Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms

Data clustering is a process of arranging similar data in different groups based on certain characteristics and properties, and each group is considered as a cluster. In the last decades, several nature-inspired optimization algorithms proved to be efficient for several computing problems. Firefly a...

Full description

Saved in:
Bibliographic Details
Published inMathematics (Basel) Vol. 10; no. 19; p. 3532
Main Authors Behera, Mandakini, Sarangi, Archana, Mishra, Debahuti, Mallick, Pradeep Kumar, Shafi, Jana, Srinivasu, Parvathaneni Naga, Ijaz, Muhammad Fazal
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.10.2022
Subjects
Online AccessGet full text
ISSN2227-7390
2227-7390
DOI10.3390/math10193532

Cover

Abstract Data clustering is a process of arranging similar data in different groups based on certain characteristics and properties, and each group is considered as a cluster. In the last decades, several nature-inspired optimization algorithms proved to be efficient for several computing problems. Firefly algorithm is one of the nature-inspired metaheuristic optimization algorithms regarded as an optimization tool for many optimization issues in many different areas such as clustering. To overcome the issues of velocity, the firefly algorithm can be integrated with the popular particle swarm optimization algorithm. In this paper, two modified firefly algorithms, namely the crazy firefly algorithm and variable step size firefly algorithm, are hybridized individually with a standard particle swarm optimization algorithm and applied in the domain of clustering. The results obtained by the two planned hybrid algorithms have been compared with the existing hybridized firefly particle swarm optimization algorithm utilizing ten UCI Machine Learning Repository datasets and eight Shape sets for performance evaluation. In addition to this, two clustering validity measures, Compact-separated and David–Bouldin, have been used for analyzing the efficiency of these algorithms. The experimental results show that the two proposed hybrid algorithms outperform the existing hybrid firefly particle swarm optimization algorithm.
AbstractList Data clustering is a process of arranging similar data in different groups based on certain characteristics and properties, and each group is considered as a cluster. In the last decades, several nature-inspired optimization algorithms proved to be efficient for several computing problems. Firefly algorithm is one of the nature-inspired metaheuristic optimization algorithms regarded as an optimization tool for many optimization issues in many different areas such as clustering. To overcome the issues of velocity, the firefly algorithm can be integrated with the popular particle swarm optimization algorithm. In this paper, two modified firefly algorithms, namely the crazy firefly algorithm and variable step size firefly algorithm, are hybridized individually with a standard particle swarm optimization algorithm and applied in the domain of clustering. The results obtained by the two planned hybrid algorithms have been compared with the existing hybridized firefly particle swarm optimization algorithm utilizing ten UCI Machine Learning Repository datasets and eight Shape sets for performance evaluation. In addition to this, two clustering validity measures, Compact-separated and David–Bouldin, have been used for analyzing the efficiency of these algorithms. The experimental results show that the two proposed hybrid algorithms outperform the existing hybrid firefly particle swarm optimization algorithm.
Audience Academic
Author Mallick, Pradeep Kumar
Mishra, Debahuti
Shafi, Jana
Ijaz, Muhammad Fazal
Srinivasu, Parvathaneni Naga
Behera, Mandakini
Sarangi, Archana
Author_xml – sequence: 1
  givenname: Mandakini
  surname: Behera
  fullname: Behera, Mandakini
– sequence: 2
  givenname: Archana
  surname: Sarangi
  fullname: Sarangi, Archana
– sequence: 3
  givenname: Debahuti
  surname: Mishra
  fullname: Mishra, Debahuti
– sequence: 4
  givenname: Pradeep Kumar
  orcidid: 0000-0002-1207-0757
  surname: Mallick
  fullname: Mallick, Pradeep Kumar
– sequence: 5
  givenname: Jana
  orcidid: 0000-0001-6859-670X
  surname: Shafi
  fullname: Shafi, Jana
– sequence: 6
  givenname: Parvathaneni Naga
  orcidid: 0000-0001-9247-9132
  surname: Srinivasu
  fullname: Srinivasu, Parvathaneni Naga
– sequence: 7
  givenname: Muhammad Fazal
  orcidid: 0000-0001-5206-272X
  surname: Ijaz
  fullname: Ijaz, Muhammad Fazal
BookMark eNqFUU1r3DAUFCWFptvc-gMEvdapvmxZx2WbNIFACm3PQpbkXS22tJVlgvvr-xKHEkqh0kHivZnRaN5bdBZT9Ai9p-SSc0U-jaYcKKGK15y9QueMMVlJaJy9uL9BF9N0JLAU5a1Q50hv55KAGiz-bIrBu2Geis8h7nG34July8Hhq3gw0XqHr0P2_bBgEx3-ajKwBo-_PZg84vtTCWP4BUop4u2wTzmUwzi9Q697M0z-4vncoB_XV993N9Xd_Zfb3fausoI0pWK9bEnNa9c1koqeycZLLjtLLWs7WwvLnbWMe6osgU4LIC-slD2xnLS05xt0u-q6ZI76lMNo8qKTCfqpkPJeP_vVNSRhiFBNS6RQTnWKyJZRR4lqqKgNaFWr1hxPZnkww_BHkBL9GLZ-GTbgP6z4U04_Zz8VfUxzjvBdzSQTrOF184i6XFF7AyZC7FPJxsJ2fgwWZtkHqG-lELLmLcxngz6uBJvTNEHw_3PB_oLbUJ7GAe-E4d-k3wl7rc4
CitedBy_id crossref_primary_10_1007_s11042_023_17541_w
crossref_primary_10_32604_csse_2023_037488
crossref_primary_10_1007_s11042_024_18597_y
crossref_primary_10_1016_j_comcom_2023_06_027
crossref_primary_10_1016_j_engappai_2023_107795
crossref_primary_10_1016_j_engappai_2024_108104
crossref_primary_10_1155_2023_3988288
crossref_primary_10_3390_sym14112323
crossref_primary_10_1109_ACCESS_2023_3343754
crossref_primary_10_1007_s41870_024_01943_6
crossref_primary_10_1007_s11042_024_18913_6
crossref_primary_10_1007_s10586_024_04822_8
crossref_primary_10_1038_s41598_024_74881_9
crossref_primary_10_1007_s40314_024_03004_x
crossref_primary_10_3390_app13053364
crossref_primary_10_3390_axioms12060511
crossref_primary_10_1007_s11042_023_16659_1
crossref_primary_10_3390_su15064816
crossref_primary_10_1016_j_dib_2023_109799
crossref_primary_10_1007_s11042_023_17953_8
crossref_primary_10_3390_biomimetics8070525
crossref_primary_10_1016_j_swevo_2025_101847
crossref_primary_10_1371_journal_pone_0281519
crossref_primary_10_32604_csse_2023_036658
crossref_primary_10_1007_s11042_023_17498_w
Cites_doi 10.1016/j.kijoms.2018.09.001
10.1109/MAMI.2017.8307875
10.1016/j.knosys.2018.09.013
10.1109/ACCESS.2020.2981656
10.1007/978-3-030-74517-2
10.1109/TPAMI.1979.4766909
10.1007/978-981-16-8763-1
10.1109/ACCESS.2019.2960925
10.1109/IWCMC.2018.8450447
10.1016/j.swevo.2018.09.008
10.1109/ACCESS.2020.3006173
10.1007/s10044-004-0218-1
10.1016/j.jocs.2017.07.009
10.1109/CEC.2018.8477806
10.1109/CISPSSE49931.2020.9212193
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/math10193532
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals) eJournal Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList

Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_5739a049680749d9b907821d1096145a
10.3390/math10193532
A744753891
10_3390_math10193532
GeographicLocations India
GeographicLocations_xml – name: India
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c406t-2f780535db6714f276e737bc1c28bc54c3dcc23e19c0e738714e4c77f0c3081f3
IEDL.DBID BENPR
ISSN 2227-7390
IngestDate Tue Oct 14 19:00:36 EDT 2025
Sun Oct 26 03:57:33 EDT 2025
Fri Jul 25 12:02:40 EDT 2025
Mon Oct 20 16:47:47 EDT 2025
Thu Apr 24 23:05:27 EDT 2025
Thu Oct 16 04:40:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c406t-2f780535db6714f276e737bc1c28bc54c3dcc23e19c0e738714e4c77f0c3081f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1207-0757
0000-0001-6859-670X
0000-0001-9247-9132
0000-0001-5206-272X
OpenAccessLink https://www.proquest.com/docview/2724263562?pq-origsite=%requestingapplication%&accountid=15518
PQID 2724263562
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_5739a049680749d9b907821d1096145a
unpaywall_primary_10_3390_math10193532
proquest_journals_2724263562
gale_infotracacademiconefile_A744753891
crossref_primary_10_3390_math10193532
crossref_citationtrail_10_3390_math10193532
PublicationCentury 2000
PublicationDate 2022-10-01
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ezugwu (ref_4) 2020; 8
Davies (ref_6) 1979; 1
Zhao (ref_20) 2020; 8
ref_13
ref_24
ref_12
ref_23
ref_11
ref_22
ref_21
Agbaje (ref_3) 2019; 7
Guan (ref_1) 2019; 44
Sharma (ref_9) 2019; 23
ref_19
Deeb (ref_8) 2022; 34
ref_18
ref_16
Chou (ref_7) 2004; 7
ref_15
Zhou (ref_10) 2019; 163
Xia (ref_17) 2018; 26
Majhi (ref_2) 2018; 4
ref_5
Watanabe (ref_14) 2009; Volume 5792
References_xml – volume: 4
  start-page: 347
  year: 2018
  ident: ref_2
  article-title: Optimal cluster analysis using hybrid K-Means and Ant Lion Optimizer
  publication-title: Karbala Int. J. Mod. Sci.
  doi: 10.1016/j.kijoms.2018.09.001
– ident: ref_5
  doi: 10.1109/MAMI.2017.8307875
– volume: 34
  start-page: 5020
  year: 2022
  ident: ref_8
  article-title: Improved Black Hole optimization algorithm for data clustering
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 163
  start-page: 546
  year: 2019
  ident: ref_10
  article-title: Automatic data clustering using nature-inspired symbiotic organism search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2018.09.013
– volume: 8
  start-page: 58700
  year: 2020
  ident: ref_20
  article-title: Firefly Algorithm Based on Level-Based Attracting and Variable Step Size
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2981656
– ident: ref_23
  doi: 10.1007/978-3-030-74517-2
– volume: 1
  start-page: 224
  year: 1979
  ident: ref_6
  article-title: A Cluster Separation Measure
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1979.4766909
– volume: Volume 5792
  start-page: 169
  year: 2009
  ident: ref_14
  article-title: Firefly Algorithms for Multimodal Optimization
  publication-title: Stochastic Algorithms: Foundations and Applications
– ident: ref_24
  doi: 10.1007/978-981-16-8763-1
– ident: ref_11
– volume: 7
  start-page: 184963
  year: 2019
  ident: ref_3
  article-title: Automatic Data Clustering Using Hybrid Firefly Particle Swarm Optimization Algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2960925
– ident: ref_19
  doi: 10.1109/IWCMC.2018.8450447
– volume: 44
  start-page: 876
  year: 2019
  ident: ref_1
  article-title: Particle swarm Optimized Density-based Clustering and Classification: Supervised and unsupervised learning approaches
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.09.008
– ident: ref_16
– volume: 8
  start-page: 121089
  year: 2020
  ident: ref_4
  article-title: A Comparative Performance Study of Hybrid Firefly Algorithms for Automatic Data Clustering
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3006173
– volume: 7
  start-page: 205
  year: 2004
  ident: ref_7
  article-title: A new cluster validity measure and its application to image compression
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-004-0218-1
– ident: ref_15
– volume: 26
  start-page: 488
  year: 2018
  ident: ref_17
  article-title: A hybrid optimizer based on firefly algorithm and particle swarm optimization algorithm
  publication-title: J. Comput. Sci.
  doi: 10.1016/j.jocs.2017.07.009
– ident: ref_13
– ident: ref_22
– ident: ref_21
– ident: ref_12
  doi: 10.1109/CEC.2018.8477806
– ident: ref_18
  doi: 10.1109/CISPSSE49931.2020.9212193
– volume: 23
  start-page: 144
  year: 2019
  ident: ref_9
  article-title: Sustainable automatic data clustering using hybrid PSO algorithm with mutation
  publication-title: Sustain. Comput. Inform. Syst.
SSID ssj0000913849
Score 2.3690805
Snippet Data clustering is a process of arranging similar data in different groups based on certain characteristics and properties, and each group is considered as a...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3532
SubjectTerms Algorithms
Artificial intelligence
Cluster analysis
Clustering
compact-separated validity index
crazy firefly algorithm
Data mining
Datasets
David–Bouldin validity index
Electronic data processing
Genetic algorithms
Heuristic methods
hybrid firefly particle swarm optimization algorithm
Machine learning
Mathematical optimization
Methods
Mutation
Optimization algorithms
Particle swarm optimization
Performance evaluation
Validity
variable step size firefly algorithm
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals) eJournal Collection
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hXqAHBAVEoCAfChxQRBI7cXxcSlerSgUkqNSb5VdYpGy22s2q2n_PjJOuFqHChWOSOYxnxvOIPd8AnGAM8rXJfFoGa1KhjExVRc5QCFt4b-rK0Q_9i8_V7FKcX5VXe6O-6E7YAA88CA4Ldq4MprEVobYor6yioJb7nGaViDKmRlmt9oqp6INVzmuhhpvuHOv6D5j_zdH8FC958VsMilD9fzrkQ7i_6a7N9sa07V7EmT6Ch2OqyCYDi4_hXuiO4PBih7O6fgJ6sumX8YF9Mr1hp-2GgA8wHDG7ZbMttWOxs24ej_nZFN1b026Z6Tz7Oq6cfbsxqwX7gp5jMbZkskn7Y7n62c8X66dwOT37fjpLx5EJqcPI3KdFQzMKeOltJXPRFLIKkkvrclfU1pXCce9cwUOuXIZfsFoSQTgpm8xxTA4a_gwOumUXngPLhBQNDw4rECPyIIy1xhBd6YXHbZzA-1shajfiidNYi1ZjXUEi1_siT-DNjvp6wNG4g-4j6WNHQ-jX8QXahB4lo_9lEwm8I21q2qPIkjNjqwEujNCu9EQSzCGd0CZwfKtwPW7etS5khLHHzDCBtzsj-CvbL_4H2y_hQUHNFfGq4DEc9KtNeIUpT29fR-v-BTQb-ks
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeoAeeFcYCtoDjwNyE9u73viEQmkUIbVUgkjltNqH3VQ4TpTYVOHXM-NsogACIXG0PV7tembnsZ75BuAF2iDX1z0XitzokGdahllKypBzEzun-6mlA_3Ts3Q05h8uxMVOFT-lVWIoftUqaarTDCVG5bi3u1HWTUQSd-euePvNnyVFacpFK5Q3YS8V6I13YG98dj74Qj3lNm-v890TGge9wAkKYUYj_WSJWsD-39XyPtxqqrleXeuy3LE7w7ugNzNep5t8PWpqc2S__wLm-D9Lugd3vFPKBmspug838uoB7J9uEV2XD0ENmnrWXrD3utbsuGwIYgENHzMrNlpR4Rc7qSZtQgEboiItyhXTlWPnXjjZp2u9mLKPqKOmvviTDcrL2eKqnkyXj2A8PPl8PAp9c4bQog9Qh3FB3RAS4UwqI17EMs1lIo2NbNw3VnCbOGvjJI8y28MnGJfxnFspi55N0A0pkgPoVLMqfwysxyUvktxirKN5lHNtjNZEJxx3qDACeLNhlLIeuZwaaJQKIxhiq9plawAvt9TzNWLHH-jeEc-3NISz3d6YLS6V_zJKIKs0BlEpYQZlLjMZuVSRi6hTDhc6gNckMYq0AU7Jal_UgAsjXC01kASoSP-CAzjcCJXyamKpYtkC5qMPGsCrraD9ddpP_pXwKdyOqVSjTTw8hE69aPJn6EDV5rnfIz8At7AS-A
  priority: 102
  providerName: Unpaywall
Title Automatic Data Clustering by Hybrid Enhanced Firefly and Particle Swarm Optimization Algorithms
URI https://www.proquest.com/docview/2724263562
https://www.mdpi.com/2227-7390/10/19/3532/pdf?version=1664518322
https://doaj.org/article/5739a049680749d9b907821d1096145a
UnpaywallVersion publishedVersion
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: ABDBF
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: AMVHM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: 8FG
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED9t3QPsAfEpwkblBz4eULQmduLkAaFstFRIKxVQaTxFjp2sD2natamm_vfcpU4YQuzRySlyzuf7su93AG_QBplIDYwb5JlyRaykG4ekDIXIfGNUFGpK6F9OwvFMfL0Krg5g0tbC0LXKVic2itosNeXIz3zZYIujuf60unGpaxSdrrYtNJRtrWA-NhBjh3DkEzJWD47Oh5Pp9y7rQiiYkYj3N-A5xvtn6BfOUSxjHnD_L9vUQPj_q6iP4cG2WqndrSrLO5Zo9BgeWReSJfs1fwIHefUUji87_NXNM0iTbb1sBuyzqhW7KLcEiIBmimU7Nt5RmRYbVvPm-J-NUO0V5Y6pyrCpFSX241atF-wbapSFLdVkSXmNHKnni81zmI2GPy_Grm2l4Gq02LXrF9S7gAcmC6UnCl-GueQy0572o0wHQnOjtc9zL9YDfINRlMiFlrIYaI5OQ8FfQK9aVvlLYAMhRcFzjZGJEl4uVJYpRXSBEQa3twMfWiam2uKMU7uLMsV4g1ie3mW5A2876tUeX-M_dOe0Hh0NoWI3D5br69RyJg0kjxWGPCEh_MQmzmJygDzjUV8bESgH3tNqprR3cUpa2RIE_DFCwUoTSfCHdHLrwGm74Knd1Jv0jwg68K4Tgnun_er-75zAQ5_KKZrLgafQq9fb_DU6OXXWh8No9KVv5bffpApwNJtMk1-_AZGc_js
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-N7WHsAfFXFAb4gcEDitbETlw_TKjbWnVsLRNs0t6MYyfrQ5qWNtXUL8dn4y51yxBib3tMcrKcu_Odz777HcB79EGuZZouiLPUBEIZGaiEjKEQaeScaSWWDvT7g6R3Kb5cxVcb8GtVC0NplSubWBtqN7Z0Rr4fyRpbHN3158nPgLpG0e3qqoWG8a0V3EENMeYLO06zxQ2GcLODk2OU914UdTsXR73AdxkILDqzKohygvXnsUsTGYo8kkkmuUxtaKNWamNhubM24lmobBO_YIAhMmGlzJuWoz_NOY77ALYEFwqDv63DzuD82_qUh1A3W0ItM-45V8193IcOcRkoHvPoL19Ytwz41zHswPa8nJjFjSmKW56v-xge-S0ray917AlsZOVT2Omv8V5nz0C359W4fmDHpjLsqJgTAAO6RZYuWG9BZWGsUw7rdAPWRTObFwtmSsfOveqy7zdmOmJf0YKNfGkoaxfXKIFqOJo9h8t7YeoL2CzHZfYSWFNIkfPMYiRkRJgJk6bGEF3shENz0oBPKyZq63HNqb1GoTG-IZbr2yxvwN6aerLE8_gP3SHJY01DKNz1i_H0WnvO6FhyZTDESghRSDmVKtpwhS6kPjoiNg34SNLUZCtwStb4kgf8MULd0m1JcIt0U9yA3ZXAtTciM_1H5RvwYa0Ed0771d3jvIPt3kX_TJ-dDE5fw8OISjnqxMRd2Kym8-wNbrCq9K3XYgY_7nvh_AbUoza9
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NIQF7QPwVgQF-YPCAoiaxEzcPCJV1pWNsTIJJe_McO1kf0rS0qap8NT4dd2kShhB722OSk-Xcne989t3vAN6gD7J97Vk3TBPtilhLN47IGAqRBNbqfmToQP_4JBqfiS_n4fkW_GprYSitsrWJtaG2M0Nn5L1A1tji6K57WZMWcTocfZz_dKmDFN20tu00NipylFZrDN-WHw6HKOu9IBgd_Ngfu02HAdegIyvdICNIfx7aJJK-yAIZpZLLxPgm6CcmFIZbYwKe-rHx8AsGFyIVRsrMMxx9acZx3FtwWxKKO1Wpjz535zuEt9kX8SbXnvPY6-EOdIILIOYhD_7ygnWzgH9dwg7cXRVzXa11nl_xeaMHcL_ZrLLBRrsewlZaPIKd4w7pdfkY1GBVzuoHNtSlZvv5iqAX0CGypGLjigrC2EExqRMN2AgNbJZXTBeWnTZKy76v9WLKvqHtmjZFoWyQXyK_y8l0-QTOboSlT2G7mBXpM2CekCLjqcEYSAs_FTpJtCa60AqLhsSB9y0TlWkQzamxRq4wsiGWq6ssd2Cvo55vkDz-Q_eJ5NHREP52_WK2uFQNZ1QoeawxuIoISyi2cRLTVsu3PnXQEaF24B1JU5GVwCkZ3RQ74I8R3pYaSAJapDtiB3ZbgavGfCzVH2V34G2nBNdO-_n147yGO7hc1NfDk6MXcC-gGo46I3EXtsvFKn2JO6syeVWrMIOLm14zvwFO2DRX
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BeoAeeFcYCtoDjwNyE9u73viEQmkUIbVUgkjltNqH3VQ4TpTYVOHXM-NsogACIXG0PV7tembnsZ75BuAF2iDX1z0XitzokGdahllKypBzEzun-6mlA_3Ts3Q05h8uxMVOFT-lVWIoftUqaarTDCVG5bi3u1HWTUQSd-euePvNnyVFacpFK5Q3YS8V6I13YG98dj74Qj3lNm-v890TGge9wAkKYUYj_WSJWsD-39XyPtxqqrleXeuy3LE7w7ugNzNep5t8PWpqc2S__wLm-D9Lugd3vFPKBmspug838uoB7J9uEV2XD0ENmnrWXrD3utbsuGwIYgENHzMrNlpR4Rc7qSZtQgEboiItyhXTlWPnXjjZp2u9mLKPqKOmvviTDcrL2eKqnkyXj2A8PPl8PAp9c4bQog9Qh3FB3RAS4UwqI17EMs1lIo2NbNw3VnCbOGvjJI8y28MnGJfxnFspi55N0A0pkgPoVLMqfwysxyUvktxirKN5lHNtjNZEJxx3qDACeLNhlLIeuZwaaJQKIxhiq9plawAvt9TzNWLHH-jeEc-3NISz3d6YLS6V_zJKIKs0BlEpYQZlLjMZuVSRi6hTDhc6gNckMYq0AU7Jal_UgAsjXC01kASoSP-CAzjcCJXyamKpYtkC5qMPGsCrraD9ddpP_pXwKdyOqVSjTTw8hE69aPJn6EDV5rnfIz8At7AS-A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+Data+Clustering+by+Hybrid+Enhanced+Firefly+and+Particle+Swarm+Optimization+Algorithms&rft.jtitle=Mathematics+%28Basel%29&rft.au=Behera%2C+Mandakini&rft.au=Sarangi%2C+Archana&rft.au=Mishra%2C+Debahuti&rft.au=Mallick%2C+Pradeep+Kumar&rft.date=2022-10-01&rft.pub=MDPI+AG&rft.eissn=2227-7390&rft.volume=10&rft.issue=19&rft.spage=3532&rft_id=info:doi/10.3390%2Fmath10193532&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon