Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms
Data clustering is a process of arranging similar data in different groups based on certain characteristics and properties, and each group is considered as a cluster. In the last decades, several nature-inspired optimization algorithms proved to be efficient for several computing problems. Firefly a...
Saved in:
| Published in | Mathematics (Basel) Vol. 10; no. 19; p. 3532 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.10.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-7390 2227-7390 |
| DOI | 10.3390/math10193532 |
Cover
| Abstract | Data clustering is a process of arranging similar data in different groups based on certain characteristics and properties, and each group is considered as a cluster. In the last decades, several nature-inspired optimization algorithms proved to be efficient for several computing problems. Firefly algorithm is one of the nature-inspired metaheuristic optimization algorithms regarded as an optimization tool for many optimization issues in many different areas such as clustering. To overcome the issues of velocity, the firefly algorithm can be integrated with the popular particle swarm optimization algorithm. In this paper, two modified firefly algorithms, namely the crazy firefly algorithm and variable step size firefly algorithm, are hybridized individually with a standard particle swarm optimization algorithm and applied in the domain of clustering. The results obtained by the two planned hybrid algorithms have been compared with the existing hybridized firefly particle swarm optimization algorithm utilizing ten UCI Machine Learning Repository datasets and eight Shape sets for performance evaluation. In addition to this, two clustering validity measures, Compact-separated and David–Bouldin, have been used for analyzing the efficiency of these algorithms. The experimental results show that the two proposed hybrid algorithms outperform the existing hybrid firefly particle swarm optimization algorithm. |
|---|---|
| AbstractList | Data clustering is a process of arranging similar data in different groups based on certain characteristics and properties, and each group is considered as a cluster. In the last decades, several nature-inspired optimization algorithms proved to be efficient for several computing problems. Firefly algorithm is one of the nature-inspired metaheuristic optimization algorithms regarded as an optimization tool for many optimization issues in many different areas such as clustering. To overcome the issues of velocity, the firefly algorithm can be integrated with the popular particle swarm optimization algorithm. In this paper, two modified firefly algorithms, namely the crazy firefly algorithm and variable step size firefly algorithm, are hybridized individually with a standard particle swarm optimization algorithm and applied in the domain of clustering. The results obtained by the two planned hybrid algorithms have been compared with the existing hybridized firefly particle swarm optimization algorithm utilizing ten UCI Machine Learning Repository datasets and eight Shape sets for performance evaluation. In addition to this, two clustering validity measures, Compact-separated and David–Bouldin, have been used for analyzing the efficiency of these algorithms. The experimental results show that the two proposed hybrid algorithms outperform the existing hybrid firefly particle swarm optimization algorithm. |
| Audience | Academic |
| Author | Mallick, Pradeep Kumar Mishra, Debahuti Shafi, Jana Ijaz, Muhammad Fazal Srinivasu, Parvathaneni Naga Behera, Mandakini Sarangi, Archana |
| Author_xml | – sequence: 1 givenname: Mandakini surname: Behera fullname: Behera, Mandakini – sequence: 2 givenname: Archana surname: Sarangi fullname: Sarangi, Archana – sequence: 3 givenname: Debahuti surname: Mishra fullname: Mishra, Debahuti – sequence: 4 givenname: Pradeep Kumar orcidid: 0000-0002-1207-0757 surname: Mallick fullname: Mallick, Pradeep Kumar – sequence: 5 givenname: Jana orcidid: 0000-0001-6859-670X surname: Shafi fullname: Shafi, Jana – sequence: 6 givenname: Parvathaneni Naga orcidid: 0000-0001-9247-9132 surname: Srinivasu fullname: Srinivasu, Parvathaneni Naga – sequence: 7 givenname: Muhammad Fazal orcidid: 0000-0001-5206-272X surname: Ijaz fullname: Ijaz, Muhammad Fazal |
| BookMark | eNqFUU1r3DAUFCWFptvc-gMEvdapvmxZx2WbNIFACm3PQpbkXS22tJVlgvvr-xKHEkqh0kHivZnRaN5bdBZT9Ai9p-SSc0U-jaYcKKGK15y9QueMMVlJaJy9uL9BF9N0JLAU5a1Q50hv55KAGiz-bIrBu2Geis8h7nG34July8Hhq3gw0XqHr0P2_bBgEx3-ajKwBo-_PZg84vtTCWP4BUop4u2wTzmUwzi9Q697M0z-4vncoB_XV993N9Xd_Zfb3fausoI0pWK9bEnNa9c1koqeycZLLjtLLWs7WwvLnbWMe6osgU4LIC-slD2xnLS05xt0u-q6ZI76lMNo8qKTCfqpkPJeP_vVNSRhiFBNS6RQTnWKyJZRR4lqqKgNaFWr1hxPZnkww_BHkBL9GLZ-GTbgP6z4U04_Zz8VfUxzjvBdzSQTrOF184i6XFF7AyZC7FPJxsJ2fgwWZtkHqG-lELLmLcxngz6uBJvTNEHw_3PB_oLbUJ7GAe-E4d-k3wl7rc4 |
| CitedBy_id | crossref_primary_10_1007_s11042_023_17541_w crossref_primary_10_32604_csse_2023_037488 crossref_primary_10_1007_s11042_024_18597_y crossref_primary_10_1016_j_comcom_2023_06_027 crossref_primary_10_1016_j_engappai_2023_107795 crossref_primary_10_1016_j_engappai_2024_108104 crossref_primary_10_1155_2023_3988288 crossref_primary_10_3390_sym14112323 crossref_primary_10_1109_ACCESS_2023_3343754 crossref_primary_10_1007_s41870_024_01943_6 crossref_primary_10_1007_s11042_024_18913_6 crossref_primary_10_1007_s10586_024_04822_8 crossref_primary_10_1038_s41598_024_74881_9 crossref_primary_10_1007_s40314_024_03004_x crossref_primary_10_3390_app13053364 crossref_primary_10_3390_axioms12060511 crossref_primary_10_1007_s11042_023_16659_1 crossref_primary_10_3390_su15064816 crossref_primary_10_1016_j_dib_2023_109799 crossref_primary_10_1007_s11042_023_17953_8 crossref_primary_10_3390_biomimetics8070525 crossref_primary_10_1016_j_swevo_2025_101847 crossref_primary_10_1371_journal_pone_0281519 crossref_primary_10_32604_csse_2023_036658 crossref_primary_10_1007_s11042_023_17498_w |
| Cites_doi | 10.1016/j.kijoms.2018.09.001 10.1109/MAMI.2017.8307875 10.1016/j.knosys.2018.09.013 10.1109/ACCESS.2020.2981656 10.1007/978-3-030-74517-2 10.1109/TPAMI.1979.4766909 10.1007/978-981-16-8763-1 10.1109/ACCESS.2019.2960925 10.1109/IWCMC.2018.8450447 10.1016/j.swevo.2018.09.008 10.1109/ACCESS.2020.3006173 10.1007/s10044-004-0218-1 10.1016/j.jocs.2017.07.009 10.1109/CEC.2018.8477806 10.1109/CISPSSE49931.2020.9212193 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/math10193532 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) eJournal Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2227-7390 |
| ExternalDocumentID | oai_doaj_org_article_5739a049680749d9b907821d1096145a 10.3390/math10193532 A744753891 10_3390_math10193532 |
| GeographicLocations | India |
| GeographicLocations_xml | – name: India |
| GroupedDBID | -~X 5VS 85S 8FE 8FG AADQD AAFWJ AAYXX ABDBF ABJCF ABPPZ ABUWG ACIPV ACIWK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO ITC K6V K7- KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PTHSS RNS 3V. 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c406t-2f780535db6714f276e737bc1c28bc54c3dcc23e19c0e738714e4c77f0c3081f3 |
| IEDL.DBID | BENPR |
| ISSN | 2227-7390 |
| IngestDate | Tue Oct 14 19:00:36 EDT 2025 Sun Oct 26 03:57:33 EDT 2025 Fri Jul 25 12:02:40 EDT 2025 Mon Oct 20 16:47:47 EDT 2025 Thu Apr 24 23:05:27 EDT 2025 Thu Oct 16 04:40:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c406t-2f780535db6714f276e737bc1c28bc54c3dcc23e19c0e738714e4c77f0c3081f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-1207-0757 0000-0001-6859-670X 0000-0001-9247-9132 0000-0001-5206-272X |
| OpenAccessLink | https://www.proquest.com/docview/2724263562?pq-origsite=%requestingapplication%&accountid=15518 |
| PQID | 2724263562 |
| PQPubID | 2032364 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5739a049680749d9b907821d1096145a unpaywall_primary_10_3390_math10193532 proquest_journals_2724263562 gale_infotracacademiconefile_A744753891 crossref_primary_10_3390_math10193532 crossref_citationtrail_10_3390_math10193532 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-01 |
| PublicationDateYYYYMMDD | 2022-10-01 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Mathematics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ezugwu (ref_4) 2020; 8 Davies (ref_6) 1979; 1 Zhao (ref_20) 2020; 8 ref_13 ref_24 ref_12 ref_23 ref_11 ref_22 ref_21 Agbaje (ref_3) 2019; 7 Guan (ref_1) 2019; 44 Sharma (ref_9) 2019; 23 ref_19 Deeb (ref_8) 2022; 34 ref_18 ref_16 Chou (ref_7) 2004; 7 ref_15 Zhou (ref_10) 2019; 163 Xia (ref_17) 2018; 26 Majhi (ref_2) 2018; 4 ref_5 Watanabe (ref_14) 2009; Volume 5792 |
| References_xml | – volume: 4 start-page: 347 year: 2018 ident: ref_2 article-title: Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer publication-title: Karbala Int. J. Mod. Sci. doi: 10.1016/j.kijoms.2018.09.001 – ident: ref_5 doi: 10.1109/MAMI.2017.8307875 – volume: 34 start-page: 5020 year: 2022 ident: ref_8 article-title: Improved Black Hole optimization algorithm for data clustering publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 163 start-page: 546 year: 2019 ident: ref_10 article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2018.09.013 – volume: 8 start-page: 58700 year: 2020 ident: ref_20 article-title: Firefly Algorithm Based on Level-Based Attracting and Variable Step Size publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981656 – ident: ref_23 doi: 10.1007/978-3-030-74517-2 – volume: 1 start-page: 224 year: 1979 ident: ref_6 article-title: A Cluster Separation Measure publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1979.4766909 – volume: Volume 5792 start-page: 169 year: 2009 ident: ref_14 article-title: Firefly Algorithms for Multimodal Optimization publication-title: Stochastic Algorithms: Foundations and Applications – ident: ref_24 doi: 10.1007/978-981-16-8763-1 – ident: ref_11 – volume: 7 start-page: 184963 year: 2019 ident: ref_3 article-title: Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2960925 – ident: ref_19 doi: 10.1109/IWCMC.2018.8450447 – volume: 44 start-page: 876 year: 2019 ident: ref_1 article-title: Particle swarm Optimized Density-based Clustering and Classification: Supervised and unsupervised learning approaches publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.09.008 – ident: ref_16 – volume: 8 start-page: 121089 year: 2020 ident: ref_4 article-title: A Comparative Performance Study of Hybrid Firefly Algorithms for Automatic Data Clustering publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3006173 – volume: 7 start-page: 205 year: 2004 ident: ref_7 article-title: A new cluster validity measure and its application to image compression publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-004-0218-1 – ident: ref_15 – volume: 26 start-page: 488 year: 2018 ident: ref_17 article-title: A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm publication-title: J. Comput. Sci. doi: 10.1016/j.jocs.2017.07.009 – ident: ref_13 – ident: ref_22 – ident: ref_21 – ident: ref_12 doi: 10.1109/CEC.2018.8477806 – ident: ref_18 doi: 10.1109/CISPSSE49931.2020.9212193 – volume: 23 start-page: 144 year: 2019 ident: ref_9 article-title: Sustainable automatic data clustering using hybrid PSO algorithm with mutation publication-title: Sustain. Comput. Inform. Syst. |
| SSID | ssj0000913849 |
| Score | 2.3690805 |
| Snippet | Data clustering is a process of arranging similar data in different groups based on certain characteristics and properties, and each group is considered as a... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3532 |
| SubjectTerms | Algorithms Artificial intelligence Cluster analysis Clustering compact-separated validity index crazy firefly algorithm Data mining Datasets David–Bouldin validity index Electronic data processing Genetic algorithms Heuristic methods hybrid firefly particle swarm optimization algorithm Machine learning Mathematical optimization Methods Mutation Optimization algorithms Particle swarm optimization Performance evaluation Validity variable step size firefly algorithm |
| SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXqAHBAVEoCAfChxQRBI7cXxcSlerSgUkqNSb5VdYpGy22s2q2n_PjJOuFqHChWOSOYxnxvOIPd8AnGAM8rXJfFoGa1KhjExVRc5QCFt4b-rK0Q_9i8_V7FKcX5VXe6O-6E7YAA88CA4Ldq4MprEVobYor6yioJb7nGaViDKmRlmt9oqp6INVzmuhhpvuHOv6D5j_zdH8FC958VsMilD9fzrkQ7i_6a7N9sa07V7EmT6Ch2OqyCYDi4_hXuiO4PBih7O6fgJ6sumX8YF9Mr1hp-2GgA8wHDG7ZbMttWOxs24ej_nZFN1b026Z6Tz7Oq6cfbsxqwX7gp5jMbZkskn7Y7n62c8X66dwOT37fjpLx5EJqcPI3KdFQzMKeOltJXPRFLIKkkvrclfU1pXCce9cwUOuXIZfsFoSQTgpm8xxTA4a_gwOumUXngPLhBQNDw4rECPyIIy1xhBd6YXHbZzA-1shajfiidNYi1ZjXUEi1_siT-DNjvp6wNG4g-4j6WNHQ-jX8QXahB4lo_9lEwm8I21q2qPIkjNjqwEujNCu9EQSzCGd0CZwfKtwPW7etS5khLHHzDCBtzsj-CvbL_4H2y_hQUHNFfGq4DEc9KtNeIUpT29fR-v-BTQb-ks priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeoAeeFcYCtoDjwNyE9u73viEQmkUIbVUgkjltNqH3VQ4TpTYVOHXM-NsogACIXG0PV7tembnsZ75BuAF2iDX1z0XitzokGdahllKypBzEzun-6mlA_3Ts3Q05h8uxMVOFT-lVWIoftUqaarTDCVG5bi3u1HWTUQSd-euePvNnyVFacpFK5Q3YS8V6I13YG98dj74Qj3lNm-v890TGge9wAkKYUYj_WSJWsD-39XyPtxqqrleXeuy3LE7w7ugNzNep5t8PWpqc2S__wLm-D9Lugd3vFPKBmspug838uoB7J9uEV2XD0ENmnrWXrD3utbsuGwIYgENHzMrNlpR4Rc7qSZtQgEboiItyhXTlWPnXjjZp2u9mLKPqKOmvviTDcrL2eKqnkyXj2A8PPl8PAp9c4bQog9Qh3FB3RAS4UwqI17EMs1lIo2NbNw3VnCbOGvjJI8y28MnGJfxnFspi55N0A0pkgPoVLMqfwysxyUvktxirKN5lHNtjNZEJxx3qDACeLNhlLIeuZwaaJQKIxhiq9plawAvt9TzNWLHH-jeEc-3NISz3d6YLS6V_zJKIKs0BlEpYQZlLjMZuVSRi6hTDhc6gNckMYq0AU7Jal_UgAsjXC01kASoSP-CAzjcCJXyamKpYtkC5qMPGsCrraD9ddpP_pXwKdyOqVSjTTw8hE69aPJn6EDV5rnfIz8At7AS-A priority: 102 providerName: Unpaywall |
| Title | Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms |
| URI | https://www.proquest.com/docview/2724263562 https://www.mdpi.com/2227-7390/10/19/3532/pdf?version=1664518322 https://doaj.org/article/5739a049680749d9b907821d1096145a |
| UnpaywallVersion | publishedVersion |
| Volume | 10 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: ABDBF dateStart: 20170101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: AMVHM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: BENPR dateStart: 20130301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-7390 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913849 issn: 2227-7390 databaseCode: 8FG dateStart: 20130301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAfEpwkblBz4eULQmduLkAaFstFRIKxVQaTxFjp2sD2natamm_vfcpU4YQuzRySlyzuf7su93AG_QBplIDYwb5JlyRaykG4ekDIXIfGNUFGpK6F9OwvFMfL0Krg5g0tbC0LXKVic2itosNeXIz3zZYIujuf60unGpaxSdrrYtNJRtrWA-NhBjh3DkEzJWD47Oh5Pp9y7rQiiYkYj3N-A5xvtn6BfOUSxjHnD_L9vUQPj_q6iP4cG2WqndrSrLO5Zo9BgeWReSJfs1fwIHefUUji87_NXNM0iTbb1sBuyzqhW7KLcEiIBmimU7Nt5RmRYbVvPm-J-NUO0V5Y6pyrCpFSX241atF-wbapSFLdVkSXmNHKnni81zmI2GPy_Grm2l4Gq02LXrF9S7gAcmC6UnCl-GueQy0572o0wHQnOjtc9zL9YDfINRlMiFlrIYaI5OQ8FfQK9aVvlLYAMhRcFzjZGJEl4uVJYpRXSBEQa3twMfWiam2uKMU7uLMsV4g1ie3mW5A2876tUeX-M_dOe0Hh0NoWI3D5br69RyJg0kjxWGPCEh_MQmzmJygDzjUV8bESgH3tNqprR3cUpa2RIE_DFCwUoTSfCHdHLrwGm74Knd1Jv0jwg68K4Tgnun_er-75zAQ5_KKZrLgafQq9fb_DU6OXXWh8No9KVv5bffpApwNJtMk1-_AZGc_js |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N7WHsAfFXFAb4gcEDitbETlw_TKjbWnVsLRNs0t6MYyfrQ5qWNtXUL8dn4y51yxBib3tMcrKcu_Odz777HcB79EGuZZouiLPUBEIZGaiEjKEQaeScaSWWDvT7g6R3Kb5cxVcb8GtVC0NplSubWBtqN7Z0Rr4fyRpbHN3158nPgLpG0e3qqoWG8a0V3EENMeYLO06zxQ2GcLODk2OU914UdTsXR73AdxkILDqzKohygvXnsUsTGYo8kkkmuUxtaKNWamNhubM24lmobBO_YIAhMmGlzJuWoz_NOY77ALYEFwqDv63DzuD82_qUh1A3W0ItM-45V8193IcOcRkoHvPoL19Ytwz41zHswPa8nJjFjSmKW56v-xge-S0ray917AlsZOVT2Omv8V5nz0C359W4fmDHpjLsqJgTAAO6RZYuWG9BZWGsUw7rdAPWRTObFwtmSsfOveqy7zdmOmJf0YKNfGkoaxfXKIFqOJo9h8t7YeoL2CzHZfYSWFNIkfPMYiRkRJgJk6bGEF3shENz0oBPKyZq63HNqb1GoTG-IZbr2yxvwN6aerLE8_gP3SHJY01DKNz1i_H0WnvO6FhyZTDESghRSDmVKtpwhS6kPjoiNg34SNLUZCtwStb4kgf8MULd0m1JcIt0U9yA3ZXAtTciM_1H5RvwYa0Ed0771d3jvIPt3kX_TJ-dDE5fw8OISjnqxMRd2Kym8-wNbrCq9K3XYgY_7nvh_AbUoza9 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQF7QPwVgQF-YPCAoiaxEzcPCJV1pWNsTIJJe_McO1kf0rS0qap8NT4dd2kShhB722OSk-Xcne989t3vAN6gD7J97Vk3TBPtilhLN47IGAqRBNbqfmToQP_4JBqfiS_n4fkW_GprYSitsrWJtaG2M0Nn5L1A1tji6K57WZMWcTocfZz_dKmDFN20tu00NipylFZrDN-WHw6HKOu9IBgd_Ngfu02HAdegIyvdICNIfx7aJJK-yAIZpZLLxPgm6CcmFIZbYwKe-rHx8AsGFyIVRsrMMxx9acZx3FtwWxKKO1Wpjz535zuEt9kX8SbXnvPY6-EOdIILIOYhD_7ygnWzgH9dwg7cXRVzXa11nl_xeaMHcL_ZrLLBRrsewlZaPIKd4w7pdfkY1GBVzuoHNtSlZvv5iqAX0CGypGLjigrC2EExqRMN2AgNbJZXTBeWnTZKy76v9WLKvqHtmjZFoWyQXyK_y8l0-QTOboSlT2G7mBXpM2CekCLjqcEYSAs_FTpJtCa60AqLhsSB9y0TlWkQzamxRq4wsiGWq6ssd2Cvo55vkDz-Q_eJ5NHREP52_WK2uFQNZ1QoeawxuIoISyi2cRLTVsu3PnXQEaF24B1JU5GVwCkZ3RQ74I8R3pYaSAJapDtiB3ZbgavGfCzVH2V34G2nBNdO-_n147yGO7hc1NfDk6MXcC-gGo46I3EXtsvFKn2JO6syeVWrMIOLm14zvwFO2DRX |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeoAeeFcYCtoDjwNyE9u73viEQmkUIbVUgkjltNqH3VQ4TpTYVOHXM-NsogACIXG0PV7tembnsZ75BuAF2iDX1z0XitzokGdahllKypBzEzun-6mlA_3Ts3Q05h8uxMVOFT-lVWIoftUqaarTDCVG5bi3u1HWTUQSd-euePvNnyVFacpFK5Q3YS8V6I13YG98dj74Qj3lNm-v890TGge9wAkKYUYj_WSJWsD-39XyPtxqqrleXeuy3LE7w7ugNzNep5t8PWpqc2S__wLm-D9Lugd3vFPKBmspug838uoB7J9uEV2XD0ENmnrWXrD3utbsuGwIYgENHzMrNlpR4Rc7qSZtQgEboiItyhXTlWPnXjjZp2u9mLKPqKOmvviTDcrL2eKqnkyXj2A8PPl8PAp9c4bQog9Qh3FB3RAS4UwqI17EMs1lIo2NbNw3VnCbOGvjJI8y28MnGJfxnFspi55N0A0pkgPoVLMqfwysxyUvktxirKN5lHNtjNZEJxx3qDACeLNhlLIeuZwaaJQKIxhiq9plawAvt9TzNWLHH-jeEc-3NISz3d6YLS6V_zJKIKs0BlEpYQZlLjMZuVSRi6hTDhc6gNckMYq0AU7Jal_UgAsjXC01kASoSP-CAzjcCJXyamKpYtkC5qMPGsCrraD9ddpP_pXwKdyOqVSjTTw8hE69aPJn6EDV5rnfIz8At7AS-A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Data+Clustering+by+Hybrid+Enhanced+Firefly+and+Particle+Swarm+Optimization+Algorithms&rft.jtitle=Mathematics+%28Basel%29&rft.au=Behera%2C+Mandakini&rft.au=Sarangi%2C+Archana&rft.au=Mishra%2C+Debahuti&rft.au=Mallick%2C+Pradeep+Kumar&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=19&rft.spage=3532&rft_id=info:doi/10.3390%2Fmath10193532&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon |