Multi kernel and dynamic fractional lion optimization algorithm for data clustering
Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the adaptive dynamic directive operative fractional lion algorithm is proposed using multi kernel function. Also, we intend to develop a new mathematic...
        Saved in:
      
    
          | Published in | Alexandria engineering journal Vol. 57; no. 1; pp. 267 - 276 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.03.2018
     Elsevier  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1110-0168 2090-2670  | 
| DOI | 10.1016/j.aej.2016.12.013 | 
Cover
| Abstract | Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the adaptive dynamic directive operative fractional lion algorithm is proposed using multi kernel function. Also, we intend to develop a new mathematical function for fitness evaluation. We utilize multi kernels, such as Gaussian, tangential, rational quadratic and Inverse multiquadratic to design the new fitness function. Consequently, the WLI fuzzy clustering mechanism is employed in this paper to determine the distance measurement based on new fitness function, named Multi kernel WLI (MKWLI). Then, we design a novel algorithm with the aid of dynamic directive operative searching strategy and adaptive fractional lion algorithm, termed Adaptive Dynamic Directive Operative Fractional Lion (ADDOFL) algorithm. Initially in this proposed algorithm, the solutions are generated based on the fractional lion algorithm. It also exploits the new MKWLI fitness function to evaluate the optimal value. Finally, the updation of female lion is performed through dynamic directive operative searching algorithm. Thus, the proposed ADDOFL algorithm is used to find out the optimal cluster center iteratively. The simulation results are validated and performance is analyzed using metrics such as clustering accuracy, Jaccard coefficient and rand coefficient. The outcome of the proposed algorithm attains the clustering accuracy of 89.6% for both Iris and Wine databases which ensures the better clustering performance. | 
    
|---|---|
| AbstractList | Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the adaptive dynamic directive operative fractional lion algorithm is proposed using multi kernel function. Also, we intend to develop a new mathematical function for fitness evaluation. We utilize multi kernels, such as Gaussian, tangential, rational quadratic and Inverse multiquadratic to design the new fitness function. Consequently, the WLI fuzzy clustering mechanism is employed in this paper to determine the distance measurement based on new fitness function, named Multi kernel WLI (MKWLI). Then, we design a novel algorithm with the aid of dynamic directive operative searching strategy and adaptive fractional lion algorithm, termed Adaptive Dynamic Directive Operative Fractional Lion (ADDOFL) algorithm. Initially in this proposed algorithm, the solutions are generated based on the fractional lion algorithm. It also exploits the new MKWLI fitness function to evaluate the optimal value. Finally, the updation of female lion is performed through dynamic directive operative searching algorithm. Thus, the proposed ADDOFL algorithm is used to find out the optimal cluster center iteratively. The simulation results are validated and performance is analyzed using metrics such as clustering accuracy, Jaccard coefficient and rand coefficient. The outcome of the proposed algorithm attains the clustering accuracy of 89.6% for both Iris and Wine databases which ensures the better clustering performance. Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the adaptive dynamic directive operative fractional lion algorithm is proposed using multi kernel function. Also, we intend to develop a new mathematical function for fitness evaluation. We utilize multi kernels, such as Gaussian, tangential, rational quadratic and Inverse multiquadratic to design the new fitness function. Consequently, the WLI fuzzy clustering mechanism is employed in this paper to determine the distance measurement based on new fitness function, named Multi kernel WLI (MKWLI). Then, we design a novel algorithm with the aid of dynamic directive operative searching strategy and adaptive fractional lion algorithm, termed Adaptive Dynamic Directive Operative Fractional Lion (ADDOFL) algorithm. Initially in this proposed algorithm, the solutions are generated based on the fractional lion algorithm. It also exploits the new MKWLI fitness function to evaluate the optimal value. Finally, the updation of female lion is performed through dynamic directive operative searching algorithm. Thus, the proposed ADDOFL algorithm is used to find out the optimal cluster center iteratively. The simulation results are validated and performance is analyzed using metrics such as clustering accuracy, Jaccard coefficient and rand coefficient. The outcome of the proposed algorithm attains the clustering accuracy of 89.6% for both Iris and Wine databases which ensures the better clustering performance. Keywords: Data clustering, Multi kernel function, Fractional lion optimization, Directive operative searching strategy, Clustering accuracy  | 
    
| Author | Vijaya, P. Dhyani, Praveen Chander, Satish  | 
    
| Author_xml | – sequence: 1 givenname: Satish surname: Chander fullname: Chander, Satish email: dimrisatish@gmail.com organization: Waljat College of Applied Sciences, P.O. Box 197, P.C. 124, Rusayl, Muscat, Oman – sequence: 2 givenname: P. surname: Vijaya fullname: Vijaya, P. organization: Waljat College of Applied Sciences, P.O. Box 197, P.C. 124, Rusayl, Muscat, Oman – sequence: 3 givenname: Praveen surname: Dhyani fullname: Dhyani, Praveen organization: Banasthali University, Jaipur Campus, India  | 
    
| BookMark | eNqNkMtu1DAUhr0oEqXtA7DzC0zwJXESsUIVl0pFXQBr6-T4eHDwOCPHAxqevp4OYsGiwptj_9L32_5esYu0JGLstRSNFNK8mRuguVF120jVCKkv2KWUUmxqMrxkN-s6i7q6fmxHc8m-fD7EEvgPyokih-S4OybYBeQ-A5awJIg81sGXfQm78BtOGYe4XXIo33fcL5k7KMAxHtZCOaTtNXvhIa5082desW8f3n-9_bS5f_h4d_vufoOtMGWjJfQKu3Yce8TBK2onPXqBQ6s1tX5oZU-q0yjrYTK-Pt8YMaGcxsHg4Ly-YnfnXrfAbPc57CAf7QLBPgVL3lrIJWAka6bJ-Q5RI7hWKjNoGl0_CUUwdN3U1S517jqkPRx_QYx_C6WwJ7N2ttWsPZm1UtlqtkL9GcK8rGsmbzGUJ0ElQ4jPkvIf8n9ue3tmqDr9GSjbFQMlJBcyYamfDs_Qj2QcqDw | 
    
| CitedBy_id | crossref_primary_10_1007_s12065_018_0168_y crossref_primary_10_1093_bib_bbac095 crossref_primary_10_1109_ACCESS_2019_2923979 crossref_primary_10_1002_jnm_2858 crossref_primary_10_1007_s42979_024_03048_0 crossref_primary_10_1080_19479832_2019_1683625 crossref_primary_10_1007_s11042_020_09718_4 crossref_primary_10_1007_s10479_022_04530_9 crossref_primary_10_3390_sym14030458 crossref_primary_10_1007_s12046_018_0865_3 crossref_primary_10_1016_j_aej_2017_04_013 crossref_primary_10_1007_s11042_022_14045_x crossref_primary_10_1108_DTA_03_2020_0071 crossref_primary_10_3390_computation11010013 crossref_primary_10_1016_j_jfranklin_2024_107286 crossref_primary_10_1007_s12065_019_00265_y crossref_primary_10_1007_s11277_019_06972_0 crossref_primary_10_1049_iet_com_2019_0079  | 
    
| Cites_doi | 10.1145/331499.331504 10.1007/s10844-011-0158-3 10.5539/cis.v1n4p139 10.1016/j.eswa.2015.03.031 10.1109/TNN.2005.845141 10.1016/S0031-3203(99)00137-5 10.1016/j.eswa.2012.10.061 10.1016/j.swevo.2011.06.003 10.1016/j.pnsc.2008.06.007 10.1016/j.eswa.2015.04.032 10.3844/jcssp.2016.323.340 10.1109/TEVC.2013.2281545 10.1109/TPWRD.2009.2038385 10.1109/TSMCB.2010.2050684 10.1016/j.eswa.2005.11.017 10.1109/TFUZZ.2013.2286993 10.1007/s007780050005 10.1109/TSMCC.2010.2088390 10.1109/TFUZZ.2014.2322495 10.1016/j.patcog.2009.11.005 10.1016/j.neucom.2013.05.046 10.1016/j.eswa.2009.11.003 10.15866/irecos.v11i8.9654 10.1016/j.knosys.2012.01.006 10.1109/TNNLS.2013.2293795  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2016 Faculty of Engineering, Alexandria University | 
    
| Copyright_xml | – notice: 2016 Faculty of Engineering, Alexandria University | 
    
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY DOA  | 
    
| DOI | 10.1016/j.aej.2016.12.013 | 
    
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EndPage | 276 | 
    
| ExternalDocumentID | oai_doaj_org_article_6bbdf5cc3cad412683e9d7b02ea855b5 10.1016/j.aej.2016.12.013 10_1016_j_aej_2016_12_013 S1110016816303453  | 
    
| GroupedDBID | --K 0R~ 0SF 4.4 457 5VS 6I. AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ BCNDV EBS EJD FDB GROUPED_DOAJ HZ~ IPNFZ IXB KQ8 M41 NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ XH2 AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFJKZ AFPUW AIGII AKBMS AKRWK AKYEP CITATION ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c406t-31a72c54997cc8f2e4b39f0c8433e4f8417e253c1e4fb6f168660bc1b986c8df3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1110-0168 2090-2670  | 
    
| IngestDate | Fri Oct 03 12:43:54 EDT 2025 Tue Aug 19 16:44:03 EDT 2025 Tue Jul 01 04:24:41 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Wed May 17 00:06:44 EDT 2023  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Keywords | Fractional lion optimization Data clustering Multi kernel function Directive operative searching strategy Clustering accuracy  | 
    
| Language | English | 
    
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c406t-31a72c54997cc8f2e4b39f0c8433e4f8417e253c1e4fb6f168660bc1b986c8df3 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.aej.2016.12.013 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_6bbdf5cc3cad412683e9d7b02ea855b5 unpaywall_primary_10_1016_j_aej_2016_12_013 crossref_citationtrail_10_1016_j_aej_2016_12_013 crossref_primary_10_1016_j_aej_2016_12_013 elsevier_sciencedirect_doi_10_1016_j_aej_2016_12_013  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | March 2018 2018-03-00 2018-03-01  | 
    
| PublicationDateYYYYMMDD | 2018-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2018 text: March 2018  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | Alexandria engineering journal | 
    
| PublicationYear | 2018 | 
    
| Publisher | Elsevier B.V Elsevier  | 
    
| Publisher_xml | – name: Elsevier B.V – name: Elsevier  | 
    
| References | Silva Filho, Pimentel, Souza, Oliveira (b0055) 2015; 42 Duan, Hu, Zhang (b0030) 2016; 9 Mitchell, Su, Moulton, Nguyen (b0180) 2014; 18 Anderberg (b0025) 1973 Binu (b0140) 2013; 4 Venkateswara Reddy, Viswanadha Raju (b0040) 2013 Fadel, Ghoniemy, Abdallah, Sorra, Ashour, Ansary (b0165) 2016; 7 Ji, Pang, Zhou, Han, Wang (b0035) 2012; 30 Wan, Li, Xiao, Wang, Yang (b0185) 2012; 38 Binu (b0105) 2015; 42 Huang, Ye, Zhang (b0115) 2014; 25 Premalatha, Natarajan (b0085) 2008; 1 Zhang, Ouyang, Ning (b0090) 2010; 37 Maji (b0125) 2011; 41 Senthilnath, Omkar, Mani (b0100) 2011; 1 Chander, Vijaya, Dhyani (b0190) 2016; 11 Han, Kamber (b0015) 2001 Castellanos-Garzon, Diaz (b0095) 2013; 40 Lichman (b0175) 2013 Xu, Wunsch (b0050) 2005; 16 Hsu, Chen (b0005) 2007; 32 Omran, Kazerani, Salama (b0065) 2010; 25 Mualik, Bandyopadhyay (b0080) 2002; 33 Motamedi (b0135) 2014; 4 Bandyopadhyay (b0130) 2011; 41 Wu (b0160) 2015; 23 J. McQueen, Some methods for classification and analysis of multivariate observations, in: Proc. of Fifth Berkeley Symposium on Math. Vol: Statistics and Probability, 1967, pp. 281–297. D. Gibson, J.M. Kleinberg, P. Raghavan, Clustering Categorical Data an Approach Based on Dynamical Systems, Very Large Database 8 (2000) 222–236. Ester, Kriegel, Sander, Xu (b0060) 1996 Dhote, Thakare, Chaudhari (b0150) 2013 Shen, Zhu, Niu, Wu (b0170) 2009; 19 Chander, Vijaya, Dhyani (b0155) 2016; 12 Naldi, Campello (b0145) 2014; 127 Yin, Chen, Hu, Zhang (b0070) 2010; 43 Jain, Murthy, Flyn (b0045) 1999 Parker, Hall (b0120) 2014; 22 George, Parthiban (b0020) 2015 Rajakumar (b0110) 2012; 6 Mitchell (10.1016/j.aej.2016.12.013_b0180) 2014; 18 Parker (10.1016/j.aej.2016.12.013_b0120) 2014; 22 Shen (10.1016/j.aej.2016.12.013_b0170) 2009; 19 Castellanos-Garzon (10.1016/j.aej.2016.12.013_b0095) 2013; 40 Binu (10.1016/j.aej.2016.12.013_b0105) 2015; 42 Fadel (10.1016/j.aej.2016.12.013_b0165) 2016; 7 Dhote (10.1016/j.aej.2016.12.013_b0150) 2013 George (10.1016/j.aej.2016.12.013_b0020) 2015 Huang (10.1016/j.aej.2016.12.013_b0115) 2014; 25 Binu (10.1016/j.aej.2016.12.013_b0140) 2013; 4 Premalatha (10.1016/j.aej.2016.12.013_b0085) 2008; 1 Maji (10.1016/j.aej.2016.12.013_b0125) 2011; 41 Ester (10.1016/j.aej.2016.12.013_b0060) 1996 Venkateswara Reddy (10.1016/j.aej.2016.12.013_b0040) 2013 Duan (10.1016/j.aej.2016.12.013_b0030) 2016; 9 Hsu (10.1016/j.aej.2016.12.013_b0005) 2007; 32 Omran (10.1016/j.aej.2016.12.013_b0065) 2010; 25 Naldi (10.1016/j.aej.2016.12.013_b0145) 2014; 127 Mualik (10.1016/j.aej.2016.12.013_b0080) 2002; 33 Zhang (10.1016/j.aej.2016.12.013_b0090) 2010; 37 Wan (10.1016/j.aej.2016.12.013_b0185) 2012; 38 Senthilnath (10.1016/j.aej.2016.12.013_b0100) 2011; 1 Jain (10.1016/j.aej.2016.12.013_b0045) 1999 Wu (10.1016/j.aej.2016.12.013_b0160) 2015; 23 Silva Filho (10.1016/j.aej.2016.12.013_b0055) 2015; 42 Bandyopadhyay (10.1016/j.aej.2016.12.013_b0130) 2011; 41 Xu (10.1016/j.aej.2016.12.013_b0050) 2005; 16 Anderberg (10.1016/j.aej.2016.12.013_b0025) 1973 Yin (10.1016/j.aej.2016.12.013_b0070) 2010; 43 Rajakumar (10.1016/j.aej.2016.12.013_b0110) 2012; 6 Chander (10.1016/j.aej.2016.12.013_b0155) 2016; 12 Ji (10.1016/j.aej.2016.12.013_b0035) 2012; 30 Motamedi (10.1016/j.aej.2016.12.013_b0135) 2014; 4 Han (10.1016/j.aej.2016.12.013_b0015) 2001 Chander (10.1016/j.aej.2016.12.013_b0190) 2016; 11 10.1016/j.aej.2016.12.013_b0075 10.1016/j.aej.2016.12.013_b0010 Lichman (10.1016/j.aej.2016.12.013_b0175) 2013  | 
    
| References_xml | – volume: 16 start-page: 645 year: 2005 end-page: 677 ident: b0050 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Networks – year: 2013 ident: b0175 article-title: UCI Machine Learning Repository – volume: 30 start-page: 129 year: 2012 end-page: 135 ident: b0035 article-title: A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data publication-title: Knowl.-Based Syst. – volume: 1 year: 2008 ident: b0085 article-title: A new approach for data clustering based on PSO with local search publication-title: Comput. Inform. Sci. – volume: 41 start-page: 682 year: 2011 end-page: 691 ident: b0130 article-title: Multiobjective simulated annealing for fuzzy clustering with stability and validity publication-title: IEEE Trans. Syst. Man Cybern.—Part c: Appl. Rev. – volume: 42 start-page: 6315 year: 2015 end-page: 6328 ident: b0055 article-title: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization publication-title: Exp. Syst. Appl. – volume: 42 start-page: 5848 year: 2015 end-page: 5859 ident: b0105 article-title: Cluster analysis using optimization algorithms with newly designed objective functions publication-title: Exp. Syst. Appl. – volume: 32 start-page: 12 year: 2007 end-page: 27 ident: b0005 article-title: Mining of mixed data with application to catalog marketing publication-title: Exp. Syst. Appl. – reference: J. McQueen, Some methods for classification and analysis of multivariate observations, in: Proc. of Fifth Berkeley Symposium on Math. Vol: Statistics and Probability, 1967, pp. 281–297. – start-page: 226 year: 1996 end-page: 231 ident: b0060 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD) – volume: 41 start-page: 222 year: 2011 end-page: 253 ident: b0125 article-title: Fuzzy–rough supervised attribute clustering algorithm and classification of microarray data publication-title: IEEE Trans. Syst. Man Cybern.—Part b: Cybern. – volume: 40 start-page: 2575 year: 2013 end-page: 2591 ident: b0095 article-title: An evolutionary computational model applied to cluster analysis of DNA microarray data publication-title: Exp. Syst. Appl. – volume: 33 start-page: 1455 year: 2002 end-page: 1465 ident: b0080 article-title: Genetic algorithm based clustering technique publication-title: Pattern Recogn. – volume: 22 start-page: 1229 year: 2014 end-page: 1244 ident: b0120 article-title: Accelerating fuzzy-C means using an estimated subsample size publication-title: IEEE Trans. Fuzzy Syst. – volume: 4 year: 2014 ident: b0135 article-title: Data clustering using kernel based algorithm publication-title: Inform. Technol. Control Autom. – volume: 9 start-page: 179 year: 2016 end-page: 188 ident: b0030 article-title: A novel data clustering algorithm based on modified adaptive particle swarm optimization publication-title: Int. J. Signal Process. Image Process. Pattern Recogn. – volume: 23 start-page: 701 year: 2015 end-page: 718 ident: b0160 article-title: A new fuzzy clustering validity index with a median factor for centroid-based clustering publication-title: IEEE Trans. Fuzzy Syst. – start-page: 125 year: 2015 end-page: 130 ident: b0020 article-title: Multi objective hybridized firefly algorithm with group search optimization for data clustering publication-title: Proceedings of IEEE International Conference on Research in Computational Intelligence and Communication Networks – volume: 18 start-page: 366 year: 2014 end-page: 377 ident: b0180 article-title: Data clustering using variants of rapid centroid estimation publication-title: IEEE Trans. Evol. Comput. – volume: 37 start-page: 4761 year: 2010 end-page: 4767 ident: b0090 article-title: An artificial bee colony approach for clustering publication-title: Exp. Syst. Appl. – volume: 43 start-page: 1320 year: 2010 end-page: 1333 ident: b0070 article-title: Semi-supervised clustering with metric learning: an adaptive kernel method publication-title: Pattern Recogn. – start-page: 500 year: 2013 end-page: 506 ident: b0040 article-title: Data labeling method based on cluster purity using relative rough entropy for categorical data clustering publication-title: Proceedings of International Conference on Advances in Computing, Communications and Informatics – volume: 6 start-page: 126 year: 2012 end-page: 135 ident: b0110 article-title: The lion's algorithm: a new nature-inspired search algorithm publication-title: Proc. Int. Conf. Commun. Comput. Secur. – start-page: 1 year: 2013 end-page: 5 ident: b0150 article-title: Data clustering using particle swarm optimization and bee algorithm publication-title: Proceedings of IEEE International Conference on Computing, Communications and Networking Technologies – volume: 127 start-page: 30 year: 2014 end-page: 42 ident: b0145 article-title: Evolutionary k-means for distributed datasets publication-title: Neurocomputing – volume: 7 start-page: 446 year: 2016 end-page: 450 ident: b0165 article-title: Investigating the effect of different kernel functions on the performance of SVM for recognizing Arabic characters publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 19 start-page: 91 year: 2009 end-page: 97 ident: b0170 article-title: An improved group search optimizer for mechanical design optimization problems publication-title: Prog. Natl. Sci. – reference: D. Gibson, J.M. Kleinberg, P. Raghavan, Clustering Categorical Data an Approach Based on Dynamical Systems, Very Large Database 8 (2000) 222–236. – volume: 25 start-page: 2617 year: 2010 end-page: 2625 ident: b0065 article-title: A clustering-based method for quantifying the effects of large on-grid PV systems publication-title: IEEE Trans. Power Deliv. – year: 1999 ident: b0045 article-title: Data clustering: a review publication-title: ACM Comput. Surv. – volume: 1 start-page: 164 year: 2011 end-page: 171 ident: b0100 article-title: Clustering using firefly algorithm: performance study publication-title: Swarm Evol. Comput. – volume: 4 start-page: 243 year: 2013 end-page: 249 ident: b0140 article-title: MKF-cuckoo: hybridization of cuckoo search and multiple kernel-based fuzzy C-means algorithm publication-title: Proc. AASRI Conf. Intell. Syst. Control – volume: 11 year: 2016 ident: b0190 article-title: DOFL: kernel based directive operative fractional lion optimisation algorithm for data clustering publication-title: Int. Rev. Comput. Software (IRECOS) – year: 1973 ident: b0025 article-title: Cluster Analysis for Applications – volume: 38 start-page: 321 year: 2012 end-page: 341 ident: b0185 article-title: Data clustering using bacterial foraging optimization publication-title: J. Intell. Inf. Syst. – year: 2001 ident: b0015 article-title: Data Mining Concepts and Techniques – volume: 25 start-page: 1433 year: 2014 end-page: 1446 ident: b0115 article-title: Extensions of kmeans-type algorithms: a new clustering framework by integrating intracluster compactness and intercluster separation publication-title: IEEE Trans. Neural Networks Learn. Syst. – volume: 12 start-page: 323 year: 2016 end-page: 340 ident: b0155 article-title: Fractional Lion algorithm- an optimization algorithm for data clustering publication-title: J. Comput. Sci. – year: 1999 ident: 10.1016/j.aej.2016.12.013_b0045 article-title: Data clustering: a review publication-title: ACM Comput. Surv. doi: 10.1145/331499.331504 – volume: 38 start-page: 321 year: 2012 ident: 10.1016/j.aej.2016.12.013_b0185 article-title: Data clustering using bacterial foraging optimization publication-title: J. Intell. Inf. Syst. doi: 10.1007/s10844-011-0158-3 – volume: 1 issue: 4 year: 2008 ident: 10.1016/j.aej.2016.12.013_b0085 article-title: A new approach for data clustering based on PSO with local search publication-title: Comput. Inform. Sci. doi: 10.5539/cis.v1n4p139 – volume: 42 start-page: 5848 issue: 14 year: 2015 ident: 10.1016/j.aej.2016.12.013_b0105 article-title: Cluster analysis using optimization algorithms with newly designed objective functions publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2015.03.031 – volume: 16 start-page: 645 issue: 3 year: 2005 ident: 10.1016/j.aej.2016.12.013_b0050 article-title: Survey of clustering algorithms publication-title: IEEE Trans. Neural Networks doi: 10.1109/TNN.2005.845141 – volume: 33 start-page: 1455 year: 2002 ident: 10.1016/j.aej.2016.12.013_b0080 article-title: Genetic algorithm based clustering technique publication-title: Pattern Recogn. doi: 10.1016/S0031-3203(99)00137-5 – volume: 40 start-page: 2575 issue: 7 year: 2013 ident: 10.1016/j.aej.2016.12.013_b0095 article-title: An evolutionary computational model applied to cluster analysis of DNA microarray data publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2012.10.061 – volume: 7 start-page: 446 issue: 1 year: 2016 ident: 10.1016/j.aej.2016.12.013_b0165 article-title: Investigating the effect of different kernel functions on the performance of SVM for recognizing Arabic characters publication-title: Int. J. Adv. Comput. Sci. Appl. – volume: 1 start-page: 164 year: 2011 ident: 10.1016/j.aej.2016.12.013_b0100 article-title: Clustering using firefly algorithm: performance study publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.06.003 – volume: 19 start-page: 91 year: 2009 ident: 10.1016/j.aej.2016.12.013_b0170 article-title: An improved group search optimizer for mechanical design optimization problems publication-title: Prog. Natl. Sci. doi: 10.1016/j.pnsc.2008.06.007 – volume: 42 start-page: 6315 issue: 17–18 year: 2015 ident: 10.1016/j.aej.2016.12.013_b0055 article-title: Hybrid methods for fuzzy clustering based on fuzzy c-means and improved particle swarm optimization publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2015.04.032 – year: 2013 ident: 10.1016/j.aej.2016.12.013_b0175 – year: 1973 ident: 10.1016/j.aej.2016.12.013_b0025 – start-page: 226 year: 1996 ident: 10.1016/j.aej.2016.12.013_b0060 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 12 start-page: 323 issue: 7 year: 2016 ident: 10.1016/j.aej.2016.12.013_b0155 article-title: Fractional Lion algorithm- an optimization algorithm for data clustering publication-title: J. Comput. Sci. doi: 10.3844/jcssp.2016.323.340 – volume: 18 start-page: 366 issue: 3 year: 2014 ident: 10.1016/j.aej.2016.12.013_b0180 article-title: Data clustering using variants of rapid centroid estimation publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281545 – year: 2001 ident: 10.1016/j.aej.2016.12.013_b0015 – volume: 25 start-page: 2617 issue: 4 year: 2010 ident: 10.1016/j.aej.2016.12.013_b0065 article-title: A clustering-based method for quantifying the effects of large on-grid PV systems publication-title: IEEE Trans. Power Deliv. doi: 10.1109/TPWRD.2009.2038385 – volume: 41 start-page: 222 issue: 1 year: 2011 ident: 10.1016/j.aej.2016.12.013_b0125 article-title: Fuzzy–rough supervised attribute clustering algorithm and classification of microarray data publication-title: IEEE Trans. Syst. Man Cybern.—Part b: Cybern. doi: 10.1109/TSMCB.2010.2050684 – volume: 32 start-page: 12 issue: 1 year: 2007 ident: 10.1016/j.aej.2016.12.013_b0005 article-title: Mining of mixed data with application to catalog marketing publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2005.11.017 – volume: 22 start-page: 1229 issue: 5 year: 2014 ident: 10.1016/j.aej.2016.12.013_b0120 article-title: Accelerating fuzzy-C means using an estimated subsample size publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2286993 – ident: 10.1016/j.aej.2016.12.013_b0010 doi: 10.1007/s007780050005 – volume: 41 start-page: 682 issue: 5 year: 2011 ident: 10.1016/j.aej.2016.12.013_b0130 article-title: Multiobjective simulated annealing for fuzzy clustering with stability and validity publication-title: IEEE Trans. Syst. Man Cybern.—Part c: Appl. Rev. doi: 10.1109/TSMCC.2010.2088390 – volume: 23 start-page: 701 issue: 3 year: 2015 ident: 10.1016/j.aej.2016.12.013_b0160 article-title: A new fuzzy clustering validity index with a median factor for centroid-based clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2014.2322495 – start-page: 500 year: 2013 ident: 10.1016/j.aej.2016.12.013_b0040 article-title: Data labeling method based on cluster purity using relative rough entropy for categorical data clustering – start-page: 125 year: 2015 ident: 10.1016/j.aej.2016.12.013_b0020 article-title: Multi objective hybridized firefly algorithm with group search optimization for data clustering – volume: 9 start-page: 179 issue: 3 year: 2016 ident: 10.1016/j.aej.2016.12.013_b0030 article-title: A novel data clustering algorithm based on modified adaptive particle swarm optimization publication-title: Int. J. Signal Process. Image Process. Pattern Recogn. – volume: 43 start-page: 1320 year: 2010 ident: 10.1016/j.aej.2016.12.013_b0070 article-title: Semi-supervised clustering with metric learning: an adaptive kernel method publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2009.11.005 – volume: 127 start-page: 30 year: 2014 ident: 10.1016/j.aej.2016.12.013_b0145 article-title: Evolutionary k-means for distributed datasets publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.05.046 – volume: 37 start-page: 4761 year: 2010 ident: 10.1016/j.aej.2016.12.013_b0090 article-title: An artificial bee colony approach for clustering publication-title: Exp. Syst. Appl. doi: 10.1016/j.eswa.2009.11.003 – volume: 11 issue: 8 year: 2016 ident: 10.1016/j.aej.2016.12.013_b0190 article-title: DOFL: kernel based directive operative fractional lion optimisation algorithm for data clustering publication-title: Int. Rev. Comput. Software (IRECOS) doi: 10.15866/irecos.v11i8.9654 – volume: 30 start-page: 129 year: 2012 ident: 10.1016/j.aej.2016.12.013_b0035 article-title: A fuzzy k-prototype clustering algorithm for mixed numeric and categorical data publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2012.01.006 – ident: 10.1016/j.aej.2016.12.013_b0075 – start-page: 1 year: 2013 ident: 10.1016/j.aej.2016.12.013_b0150 article-title: Data clustering using particle swarm optimization and bee algorithm – volume: 4 issue: 3 year: 2014 ident: 10.1016/j.aej.2016.12.013_b0135 article-title: Data clustering using kernel based algorithm publication-title: Inform. Technol. Control Autom. – volume: 4 start-page: 243 year: 2013 ident: 10.1016/j.aej.2016.12.013_b0140 article-title: MKF-cuckoo: hybridization of cuckoo search and multiple kernel-based fuzzy C-means algorithm publication-title: Proc. AASRI Conf. Intell. Syst. Control – volume: 6 start-page: 126 year: 2012 ident: 10.1016/j.aej.2016.12.013_b0110 article-title: The lion's algorithm: a new nature-inspired search algorithm publication-title: Proc. Int. Conf. Commun. Comput. Secur. – volume: 25 start-page: 1433 issue: 8 year: 2014 ident: 10.1016/j.aej.2016.12.013_b0115 article-title: Extensions of kmeans-type algorithms: a new clustering framework by integrating intracluster compactness and intercluster separation publication-title: IEEE Trans. Neural Networks Learn. Syst. doi: 10.1109/TNNLS.2013.2293795  | 
    
| SSID | ssj0000579496 | 
    
| Score | 2.2253232 | 
    
| Snippet | Clustering is the technique used to partition the homogenous data, where the data are grouped together. In order to improve the clustering accuracy, the... | 
    
| SourceID | doaj unpaywall crossref elsevier  | 
    
| SourceType | Open Website Open Access Repository Enrichment Source Index Database Publisher  | 
    
| StartPage | 267 | 
    
| SubjectTerms | Clustering accuracy Data clustering Directive operative searching strategy Fractional lion optimization Multi kernel function  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELZQL8ABLY_VdnnIB06gaO3EsZ0jIKoKCS5QqTfLHjtsS5quqlaIf7_jOKnSS_fCKXLkTEYzY884mfmGkPe5dZUDFTJcOj4ToEVmreIZV0oj40yAirXD33_I-UJ8W5bLUauvmBOW4IGT4G6kc74uAQqwXvBc6iJUXjmWB6vL0nXopUxXo8NUQvVGO-uac-FajplXUg-_NLvkLhvWMa1Ldp8CeXHilDrs_hPf9PjQ3tl_f23TjHzP7II864NG-ikx-5w8Cu0L8nQEJfiS_OwqaemfsGtDQ23rqU-95mm9S7ULSKDBC93iJrHpqy-pbX5vd6v97YZi8EpjuiiF5hDBE5DqK7KYff31ZZ71DRMyQL-8x_3UqhziiU8B6DoPwhVVzVABRRFErQVXIS8L4DhwskahSMkccFdpCdrXxSWZtNs2XBHKJNPBO5AiYADAOA4CCxgNQelBaDslbJCYgR5NPDa1aMyQNrY2KGQThWx4blDIU_Lh-MhdgtI4N_lzVMNxYkTB7m6gbZjeNsxDtjElYlCi6QOKFCggqdW5d388KvxhTq__B6evyRMkqVNy2xsy2e8O4S1GO3v3rjPse7jA_Lw priority: 102 providerName: Directory of Open Access Journals – databaseName: ScienceDirect dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LTxsxELYQF9oDKi2IUEA-9NRqFXvttZ0jIBCt1F5apNwse-ylgWUTrRIh_j3jfUTkAhKnlS2_NGPPjL0z3xDyLXd-4kHHDI9OyCQYmTmneca1NrhwJkGn2OHff9T1jfw1LaZb5GKIhUlulb3s72R6K637mnFPzfFiNhvjOUz4QcqgRcGELBLip5AmpW_4OT1fv7OkYEvZpulK7bPUYfi52bp5uXiXHLxU-yjIxYZ6alH8N7TUzqpeuKdHV1UvtNDVJ7Lbm4_0rFvhHtmK9Wfy8QWo4Bfyt42ppfexqWNFXR1o6LLO07LpohhwgAo_dI7i4qGPw6Suup03s-X_B4pmLE2OoxSqVYJRwFH3yc3V5b-L66xPnZABauglSlanc0h3Pw1gyjxKLyYlQ1YIEWVpJNcxLwRwLHhVIlGUYh64nxgFJpTigGzX8zoeEsoUMzF4UDKiKcA4FiKLaBdBEUAaNyJsoJiFHlc8pbeo7OBAdmeRyDYR2fLcIpFH5Pu6y6ID1Xit8Xliw7phwsNuK-bNre03hFXeh7IAEOCC5LkyIk6C9iyPzhSFL0ZEDky0G9sLh5q9NvePNcPfXunR-yb5Sj5gyXSObcdke9ms4glaOkt_2m7lZ3_w-1o priority: 102 providerName: Elsevier  | 
    
| Title | Multi kernel and dynamic fractional lion optimization algorithm for data clustering | 
    
| URI | https://dx.doi.org/10.1016/j.aej.2016.12.013 https://doi.org/10.1016/j.aej.2016.12.013 https://doaj.org/article/6bbdf5cc3cad412683e9d7b02ea855b5  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 57 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library issn: 1110-0168 databaseCode: KQ8 dateStart: 20101201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html omitProxy: true ssIdentifier: ssj0000579496 providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: Directory of Open Access Journals (DOAJ) issn: 1110-0168 databaseCode: DOA dateStart: 20100101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.doaj.org/ omitProxy: true ssIdentifier: ssj0000579496 providerName: Directory of Open Access Journals – providerCode: PRVESC databaseName: ScienceDirect issn: 1110-0168 databaseCode: IXB dateStart: 20101201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000579496 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1110-0168 databaseCode: AKRWK dateStart: 20101201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000579496 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELZQe0AceCOKoPKBEygrx3Fs59hFrBZWrBBQUU6WPXbYRzZdlVQIfj1jJ622CC1wSeTImThjO_PFnvmGkOfcusqBChlOHZ8J0CKzVuVZrpTGhjMBKsYOvzuWh3PxdlEuBrLoGAuzs3-f_LBsOIseWDKt2sX8tGNZIuwekfH8-P3sS0qekpyrUtgbZxXLuFTbHcw_ydixQYmqf8cU3Vy3l_bHd9s0V0zNwZ3eSetbYiiMHibne-vO7cHP3_gb_-kt7pLbA-Cks36E3CM3Qnuf3LpCQ_iAfExRuPQ8rNrQUNt66vs89bRe9XEPKKDBE13iB-ZiiNyktvm6XJ12JxcUgS-NrqYUmnUkXkCpD8n84PWnV4fZkGwhA7TpHX6LreIQ_xYVgK55EK6oaoadVxRB1FrkKvCygBwLTtaobSmZg9xVWoL2dfGIjNplGx4TyiTTwTuQIiB4YDkWAguIpKD0ILSdELZRv4GBiTwmxGjMxuXszKC-TNSXyblBfU3Ii-0tlz0Nx3WV92OfbitGBu10AbvEDBPSSOd8XQIUYL3IudRFqLxyjAery9KVEyI2I8IMYKQHGSjq9Lpnv9yOnr-39Ml_1X5KRt1qHZ4hCurclIxnRx8-H03TKgIe3yz2p8Oc-AVg8wYv | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOZQeEE91oYAPnEDROvFzj21FtUDbC620N8seO2VLml1Fu0L99x3nsepeisQpsuOXZuyZiTPzDSGfC-cnHnTM8OiETIARmXM6z3KtDS6cCdApdvj8Qk2vxI-ZnO2QkyEWJrlV9rK_k-mttO5rxj01x8v5fIznMOEHKYMWBeNC8ifkqZBonaQovtnx5qIlRVuKNk9X6pClHsPfzdbPy8Wb5OGl2lvBnG_ppxbGf0tN7a3rpbv766rqgRo6fUGe9_YjPeqW-JLsxPoV2X-AKvia_GqDaumf2NSxoq4ONHRp52nZdGEMOECFD7pAeXHbB2JSV10vmvnq9y1FO5Ymz1EK1TrhKOCob8jV6bfLk2nW507IAFX0CkWr0wWkjz8NYMoiCs8nJUNecB5FaUSuYyE55FjwqkSiKMU85H5iFJhQ8rdkt17U8YBQppiJwYMSEW0BlmMhsoiGEcgAwrgRYQPFLPTA4im_RWUHD7Ibi0S2icg2LywSeUS-bLosO1SNxxofJzZsGiZA7LZi0VzbfkdY5X0oJQAHF0ReKMPjJGjPiuiMlF6OiBiYaLf2Fw41f2zurxuG_3ul7_5vkk9kb3p5fmbPvl_8fE-e4RvTebkdkt1Vs44f0OxZ-Y_ttr4HOmD-gA | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZlcyg9pI8kZENbdOipxUGWZUk-JqEhFBoK7UJyEtJIbh6ON2y8lOTXdyR7l2woSXoyMvJYHo08n62Zbwj5xK2rHKiQ4dLxmQAtMmtVnuVKaRw4E6Bi7vD3Y3k0Ed9OypOBLDrmwqzs36c4LBsuYgSWTH_tYn3aNVki7B6Rtcnxj73TVDwlBVeltDfOKpZxqZY7mP-SseKDElX_iit6OW-v7e0f2zT3XM3h6z5I6yYxFMYIk8vdeed24e4Bf-OznuINWR8AJ93rLeQteRHad-TVPRrCDfIzZeHSyzBrQ0Nt66nv69TTetbnPaCABg90ii-YqyFzk9rm93R23p1dUQS-NIaaUmjmkXgBpW6SyeHXXwdH2VBsIQP06R2-i63iEL8WFYCueRCuqGqGk1cUQdRa5CrwsoAcG07WqG0pmYPcVVqC9nWxRUbttA3bhDLJdPAOpAgIHliOjcACIikoPQhtx4Qt1G9gYCKPBTEaswg5uzCoLxP1ZXJuUF9j8nl5yXVPw_FY5_04p8uOkUE7ncApMcOCNNI5X5cABVgvci51ESqvHOPB6rJ05ZiIhUWYAYz0IANFnT927y9L63l6pDv_1fs9GXWzefiAKKhzHwf7_wsOjwKT | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi+kernel+and+dynamic+fractional+lion+optimization+algorithm+for+data+clustering&rft.jtitle=Alexandria+engineering+journal&rft.au=Satish+Chander&rft.au=P.+Vijaya&rft.au=Praveen+Dhyani&rft.date=2018-03-01&rft.pub=Elsevier&rft.issn=1110-0168&rft.volume=57&rft.issue=1&rft.spage=267&rft.epage=276&rft_id=info:doi/10.1016%2Fj.aej.2016.12.013&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6bbdf5cc3cad412683e9d7b02ea855b5 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1110-0168&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1110-0168&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1110-0168&client=summon |