start-page: 222
  issue: 1
  year: 2011
  ident: 10.1016/j.aej.2016.12.013_b0125
  article-title: Fuzzy–rough supervised attribute clustering algorithm and classification of microarray data
  publication-title: IEEE Trans. Syst. Man Cybern.—Part b: Cybern.
  doi: 10.1109/TSMCB.2010.2050684
– volume: 32
  start-page: 12
  issue: 1
  year: 2007
  ident: 10.1016/j.aej.2016.12.013_b0005
  article-title: Mining of mixed data with application to catalog marketing
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2005.11.017
– volume: 22
  start-page: 1229
  issue: 5
  year: 2014
  ident: 10.1016/j.aej.2016.12.013_b0120
  article-title: Accelerating fuzzy-C means using an estimated subsample size
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2286993
– ident: 10.1016/j.aej.2016.12.013_b0010
  doi: 10.1007/s007780050005
– volume: 41
  start-page: 682
  issue: 5
  year: 2011
  ident: 10.1016/j.aej.2016.12.013_b0130
  article-title: Multiobjective simulated annealing for fuzzy clustering with stability and validity
  publication-title: IEEE Trans. Syst. Man Cybern.—Part c: Appl. Rev.
  doi: 10.1109/TSMCC.2010.2088390
– volume: 23
  start-page: 701
  issue: 3
  year: 2015
  ident: 10.1016/j.aej.2016.12.013_b0160
  article-title: A new fuzzy clustering validity index with a median factor for centroid-based clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2014.2322495
– start-page: 500
  year: 2013
  ident: 10.1016/j.aej.2016.12.013_b0040
  article-title: Data labeling method based on cluster purity using relative rough entropy for categorical data clustering
– start-page: 125
  year: 2015
  ident: 10.1016/j.aej.2016.12.013_b0020
  article-title: Multi objective hybridized firefly algorithm with group search optimization for data clustering
– volume: 9
  start-page: 179
  issue: 3
  year: 2016
  ident: 10.1016/j.aej.2016.12.013_b0030
  article-title: A novel data clustering algorithm based on modified adaptive particle swarm optimization
  publication-title: Int. J. Signal Process. Image Process. Pattern Recogn.
– volume: 43
  start-page: 1320
  year: 2010
  ident: 10.1016/j.aej.2016.12.013_b0070
  article-title: Semi-supervised clustering with metric learning: an adaptive kernel method
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2009.11.005
– volume: 127
  start-page: 30
  year: 2014
  ident: 10.1016/j.aej.2016.12.013_b0145
  article-title: Evolutionary k-means for distributed datasets
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.05.046
– volume: 37
  start-page: 4761
  year: 2010
  ident: 10.1016/j.aej.2016.12.013_b0090
  article-title: An artificial bee colony approach for clustering
  publication-title: Exp. Syst. Appl.
  doi: 10.1016/j.eswa.2009.11.003
– volume: 11
  issue: 8
  year: 2016
  ident: 10.1016/j.aej.2016.12.013_b0190
  article-title: DOFL: kernel based directive operative fractional lion optimisation algorithm for data clustering
  publication-title: Int. Rev. Comput. Software (IRECOS)
  doi: 10.15866/irecos.v11i8.9654
– volume: 30
  start-page: 129
  year: 2012
  ident: 10.1016/j.aej.2016.12.013_b0035
  article-title: A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2012.01.006
– ident: 10.1016/j.aej.2016.12.013_b0075
– start-page: 1
  year: 2013
  ident: 10.1016/j.aej.2016.12.013_b0150
  article-title: Data clustering using particle swarm optimization and bee algorithm
– volume: 4
  issue: 3
  year: 2014
  ident: 10.1016/j.aej.2016.12.013_b0135
  article-title: Data clustering using kernel based algorithm
  publication-title: Inform. Technol. Control Autom.
– volume: 4
  start-page: 243
  year: 2013
  ident: 10.1016/j.aej.2016.12.013_b0140
  article-title: MKF-cuckoo: hybridization of cuckoo search and multiple kernel-based fuzzy C-means algorithm
  publication-title: Proc. AASRI Conf. Intell. Syst. Control
– volume: 6
  start-page: 126
  year: 2012
  ident: 10.1016/j.aej.2016.12.013_b0110
  article-title: The lion's algorithm: a new nature-inspired search algorithm
  publication-title: Proc. Int. Conf. Commun. Comput. Secur.
– volume: 25
  start-page: 1433
  issue: 8
  year: 2014
  ident: 10.1016/j.aej.2016.12.013_b0115
  article-title: Extensions of kmeans-type algorithms: a new clustering framework by integrating intracluster compactness and intercluster separation
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2013.2293795
SSID ssj0000579496
Score 2.2253232
Snippet Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the...
SourceID doaj
unpaywall
crossref
elsevier
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 267
SubjectTerms Clustering accuracy
Data clustering
Directive operative searching strategy
Fractional lion optimization
Multi kernel function
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQL8ABLY_VdnnIB06gaO3EsZ0jIKoKCS5QqTfLHjtsS5quqlaIf7_jOKnSS_fCKXLkTEYzY884mfmGkPe5dZUDFTJcOj4ToEVmreIZV0oj40yAirXD33_I-UJ8W5bLUauvmBOW4IGT4G6kc74uAQqwXvBc6iJUXjmWB6vL0nXopUxXo8NUQvVGO-uac-FajplXUg-_NLvkLhvWMa1Ldp8CeXHilDrs_hPf9PjQ3tl_f23TjHzP7II864NG-ikx-5w8Cu0L8nQEJfiS_OwqaemfsGtDQ23rqU-95mm9S7ULSKDBC93iJrHpqy-pbX5vd6v97YZi8EpjuiiF5hDBE5DqK7KYff31ZZ71DRMyQL-8x_3UqhziiU8B6DoPwhVVzVABRRFErQVXIS8L4DhwskahSMkccFdpCdrXxSWZtNs2XBHKJNPBO5AiYADAOA4CCxgNQelBaDslbJCYgR5NPDa1aMyQNrY2KGQThWx4blDIU_Lh-MhdgtI4N_lzVMNxYkTB7m6gbZjeNsxDtjElYlCi6QOKFCggqdW5d388KvxhTq__B6evyRMkqVNy2xsy2e8O4S1GO3v3rjPse7jA_Lw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ScienceDirect
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQF9oDKi2IUEA-9NRqFXvttZ0jIBCt1F5apNwse-ylgWUTrRIh_j3jfUTkAhKnlS2_NGPPjL0z3xDyLXd-4kHHDI9OyCQYmTmneca1NrhwJkGn2OHff9T1jfw1LaZb5GKIhUlulb3s72R6K637mnFPzfFiNhvjOUz4QcqgRcGELBLip5AmpW_4OT1fv7OkYEvZpulK7bPUYfi52bp5uXiXHLxU-yjIxYZ6alH8N7TUzqpeuKdHV1UvtNDVJ7Lbm4_0rFvhHtmK9Wfy8QWo4Bfyt42ppfexqWNFXR1o6LLO07LpohhwgAo_dI7i4qGPw6Suup03s-X_B4pmLE2OoxSqVYJRwFH3yc3V5b-L66xPnZABauglSlanc0h3Pw1gyjxKLyYlQ1YIEWVpJNcxLwRwLHhVIlGUYh64nxgFJpTigGzX8zoeEsoUMzF4UDKiKcA4FiKLaBdBEUAaNyJsoJiFHlc8pbeo7OBAdmeRyDYR2fLcIpFH5Pu6y6ID1Xit8Xliw7phwsNuK-bNre03hFXeh7IAEOCC5LkyIk6C9iyPzhSFL0ZEDky0G9sLh5q9NvePNcPfXunR-yb5Sj5gyXSObcdke9ms4glaOkt_2m7lZ3_w-1o
  priority: 102
  providerName: Elsevier
Title Multi kernel and dynamic fractional lion optimization algorithm for data clustering
URI https://dx.doi.org/10.1016/j.aej.2016.12.013
https://doi.org/10.1016/j.aej.2016.12.013
https://doaj.org/article/6bbdf5cc3cad412683e9d7b02ea855b5
UnpaywallVersion publishedVersion
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  issn: 1110-0168
  databaseCode: KQ8
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: Directory of Open Access Journals (DOAJ)
  issn: 1110-0168
  databaseCode: DOA
  dateStart: 20100101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.doaj.org/
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Directory of Open Access Journals
– providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 1110-0168
  databaseCode: IXB
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 1110-0168
  databaseCode: AKRWK
  dateStart: 20101201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000579496
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQe0AceCOKoPKBEygrx3Fs59hFrBZWrBBQUU6WPXbYRzZdlVQIfj1jJ622CC1wSeTImThjO_PFnvmGkOfcusqBChlOHZ8J0CKzVuVZrpTGhjMBKsYOvzuWh3PxdlEuBrLoGAuzs3-f_LBsOIseWDKt2sX8tGNZIuwekfH8-P3sS0qekpyrUtgbZxXLuFTbHcw_ydixQYmqf8cU3Vy3l_bHd9s0V0zNwZ3eSetbYiiMHibne-vO7cHP3_gb_-kt7pLbA-Cks36E3CM3Qnuf3LpCQ_iAfExRuPQ8rNrQUNt66vs89bRe9XEPKKDBE13iB-ZiiNyktvm6XJ12JxcUgS-NrqYUmnUkXkCpD8n84PWnV4fZkGwhA7TpHX6LreIQ_xYVgK55EK6oaoadVxRB1FrkKvCygBwLTtaobSmZg9xVWoL2dfGIjNplGx4TyiTTwTuQIiB4YDkWAguIpKD0ILSdELZRv4GBiTwmxGjMxuXszKC-TNSXyblBfU3Ii-0tlz0Nx3WV92OfbitGBu10AbvEDBPSSOd8XQIUYL3IudRFqLxyjAery9KVEyI2I8IMYKQHGSjq9Lpnv9yOnr-39Ml_1X5KRt1qHZ4hCurclIxnRx8-H03TKgIe3yz2p8Oc-AVg8wYv
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeEE91oYAPnEDROvFzj21FtUDbC620N8seO2VLml1Fu0L99x3nsepeisQpsuOXZuyZiTPzDSGfC-cnHnTM8OiETIARmXM6z3KtDS6cCdApdvj8Qk2vxI-ZnO2QkyEWJrlV9rK_k-mttO5rxj01x8v5fIznMOEHKYMWBeNC8ifkqZBonaQovtnx5qIlRVuKNk9X6pClHsPfzdbPy8Wb5OGl2lvBnG_ppxbGf0tN7a3rpbv766rqgRo6fUGe9_YjPeqW-JLsxPoV2X-AKvia_GqDaumf2NSxoq4ONHRp52nZdGEMOECFD7pAeXHbB2JSV10vmvnq9y1FO5Ymz1EK1TrhKOCob8jV6bfLk2nW507IAFX0CkWr0wWkjz8NYMoiCs8nJUNecB5FaUSuYyE55FjwqkSiKMU85H5iFJhQ8rdkt17U8YBQppiJwYMSEW0BlmMhsoiGEcgAwrgRYQPFLPTA4im_RWUHD7Ibi0S2icg2LywSeUS-bLosO1SNxxofJzZsGiZA7LZi0VzbfkdY5X0oJQAHF0ReKMPjJGjPiuiMlF6OiBiYaLf2Fw41f2zurxuG_3ul7_5vkk9kb3p5fmbPvl_8fE-e4RvTebkdkt1Vs44f0OxZ-Y_ttr4HOmD-gA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlcyg9pI8kZENbdOipxUGWZUk-JqEhFBoK7UJyEtJIbh6ON2y8lOTXdyR7l2woSXoyMvJYHo08n62Zbwj5xK2rHKiQ4dLxmQAtMmtVnuVKaRw4E6Bi7vD3Y3k0Ed9OypOBLDrmwqzs36c4LBsuYgSWTH_tYn3aNVki7B6Rtcnxj73TVDwlBVeltDfOKpZxqZY7mP-SseKDElX_iit6OW-v7e0f2zT3XM3h6z5I6yYxFMYIk8vdeed24e4Bf-OznuINWR8AJ93rLeQteRHad-TVPRrCDfIzZeHSyzBrQ0Nt66nv69TTetbnPaCABg90ii-YqyFzk9rm93R23p1dUQS-NIaaUmjmkXgBpW6SyeHXXwdH2VBsIQP06R2-i63iEL8WFYCueRCuqGqGk1cUQdRa5CrwsoAcG07WqG0pmYPcVVqC9nWxRUbttA3bhDLJdPAOpAgIHliOjcACIikoPQhtx4Qt1G9gYCKPBTEaswg5uzCoLxP1ZXJuUF9j8nl5yXVPw_FY5_04p8uOkUE7ncApMcOCNNI5X5cABVgvci51ESqvHOPB6rJ05ZiIhUWYAYz0IANFnT927y9L63l6pDv_1fs9GXWzefiAKKhzHwf7_wsOjwKT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi+kernel+and+dynamic+fractional+lion+optimization+algorithm+for+data+clustering&rft.jtitle=Alexandria+engineering+journal&rft.au=Satish+Chander&rft.au=P.+Vijaya&rft.au=Praveen+Dhyani&rft.date=2018-03-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=57&rft.issue=1&rft.spage=267&rft.epage=276&rft_id=info:doi/10.1016%2Fj.aej.2016.12.013&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6bbdf5cc3cad412683e9d7b02ea855b5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon